Fast and Feature-Complete Differentiable Physics
for Articulated Rigid Bodies with Contact

Keenon Werling!, Dalton Omens!, Jeongseok Lee?, Ioannis Exarchos! and C. Karen Liu!
!Stanford University: {keenon, domens, exarchos, ckliu38}@stanford.edu
2Robotics AI, Amazon: jeoslee@amazon.com

Abstract—We present a fast and feature-complete differen-
tiable physics engine that supports Lagrangian dynamics and
hard contact constraints for articulated rigid body simulation.
Our differentiable physics engine offers a complete set of features
that are typically only available in non-differentiable physics
simulators commonly used by robotics applications. We solve
contact constraints precisely using linear complementarity prob-
lems (LCPs). We present efficient and novel analytical gradients
through the LCP formulation of inelastic contact that exploit the
sparsity of the LCP solution. We support complex contact geome-
try, and gradients approximating continuous-time elastic collision.
We also introduce a novel method to compute complementarity-
aware gradients that help downstream optimization tasks avoid
stalling in saddle points. We show that an implementation of this
combination in an existing physics engine (DART) is capable of
a 45x single-core speedup over finite-differencing in computing
analytical Jacobians for a single timestep, while preserving all
the expressiveness of original DART.

I. INTRODUCTION

Many modern robotics problems are optimization problems.
Finding optimal trajectories, guessing the physical parameters
of a world that best fits our observed data, or designing a
control policy to optimally respond to a dynamic environment
are all types of optimization problems. Optimization methods
can be sorted into two buckets: gradient-based, and gradient-
free. Despite the well-known drawbacks of gradient-free
methods (high sample complexity and noisy solutions), they
remain popular in robotics because physics engines with the
necessary features to model complex robots are generally
non-differentiable. When gradients are required, we typically
approximate them using finite differencing [41]].

Recent years have seen many differentiable physics engines
published [[11} 19} (15}, 142} 138 101 134} 129} [12]], but none has yet
gained traction as a replacement for popular non-differentiable
engines [9, 41l 26]. We hypothesize that an ideal differentiable
physics engine needs to implement an equivalent feature set to
existing popular non-differentiable engines, as well as provide
excellent computational efficiency, in order to gain adoption. In
this paper, we extend the existing physics engine DART [26],
which is commonly used in robotics and graphics communities,
and make it differentiable. Our resulting engine supports all
features available to the forward simulation process, meaning
existing code and applications will remain compatible while
also enjoying new capabilities enabled by efficient analytical
differentiability.

A fully-featured physics engine like DART is complex
and has many components that must be differentiated. Some

Fig. 1. Boston Dynamics’ Atlas Robot learning to do yoga, being simulated
by our engine. This robot has 34 mesh colliders and 32 degrees of freedom.
This freeze frame contains 24 contact points, 12 per foot. Even with all that
complexity, we are able to compute the Jacobians of dynamics on this robot
45x faster on a single CPU core using the analytical methods introduced in this
paper than by finite differencing (only 16ms vs 737ms for finite differencing).

components (such as collision detection and contact force
computation) are not naively differentiable, but we show that
under very reasonable assumptions we can compute useful
Jacobians regardless. In order to differentiate through contacts
and collision forces, we introduce an efficient method for
differentiating the contact Linear Complementarity Problem
(LCP) that exploits sparsity, as well as novel contact geometry
algorithms and an efficient continuous-time approximation for
elastic collisions. As a result, our engine is able to compute
gradients with hard contact constraints up to 45 times faster
than finite differencing methods, depending on the size of the
dynamic system. Our relative speedup over finite differencing
grows as the system complexity grows. In deriving our novel
method to differentiate through the LCP, we also gain an
understanding of the nature of contact dynamics Jacobians
that allows us to propose heuristic “complementarity-aware
gradients” that may be good search directions to try, if a
downstream optimizer is getting stuck in a saddle point.

We provide an open-source implementation of all of these
ideas, as well as derivations from previous work [25, [7], in a
fully differentiable fork of the DART physics engine.

To summarize, our contributions are as follows:

o A novel and fast method for local differentiability of LCPs
that exploits the sparsity of the LCP solution, which
gives us efficient gradients through static and sliding
contacts and friction without changing traditional forward-
simulation formulations. Section [V}

o A novel method that manipulates gradient computation
to help downstream optimization problems escape saddle

Engine Contact Dynamic Collision Gradients
Force State Geometry Method
MuJoCo customized generalized complete finite
Degrave impulse cartesian primitives auto
DiffTaichi impulse caresian primitives auto
Heiden iter LCP generalized primitives auto
de A. B.-P. direct LCP cartesian primitives symbolic
Geilinger customized generalized primitives symbolic
Ours direct LCP generalized complete symbolic
TABLE I

DIFFERENTIABLE ENGINES SUPPORTING ARTICULATED RIGID BODIES

points due to discrete contact states. Section

o Fast geometric analytical gradients through collision
detection algorithms which support various types of 3D
geometry and meshes. Section [V]

e A novel analytical approximation of continuous-time
gradients through elastic contact, which otherwise can
lead to errors in discrete-time systems. Section

« An open-source implementation of all of our proposed
methods (along with analytical gradients through Feath-
erstone first described in GEAR [25]) in a fork of the
DART physics engine. We have created Python bindings
and a pip install package for ease of use.

II. RELATED WORK

Differentiable physics simulation has been investigated
previously in many different fields, including mechanical
engineering [16], robotics [[14]], physics [23, 21] and computer
graphics [32] 28]]. Enabled by recent advances in automatic
differentiation methods and libraries [31, [1} [18], a number of
differentiable physics engines have been proposed to solve
control and parameter estimation problems for rigid bodies
(25} 11} [18) 115} 10} 12} 34] and non-rigid bodies [37, 27, [13|
20, [34] [17) [12]. While they share a similar high-level goal
of solving “inverse problems”, the features and functionality
provided by these engines vary widely, including the variations
in contact handling, state space parameterization and collision
geometry support. Table [[I] highlights the differences in a few
differentiable physics engines that have demonstrated the ability
to simulate articulated rigid bodies with contact. Based on the
functionalities each engine intends to support, the approaches to
computing gradients can be organized in following categories.

Finite-differencing is a straightforward way to approxi-
mate gradients of a function. For a feature-complete physics
engine, where analytical gradients are complex to obtain,
finite-differencing provides a simpler method. For example, a
widely used physics engine, MuJoCo [41], supports gradient
computation via finite differencing. However, finite-differencing
tends to introduce round-off errors and performs poorly for a
large number of input variables.

Automatic differentiation (auto-diff) is a method for
computing gradients of a sequence of elementary arithmetic
operations or functions automatically. However, the constraint

satisfaction problems required by many existing, feature-
complete robotic physics engines are not supported by auto-diff
libraries. To avoid this issue, many recent differentiable physics
engines instead implement impulse-based contact handling,
which could lead to numerical instability and constraint
violation if the contact parameters are not tuned properly
for the specific dynamic system and the simulation task.
Degrave et al. [11] implemented a rigid body simulator in
the Theano framework [[1], while DiffTaichi [18] implemented
a number of differentiable physics engines, including rigid
bodies, extending the Taichi programming language [19]], both
representing dynamic equations in Cartesian coordinates and
handling contact with impulse-based methods. In contrast, Tiny
Differentiable Simulator [[15]] models contacts as an LCP, but
they solve the LCP iteratively via Projected Gauss Siedel (PGS)
method [24]], instead of directly solving a constraint satisfaction
problem, making it possible to compute gradient using auto-diff
libraries.

Symbolic differentiation is another way to compute gra-
dients by directly differentiate mathematical expressions. For
complex programs like Lagrangian dynamics with constraints
formulated as a Differential Algebraic Equations, symbolic
differentiation can be exceedingly difficult. Earlier work
computed symbolic gradients for smooth dynamic systems
[25]], and [7]] simplified the computation of the derivative of
the forward dynamics exploiting the derivative of the inverse
dynamics. Symbolic differentiation becomes manageable when
the gradients are only required within smooth contact modes
[42] or a specific contact mode is assumed [38]]. Recently, Amos
and Kolter proposed a method, Opt-Net, that back-propagates
through the solution of an optimization problem to its input
parameters [2]]. Building on Opt-Net, de Avila Belbute-Peres et
al. [10] derived analytical gradients through LCP formulated as
a QP. Their method enables differentiability for rigid body
simulation with hard constraints, but their implementation
represents 2D rigid bodies in Cartesian coordinates and only
supports collisions with a plane, insufficient for simulating
complex articulated rigid body systems. More importantly,
computing gradients via QP requires solving a number of
linear systems which does not take advantage of the sparsity of
the LCP structure. Qiao et al. [34] built on [2] and improved
the performance of contact handling by breaking a large scene
into smaller impact zones. A QP is solved for each impact
zone to ensure that the geometry is not interpenetrating, but
contact dynamics and conservation laws are not considered.
Solving contacts for localized zones has been previously
implemented in many existing physics engines [41} 9, 26].
Adapting the collision handling routine in DART, our method
by default utilizes the localized contact zones to speed up
the performance. Adjoint sensitivity analysis [35] has also
been used for computing gradients of dynamics. Millard et
al. [29]] combined auto-diff with adjoint sensitivity analysis to
achieve faster gradient computation for higher-dof systems, but
their method did not handle contact and collision. Geilinger
et al. [12]] analytically computed derivatives through adjoint
sensitivity analysis and proposed a differentiable physics engine

with implicit forward integration and a customized frictional
contact model that is natively differentiable.

Approximating physics with neural networks is a differ-
ent approach towards differentiable physics engine. Instead of
forward simulating a dynamic system from the first principles
of Newtonian mechanics, a neural network is learned from
training data. Examples of this approach include Battaglia et.
al [4], Chang et. al. 8], and Mrowca et. al [30].

Our engine employs symbolic differentiation to compute
gradients through every part of the engine using hand-tuned
C++ code. We introduce a novel method to differentiate the
LCP analytically that takes advantage of the sparsity of the
solution and is compatible with using direct methods to solve
the LCP. In addition, our engine supports a richer set of
geometry for collision and contact handling than has been
previously available, including mesh-mesh and mesh-primitive
collisions, in order to achieve a fully functional differentiable
version of the DART physics engine for robotic applications.

III. OVERVIEW

A physics engine can be thought of as a simple function
that takes the current position g,, velocity g,, control forces T
and inertial properties p, and returns the position and velocity
at the next timestep, q,,; and g, 1:

P(qt7(jt77—7u’) = [qt-‘rl’Qt—&-l]' (1)

In an engine with simple explicit time integration, our next
position g, is a trivial function of current position and
velocity, q;,; = q; + Atq, , where At is the descritized
time interval.

The computational work of the physics engine comes from
solving for our next velocity, ¢, ;. We are representing our
articulated rigid body system in generalized coordinates using
the following Lagrangian dynamic equation:

M(qs,) Giv1 = M(qi,)G — At(c(qe, Ge,) — 7)
+ JT(qt)f7

where M is the mass matrix, c is the Coriolis and gravitational
force, and f is the contact impulse transformed into the
generalized coordinates by the contact Jacobian matrix J. Note
that multiple contact points and/or other constraint impulses
can be trivially added to Equation [2]

Every term in Equation [2] can be evaluated given gq;, ¢, and
T except for the contact impulse f, which requires the engine
to form and solve an LCP:

2

find f,vp41

such that f >0, vy41 >0, fT'utH =0. 3)

The velocity of a contact point at the next time step, v¢41,
can be expressed as a linear function in f

vip1 = JGey1 = IM ' (Mg, — At(e— 1) + JT f)

=Af+0, 4)

where A = JM~1J7 and b = J(¢; + AtM (T —¢)). The
LCP procedure can then be expressed as a function that maps
(A, b) to the contact impulse f:

fLCP(A(qta“)’b(qtaQtaT7l~’L)) = .f (5)

As such, the process of forward stepping is to find f and
resulting g, that satisfy Equation 2] and Equation [5]

q
t\qt+ 1
a

6. Elastic contact

Qi1

F. Featherstone

Fig. 2. Data flow during a forward simulation, visualizing equations [2] and
E] The inputs are g, and q,, the current position and velocity in generalized
coordinates, p, the inertial properties, and 7, the external (control) torques on
the joints. The outputs are the generalized position and velocity at the next
timestep, q; 1 and g, . Every forward arrow represents a dependency in
data flow, which must be differentiated during backpropagation. Challenging
dependencies, and the relevant sections where we introduce analytical Jacobians,
are labeled with colored arrows and text in the diagram.

The main task in developing a differentiable physics engine
is to solve for the gradient of next velocity g,,; with respect
to the input to the current time step, namely gq,, ¢, 7+, and .
The data flow is shown in Figure [2| For brevity we refer to the
ouput of a function for a given timestep by the same name as
the function with a subscript ¢ (e.g. J; = J(q,)). The velocity
at the next step can be simplified to

o1 = s + My 'z, (6)
where z; = —At(c; — 1) + JT f;. The gradients we need to
compute at each time step are written as:

8qt+1 6Mt_1zt 1 (8Ct 8JtT
= + M. —At— + f
o, g, ! oq, ' 0q, "'
of
JIZ2t 7
e 8‘11&) @
0qi+1 -1 (dcy Ta.ft>
—=I+M —At—+J; = (3)
94y ! dq, "' 0q,
9411 1 70f¢
= AT+ J;, — 9
87} ¢ + ¢ 8‘rt ()
Oqi1 OM; 'z, 1 dey - Of,
= M —At—+ J; — 10
ou) M au o u (10)

We tackle the tricky intermediate Jacobians in sections
that follow. In Section we will introduce a novel sparse
analytical method to compute the gradients of contact force f,
with respect to q,, q,, T, p. Section [V| will discuss g‘;: —how
collision geometry changes with respect to changes in position.
In Section |VI| we will tackle % and 8%}“, which is not as

simple as it may at first appear, because naivély taking gradients

through a discrete time physics engine yields problematic
results when elastic collisions take place. Additionally, the

appendix gives a way to apply the derivations from [25] and
OM; 'z Qe dcy
a' 2£t and 3q.
q. q:

[7] to analytically find s Ba

IV. DIFFERENTIATING THE LCP

This section introduces a method to analytically compute
g%; and g—{. It turns out that it is possible to efficiently
get unambiguous gradients through an LCP in the vast
majority of practical scenarios, without recasting it as a QP
(which throws away sparsity information by replacing the
complementarity constraint with an objective function). To see
this, let us consider a hypothetical LCP problem parameterized
by A,b with a solution f* found during the forward pass:
fice(A,b) = f*.

For brevity, we only include the discussion on normal
contact impulses in this section and leave the extension to
friction impulses in Appendix [A] Therefore, each element in
f* > 0 indicates the normal impulse of a point contact. By
complementarity, we know that if some element f; > 0, then
v; = (Af" + b); = 0. Intuitively, the relative velocity at
contact point ¢ must be O if there is any non-zero impulse
being exerted at contact point . We call such contact points
“Clamping” because the impulse f; > 0 is adjusted to keep
the relative velocity v; = 0. Let the set C to be all indices
that are clamping. Symmetrically, if f; = 0, then the relative
velocity v; = (Af" 4+ b); > 0 is free to vary without the
LCP needing to adjust f; to compensate. We call such contact
points “Separating” and define the set S to be all indices that
are separating. Let us call indices j where f; =0 and v; =0
“Tied.” Define the set T to be all indices that are tied.

If no contact points are tied (7 = (}), the LCP is strictly
differentiable and the gradients can be analytically computed.
When some contact points are tied (7 # ()), the LCP has valid

subgradients and it is possible to follow any in an optimization.

The tied case is analogous to the non-differentiable points
in a QP where an inequality constraint is active while the
corresponding dual variable is also zero. In such a case,
computing gradients via taking differentials of the KKT
conditions will result in a low-rank linear system and thus
non-unique gradients [2].

A. Strictly differentiable cases

Consider the case where 7 = (). We shuffle the indices of
f*, v, A and b to group together members of C and S. The
LCP becomes:

find févfgavCavS
ve| _ | Ace Acs| | fe bc

such that [Us} = {ASC Ass} {f‘*s + bs| (11)
szOaf:kS‘ZOavCEO7U$20

fifve =0, f5fvs =0.

Since we know the classification of each contact that forms the
valid solution f*, we rewrite the LCP constraints as follows:
) A
such that [c] = [ce

Acs fé] [bc]
* 12
Vs Asc Ass} [fs T lbs (12)
fz>0, f:kg:O, ve =0, vs > 0.

find .fsz:g‘avCavS

From here we can see how the valid solution f* changes
under infinitesimal perturbations € to A and b. Since f5 =0
and ve = 0, the LCP can be reduced to three conditions on

fe:

0= ACCfZ + be (13)
fc>0 (14)
Ascfi +bs > 0. (15)

We will show that these conditions will always be possible to
satisfy under small enough perturbations € in the neighborhood
of a valid solution. Let us first consider tiny perturbations
to bs and Agc. If the perturbations are small enough, then
Equation |15 will still be satisfied with our original f é, because
we know Equation [T3] already holds strictly such that there is
some non-zero room to decrease any element of Ascf¢ + bs
without violating Equation [T5] Therefore,

afe ofc
abs 0w Ha T

Next let us consider an infinitesimal perturbation € to be and
the necessary change on the clamping force Af7 to satisfy
Equation

0. (16)

0=Acc(fz+Afe)+be+e. (17)

Setting Ace f¢ + be = 0 and assuming Acc is invertible,
the change of the clamping force is given as Af; = —Ac_cle.
Since f(is strictly greater than 0, it is always possible to
choose an € small enough to make f; — Agcle > 0 and
Asc(fe+ AfE) + bs > 0 remain true. Therefore,

e _ a0,

dbe (1%)

Note that Acc is not always invertible because A is positive
semidefinite. We will discuss the case when Acc is not full
rank in Section along with a method to stabilize the LCP
when there exists multiple LCP solutions in Appendix

Lastly, we compute gradients with respect to Ac¢c. In prac-
tice, changes to A¢¢ only happen because we are differentiating
with respect to parameters g or g, which also changes b¢. As
such, we introduce a new scalar variable, 2, which could
represent any arbitrary scalar quantity that effects both A and
b. Equation |13| can be rewritten as:

fe=—Acc(z) be(z).

Because Acc(z) and be(z) are continuous, and the original
solution is valid, any sufficiently small perturbation to x will

19)

not reduce f¢ below 0 or violate Equation The Jacobian
with respect to x can be expressed as:

of: 0A
73‘1;6 = Acc (x)_lig;(x) Acc (.’L’)_lbc (3;‘)
b
+Acc(x)_1%. (20)

Using A = JM~'JT and b = J(¢;+AtM ~*(1—c)), along
with the derivations of Featherstone presented in Appendix
it is possible to compute 6‘5‘% and % for any specific z.

Remark: Previous methods [10, 27, 34] cast an LCP to a
QP and solved for a linear system of size n + m derived from
taking differentials of the KKT conditions of the QP, where n
is the dimension of the state variable and m is the number of
contact constraints. Our method also solves for linear systems
to obtain Az, but the size of Acc is often much less than m
due to the sparsity of the solution (f*,v*).

B. Subdifferentiable case

Now let us consider when 7 # (). Replacing the LCP
constraints with linear constraints will no longer work because
any perturbation will immediately change the state of the
contact and the change also depends on the direction of
perturbation. Including the class of “tied” contact points to
Equation [IT] we need to satisfy an additional linear system,

vr = Arrfr+ Arcfe + Arsfs +br
= Arrfr+b1,

where by = A7c f¢ + by and vy and f7 are both zero
at the solution. Let ¢ € T be the index of a tied contact
point. Consider perturbing the ¢’th element of by by e. If
€ > 0, A77 f7 cannot become negative to balance Equation
because A7y is positive semidefinite and f7 must be
nonnegative. Therefore, v7; must become positive, resulting
contact point ¢ being separated and f7; remaining zero. If
€ < 0, then ¢ is immediately bumped into the “clamping”
set C because v7; cannot be negative. Therefore, f7, must
become positive to balance Equation 21} The gradients for
the clamping and separating cases are both valid subgraidents
for a tied contact point. In an optimization, we can choose
either of the two subgradients at random without impacting
the convergence [6]. In practice, encountering elements in 7~
is quite rare for practical numerical reasons.

21

C. When Acc is not full rank

When Acc is not full rank, the solution to ficp(A,b) = f*
is no longer unique. Nevertheless, once a solution is computed
using any algorithm and the clamping set C is found, we can
use the stabilization method proposed in Appendix [B] to find
the least-squares minimal f* that solves the LCP. The gradient
of clamping forces can then be written as:

of _10Acc _,0be
aq:c - Accl ox Acclbc + ACCI ox
I-A}A 9Acc AT AL 22
+(ceAce)(pe JAle Ale, (22)

where Agc is the pseudo inverse matrix of the low-rank A.
For numerical stability, we can solve a series of linear systems
instead of explicitly evaluating Acc(z)™.

D. Complementarity-aware gradients via contact constraints

Sometimes analytically correct Jacobians through the LCP
can actually prevent an optimizer from finding a good solution.
When a contact ¢ is clamping (¢ € C), we effectively impose
a constraint that the relative velocity at that contact point is
zero no matter how we push or pull on the contact. This
prevents the gradients from pointing towards any motions that
require breaking contact, because our constraints will zero out
gradients that lead to v; > 0.

This behavior is caused by the complementarity constraint
requiring that at most one of v; or f; can be non-zero. This
phenomenon grows out of the short-sightedness of the gradient
(it only considers an infinitely small neighborhood e around
the current state). While it is true that small attempts to push
v; > 0 will result in no change to v as f compensates to keep
v; = 0, eventually we will reach a discontinuity where f can no
longer prevent the contact from separating. However, a gradient-
based optimizer may never take steps in that direction because
gradients in that direction are 0. In this section we propose a
heuristic to opportunistically explore “projecting forward” to
the discontinuity where the complementarity constraint flips
during backpropagation, depending on the gradient of loss
function with respect to v and g—f.

To make it more concrete, let us consider a simple example
of a 2D circle attached to a linear actuator that can produce
force along the vertical axis (Figure [3). Our goal is to lift the
circle up to a target height above the ground by generating
an upward velocity using the linear actuator. When the circle
is resting on the ground under gravity, the contact point with
the ground is classified as “clamping”. This means that any
tiny perturbation in the control force of linear actuator will be
met with an exactly offsetting contact force to ensure that the
relative velocity between the circle and the ground remains
zero. As such, no matter what gradient of loss function with
respect to the control force we try to backpropagate through
the contact, we will always get g—_lr =0.

initial state clamping set to separating
ov ov
—=0 —>0
ot ot
V= 0 vV= f = 0
Fig. 3. Increasing force from the linear actuator (7) is met by an equal

and opposite decrease in ground reaction force f, resulting in no change in
velocity and thus no gain in height. Gradients of loss function will be zeroed
out by g—_’r’ = 0 when backpropgating through the contact. In contrast, if
the contact is classified as “separating”, the gradient will increase the linear
actuator, resulting in an upward force v.

Consider another example where the same 2D circle is
uncontrolled and resting on a linearly actuated platform (Figure
EI). To lift the circle up, we need to utilize the contact force

from the platform. If the initialization of the problem results in
the contact point being classified as “separating”, no constraint
force will be applied on the contact point, as if the contact did
not exist. Therefore, the gradient of contact force with respect
to the platform control force is zero, which may cause the
optimization to be trapped in a saddle point.

initial state separating set to clamping
of of
—=0 —>0
Jt Jt
f=0 f=0 v=_0
Fig. 4. If the initial contact state is “separating”, the platform cannot apply

contact force to the circle, resulting in zero gradient of the contact force with

respect to the control force of the platform, g—i = 0. However, if the contact

is classified as “clamping”, we can utilize the contact force from the platform
to push the circle upwards by increasing the control force of the platform.

In both examples, the issues can be resolved by classifying
the contact point differently. If we know that to solve this
problem we need to actuate the circle and the platform

separately, we would set the contact point to be “separating.”

This gives the optimizer a chance to explore a solution with
contact breaking. On the other hand, if we know that we need
to exploit the contact force between the circle and the platform,

we would relabel a separating contact point to be “clamping”.

This lets the optimizer search for the most effective contact
force that reduces the loss function.

Is there a way to know which strategy to use in advance?
In the general case, the answer seems to be no, but we can do
better than naive gradients which stick with whatever contact
classification they were initialized into and do not explore to
break out of resulting saddle points. We propose a heuristic to
explore more broadly at a constant additional cost.

We propose that always picking the contact strategy that

results in the largest || ae 113 + H‘Z’tHQ is a good heuristic

during learning for aV01d1ng saddle points. While we could try
backprop through all O(2") possible strategies and pick the
best one, that gets expensive as the number of contacts becomes
larger than a small handful. Instead of exhaustively searching
for all possible combinations of contact states with exponential
complexity, we propose to only check two classifications:

1) First, check the “correct” contact classification solved by
the LCP.

2) Second, we compute (the gradient of loss with respect
to relative contact Ve1001ty), and use the elements of
‘g—ﬁ to compute the “clamping” and “separating” sets as
follows. Take any indices ¢ that are trying to increase the
relative velocity at that contact ‘9[< 0, which implies
the optimizer is feebly trymg to separate the objects,
and put those indices into “separating” to remove the
constraint that v; = 0. Take any indices ¢ Where >0,
which implies the optimizer is trying to move the objects
closer together (which would violate contact constraints),

and put them into “clamping” to impose the constraint
that V; = 0.

oL 2
The contact strategy with the larger || 85 12 + H@HQ i
used during backpropagation for learning. We call the gradient
produced by this exploratory procedure a “Complementarity-
aware Gradient,” and find empirically that it can help avoid
saddle points during trajectory optimization. We show an

example of this in Section

The complementarity-aware gradients do not guarantee to
improve global convergence because the gradient is chosen for
each contact point independently, which might not result in
an aggregated gradient 3 ‘% that moves in a globally optimal
direction. However, if an optlmlzatlon problem currently gets
stuck in a saddle point, complementarity-aware gradients
provide another tool for practitioners to try.

V. GRADIENTS THROUGH COLLISION GEOMETRY

, the
relationship between position and joint impulse. In theory, we
could utilize auto-diff libraries for the derivative computation.
However, using auto-diff and passing every gradient through
a long kinematic chain of transformations is inefficient for
complex articulated rigid body systems. In contrast, computing
the gradients symbolically shortcuts much computation by
operating directly in the world coordinate frame.

Let A; € se(3) be the screw axis for the i’th DOF, expressed
in the world frame. Let the k’th contact point give an impulse
Fi € dse(3), also expressed in the world frame. Let ¢, j, €
{=1,0,1} be the relationship between contact k and joint i.
Vi = 1 or 1; , = —1 means contact k is on a child body of
joint 7. Otherwise, 1; ;, = 0. The total joint impulse caused by
contact impulses for the ¢’th joint is given by:

= Vi AT F= AT ¢inFr (23)
k k

Taking the derivative of Equation 23] gives

OJT) oAT T O0Fy
da, 94, giﬁ +Fk %:1/} g, 24)

0A;

Evaluating Da. 9T

is straightforward, but computing B,

requires understandlng how the contact normal n;, € R® and
contact position p;, € R® change with changes in g,.

Let Fj be a concatenation of torque and force in dse(3).
The derivative with respect to the current joint position g, is:

) 12}
OFc _ |G > Pyt i X g 25
ok o 25)
q: oq,

It turns out that computing d"’* for curved primitives shape
colliders (spheres and capsules) requires different treatment
from meshes or polygonal primitives. To understand why,
consider using a high polycount mesh to approximate a true
sphere as shown in Figure [5]

On a mesh approximation of a sphere, infinitesimally moving
the contact point p,, by € (by perturbing g of the triangle) will

curved surfaces mesh approximations

aaﬂ can be set to zero for mesh or polygonal geometry, but has to

be computed analytically for curved geometry.

Fig. 5.

not cause the normal of the contact face ny to change at all,
because we remain on the same face of the mesh. So %qu is
always zero for a mesh or polygonal shape. However, on a
true sphere, an infinitesimal perturbation of the contact point
with the sphere (no matter how small) will cause the contact
normal with the sphere n; to change. The way the contact
normal m; changes with position (e.g. 86—’;’“) is often crucial
information for the optimizer to have in order to solve complex
problems, and mesh approximations to curved surfaces falsely
set 68% =

We refer the interested reader to Appendix [C] for a discussion
of how we compute %Zf and g%’: for different combinations
of collider types. ’ ’

VI. GRADIENTS THROUGH ELASTIC CONTACTS

DiffTaichi [18]] pointed out an interesting problem that arises
from discretization of time in simulating elastic bouncing
phenomenon between two objects. The problems arise from
the discrete time integration of position: q, .1 = q; + Atq,.
The Jacobians ag—;“ =TI and %{;ﬂ = AtlI are correct for
most scenarios. Héwever, when an elastic collision occurs,
the discrete time integration scheme creates problems for
differentiation. In a discrete time world, the closer the object
is to the collision site at the beginning of the time step when
collision happens, the closer to the collision site it ends up
at the end of that time step. In continuous time, however, the
closer the object begins to its collision site, the further away
it ends up, because the object changes velocity sooner (Figure
[6).

DiffTaichi [[18]] proposed using continuous-time collision
detection and resolution during training, but noted that switch-
ing to discrete-time at test time did not harm performance.
Since introducing full continuous-time collision detection is
computationally costly for complex dynamic systems and
scenes, we instead opt to find a ag;“ and 8;;“ that
approximates the behavior of continuous-time Jacobians when
elastic collisions occur.

Let p, ; be the relative distance at contact ¢ at time ¢ and vy ;
be the relative velocity. We further define o; as the coefficient
of restitution at contact ¢ and ¢ + ¢; as the time of collision
of contact ¢, where c; € R. Assuming the relative velocity is
constant in this time step, we get ¢; = —p;/v; and p;,; ; =

original bounce discrete time continuous time

“-’/ \s J, // \‘-’é

Fig. 6. Discrete-time Jacobians do not adequately describe the dynamics of
an elastic collision. In the system pictured here, letting g be a scalar giving
the distance from the ground, discrete-time would lead us to falsely believe
that 2241 — 1. In continuous time, we would instead expect “L+L — _

. , pect —5 o,
where o is the coefficient of restitution. Modeling this requires ungerstanding
how the time of collision changes with initial conditions, and how that affects
the final state after the step.

TABLE 11
BENCHMARKS AGAINST FINITE DIFFERENCING

ENVIRONMENT ANALYTICAL CENTRAL SPEEDUP
DIFFERENCES
ATLAS 16.1Ms 737Ms 45.8x
HALF CHEETAH 0.870Ms 7.52MS 8.64x
JUMP-WORM 0.484Ms 3.08Ms 6.36X
CATAPULT 0.576Ms 3.69Ms 6.40X
(At — ¢;)ov, ;. From there we have:
oD
Pit+1 . Pi t4+1 N (26)
apz t avz,t

After finding the above gradients for each collision indepen-
. .))
dently, we need to find a pair of Jacobians, g;“ and %,
. . . t t
that approximate our desired behavior at each of the contact

points as closely as possible.

6pi,t+1 _ 8pi,t+1 aqt+1 0q;
apm 99,11 0q, Op,,
0
— T B gl g i=1.m (27)
’ oq, "

where J; ;41 is the Jacobian matrix of contact i, J y tl is the
pseudo inverse Jacobian, and m is the total number of contact
points. Our goal is to find a Jacobian 99u41 that satisfies the
above equations (Equation as closely as possible (details
in Appendix [E). Once we find a satisfactory approximation for

a(lt+1
dq, we can get

09,11

= At aqt“.
a(It

dq,

(28)

VII. EVALUATION

First, we evaluate our methods by testing the performance of
gradient computation. In addition, we compare gradient-based
trajectory optimization enabled by our method to gradient-
free stochastic optimization, and discuss implications. We also
demonstrate the effectiveness of the complementarity-aware

gradients in a trajectory optimization problem. Finally, we show
that our physics engine can solve optimal control problems for
complex dynamic systems with contact and collision, including
an Atlas humanoid jumping in the air.

A. Performance

Controlled comparison to existing methods can be chal-
lenging because they use different formulations for forward
simulation, essentially simulating different physical phenomena.
We therefore benchmark the performance of our method at the
atomic level-measuring the computation time of a Jacobian for
a single time step using a single-core CPU and comparing
it to finite differencing methods, using the same forward
simulation process provided by an existing non-differentiable
physics engine (DART). This comparison removes factors due
to differences in forward simulation, implementation techniques,
and computation resources, and focuses on the speed gain solely
contributed by our gradient computation method.

Table [TI] contains abbreviated benchmark performance of our
Jacobians against central differencing. We evaluate our results
in four environments: the Atlas robot on the ground (33 DOFs,
12 contact points), Half Cheetah on the ground (9 DOFs, 2
contact points), Jump-Worm (5 DOFs, 2 contact points), and
Catapult (5 DOFs, 2 contact points). For each environment, we
compare the speed of evaluating all five primary Jacobians. For
a complete table, including the speed of individual Jacobian
evaluations, see Appendix [D}

B. Gradient-based vs gradient-free trajectory optimization

To demonstrate the benefit of analytical Jacobians of dynam-
ics, we compare trajectory optimization on our catapult trajec-
tory problem between Multiple Shooting and Stochastic Search
(SS) [5], as well as cartpole and the double-pendulum using
both Differential Dynamic Programming (DDP) [39, 22} 40]]
and Stochastic Search [5]. The gradient-based methods (DDP
and Multiple Shooting) are able to converge much more quickly,
because the additional convergence gained from analytical
Jacobians more than offsets the time to compute them. See

Figure [VII-B

Comparing gradient-free to gradient-based methods

1.0 — cPD
\ --- PSS .
— DCP.D
--- DCP_S
~ — CTPLT M
. --- CTPLT S
0.6 S

0.8 N

Loss

0.4

Screenshot of learned catapult
trajectory using multiple-shooting
(CTPLT_M on the plot)

0.2 4

0.04

o 20 40 60 80 100 120
Time, s

Fig. 7. Comparing wall clock time to find a single-pendulum cartpole (CP),
double-pendulum cartpole (DCP), and catapult (CTPLT) trajectory, using DDP
(D), SS (S), and Multiple Shooting (M). The results are unsurprising: gradient
information speeds convergence tremendously.

C. Complementarity-aware gradients

To highlight the complementarity-aware gradients, we solve
a trajectory optimization problem of a drone taking-off from
the ground and reaching a fixed height in 500 timesteps.

Because the drone is initialized resting on the ground, it
has a contact with the ground that is classified as “clamping.”
When we attempt to optimize the control on the drone using
correct gradients, we get zero gradients and make no progress.
By contrast, when we use our complementarity aware gradient,
while we still see no change in loss for the first few iterations
of SGD, we’re able to get non-zero gradients and escape the
saddle point (Figure [7). See the supplementary video for the
resulting drone trajectories.

Drone learns to lift off (SGD, single shooting)

12.5
10.0 4
—— Naive gradients

Complimentarity aware gradients

Complimentarity
0.0 aware learns to lift off

Loss

o 10 20 30 40 50
Iteration of SGD

Fig. 8. Training a drone to lift off the ground and fly to a target height after
500 timesteps. Loss is the squared distance of the drone from the target at
t = 500. The drone is initialized resting on the ground, which means the

drone-ground contacts are classified as “clamping.” That means Jacobians will

show T2+l — (. While both standard and complementarity-aware training

+ . . .
runs start in a saddle point, the complementarity-aware gradients are able to
guide SGD to escape after several iterations of learning.

D. Optimal control with contact

We present several trajectory optimization problems that
involve complex contact dynamics, optimized using multiple
shooting. We demonstrate “Catapult”, which is a 3-dof robot
that is tasked with batting a free ball towards a target, in such
a way that it exactly hits the target at the desired timestep
(pictured in Figure [7). We also demonstrate “Jump-Worm”,
which is a 5-dof worm-shaped robot that is attempting to jump
as high as possible at the end of the trajectory. Both of these
problems involve complex contact switching throughout the
course of the trajectory. We also optimize a trajectory where
the “Atlas” robot learns to jump. See the supplementary video
for the resulting trajectories.

VIII. CONCLUSIONS

We present a fast and feature-complete differentiable physics
engine for articulated rigid body simulation. We introduce
a method to compute analytical gradients through the LCP
formulation of inelastic contact by exploiting the sparsity of the
LCP solution. Our engine supports complex contact geometry
and approximating continuous-time elastic collision. We also

E\
Fig. 9. A few snapshots of the trajectory that an Atlas robot learns when it
is asked to jump up towards the green markers, starting from a crouch.

introduce a novel method to compute complementarity-aware
gradients that help optimizers to avoid stalling in saddle points.

There a few limitations of our current method. Currently,
computing %, the way the joint torques produced by the
contact forces change as we vary joint positions (which in turn
varies contact positions and normals) takes a large portion of
the total time to compute all Jacobians of dynamics for a given
timestep. Perhaps a more efficient formulation can be found.

Our engine also doesn’t yet differentiate through the ge-
ometric properties (like link length) of a robot, or friction
coefficients. Extending to these parameters is an important step
to enable parameter estimation applications.

We are excited about future work that integrates gradients
and stochastic methods to solve hard optimization problems in
robotics. In running the experiments for this paper, we found
that stochastic trajectory optimization methods could often
find better solutions to complex problems than gradient-based
methods, because they were able to escape from local optima.
However, stochastic methods are notoriously sample inefficient,
and have trouble fine-tuning results as they begin to approach a
local optima. The authors speculate that there are many useful
undiscovered techniques waiting to be invented that lie at the
intersection of stochastic gradient-free methods and iterative
gradient-based methods. It is our hope that an engine like the
one presented in this paper will enable such research.

ACKNOWLEDGMENTS
REFERENCES

[1] Rami Al-Rfou, Guillaume Alain, Amjad Almahairi,
Christof Angermueller, Dzmitry Bahdanau, Nicolas Ballas,
Frédéric Bastien, Justin Bayer, Anatoly Belikov, Alexan-
der Belopolsky, et al. Theano: A python framework for
fast computation of mathematical expressions. arXiv e-
prints, pages arXiv—1605, 2016.

Brandon Amos and J Zico Kolter. Optnet: Differentiable
optimization as a layer in neural networks. In Proceed-
ings of the 34th International Conference on Machine
Learning-Volume 70, pages 136-145. JMLR. org, 2017.
David Baraff. Fast contact force computation for non-
penetrating rigid bodies. In Proceedings of the 21st
annual conference on Computer graphics and interactive
techniques, pages 23-34, 1994.

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

(10]

(11]

[12]

[13]

(14]

[15]

[16]

(17]

(18]

Peter Battaglia, Razvan Pascanu, Matthew Lai,
Danilo Jimenez Rezende, et al. Interaction networks
for learning about objects, relations and physics. In
Advances in neural information processing systems,
pages 4502-4510, 2016.

George I Boutselis, Ziyi Wang, and Evangelos A
Theodorou. Constrained sampling-based trajectory opti-
mization using stochastic approximation. In 2020 IEEE
International Conference on Robotics and Automation
(ICRA), pages 2522-2528. IEEE, 2020.

Stephen Boyd, Lin Xiao, and Almir Mutapcic. Subgradi-
ent methods. lecture notes of EE3920, Stanford University,
Autumn Quarter, 2004:2004-2005, 2003.

Justin Carpentier and Nicolas Mansard. Analytical deriva-
tives of rigid body dynamics algorithms. In Robotics:
Science and Systems (RSS 2018), 2018.

Michael B Chang, Tomer Ullman, Antonio Torralba, and
Joshua B Tenenbaum. A compositional object-based
approach to learning physical dynamics. arXiv preprint
arXiv:1612.00341, 2016.

Erwin Coumans. Bullet physics engine. Open Source
Software: http://bulletphysics. org, 1(3):84, 2010.

Filipe de Avila Belbute-Peres, Kevin Smith, Kelsey
Allen, Josh Tenenbaum, and J Zico Kolter. End-to-
end differentiable physics for learning and control. In
Advances in Neural Information Processing Systems,
pages 7178-7189, 2018.

Jonas Degrave, Michiel Hermans, Joni Dambre, and
Francis Wyffels. A differentiable physics engine for deep
learning in robotics. Frontiers in neurorobotics, 13:6,
2019.

Moritz Geilinger, David Hahn, Jonas Zehnder, Moritz
Bicher, Bernhard Thomaszewski, and Stelian Coros.
Add: analytically differentiable dynamics for multi-body
systems with frictional contact. ACM Transactions on
Graphics (TOG), 39(6):1-15, 2020.

David Hahn, Pol Banzet, James M. Bern, and Stelian
Coros. Real2sim: Visco-elastic parameter estimation from
dynamic motion. ACM Trans. Graph., 38(6), November
2019.

Eric Heiden, David Millard, Hejia Zhang, and Gaurav S
Sukhatme. Interactive differentiable simulation. arXiv
preprint arXiv:1905.10706, 2019.

Eric Heiden, David Millard, Erwin Coumans, and Gau-
rav S Sukhatme. Augmenting differentiable simulators
with neural networks. arXiv preprint arXiv:2007.06045,
2020.

Michiel Hermans, Benjamin Schrauwen, Peter Bienstman,
and Joni Dambre. Automated design of complex dynamic
systems. PLOS ONE, 9(1):1-11, 01 2014.

Philipp Holl, Nils Thuerey, and Vladlen Koltun. Learning
to control pdes with differentiable physics. In Interna-
tional Conference on Learning Representations, 2020.
Yuanming Hu, Luke Anderson, Tzu-Mao Li, Qi Sun,
Nathan Carr, Jonathan Ragan-Kelley, and Frédo Durand.
Difftaichi: Differentiable programming for physical simu-

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

lation. arXiv preprint arXiv:1910.00935, 2019.
Yuanming Hu, Tzu-Mao Li, Luke Anderson, Jonathan
Ragan-Kelley, and Frédo Durand. Taichi: a language for
high-performance computation on spatially sparse data
structures. ACM Transactions on Graphics (TOG), 38(6):
1-16, 2019.

Yuanming Hu, Jiancheng Liu, Andrew Spielberg,
Joshua B Tenenbaum, William T Freeman, Jiajun Wu,
Daniela Rus, and Wojciech Matusik. Chainqueen:
A real-time differentiable physical simulator for soft
robotics. Proceedings of IEEE International Conference
on Robotics and Automation (ICRA), 2019.

A. Tollo, M. Ferlauto, and L. Zannetti. An aerodynamic
optimization method based on the inverse problem adjoint
equations. Journal of Computational Physics, 173(1):87-
115, 2001.

David H Jacobson and David Q Mayne. Differential
dynamic programming. 1970.

Y. Jarny, M.N. Ozisik, and J.P. Bardon. A general
optimization method using adjoint equation for solving
multidimensional inverse heat conduction. International
Journal of Heat and Mass Transfer, 34(11):2911-2919,
1991.

Franck Jourdan, Pierre Alart, and Michel Jean. A
gauss-seidel like algorithm to solve frictional contact
problems. Computer Methods in Applied Mechanics and
Engineering, 155(1):31-47, 1998.

Junggon Kim. Lie group formulation of articulated
rigid body dynamics. Technical report, Technical Report.
Carnegie Mellon University, 2012.

Jeongseok Lee, Michael X Grey, Sehoon Ha, Tobias Kunz,
Sumit Jain, Yuting Ye, Siddhartha S Srinivasa, Mike
Stilman, and C Karen Liu. Dart: Dynamic animation
and robotics toolkit. Journal of Open Source Software, 3
(22):500, 2018.

Junbang Liang, Ming Lin, and Vladlen Koltun. Dif-
ferentiable cloth simulation for inverse problems. In
H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-
Buc, E. Fox, and R. Garnett, editors, Advances in Neural
Information Processing Systems, volume 32. Curran
Associates, Inc., 2019.

Antoine McNamara, Adrien Treuille, Zoran Popovié, and
Jos Stam. Fluid control using the adjoint method. ACM
Trans. Graph., 23(3):449-456, August 2004.

David Millard, Eric Heiden, Shubham Agrawal, and
Gaurav S. Sukhatme. Automatic differentiation and
continuous sensitivity analysis of rigid body dynamics,
2020.

Damian Mrowca, Chengxu Zhuang, Elias Wang, Nick
Haber, Li F Fei-Fei, Josh Tenenbaum, and Daniel L
Yamins. Flexible neural representation for physics
prediction. In Advances in neural information processing
systems, pages 8799-8810, 2018.

Adam Paszke, Sam Gross, Soumith Chintala, Gregory
Chanan, Edward Yang, Zachary DeVito, Zeming Lin, Al-
ban Desmaison, Luca Antiga, and Adam Lerer. Automatic

(32]

(33]

[34]

(35]

(36]

[37]

[38]

[39]

[40]

[41]

[42]

differentiation in pytorch. 2017.

Jovan Popovi¢, Steven M. Seitz, Michael Erdmann, Zoran
Popovié, and Andrew Witkin. Interactive manipulation
of rigid body simulations. In Proceedings of the 27th
Annual Conference on Computer Graphics and Interac-
tive Techniques, SIGGRAPH ’00, page 209-217. ACM
Press/Addison-Wesley Publishing Co., 2000.

William H. Press, Saul A. Teukolsky, William T. Vet-
terling, and Brian P. Flannery. Numerical Recipes 3rd
Edition: The Art of Scientific Computing. Cambridge
University Press, USA, 3 edition, 2007.

Yi-Ling Qiao, Junbang Liang, Vladlen Koltun, and
Ming C. Lin. Scalable differentiable physics for learning
and control. In ICML, 2020.

Christopher Rackauckas, Yingbo Ma, Vaibhav Dixit,
Xingjian Guo, Mike Innes, Jarrett Revels, Joakim Nyberg,
and Vijay Ivaturi. A comparison of automatic differentia-
tion and continuous sensitivity analysis for derivatives of
differential equation solutions, 2018.

C.J.F. Ridders. Accurate computation of f’(x) and f’(x)
f’(x). Advances in Engineering Software (1978), 4(2):
75-76, 1982.

Connor Schenck and Dieter Fox. Spnets: Differentiable
fluid dynamics for deep neural networks. In Proceedings
of The 2nd Conference on Robot Learning, volume 87
of Proceedings of Machine Learning Research, pages
317-335. PMLR, 29-31 Oct 2018.

Changkyu Song and Abdeslam Boularias. Learning
to slide unknown objects with differentiable physics
simulations. In Robotics: Science and Systems, Oregon
State University at Corvallis, Oregon, USA, 14-16 July
2020.

Yuval Tassa, Tom Erez, and Emanuel Todorov. Synthesis
and stabilization of complex behaviors through online
trajectory optimization. In 2012 IEEE/RSJ International
Conference on Intelligent Robots and Systems, pages 4906—
4913. IEEE, 2012.

Emanuel Todorov and Weiwei Li. A generalized iterative
Igg method for locally-optimal feedback control of
constrained nonlinear stochastic systems. In Proceedings
of the 2005, American Control Conference, 2005., pages
300-306. IEEE, 2005.

Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco:
A physics engine for model-based control. In 2012
IEEE/RSJ International Conference on Intelligent Robots
and Systems, pages 5026-5033. IEEE, 2012.

Marc Toussaint, Kelsey R. Allen, K. Smith, and J. Tenen-
baum. Differentiable physics and stable modes for tool-
use and manipulation planning. In Robotics: Science and
Systems, 2018.

APPENDIX

A. Frictional impulse

In DART, friction impulses are solved by the boxed LCP
method, using the same implementation of the boxed variant of
the Dantzig algorithm found in the Open Dynamics Engine, and
originally proposed in [3]. Boxed LCPs are not theoretically
guaranteed to be solvable, but are quite common in practice
because of their speed and high-quality results. We therefore
extend our formulation in Section [IV]|to compute the gradient
of frictional impulse magnitudes found in a boxed LCP solver
with respect to A and b. Similar to normal impulses, each
frictional impulse is classified into one of the two states:

a) Clamping (C): If the relative velocity along the fric-
tional impulse direction is zero, and friction impulse magnitude
is below its bound, then any attempt to push this contact will
be met with an increase in frictional impulse holding the point
in place. This means the contact point is clamping, which
behaves will be treated in the same way as clamped normal
forces.

b) Bounded (B): If the frictional impulse magnitude is at
its bound (either positive or negative) then the contact point is
sliding or about to slide along this friction direction. Bounded
frictional impulse B is quite like “Separating” S in normal
impulse. The difference is that frictional impulses in B are
not zero but at a non-zero bound based on the corresponding
normal impulses.

Bounded frictional impulse can be expressed by f = E f¢,
where each row of E € RIBIXICl contains a single non-zero
value with the friction coefficient, ug, for the corresponding
normal impulse index in C.

We define J¢ to be the matrix with just the columns of
J corresponding to the indices in C. Likewise, we define J 3
containing just the columns of J that are bounded. If we
multiply J g fc we get the joint torques due to the clamping
constraint forces. Similarly, if we multiply J g f we get the
joint torques due to bounded friction impulses. Since fz =
E f., we can modify Acc to take bounded frictional impulses
into account:

Ace = JeM Y (JL + JLE)

With this one small change, all the formulation in Section
works with frictional forces. An interesting observation is that
the bounded frictional cases are analogous to the separating
cases for the normal forces, in that the force value is constrained
at ps f; (or —ps f;), where f; is the corresponding normal force
for the same contact. The only way the bounded force values
will change is through the change of corresponding clamping
normal force, which needs to be accounted for when computing
the gradients.

Just like the overall boxed LCP problem is not solvable, Acc
is no longer guaranteed to be exactly invertible. In order to
support this, we need to use the pseudoinverse of A¢e during
the forward pass, and the gradient of the pseudoinverse when
computing Jacobians.

B. LCP stabilization

When Acc is not full rank, the solution to ficp(A,b) = f*
is no longer unique. To grasp this intuitively, consider a 2D
case where a box of unit mass that cannot rotate is resting
on a plane. The box has two contact points, with identical
contact normals, and because the box is not allowed to rotate,
the effect of an impulse at each contact point is exactly the
same (it causes the box’s upward velocity to increase). This
means that both columns of A (one per contact) are identical.
That means that Acc € R?*? is actually only rank one. Let’s
assume we need a total upward impulse of —mg to prevent
the box from interpenetrating the floor. Because Acc is a low
rank, we’re left with one equation and two unknowns:

11 féy} _ [fa +fé‘2} _ {—mg]
acese= 1) [= [1] = o

It is easy to see that this is just f¢ + fZ, = —mg. And that
means that we have an infinite number of valid solutions to
the LCP.

In order to have valid gradients, our LCP needs to have
predictable behavior when faced with multiple valid solutions.
Thankfully, our analysis in the previous sections suggests a
quite simple and efficient (and to the authors’ knowledge novel)
LCP stabilization method. Once an initial solution is computed
using any algorithm, and the clamping set C is found, we
can produce a least-squares-minimal (and numerically exact)
solution to the LCP by setting:

fe=Acche, fs=0

This is possible with a single matrix inversion because the
hard part of the LCP problem (determining which indices
belong in which classes) was already solved for us by the main
solver. Once we know which indices belong in which classes,
solving the LCP exactly reduces to simple linear algebra.

As an interesting aside, this “LCP stabilization” method
doubles as an extremely efficient LCP solver for iterative LCP
problems. In practical physics engines, most contact points
do not change from clamping (C) to separating (S) or back
again on most time steps. With that intuition in mind, we can
opportunistically attempt to solve a new ficp(Ait1,bi11) =
fi41 at a new timestep by simply guessing that the contacts
will sort into C and S in exactly the same way they did on the
last time step. Then we can solve our stabilization equations
for f;,, as follows:

ft+1fg:0

If we guessed correctly, which we can verify in negligible
time, then f;,, is a valid, stable, and perfectly numerically
exact solution to the LCP. When that happens, and in our
experiments this heuristic is right > 95% of the time, we can
skip the expensive call to our LCP solver entirely. As an added
bonus, because C is usually not all indices, inverting A1 1.,
can be considerably cheaper than inverting all of A; 1, which
can be necessary in an algorithm to solve the full LCP.

* —1
JFiy1c = Articebirac,

TABLE III
FULL BENCHMARKS AGAINST FINITE DIFFERENCING

ENVIRONMENT JACOBIAN ANALYTICAL CENTRAL DIFFERENCES SPEEDUP RIDDERS SPEEDUP
TiIME TIME TIME

ATLAS ALL 16.1Ms 737MS 45.8x 2229Ms 138x
g1 0.0275Ms 160Ms 5796x 581Ms 10888x
e 13.0Ms 161Ms 124X 581Mms 45x
Oait 0.0190Ms 96.4Ms 5076x 304Ms 16669
e 1.91Ms 160Ms 83.8x 487Ms 263x
8?;;1 1.16Ms 161Ms 139x 524Mms 471x

HALF CHEETAH ALL 0.870Ms 7.52Ms 8.64x 24MsS 28X
O 0.00755Ms 1.50Ms 199x 3.17Ms 395X
8;;“ 0.564Ms 1.746Ms 3.08x 7.92Ms 13.9x
gt 0.00239Ms 0.797ms 333x 242Ms 972x
e 0.185Ms 1.74Ms 9.42x 5.63Ms 30.4X
M 0.111Ms 1.74Mms 157x 5.75Ms 51.9x

JUMP-WORM ALL 0.484Ms 3.08Ms 6.36x 9.727Ms 20.35X
gt 0.00648Ms 0.590Ms 91.1x 1.58Ms 238.58x
M 0.326Ms 0.730Ms 2.24x 2.84Ms 8.79x
gt 0.00190Ms 0.297Ms 156x 0.81Ms 414X
ol 0.0879Ms 0.735Ms 837X 2.17Ms 25.4x
e 0.0623Ms 0.731Ms 1.7 23Ims 381X

CATAPULT ALL 0.576Ms 3.69Ms 6.40x 12.0Ms 20.8X
g1 0.00888Ms 0.701Ms 78.9x 1.79Ms 196.3x
e 0.375Ms 0.887Ms 236X 3.7IMs 9.79x
g 0.00227Mms 0.329Ms 145X 0.958Ms 399X
St 0.107Ms 0.886Ms 8.27x 2.72Ms 25.75X
i 0.0826Ms 0.883Ms 107X 2.85Ms 34.73X

When our heuristic does not result in a valid f;,;, we can
simply return to our ordinary LCP solver to get a valid set C
and S, and then re-run our stabilization.

As long as results from our LCP are stabilized, the gradients
through the LCP presented in this section are valid even when
A is not full rank.

C. Contact point and normal stabilization and gradients

To compute gradients through each contact point and normal
with respect to g,, we need to provide specialized routines for
each type of collision geometry, including collisions between
spheres, capsules, boxes, and arbitrary convex meshes. Deriving
the routines is a matter of straightforward algebra. However in
order for well-defined gradients to exist at all, each collision
must have precisely specified contact points and normals, so
that we can compute well-behaved gradients.

We describe in this appendix how we produce well-defined
contact points and normals, since this is a design choice. The
gradients of these methods are left as an exercise to the reader,
who is invited to check their work against our open-source
implementation.

1) Mesh-mesh collisions: Mesh-mesh collisions only have
two types of contacts: vertex-face and edge-edge collisions.
The other cases (vertex-edge, vertex-vertex, edge-face, face-
face) are degenerate and easily mapped into vertex-face and
edge-edge collisions.

Mesh-mesh collision detection algorithms like Gilbert-
Johnson-Keerthi or Minkowski Portal Refinement are iterative,
and so produce imprecise collision points and normals that
can vary depending on initialization. Both algorithms produce
a separating “witness plane” as part of their output, which
is a 3D plane that approximately separates the two meshes
(as much as possible, if they’re intersecting). Going from an
approximate separating witness plane to precisely specified
vertex-face and edge-edge collisions in the general case is
complex. Take all the points on object A that lie within some
tiny € of the witness plane, and map them into 2D coordinates
within the witness plane. Do likewise with the points on object
B. Now we have two convex 2D shapes, because any linear
slice of a convex shape is itself convex. Throw out any vertices
that are not on the 2D convex hull of the point cloud for A and
B respectively. Call the resulting convex shapes “witness hulls”
of A and B. Now any vertices on the witness hull of A that lie

within the witness hull of B are vertex-face collisions from A
to B. Analogously, any vertices on the witness hull of B that
lie within the witness hull of A are face-vertex collisions from
A to B. Finally, any edges of the witness hulls A and B that
intersect are edge-edge collisions.

For all vertex-face collisions, during the forward simulation,
the collision detector places a collision at the point of the
vertex, with a normal dictated by the face under collision. The
body providing the vertex can only influence the collision
location p, and the body providing the face can only influence
the collision normal n.

For all edge-edge collisions, the collision detector first finds
the nearest point on edge A to edge B (call that a), and the
nearest point on edge B to edge A (call that b). Then the
contact point is set to the average of a and b, which is “T*b.
The normal is given by the cross product of the two edges.
That means changing g of Object A can affect the contact
normal and the contact location along the other edge from
Object B. For this reason, we need to construct our Jacobians
globally.

2) Sphere-sphere collisions: These are straightforward. We
have sphere A, with center ¢, and radius r,, and sphere B, with
center ¢, and radius 7. The contact normal is the normalized
vector pointing from ¢ to ¢,. The contact point is a weighted

combination of the two sphere centers, W

3) Mesh-sphere collisions: These can be divided into three
categories: sphere-face collisions, sphere-edge collisions, and
sphere-vertex collisions. Starting from the simplest, a sphere-
vertex collision places the contact point at the vertex and the
normal points from the vertex to the sphere center.

A sphere-edge collision places the contact point on the
closest point to the sphere center along the edge. The contact
normal points from the collision point to the sphere center.

A sphere-face collision gets the contact normal from the
normal of the colliding face. Call the contact normal n, and
define the sphere center as ¢ and radius as 7. For the simplicity
of downstream gradient computation, we then place the contact
point at the point on the sphere, projected along with the
contact normal towards the contact: ¢ + 7 * n.

4) Pipe-pipe collisions: In a capsule-capsule collision, when
both capsule cylinders are colliding, we call that a pipe-pipe
collision. Mechanically, this is very similar to an edge-edge
collision, only with added radius variables r, and . Let ¢, be
the nearest point on the centerline of pipe A to the centerline
of pipe B. Let ¢; be the nearest point on the centerline of pipe
B to the centerline of pipe A. Then we say the contact point
is M The contact normal points from ¢; to c,.

5) Pipe-sphere collisions: These look a lot like pipe-pipe
collisions, except that ¢, is now fixed to the center of the
sphere. Let ¢, be the nearest point on the centerline of the
pipe to c¢p. Then we say the contact point is % The
contact normal points from ¢, to ¢,.

6) Pipe-mesh collisions: This breaks down into two types of
contact: vertex-pipe, and edge-pipe. Face-pipe contacts reduce
to two edge-pipe contacts.

For vertex-pipe contacts, we put the contact point at the

vertex, and point the normal towards the nearest point on the
centerline of the pipe.

For edge-pipe contacts, we treat them as pipe-pipe contacts
where the radius of the first pipe is 0.

7) Gradients: Once all the contact behavior is firmly
established, it’s just a matter of rote calculus to compute
derivatives. We refer the reader to our open source code for the
implementation of those derivatives. Once a stable collision
detection system and its derivatives are implemented that, it’s

possible to efficiently compute aJ f .

D. Jacobian Benchmark Evaluation

In addition to speed, we are interested in the accuracy of our
Jacobians, as gradients computed via finite differencing become
more inaccurate as the system becomes more complex, which
can lead to instability in optimization. As another baseline, we
apply Ridders’ method [36] to efficiently calculate Jacobians
to a higher-order error than central differencing, using the
stopping criterion given in [33]].

Table contains the full benchmark performance of
our analytical Jacobians against central differencing and the
accurate Ridders’ extrapolated finite differences. For each
environment, we compare the speed of evaluation of each
individual component Jacobian as well as the total time.

E. Calculating the Bounce Approximation Jacobian

Recall the matrix J7 that transforms contact forces to joint
forces. By conservation of momentum J¢q, = v:, leading to:

P11 ~ JaQt+1 gl
op, dq,

Our matrix notation is somewhat misleading here, because
we do not want our approximation to capture off-diagonals
of ;“1 Because we construct our approximate op p by
assuming each bounce is independent, we end up Wlth 0s on
the off-diagonals, but we know that assumption to be false. We
just want to find a agt“ where the above equation matches
the diagonals as closely as possible, ignoring other elements.
The following derives this relation in closed form.

Since we are only interested in enforcing the diagonal entries,
so we can write out a series of linear constraints we would
like to attempt to satisfy. Let J ;) denote the ’th column of

(29)

J. Recall that pl Shttl — g,
[T
T 5q T ~ 0 (30)
We would like to find some approximate matrix L ESRTYY

satisfies all n of the above constraints as closely as péssible.

Stated directly as a least-squares optimization object:
2

—(=01))

min Z Jiy—Fm—— 8qt+1 (31

The solution to this optimization can be found without
iterative methods.

Let 8%{}“ _ be the 7’th column of , and J(j,i) be the
7°th row and the ¢’th column of J. Note that:

6‘1t+1
9q,

3(1 _r0q
J() t+1 g ZJ(N) T ;+1 |) (32)
smlax @
T (J—Taqt+1) = Z(‘] J—T)Taqt+1) (33)
(Jyl) (i) oq, .. (4,9) oq, ..
t (4) %/—/ t (4)

J

scalar vector

It becomes clear that we could construct a long vector v,
which will map to every column of 8%;1 placed end to end.
t

We can also construct a matrix W where every column W ;)

is the vectors J; ;yJ (_Z)l placed end to end (iterating over j).
Now if we take the values of o; as entries of a vector r € R",

we can write our optimization problem as a linear equation:

3(1t+1
(1) dq,

— (~03))” = min ||[WTv + 7|3

min Z
(34)

This is a standard least squares problem, and is solved when:

—wTiy (35)

Once we have a value of v, we can reconstmct the original
matrix a, L by taking each column of qi“ the appropriate
segment o v.

This is almost always an under-determined system, and we
want to default to having a— as close to I as possible, rather
than as close to 0 as poss1ble We can slightly reformulate our
optimization problem where the least square objective tries to
keep the diagonals at 1, rather than 0. If we define an arbitrary
c vector (for “center”), we can use the identity:

Whw—-c)=-—r-WTe (36)

v=c—WTlir+wTe) (37)

If we set c to the mapping for % = I, then we get
a solution that minimizes the distance to the identity while
satisfying the constraints, measured as the sum of the squares
of all the terms.

Also, remember that to get our Jacobian with respect to
velocity, we simply:

df; 1
db,

_ aqt+1 (38)

0q,

And that should approximately solve the “gradient bounce”

problem. On timesteps where there is only a single bouncing
contact, this will provide an exact solution. With more than
one bounce in a single frame, this may be approximate.

E. Analytical derivatives through Featherstone

We present the derivation of analytical derivatives com-
putation through the Featherstone algorithm. Although the

intellectual computation should be credited entirely to [25] and
OM, "z dec
a; s aqf and

a;t for our implementation, rather than the entire inverse and
forward dynamics. The detailed derivation might be of interest
to some readers.

[[7], we specialized the derivations to obtain

The partial derivative of the inverse of joint space inertia
matrix can be computed from the partial derivative of the joint
space inertia matrix through the relation [[7]:

oM™ 'z A1 M

= Mz
dq dq *

(39)

Algorithm [T] and 2] show the recursive algorithms to compute
M~' and %—Jq”M ~12z, respectively. In Algorithm the
derivatives of the Coriolis force with respect to the joint position
and the joint velocity are given.

Algorithm 1 Recursive forward dynamics for M "
1: for j =1 ton do

2: for i =nto1do
3: Z,=7T,+ Zleu(z Ad; *;HlAdell
4 Bi = Y Ady o ﬁl
s: v, = (STI S,)
6 I, =7, — 7,5, 9,87,
N 1 ifi =1
7 =5, — STB,, where 0; ; = e
" ’ 0, otherwise
B, =Bi+I;5:¥;0;
: end for
10: for ; =1ton do
-1 T5
11: [M]i,j =W, (al S Z, AdT 17) V,\(l))
. .]
12: V,= AdT;(li),iV)\()+ S []iJ
13: end for
14: end for

Algorithm 2 Derivative of the recursive inverse dynamics for Algorithm 3 Derivative of the recursive inverse dynamics for

OM ng—1 8
TqM z aq and £¢
1: for i =1 to n do) 1:f0rz:1tondo
2V i=Adp Vi +Si (M~ 'z], 2 Vi=Adpa Vi) +Sig;
33 forj=1tondo 3 Vi=Adp-1 Vi) +ady,Siq; + Siq,
v, IV A(1),2 '
4 oq; — = AdTMIL) . oq; adc’h Ade V)\(z) 4: for j =1ton do ov
_ . oV, _ A(5))
5 i gi [M 1ZL‘ 5: 9a, = AdT;&M 7a, addh AdT;() Vg +
6 end for aqi a;
.] s .
;' ::rd z'f(lrn t 1 do o %, = Adry o+ 8!
N — J A(i),1
% Fi=TiVi+ e, Adp i 7 - =Adp 82;” adgn, Ade V,\(Z)
10: for j =1tondo
0 OF, _ 7 0V, _ OF 8: + adOV Siq; .+ aq Lq;
. qu ? Bq 8q7. oV oV
. A gV AG@)
12: + Z Ad —adbn JF % 9q; AdT;(li),i g,
lep(i) 8 qJ i k 08, - .k
. 9q ij %4 T ‘ dq 11: end for ’
14: end for

12: end for

13: for i =n to 1 do

4 F;=I;V,—adj, I,V; — F{ + Y lent) Ad},}F
15: for j =1tondo '

15: end for

. oF; __ v ; * L oV, OF%
16: 9q, =I,54 B0 adaa‘;:i TV, IZ 3a aa,
J
. * oF; *
17: +Zl€,u(i) Ad ._1 (8qj adgthiFl)
. J
OF; IV, * OV,
18: =TI ad IV, —ady, I;52
6Qj q; Vi 7‘8qj
*
19: + Dl)Ad -1 3%
. de _ asiT _ TaF
20 [3‘1L,j = 5q, Fit+Si%g
. de _ QT oF;
21: oq i - M 8‘1_7‘
22: end for

23: end for

	Introduction
	Related Work
	Overview
	Differentiating the LCP
	Strictly differentiable cases
	Subdifferentiable case
	When A_cc is not full rank
	Complementarity-aware gradients via contact constraints

	Gradients through collision geometry
	Gradients through elastic contacts
	Evaluation
	Performance
	Gradient-based vs gradient-free trajectory optimization
	Complementarity-aware gradients
	Optimal control with contact

	Conclusions
	Appendix
	Frictional impulse
	LCP stabilization
	Contact point and normal stabilization and gradients
	Mesh-mesh collisions
	Sphere-sphere collisions
	Mesh-sphere collisions
	Pipe-pipe collisions
	Pipe-sphere collisions
	Pipe-mesh collisions
	Gradients

	Jacobian Benchmark Evaluation
	Calculating the Bounce Approximation Jacobian
	Analytical derivatives through Featherstone

