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A general Bayesian approach to meet different
inferential goals in poverty research for small areas
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ABSTRACT

Poverty mapping that displays spatial distribution of various poverty indices is most
useful to policymakers and researchers when they are disaggregated into small ge-
ographic units, such as cities, municipalities or other administrative partitions of a
country. Typically, national household surveys that contain welfare variables such as
income and expenditures provide limited or no data for small areas. It is well-known
that while direct survey-weighted estimates are quite reliable for national or large geo-
graphical areas they are unreliable for small geographic areas. If the objective is to find
areas with extreme poverty, these direct estimates will often select small areas due to
the high variability in the estimates. Empirical best prediction and Bayesian methods
have been proposed to improve on the direct point estimates. These estimates are,
however, not appropriate for different inferential purposes. For example, for identi-
fying areas with extreme poverty, these estimates would often select areas with large
sample sizes. In this paper, using real life data, we illustrate how appropriate Bayesian
methodology can be developed to address different inferential problems.

Key words: Bayesian model, cross-validation, hierarchical models, Monte Carlo simu-
lations

1. Introduction

Eradication of poverty, one of the greatest challenges facing humanity, has been the
central tool to guide various public policy efforts in many countries. According to the
United Nations 3: “Extreme poverty rates have fallen by more than half since 1990. While
this is a remarkable achievement, one-in-five people in developing regions still live on less
than $1.90 a day. Millions more make little more than this daily amount and are at risk
of slipping back into extreme”. On September 25, 2015, the United Nations adopted the
2030 Agenda for Sustainable Development with 17 new Sustainable Development Goals
(SDGs), beginning with a historical pledge to end poverty in all forms and dimensions
by 2030 everywhere permanently.* In order to achieve these goals, basic resources and
services need to be more accessible to people living in vulnerable situations. Moreover,
support for communities affected by conflict and climate related disasters needs to be
raised.
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National estimate of an indicator usually hides important differences among different
regions or areas with respect to that indicator. In almost all countries, these differences
exist and can often be substantial. The smaller the geographic regions for which in-
dicators are available, the greater the effectiveness of interventions. Indeed this allows
to reduce transfers to the non-poor and minimizes the risk that a poor person will be
missed by the program. Ravallion (1994) found that Indian and Indonesian states or
provinces are too heterogeneous for targeting to be effective. This underlines the need
for production of estimates of indicators for small areas that are relatively homogenous.

It is now widely accepted that direct estimates of poverty based on household sur-
vey data are unreliable. There are now several papers available in the literature that
attempt to improve on the direct estimates by borrowing strength from multiple rele-
vant databases. Hierarchical models that combine information from different databases
are commonly used to achieve the goal because such models not only provide improved
point estimates but also incorporate different sources of variabilities. These models can
be implemented using a synthetic approach (e.g., Elbers et al. 2003), empirical best
prediction approach (Fay and Herriot 1979; Franco and Bell 2015; Bell et al. 2016;
Molina and Rao 2010; Casas-Cordero et al. 2016), and Bayesian approach (Molina et
al. 2014). See Jiang and Lahiri (2006), Pfeffermann (2013) and Rao and Molina (2015)
for a review of different small area estimation techniques.

Empirical best prediction and hierarchical Bayesian methods (also shrinkage meth-
ods) have been employed in numerous settings, including studies of cancer incidence in
Scotland (Clayton and Kaldor 1987), cancer mortality in France (Mollie and Richard-
son 1991), stomach and bladder cancer mortality in Missouri cities (Tsutukawa et al.
1985), toxoplasmosis incidence in El Salvador (Efron and Morris 1975), infant mortal-
ity in New Zealand (Marshall 1991), mortality rates for chronic obstructive pulmonary
disease (Nandram et al. 2000), poverty research (Molina and Rao 2010; Molina et al.
2014; Bell et al. 2016; Casas-Cordero et al. 2016). The basic approach in all these
applications is the same: a prior distribution of rates is posited and is combined with
the observed rates to calculate the posterior, or stabilized, rates.

All the papers cited in the previous paragraph deal with the point estimation and
the associated measure of uncertainty. However, in many cases, there could be different
inferential goals where point estimates, whether empirical best prediction estimates or
posterior means, though they can provide a solution, are not efficient. For example, one
inferential goal could be to flag a geographical area (e.g., municipality) for which the
true poverty measure of interest exceeds a pre-specified standard. The point estimates
can certainly flag such areas but do not provide any reasonable uncertainty measure to
assess the quality of such action. It is not clear how to propose such a measure for
a method based on direct estimates. For the method based on posterior mean, one
can perhaps propose a normal approximation using the posterior mean and posterior
standard deviation to approximate the posterior probability of the true poverty measure
exceeding the pre-specified standard. In some cases, quality of such approximation could
be questionable. One can have a more complex inferential goal. For example, we may be
interested in identifying the worst geographical area with respect to the poverty measure.
In this case, the use of direct estimates for identification can be misleading when the
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sample sizes vary across the geographic units. The regions with small sample sizes will
tend to have both high and low poverty indices merely because they have the largest
variability. The method based on posterior means is not good either since it tends to
identify areas with more samples; see Gelman and Price (1999). Moreover, in either case
there does not seem to be a clear way to produce a reasonable quality measure.

Gelman and Price (1999), Morris and Christiansen (1996), Langford and Lewis
(1998), Jones and Spigelhalter (2011) discussed various inferential problems other than
the point estimation. For example, Morris and Christiansen (1996) outlined inferential
procedures for identifying areas with extreme indicator. Our approach is similar to theirs
but applied for different complex parameters and used much more complex hierarchical
model that is appropriate for survey data.

We would like to stress that our proposed approach for solving different inferential
problems is fundamentally different from the constrained empirical hierarchical Bayesian
(Louis 1984; Ghosh 1992; Lahiri 1990) and the triple-goal (Shen and Louis, 1998)
approaches where the goal is to produce one set of estimates for different purposes. In
contrast, we propose to use the same synthetic data matrix generated from the posterior
predictive distribution for different inferential purposes. Other than this fundamental
difference, our approach has a straightforward natural way to produce appropriate quality
measures. In poverty research, Molina et al. (2014) suggested an interesting approach
for estimating different poverty indices by generating a synthetic population from a
posterior predictive density. However, they restricted themselves to point estimates and
their associated uncertainty measures and did not discuss how one would solve a variety
of statistical inferences.

We outline a general approach to deal with different inferential goals and illustrate
our methodology using the data used by the Chilean government for their small area
poverty mapping system. Section 2 describes the Chilean data, the hierarchical model, a
general poverty index, inferential approach for achieving various goals and data analysis.
In Section 3, we provide some concluding remarks and a direction for future research.

2. lllustration of the proposed methodology using Chilean poverty
data

There has been a consistent downward trend in the official poverty rate estimates,
which are the usual national survey-weighted direct estimates, in Chile since the early
90’'s. While this national trend is encouraging, there is an erratic time series trend in
the direct estimates for small comunas (municipalities) - the smallest territorial entity in
Chile. Moreover, for a handful of extremely small comunas, survey estimates of poverty
rates are unavailable for some or all time points simply because the survey design, which
traditionally focuses on obtaining precise estimates for the nation and large geographical
areas, excludes these comunas for some or all of the time points. In any case, direct
survey estimates of poverty rates typically do not meet the desired precision for small
comunas and thus the assessment of implemented policies is not straightforward at
the comuna level. In order to successfully monitor trends, identify influential factors,



240 P. Lahiri, J. Suntornchost: A general Bayesian approach to meet different ...

develop effective public policies and eradicate poverty at the comuna level, there is a
growing need to improve on the methodology for estimating poverty rates at this level of
geography. In this section, we use the Chilean case to illustrate our Bayesian approach
to answer a variety of research questions.

2.1. Data used in the Analysis

To illustrate our Bayesian approach, we use a household survey data as the pri-
mary source of information and comuna level summary statistics obtained from different
administrative data sources as supplementary sources of information. We now provide
a brief description of the primary and supplementary databases. Further details can be
obtained from Casas-Cordero et al. (2016).

2.1.1 The Primary Data Source: The CASEN 2009 Data

The Ministry of Social Development estimates the official poverty rates using the
National Socioeconomic Characterization Survey, commonly referred to as the CASEN.
The Ministry has been conducting CASEN since 1987 every two or three years. The
CASEN is a household survey collecting a variety of information of Chilean households
and persons, including information about income, work, health, subsidies, housing and
others. The Ministry calculates poverty rate estimates at national, regional and munic-
ipality (comuna) levels. The Ministry is the authority specified by the Chilean law to
deliver poverty estimates for all the 345 comunas in Chile. These estimates are used,
along with other variables, to allocate public funding to municipalities.

In a joint effort by the Ministry and United Nations Development Programme (UNDP),
a Small Area Estimation (SAE) official system was developed for estimating poverty rates
at comuna level using the CASEN 2009 survey. The Chilean method is based on an em-
pirical Bayesian method using an area level Fay-Herriot Model (Fay and Herriot 1979)
to combine the CASEN survey data with a number of administrative databases. The
SAE system provides point estimates and parametric bootstrap confidence intervals (see,
e.g., Chatterjee et al. 2008; Li and Lahiri 2010) for the Chilean comunas.

The CASEN 2009 used a stratified multistage complex sample of approximately
75,000 housing units from 4,156 sample areas. The entire Chile was divided into a
large number of sections (Primary Stage Units or PSUs). The PSUs were then grouped
into strata on the basis of two geographic characteristics: comuna and urban/rural
classification. Overall, there were 602 strata in the CASEN 2009 survey and multiple
PSUs were sampled per stratum. The probability of selection for each PSU in a stratum
was proportional to the number of housing units in the (most recently updated) 2002
Census file.

Prior to the second stage of sampling, listers were sent to the sampled PSUs to
update the count of housing units. This procedure was implemented in both urban and
rural areas. In the second stage of sampling, a sample of housing units was selected
within the sampled PSUs. The probability of selection for each housing unit (Secondary
Stage Unit or SSU) is the same within each PSU. On the average, 16-22 housing units
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were selected within each PSU by implementing a procedure that used a random start
and a systematic interval to select the units to be included in the sample.

2.1.2 Administrative Data at the Comuna Level

Casas-Cordero et al. (2016) carried out an extensive task to identify a set of
auxiliary variables derived from different administrative records of different agencies. In
this paper, we use the same set of comuna level auxiliary variables for illustrating our
approach. For completeness, we list them below:

(1) Average wage of workers who are not self-employed,
2) Average of the poverty rates from CASEN 2000, 2003, and 2006,

2
(3) Percentage of population in rural areas,
(4) Percentage of illiterate population,

(5) Percentage of population attending school.

Like in Casas-Cordero et al. (2016), we also use arcsine square-root transformation for all
the auxiliary variables except the first one, for which we use logarithmic transformation.
We note that our approach is general and can use a different set of auxiliary variables
that may be deemed appropriate in the future.

2.2. The Foster-Greer-Thorbecke (FGT) poverty indices

Currently, the Chilean government publishes headcount ratios or poverty rates for
the nation and its comunas. To present our approach in a general setting, we consider
a general class of poverty indices commonly referred to as the FGT indices, after the
names of the three authors of the paper by Foster et al. (1984). To describe the FGT
index, we first introduce the following notations:

N,: total number of households in comuna c,

U.: number of urbanicity statuses for comuna c; since for urbanicity status, we use
urban and rural statuses only, U, is either 1 or 2 for a given comuna,

ky: fixed poverty line for urban-rural classification u (u =1 and u =2 for urban and
rural, respectively),

M., total number of PSUs in the universe for urban-rural classification u of comuna
c,

Neup: total number of households in the universe of the PSU p belonging to the urban-
rural classification u of comuna c,

Yeuph: Per-capita income of household % (that is, total income of the household divided
by the number of household members) in PSU p, urban-rural classification u, and
comuna c.
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In our context, the class of FGT indices for comuna c is given by

1 Us Mey Ncup

Qc;oc = ﬁ Z Z Z ga(ycuph)v

¢ u=1p=1h=1
where u
ZaVeuph) = (k”k?:‘"ph) I(Yeuph < k), @ is a “sensitivity” parameter (o =0,1,2
corresponding to poverty ratio, poverty gap, and poverty severity, respectively).

2.3. Hierarchical Model

A hierarchical model could be effective in capturing different salient features of
the CASEN survey data and in linking comuna level auxiliary variables derived from
different administrative records. We consider the following working hierarchical model
to illustrate our general approach for inference. We call the model a working model
because we recognize that it is possible to improve on it in the future. But this model
will suffice to illustrate the central theme of the paper, i.e., how to carry out a particular
inferential procedure given a hierarchical model.

Let Typn = T (Yeupn) be a given transformation on the study variable y.,,;. For the
application of this paper, we consider T (yeupn) = In(yeupn +1). We consider the following
hierarchical model for the sampled units:

ind
Level 1: Tcuph|9c‘up»o-T G~ N(chpao%)a
ind
Level 2: 9cup|ucu769 lIlV N(l'LC‘“Gg)’
Level 3t palBuou % N(XIBic2),

where X, is a vector of comuna level known fixed auxiliary variables; 6.,, and ., are
random effects; ﬁu,G%,Gg and Gﬁ are unknown hyperparameters.

We follow the recommendation of Gelman (2015) in assuming weakly informative
priors for the hyperparameters. For example, we assume independent N(0, 1) prior for
all regression coefficients and independent half normal prior for the standard deviations.

2.4. Inferential Approach
We first note that the inference on Q. ¢ is equivalent to that of

Us Mey Ncup

Ocio = NL Z Z Z 8a (T_l(Tcuph)) )

¢ u=1p=1h=I

where T is a monotonic function (e.g., logarithm). Under full specification of the model
for the finite population, one can make inferences about Q.. in a standard way. However,
full specification of model for the unobserved units of the finite population seems to be a
challenging task. To this end, appealing to the law of large numbers, we first approximate



STATISTICS IN TRANSITION new series, Special Issue, August 2020 243

Qe by OF, where

Ue Mcy NWP

Qf;a NG Z Z Z E{ga ( Luph)) |ecup7GT}-

Cu 1p=1h=

This is reasonable under Level 1 of the hierarchical model (even without the normality
assumption) since N, is typically large. We then propose the following approximation to

Ol
Ue mey Neup
Qc o= Qc o GC)O-T Z Z Z WcuphE{glx cuph)) |GCMP)O-T}7 (1)

u=1p=1h=

where

Weuph 1S the survey weight for the household 4 in the PSU p within urbanicity u of

comuna c,
Ue
6. = col, pB.yp; a Z mey < 1 column vector (we follow the notation of Prasad and Rao
u=1
1990),

Sa (T71 (Tcuph)) = {ku - (T;C] (Tcuph)) } I(Tcuph < lu),

I, =In(k,+ 1), the poverty line of the urbanicity u in the transformed scale.

The weights are scaled within each comuna so that the sum of the weights for all
households equals 1. In the last approximation, we assume that the scaled survey weight
Weuph represents proportion of units in the finite population (including the unit cuph) of
comuna c¢ that are similar to the unit cuph.

The calculations of (1) under the model described in Section 2.3 can be done through
the following formula:

For oo =0,
lu - chp
E{g0((T (Tou) 100 07} = [ .77 9(cl6uupr 07z
“or

oft ) o( -8
or or ’

where ¢ and & are the density function and the distribution function of the standard
normal distribution, respectively.
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For oo =1,

IE{gl (T71 (Tcuph))lecup; 612“}

()

Ly — cup

1
= [ 05T (exp(l) ~exp(07+ 8p)) 0(clOy. oF )z

_ exiilu) |:¢<lu chup) 7¢<7 %I;Pﬂ

5
_eXp(ecul’+ 2 l:q)(lu_ecup_c%>_q)(_ecup+672">:|’

ku or

b 2
where we use the fact that / exp (0z) ¢ (z)dz = exp <62) [(D(b— o) —Pla— 0')} to
a

obtain the last equation.
For o =2,

E{g2(T71 (Tcuph))wcupa 672"}

X l X cuph :
E{( (k) —eull p/>> ,(Twphglu)}

lu 9Lup

1
7/ (exp(ly) —exp(orz + ecup))2¢(z|9cup76%)dz
ki J

_ exp(ZZu) [q)< u 9cup> _cp(—M)}

k,% or or
2

N exp(26.yp +207) ® ( Ly — Bcup — 26T> B q)( B+ 2(7%)
k% or or

2
Zexp(lu—f—ﬂ—l—%) cp(lu—ecup—c%)iq%ichp+6%)
k2 or or .

In order to carry out a variety of inferential problems about Q..o for a given &, we
use the Monte Carlo Markov Chain (MCMC). The procedures are described below.

Let C be the number of comunas covered by the model and R be the number of
MCMC samples after burn-in. Let 6., and or. denote the rth MCMC draw of 6. and
or, respectively (r=1,...,R). We define the C x R, matrix O, = (Qfmw), where the
(c,r) entry is defined as '

ch,r);a = 0%.a(Bc, O73).
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This matrix Q3, provides samples generated from the posterior distribution of {Q. ¢, ¢ =
1,...,C} and so is adequate for solving a variety of inferential problems in a Bayesian
way. We now elaborate on the following three different inferential problems:

(1) Point estimation of an indicator of interest and the associated measure of uncer-
tainty: This is the focus of current poverty mapping research in both classical and
Bayesian approaches. Under the squared error loss function, the Bayes estimate
of Q.. for comuna ¢ and the associated measure of uncertainty are the posterior
mean and posterior standard deviation of Q..q = Q. (6., 07), respectively. These
can be approximated by the average and standard deviation over the columns of
Q}x respectively, for the row ¢, which corresponds to comuna c.

(2) Identification of comunas that are not in conformity with a given standard of a
poverty indicator: In this inferential problem, the goal is to flag a comuna for
which the true poverty indicator (e.g., poverty rate) exceeds a pre-specified stan-
dard, say a. In this case, point estimates, whether direct estimates or posterior
means, do not give any idea about the quality of flagging a comuna not meeting
the given standard. A reasonable Bayesian solution for this inferential problem is
to flag comuna ¢ for not meeting the given standard if the posterior probability
P(Q..q > a|data) is greater than a specified cutoff, say 0.5. This posterior prob-
ability for comuna ¢ can be easily approximated by the proportion of columns of
)%, exceeding the threshold for row c. If the posterior distribution of Qc.q is
approximately normal, then one can alternatively use the posterior mean and pos-
terior standard deviation to approximate the posterior probability. However, such
an approximation may not perform well in many situations.

(3) Identification of the worst (best) comuna, i.e., the comuna with the maximum
(minimum) value of the poverty indicator: A common solution is to identify the
comuna with the maximum (minimum) point estimate of the indicator. Evidently,
the use of direct point estimates would be quite misleading since such a method
may identify a small comuna as being the worst (best) in terms of the indicator,
even though it is not, simply because of high variability in the direct estimates. The
Bayesian point estimates (posterior means) are definitely better than the direct
estimates as they have generally less variability. However, the use of posterior
means alone does not provide any quality measure associated with the identification
of the worst (best) comuna. Even the use of posterior means along with posterior
standard deviations does not help either as posterior standard deviations relate
to the individual areas. A reasonable Bayesian solution in this case would be to
compare the posterior probabilities P(Q..q > Oy.q Vk|data) for different comunas
and select the worst (best) comuna for which this posterior probability is the
maximum (minimum). Thus, along with the identification of the worst (best)
comuna, we also obtain these posterior probabilities suggesting a quality of the
identification of worst (best) comuna. We can use sz matrix to approximate these
posterior probabilities. For row ¢ and column r of O, corresponding to comuna ¢
and MCMC replicate r, respectively, we can create a binary variable indicating if



246 P. Lahiri, J. Suntornchost: A general Bayesian approach to meet different ...

the comuna is the worst (best) among all comunas. The posterior probability for
this comuna P(Qc.q > Q.o Vk|data) can then be approximated by the average of
these binary observations over R columns.

2.5. Numerical Results

As mentioned in the introduction, a number of researchers focused on the problem
of estimation and its measure on uncertainty. While our general approach can address
this problem, we choose to illustrate the general Bayesian approach for the relatively
understudied inferential problems related to the identification of areas with extreme
poverty (e.g., the second and the third inferential problems mentioned in Section 2.4).
The data analysis presented in this section is based on the hierarchical model stated in
Section 2.3 implemented on CASEN 2009 data for a given region containing 54 comunas
and comuna level auxiliary variables listed in Section 2.1 We illustrate our methodology
for poverty rates (o0 =0) and poverty gaps (ot = 1), two important poverty measures in
the FGT class of poverty indices. After 10,000 burn-in, we generate 54 x 10000 matrix
~i.;a for o« = 0 (corresponding to poverty rate index) and oo =1 (poverty gap index).
We checked the convergence of MCMC convergence using the potential scale reduction
factor introduced by Gelman and Rubin (1992).

Numerical results are shown in Tables 1-4. We carry out the data analysis using
WinBugs-R interface. Table 1 addresses the second inferential goal, i.e., flagging the
comunas that do not meet certain pre-specified standard for poverty rate. Table 2 is
similar to Table 1 except that this is for the poverty gap measure. We use three different
standards based on three different multipliers (1.10,1.25 and 1.50) of the regional direct
estimate of the respective measure. These standards are for illustration only and our
approach can use any other standards that are deemed reasonable. We need a cutoff
for these posterior probabilities in order to flag comunas that do not meet the given
standard. To illustrate our approach, we use 0.5 as the cutoff. In other words, a comuna
is deemed out of the range with respect to the pre-specified standard if the posterior
probability is more than 0.5. Comunas 33 and 13 do not meet all three standards for
both poverty rate and poverty gap measures. Other comunas meet the more liberal
standard (1.5 times the regional poverty measure) with respect to both poverty rate and
poverty gap measures. In contrast, when the standard is very conservative (1.1 times
the regional poverty measure) all the comunas are not in conformity with the given
standard. For a moderate standard (1.25 times the regional poverty measure), comunas
33, 13, 22, 18, 2, 6, 45, 16, 30 do not satisfy the standard in terms of poverty rate
measure. The comunas 21, 5, 17 and 15 are added to the list when we consider the
poverty gap measure. The standard and the cut-off to be used are subjective, but the
Bayesian approach with different standard and cutoff combinations should give policy
makers some useful guidance in making certain policy decisions. In order to save space
in Table 1 (Table 2), we report results for the 29 out of 54 comunas in the region
with highest posterior probabilities of poverty rate (poverty gap) exceeding the most
conservative threshold.
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Table 1:

The posterior probabilities that poverty rate for a comuna exceeds three

different thresholds; Q. is direct estimate of regional poverty rate. The table presents
results for the 29 comunas (out of 54 comunas in the region) with the highest

P(éc;o > 1.10Q,,0|data)

Comuna | P(Qco > 1.10Q;|data) P(Qc0 > 1.250,¢|data) | P(Qeo > 1.500;|data)
33 1.0000 0.9995 0.6172
13 1.0000 0.9988 0.5636
22 0.9952 0.7962 0.0314
18 0.9904 0.6996 0.0100

2 0.9834 0.4939 0.0005

6 0.9809 0.5331 0.0006
45 0.9786 0.5755 0.0032
16 0.9721 0.5157 0.0015
30 0.9662 0.5086 0.0024
21 0.9362 0.3925 0.0013

5 0.9356 0.3878 0.0010
17 0.9258 0.3840 0.0012
15 0.9185 0.3643 0.0015
25 0.8822 0.2524 0.0002
43 0.8755 0.2266 0.0000
38 0.8612 0.2209 0.0003
27 0.8466 0.2139 0.0002
26 0.8425 0.3259 0.0022
51 0.8365 0.2941 0.0009
24 0.7835 0.1216 0.0000
29 0.7111 0.0995 0.0000
28 0.7030 0.1085 0.0000
31 0.6771 0.0700 0.0000
35 0.6694 0.1018 0.0000
36 0.6404 0.0731 0.0000
41 0.6142 0.0591 0.0001
37 0.6041 0.0775 0.0000

7 0.5705 0.0386 0.0000
47 0.5179 0.0417 0.0000
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Table 2: Posterior probabilities that poverty gap for a given comuna exceeds three
different thresholds; Q,1 is direct estimate of regional poverty gap. The table presents
results for the 29 comunas (out of 54 comunas in the region) with the highest
P(Q.1 > 1.100,,|data) values.

Comuna | P(Q..1 > 1.10Q;.1|data) P(Qc.1 > 1.250,|data) | P(Qe > 1.500;.1|data)
33 1.0000 0.9998 0.9266
13 1.0000 0.9994 0.9060
22 0.9966 0.9143 0.2635
18 0.9918 0.8327 0.1195

2 0.9893 0.7516 0.0395
45 0.9827 0.7577 0.0781

6 0.9824 0.7174 0.0300
16 0.9792 0.7189 0.0490
30 0.9693 0.6764 0.0489
21 0.9467 0.5871 0.0320

5 0.9420 0.5656 0.0240
17 0.9339 0.5592 0.0292
15 0.9333 0.5631 0.0337
38 0.9001 0.4329 0.0081
25 0.8923 0.4203 0.0079
43 0.8802 0.3812 0.0070
26 0.8751 0.5310 0.0657
27 0.8745 0.3970 0.0104
51 0.8540 0.4497 0.0305
24 0.8223 0.2674 0.0018
29 0.7700 0.2401 0.0026
28 0.7441 0.2390 0.0026
31 0.7321 0.1848 0.0005
35 0.6924 0.2091 0.0026
36 0.6671 0.1631 0.0006
37 0.6399 0.1772 0.0021

7 0.6376 0.1243 0.0002
41 0.6355 0.1365 0.0003
47 0.5586 0.1095 0.0003
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Table 3 displays approximations (by MCMC) to the posterior probabilities of a co-
muna being the worst (Prob.Max) in terms of both poverty rate and poverty gap mea-
sures. According to the Prob.Max criterion, comuna 33 stands out as the worst comuna
in terms of both poverty rate and poverty gap measures. Table 4 displays approxima-
tions (by MCMC) to the posterior probabilities of a comuna being the best (Prob.Min) in
terms of both poverty rate and poverty gap measures. According to Prob.Min criterion,
comuna 8 emerges as the best comuna in terms of both poverty rate and poverty gap
measures. These probabilities are also giving us a good sense of confidence we can place
on our decision, which is not possible with poverty rate and poverty gap estimates alone.
Tables 3 and 4 do not report results for comunas with negligible posterior probabilities.

Table 3: Posterior probability that poverty rate or poverty gap for a given comuna is the
maximum (Prob.Max). The table does not include comunas with negligible posterior
probabilities.

Comuna Prob.Max
Poverty Rate | Poverty Gap
33 0.5126 0.5246
13 0.4496 0.4301
22 0.0169 0.0215
18 0.0051 0.0044
45 0.0025 0.0031
17 0.0021 0.0021
26 0.0021 0.0042
30 0.0017 0.0017
21 0.0013 0.0016
15 0.0010 0.0011
16 0.0009 0.0012
51 0.0008 0.0009
6 0.0007 0.0006
5 0.0006 0.0006
2 0.0005 0.0009
27 0.0005 0.0004
38 0.0005 0.0006
25 0.0003 0.0001
35 0.0001 0.0002
41 0.0001 0.0000
43 0.0001 0.0000
28 0.0000 0.0001
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Table 4: Posterior probability that poverty rate or poverty gap for a given comuna is
the minimum (Prob.Min). The table does not include comunas with negligible posterior
probabilities.

Comuna Prob.Min
Poverty Rate | Poverty Gap

0.5310 0.5161
1 0.3929 0.3945
42 0.0240 0.0268
48 0.0186 0.0237
12 0.0121 0.0139
4 0.0075 0.0089
34 0.0057 0.0079
3 0.0052 0.0047
14 0.0009 0.0011
10 0.0009 0.0005
23 0.0008 0.0012
44 0.0002 0.0004
46 0.0001 0.0002
40 0.0001 0.0001

3. Concluding Remarks

We point out inappropriateness of using point estimates for all inferential purposes
and propose a general Bayesian approach to solve different inferential problems in the
context of poverty mapping. The proposed approach provides not only an action relevant
to the inferential problem but also a way to assess the quality of such action. To make
the methodology user-friendly one can store the Qf, matrix of size C x R, where C is the
number of comunas and R is the number of MCMC replications. This way the users do
not need to know how to generate this matrix, which requires knowledge of advanced
Bayesian computing. Once the user has access to this generated matrix, he/she can
easily carry out a variety of statistical analysis such as the ones presented in the paper
with greater ease. While we illustrate the approach for the FGT poverty indices, the
approach is general and can deal with other important indices such as the ones given
in sustainable development goals. We have taken one working model to illustrate the
approach, but the approach is general and can be applied to other models that are
deemed appropriate in other projects.
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