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A general Bayesian approach to meet different
inferential goals in poverty research for small areas
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ABSTRACT

Poverty mapping that displays spatial distribution of various poverty indices is most
useful to policymakers and researchers when they are disaggregated into small ge-
ographic units, such as cities, municipalities or other administrative partitions of a
country. Typically, national household surveys that contain welfare variables such as
income and expenditures provide limited or no data for small areas. It is well-known
that while direct survey-weighted estimates are quite reliable for national or large geo-
graphical areas they are unreliable for small geographic areas. If the objective is to find
areas with extreme poverty, these direct estimates will often select small areas due to
the high variability in the estimates. Empirical best prediction and Bayesian methods
have been proposed to improve on the direct point estimates. These estimates are,
however, not appropriate for different inferential purposes. For example, for identi-
fying areas with extreme poverty, these estimates would often select areas with large
sample sizes. In this paper, using real life data, we illustrate how appropriate Bayesian
methodology can be developed to address different inferential problems.

Key words: Bayesian model, cross-validation, hierarchical models, Monte Carlo simu-
lations

1. Introduction

Eradication of poverty, one of the greatest challenges facing humanity, has been the

central tool to guide various public policy efforts in many countries. According to the

United Nations 3: “Extreme poverty rates have fallen by more than half since 1990. While

this is a remarkable achievement, one-in-five people in developing regions still live on less

than $1.90 a day. Millions more make little more than this daily amount and are at risk

of slipping back into extreme”. On September 25, 2015, the United Nations adopted the

2030 Agenda for Sustainable Development with 17 new Sustainable Development Goals

(SDGs), beginning with a historical pledge to end poverty in all forms and dimensions

by 2030 everywhere permanently.4 In order to achieve these goals, basic resources and

services need to be more accessible to people living in vulnerable situations. Moreover,

support for communities affected by conflict and climate related disasters needs to be

raised.
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National estimate of an indicator usually hides important differences among different

regions or areas with respect to that indicator. In almost all countries, these differences

exist and can often be substantial. The smaller the geographic regions for which in-

dicators are available, the greater the effectiveness of interventions. Indeed this allows

to reduce transfers to the non-poor and minimizes the risk that a poor person will be

missed by the program. Ravallion (1994) found that Indian and Indonesian states or

provinces are too heterogeneous for targeting to be effective. This underlines the need

for production of estimates of indicators for small areas that are relatively homogenous.

It is now widely accepted that direct estimates of poverty based on household sur-

vey data are unreliable. There are now several papers available in the literature that

attempt to improve on the direct estimates by borrowing strength from multiple rele-

vant databases. Hierarchical models that combine information from different databases

are commonly used to achieve the goal because such models not only provide improved

point estimates but also incorporate different sources of variabilities. These models can

be implemented using a synthetic approach (e.g., Elbers et al. 2003), empirical best

prediction approach (Fay and Herriot 1979; Franco and Bell 2015; Bell et al. 2016;

Molina and Rao 2010; Casas-Cordero et al. 2016), and Bayesian approach (Molina et

al. 2014). See Jiang and Lahiri (2006), Pfeffermann (2013) and Rao and Molina (2015)

for a review of different small area estimation techniques.

Empirical best prediction and hierarchical Bayesian methods (also shrinkage meth-

ods) have been employed in numerous settings, including studies of cancer incidence in

Scotland (Clayton and Kaldor 1987), cancer mortality in France (Mollie and Richard-

son 1991), stomach and bladder cancer mortality in Missouri cities (Tsutukawa et al.

1985), toxoplasmosis incidence in EI Salvador (Efron and Morris 1975), infant mortal-

ity in New Zealand (Marshall 1991), mortality rates for chronic obstructive pulmonary

disease (Nandram et al. 2000), poverty research (Molina and Rao 2010; Molina et al.

2014; Bell et al. 2016; Casas-Cordero et al. 2016). The basic approach in all these

applications is the same: a prior distribution of rates is posited and is combined with

the observed rates to calculate the posterior, or stabilized, rates.

All the papers cited in the previous paragraph deal with the point estimation and

the associated measure of uncertainty. However, in many cases, there could be different

inferential goals where point estimates, whether empirical best prediction estimates or

posterior means, though they can provide a solution, are not efficient. For example, one

inferential goal could be to flag a geographical area (e.g., municipality) for which the

true poverty measure of interest exceeds a pre-specified standard. The point estimates

can certainly flag such areas but do not provide any reasonable uncertainty measure to

assess the quality of such action. It is not clear how to propose such a measure for

a method based on direct estimates. For the method based on posterior mean, one

can perhaps propose a normal approximation using the posterior mean and posterior

standard deviation to approximate the posterior probability of the true poverty measure

exceeding the pre-specified standard. In some cases, quality of such approximation could

be questionable. One can have a more complex inferential goal. For example, we may be

interested in identifying the worst geographical area with respect to the poverty measure.

In this case, the use of direct estimates for identification can be misleading when the
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sample sizes vary across the geographic units. The regions with small sample sizes will

tend to have both high and low poverty indices merely because they have the largest

variability. The method based on posterior means is not good either since it tends to

identify areas with more samples; see Gelman and Price (1999). Moreover, in either case

there does not seem to be a clear way to produce a reasonable quality measure.

Gelman and Price (1999), Morris and Christiansen (1996), Langford and Lewis

(1998), Jones and Spigelhalter (2011) discussed various inferential problems other than

the point estimation. For example, Morris and Christiansen (1996) outlined inferential

procedures for identifying areas with extreme indicator. Our approach is similar to theirs

but applied for different complex parameters and used much more complex hierarchical

model that is appropriate for survey data.

We would like to stress that our proposed approach for solving different inferential

problems is fundamentally different from the constrained empirical hierarchical Bayesian

(Louis 1984; Ghosh 1992; Lahiri 1990) and the triple-goal (Shen and Louis, 1998)

approaches where the goal is to produce one set of estimates for different purposes. In

contrast, we propose to use the same synthetic data matrix generated from the posterior

predictive distribution for different inferential purposes. Other than this fundamental

difference, our approach has a straightforward natural way to produce appropriate quality

measures. In poverty research, Molina et al. (2014) suggested an interesting approach

for estimating different poverty indices by generating a synthetic population from a

posterior predictive density. However, they restricted themselves to point estimates and

their associated uncertainty measures and did not discuss how one would solve a variety

of statistical inferences.

We outline a general approach to deal with different inferential goals and illustrate

our methodology using the data used by the Chilean government for their small area

poverty mapping system. Section 2 describes the Chilean data, the hierarchical model, a

general poverty index, inferential approach for achieving various goals and data analysis.

In Section 3, we provide some concluding remarks and a direction for future research.

2. Illustration of the proposed methodology using Chilean poverty
data

There has been a consistent downward trend in the official poverty rate estimates,

which are the usual national survey-weighted direct estimates, in Chile since the early

90’s. While this national trend is encouraging, there is an erratic time series trend in

the direct estimates for small comunas (municipalities) - the smallest territorial entity in

Chile. Moreover, for a handful of extremely small comunas, survey estimates of poverty

rates are unavailable for some or all time points simply because the survey design, which

traditionally focuses on obtaining precise estimates for the nation and large geographical

areas, excludes these comunas for some or all of the time points. In any case, direct

survey estimates of poverty rates typically do not meet the desired precision for small

comunas and thus the assessment of implemented policies is not straightforward at

the comuna level. In order to successfully monitor trends, identify influential factors,
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develop effective public policies and eradicate poverty at the comuna level, there is a

growing need to improve on the methodology for estimating poverty rates at this level of

geography. In this section, we use the Chilean case to illustrate our Bayesian approach

to answer a variety of research questions.

2.1. Data used in the Analysis

To illustrate our Bayesian approach, we use a household survey data as the pri-

mary source of information and comuna level summary statistics obtained from different

administrative data sources as supplementary sources of information. We now provide

a brief description of the primary and supplementary databases. Further details can be

obtained from Casas-Cordero et al. (2016).

2.1.1 The Primary Data Source: The CASEN 2009 Data

The Ministry of Social Development estimates the official poverty rates using the

National Socioeconomic Characterization Survey, commonly referred to as the CASEN.

The Ministry has been conducting CASEN since 1987 every two or three years. The

CASEN is a household survey collecting a variety of information of Chilean households

and persons, including information about income, work, health, subsidies, housing and

others. The Ministry calculates poverty rate estimates at national, regional and munic-

ipality (comuna) levels. The Ministry is the authority specified by the Chilean law to

deliver poverty estimates for all the 345 comunas in Chile. These estimates are used,

along with other variables, to allocate public funding to municipalities.

In a joint effort by the Ministry and United Nations Development Programme (UNDP),

a Small Area Estimation (SAE) official system was developed for estimating poverty rates

at comuna level using the CASEN 2009 survey. The Chilean method is based on an em-

pirical Bayesian method using an area level Fay-Herriot Model (Fay and Herriot 1979)

to combine the CASEN survey data with a number of administrative databases. The

SAE system provides point estimates and parametric bootstrap confidence intervals (see,

e.g., Chatterjee et al. 2008; Li and Lahiri 2010) for the Chilean comunas.

The CASEN 2009 used a stratified multistage complex sample of approximately

75,000 housing units from 4,156 sample areas. The entire Chile was divided into a

large number of sections (Primary Stage Units or PSUs). The PSUs were then grouped

into strata on the basis of two geographic characteristics: comuna and urban/rural

classification. Overall, there were 602 strata in the CASEN 2009 survey and multiple

PSUs were sampled per stratum. The probability of selection for each PSU in a stratum

was proportional to the number of housing units in the (most recently updated) 2002

Census file.

Prior to the second stage of sampling, listers were sent to the sampled PSUs to

update the count of housing units. This procedure was implemented in both urban and

rural areas. In the second stage of sampling, a sample of housing units was selected

within the sampled PSUs. The probability of selection for each housing unit (Secondary

Stage Unit or SSU) is the same within each PSU. On the average, 16-22 housing units
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were selected within each PSU by implementing a procedure that used a random start

and a systematic interval to select the units to be included in the sample.

2.1.2 Administrative Data at the Comuna Level

Casas-Cordero et al. (2016) carried out an extensive task to identify a set of

auxiliary variables derived from different administrative records of different agencies. In

this paper, we use the same set of comuna level auxiliary variables for illustrating our

approach. For completeness, we list them below:

(1) Average wage of workers who are not self-employed,

(2) Average of the poverty rates from CASEN 2000, 2003, and 2006,

(3) Percentage of population in rural areas,

(4) Percentage of illiterate population,

(5) Percentage of population attending school.

Like in Casas-Cordero et al. (2016), we also use arcsine square-root transformation for all

the auxiliary variables except the first one, for which we use logarithmic transformation.

We note that our approach is general and can use a different set of auxiliary variables

that may be deemed appropriate in the future.

2.2. The Foster-Greer-Thorbecke (FGT) poverty indices

Currently, the Chilean government publishes headcount ratios or poverty rates for

the nation and its comunas. To present our approach in a general setting, we consider

a general class of poverty indices commonly referred to as the FGT indices, after the

names of the three authors of the paper by Foster et al. (1984). To describe the FGT

index, we first introduce the following notations:

Nc: total number of households in comuna c,

Uc: number of urbanicity statuses for comuna c; since for urbanicity status, we use

urban and rural statuses only, Uc is either 1 or 2 for a given comuna,

ku: fixed poverty line for urban-rural classification u (u = 1 and u = 2 for urban and

rural, respectively),

Mcu: total number of PSUs in the universe for urban-rural classification u of comuna

c,

Ncup: total number of households in the universe of the PSU p belonging to the urban-

rural classification u of comuna c,

ycuph: per-capita income of household h (that is, total income of the household divided

by the number of household members) in PSU p, urban-rural classification u, and
comuna c.
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In our context, the class of FGT indices for comuna c is given by

Qc;α =
1

Nc

Uc

∑
u=1

Mcu

∑
p=1

Ncup

∑
h=1

gα(ycuph),

where

gα(ycuph) =

(
ku − ycuph

ku

)α
I(ycuph < ku), α is a “sensitivity” parameter (α = 0,1,2

corresponding to poverty ratio, poverty gap, and poverty severity, respectively).

2.3. Hierarchical Model

A hierarchical model could be effective in capturing different salient features of

the CASEN survey data and in linking comuna level auxiliary variables derived from

different administrative records. We consider the following working hierarchical model

to illustrate our general approach for inference. We call the model a working model

because we recognize that it is possible to improve on it in the future. But this model

will suffice to illustrate the central theme of the paper, i.e., how to carry out a particular

inferential procedure given a hierarchical model.

Let Tcuph = T (ycuph) be a given transformation on the study variable ycuph. For the

application of this paper, we consider T (ycuph) = ln(ycuph+1). We consider the following

hierarchical model for the sampled units:

Level 1: Tcuph|θcup,σT
ind∼ N

(
θcup,σ2

T
)
,

Level 2: θcup|μcu,σθ
ind∼ N

(
μcu,σ2

θ
)
,

Level 3: μcu|βu,σμ
ind∼ N

(
xT

c βu,σ2
μ
)
,

where xc is a vector of comuna level known fixed auxiliary variables; θcup and μcu are

random effects; βu,σ2
T ,σ2

θ and σ2
μ are unknown hyperparameters.

We follow the recommendation of Gelman (2015) in assuming weakly informative

priors for the hyperparameters. For example, we assume independent N(0,1) prior for

all regression coefficients and independent half normal prior for the standard deviations.

2.4. Inferential Approach

We first note that the inference on Qc,α is equivalent to that of

Qc;α =
1

Nc

Uc

∑
u=1

Mcu

∑
p=1

Ncup

∑
h=1

gα
(
T−1(Tcuph)

)
,

where T is a monotonic function (e.g., logarithm). Under full specification of the model

for the finite population, one can make inferences about Qc;α in a standard way. However,

full specification of model for the unobserved units of the finite population seems to be a

challenging task. To this end, appealing to the law of large numbers, we first approximate
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Qc;α by Q̃P
c;α , where

Q̃P
c;α =

1
Nc

Uc

∑
u=1

Mcu

∑
p=1

Ncup

∑
h=1

E
{

gα
(
T−1(Tcuph)

) |θcup,σT
}
.

This is reasonable under Level 1 of the hierarchical model (even without the normality

assumption) since Nc is typically large. We then propose the following approximation to

Q̃P
c;α .

Q̃c;α ≡ Q̃c;α(θc,σT ) =
Uc

∑
u=1

mcu

∑
p=1

ncup

∑
h=1

wcuphE
{

gα
(
T−1(Tcuph)

) |θcup,σT
}
, (1)

where

wcuph is the survey weight for the household h in the PSU p within urbanicity u of

comuna c,

θc = colu,pθcup; a
Uc

∑
u=1

mcu ×1 column vector (we follow the notation of Prasad and Rao

1990),

gα
(
T−1(Tcuph)

)
=

{
ku −

(
T−1(Tcuph)

)
ku

}α

I
(
Tcuph ≤ lu

)
,

lu = ln(ku +1), the poverty line of the urbanicity u in the transformed scale.

The weights are scaled within each comuna so that the sum of the weights for all

households equals 1. In the last approximation, we assume that the scaled survey weight

wcuph represents proportion of units in the finite population (including the unit cuph) of
comuna c that are similar to the unit cuph.

The calculations of (1) under the model described in Section 2.3 can be done through

the following formula:

For α = 0,

E
{

g0(
(
T−1(Tcuph)

) |θcup,σ2
T
}
=

∫ lu −θcup

σT

−
θcup

σT

φ(z|θcup,σ2
T )dz

= Φ
( lu −θcup

σT

)
−Φ

(
− θcup

σT

)
,

where φ and Φ are the density function and the distribution function of the standard

normal distribution, respectively.
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For α = 1,

E
{

g1(T−1(Tcuph))|θcup,σ2
T
}

= E

{(
exp(lu)− exp(Tcuph)

ku

)
I
(
Tcuph ≤ lu

)}

=
1
ku

∫ lu −θcup

σT

−
θcup

σT

(exp(lu)− exp(σT z+θcup))φ(z|θcup,σ2
T )dz

=
exp(lu)

ku

[
Φ
( lu −θcup

σT

)
−Φ

(
− θcup

σT

)]

−
exp

(
θcup +

σ2
T
2

)
ku

[
Φ
( lu −θcup −σ2

T
σT

)
−Φ

(
− θcup +σ2

T
σT

)]
,

where we use the fact that
∫ b

a
exp(σz)φ(z)dz = exp

(
σ2

2

)[
Φ(b−σ)−Φ(a−σ)

]
to

obtain the last equation.

For α = 2,

E
{

g2(T−1(Tcuph))|θcup,σ2
T
}

= E

{(
exp(lu)− exp(Tcuph)

ku

)2

I
(
Tcuph ≤ lu

)}

=
1
k2

u

∫ lu −θcup

σT

−
θcup

σT

(exp(lu)− exp(σT z+θcup))
2 φ(z|θcup,σ2

T )dz

=
exp(2lu)

k2
u

[
Φ
( lu −θcup

σT

)
−Φ

(
− θcup

σT

)]
+

exp(2θcup +2σ2
T )

k2
u

[
Φ
( lu −θcup −2σ2

T
σT

)
−Φ

(
− θcup +2σ2

T
σT

)]

−2
exp(lu +θ +

σ2
T
2 )

k2
u

[
Φ
( lu −θcup −σ2

T
σT

)
−Φ

(
− θcup +σ2

T
σT

)]
.

In order to carry out a variety of inferential problems about Q̃c;α for a given α, we

use the Monte Carlo Markov Chain (MCMC). The procedures are described below.

Let C be the number of comunas covered by the model and R be the number of

MCMC samples after burn-in. Let θc;r and σT ;r denote the rth MCMC draw of θc and

σT , respectively (r = 1, . . . ,R). We define the C×R, matrix Q̃s
α = (Q̃s

(c,r);α), where the

(c,r) entry is defined as

Q̃s
(c,r);α ≡ Q̃s

c;α(θc;r,σT ;r).
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This matrix Q̃s
α provides samples generated from the posterior distribution of {Q̃c,α , c =

1, . . . ,C} and so is adequate for solving a variety of inferential problems in a Bayesian

way. We now elaborate on the following three different inferential problems:

(1) Point estimation of an indicator of interest and the associated measure of uncer-

tainty: This is the focus of current poverty mapping research in both classical and

Bayesian approaches. Under the squared error loss function, the Bayes estimate

of Qc;α for comuna c and the associated measure of uncertainty are the posterior

mean and posterior standard deviation of Q̃c;α ≡ Q̃c;α(θc,σT ), respectively. These

can be approximated by the average and standard deviation over the columns of

Q̃s
α , respectively, for the row c, which corresponds to comuna c.

(2) Identification of comunas that are not in conformity with a given standard of a

poverty indicator: In this inferential problem, the goal is to flag a comuna for

which the true poverty indicator (e.g., poverty rate) exceeds a pre-specified stan-

dard, say a. In this case, point estimates, whether direct estimates or posterior

means, do not give any idea about the quality of flagging a comuna not meeting

the given standard. A reasonable Bayesian solution for this inferential problem is

to flag comuna c for not meeting the given standard if the posterior probability

P(Q̃c;α > a|data) is greater than a specified cutoff, say 0.5. This posterior prob-

ability for comuna c can be easily approximated by the proportion of columns of

Q̃s
c;α exceeding the threshold for row c. If the posterior distribution of Q̃c;α is

approximately normal, then one can alternatively use the posterior mean and pos-

terior standard deviation to approximate the posterior probability. However, such

an approximation may not perform well in many situations.

(3) Identification of the worst (best) comuna, i.e., the comuna with the maximum

(minimum) value of the poverty indicator: A common solution is to identify the

comuna with the maximum (minimum) point estimate of the indicator. Evidently,

the use of direct point estimates would be quite misleading since such a method

may identify a small comuna as being the worst (best) in terms of the indicator,

even though it is not, simply because of high variability in the direct estimates. The

Bayesian point estimates (posterior means) are definitely better than the direct

estimates as they have generally less variability. However, the use of posterior

means alone does not provide any quality measure associated with the identification

of the worst (best) comuna. Even the use of posterior means along with posterior

standard deviations does not help either as posterior standard deviations relate

to the individual areas. A reasonable Bayesian solution in this case would be to

compare the posterior probabilities P(Q̃c;α ≥ Q̃k;α ∀k|data) for different comunas

and select the worst (best) comuna for which this posterior probability is the

maximum (minimum). Thus, along with the identification of the worst (best)

comuna, we also obtain these posterior probabilities suggesting a quality of the

identification of worst (best) comuna. We can use Q̃s
α matrix to approximate these

posterior probabilities. For row c and column r of Q̃s
α corresponding to comuna c

and MCMC replicate r, respectively, we can create a binary variable indicating if
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the comuna is the worst (best) among all comunas. The posterior probability for

this comuna P(Q̃c;α ≥ Q̃k;α ∀k|data) can then be approximated by the average of

these binary observations over R columns.

2.5. Numerical Results

As mentioned in the introduction, a number of researchers focused on the problem

of estimation and its measure on uncertainty. While our general approach can address

this problem, we choose to illustrate the general Bayesian approach for the relatively

understudied inferential problems related to the identification of areas with extreme

poverty (e.g., the second and the third inferential problems mentioned in Section 2.4).

The data analysis presented in this section is based on the hierarchical model stated in

Section 2.3 implemented on CASEN 2009 data for a given region containing 54 comunas

and comuna level auxiliary variables listed in Section 2.1 We illustrate our methodology

for poverty rates (α = 0) and poverty gaps (α = 1), two important poverty measures in

the FGT class of poverty indices. After 10,000 burn-in, we generate 54×10000 matrix

Q̃s
c;α for α = 0 (corresponding to poverty rate index) and α = 1 (poverty gap index).

We checked the convergence of MCMC convergence using the potential scale reduction

factor introduced by Gelman and Rubin (1992).

Numerical results are shown in Tables 1-4. We carry out the data analysis using

WinBugs-R interface. Table 1 addresses the second inferential goal, i.e., flagging the

comunas that do not meet certain pre-specified standard for poverty rate. Table 2 is

similar to Table 1 except that this is for the poverty gap measure. We use three different

standards based on three different multipliers (1.10,1.25 and 1.50) of the regional direct
estimate of the respective measure. These standards are for illustration only and our

approach can use any other standards that are deemed reasonable. We need a cutoff

for these posterior probabilities in order to flag comunas that do not meet the given

standard. To illustrate our approach, we use 0.5 as the cutoff. In other words, a comuna

is deemed out of the range with respect to the pre-specified standard if the posterior

probability is more than 0.5. Comunas 33 and 13 do not meet all three standards for

both poverty rate and poverty gap measures. Other comunas meet the more liberal

standard (1.5 times the regional poverty measure) with respect to both poverty rate and

poverty gap measures. In contrast, when the standard is very conservative (1.1 times

the regional poverty measure) all the comunas are not in conformity with the given

standard. For a moderate standard (1.25 times the regional poverty measure), comunas

33, 13, 22, 18, 2, 6, 45, 16, 30 do not satisfy the standard in terms of poverty rate

measure. The comunas 21, 5, 17 and 15 are added to the list when we consider the

poverty gap measure. The standard and the cut-off to be used are subjective, but the

Bayesian approach with different standard and cutoff combinations should give policy

makers some useful guidance in making certain policy decisions. In order to save space

in Table 1 (Table 2), we report results for the 29 out of 54 comunas in the region

with highest posterior probabilities of poverty rate (poverty gap) exceeding the most

conservative threshold.
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Table 1: The posterior probabilities that poverty rate for a comuna exceeds three

different thresholds; Qr,0 is direct estimate of regional poverty rate. The table presents

results for the 29 comunas (out of 54 comunas in the region) with the highest

P(Q̃c;0 > 1.10Qr,0|data)

Comuna P(Q̃c;0 > 1.10Qr,0|data) P(Q̃c;0 > 1.25Qr,0|data) P(Q̃c;0 > 1.50Qr,0|data)

33 1.0000 0.9995 0.6172

13 1.0000 0.9988 0.5636

22 0.9952 0.7962 0.0314

18 0.9904 0.6996 0.0100

2 0.9834 0.4939 0.0005

6 0.9809 0.5331 0.0006

45 0.9786 0.5755 0.0032

16 0.9721 0.5157 0.0015

30 0.9662 0.5086 0.0024

21 0.9362 0.3925 0.0013

5 0.9356 0.3878 0.0010

17 0.9258 0.3840 0.0012

15 0.9185 0.3643 0.0015

25 0.8822 0.2524 0.0002

43 0.8755 0.2266 0.0000

38 0.8612 0.2209 0.0003

27 0.8466 0.2139 0.0002

26 0.8425 0.3259 0.0022

51 0.8365 0.2941 0.0009

24 0.7835 0.1216 0.0000

29 0.7111 0.0995 0.0000

28 0.7030 0.1085 0.0000

31 0.6771 0.0700 0.0000

35 0.6694 0.1018 0.0000

36 0.6404 0.0731 0.0000

41 0.6142 0.0591 0.0001

37 0.6041 0.0775 0.0000

7 0.5705 0.0386 0.0000

47 0.5179 0.0417 0.0000
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Table 2: Posterior probabilities that poverty gap for a given comuna exceeds three

different thresholds; Qr,1 is direct estimate of regional poverty gap. The table presents

results for the 29 comunas (out of 54 comunas in the region) with the highest

P(Q̃c;1 > 1.10Qr,1|data) values.

Comuna P(Q̃c;1 > 1.10Qr,1|data) P(Q̃c;1 > 1.25Qr,1|data) P(Q̃c;1 > 1.50Qr,1|data)

33 1.0000 0.9998 0.9266

13 1.0000 0.9994 0.9060

22 0.9966 0.9143 0.2635

18 0.9918 0.8327 0.1195

2 0.9893 0.7516 0.0395

45 0.9827 0.7577 0.0781

6 0.9824 0.7174 0.0300

16 0.9792 0.7189 0.0490

30 0.9693 0.6764 0.0489

21 0.9467 0.5871 0.0320

5 0.9420 0.5656 0.0240

17 0.9339 0.5592 0.0292

15 0.9333 0.5631 0.0337

38 0.9001 0.4329 0.0081

25 0.8923 0.4203 0.0079

43 0.8802 0.3812 0.0070

26 0.8751 0.5310 0.0657

27 0.8745 0.3970 0.0104

51 0.8540 0.4497 0.0305

24 0.8223 0.2674 0.0018

29 0.7700 0.2401 0.0026

28 0.7441 0.2390 0.0026

31 0.7321 0.1848 0.0005

35 0.6924 0.2091 0.0026

36 0.6671 0.1631 0.0006

37 0.6399 0.1772 0.0021

7 0.6376 0.1243 0.0002

41 0.6355 0.1365 0.0003

47 0.5586 0.1095 0.0003
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Table 3 displays approximations (by MCMC) to the posterior probabilities of a co-

muna being the worst (Prob.Max) in terms of both poverty rate and poverty gap mea-

sures. According to the Prob.Max criterion, comuna 33 stands out as the worst comuna

in terms of both poverty rate and poverty gap measures. Table 4 displays approxima-

tions (by MCMC) to the posterior probabilities of a comuna being the best (Prob.Min) in

terms of both poverty rate and poverty gap measures. According to Prob.Min criterion,

comuna 8 emerges as the best comuna in terms of both poverty rate and poverty gap

measures. These probabilities are also giving us a good sense of confidence we can place

on our decision, which is not possible with poverty rate and poverty gap estimates alone.

Tables 3 and 4 do not report results for comunas with negligible posterior probabilities.

Table 3: Posterior probability that poverty rate or poverty gap for a given comuna is the

maximum (Prob.Max). The table does not include comunas with negligible posterior

probabilities.

Comuna Prob.Max

Poverty Rate Poverty Gap

33 0.5126 0.5246

13 0.4496 0.4301

22 0.0169 0.0215

18 0.0051 0.0044

45 0.0025 0.0031

17 0.0021 0.0021

26 0.0021 0.0042

30 0.0017 0.0017

21 0.0013 0.0016

15 0.0010 0.0011

16 0.0009 0.0012

51 0.0008 0.0009

6 0.0007 0.0006

5 0.0006 0.0006

2 0.0005 0.0009

27 0.0005 0.0004

38 0.0005 0.0006

25 0.0003 0.0001

35 0.0001 0.0002

41 0.0001 0.0000

43 0.0001 0.0000

28 0.0000 0.0001
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Table 4: Posterior probability that poverty rate or poverty gap for a given comuna is

the minimum (Prob.Min). The table does not include comunas with negligible posterior

probabilities.

Comuna Prob.Min

Poverty Rate Poverty Gap

8 0.5310 0.5161

1 0.3929 0.3945

42 0.0240 0.0268

48 0.0186 0.0237

12 0.0121 0.0139

4 0.0075 0.0089

34 0.0057 0.0079

3 0.0052 0.0047

14 0.0009 0.0011

10 0.0009 0.0005

23 0.0008 0.0012

44 0.0002 0.0004

46 0.0001 0.0002

40 0.0001 0.0001

3. Concluding Remarks

We point out inappropriateness of using point estimates for all inferential purposes

and propose a general Bayesian approach to solve different inferential problems in the

context of poverty mapping. The proposed approach provides not only an action relevant

to the inferential problem but also a way to assess the quality of such action. To make

the methodology user-friendly one can store the Qs
α matrix of size C×R, where C is the

number of comunas and R is the number of MCMC replications. This way the users do

not need to know how to generate this matrix, which requires knowledge of advanced

Bayesian computing. Once the user has access to this generated matrix, he/she can

easily carry out a variety of statistical analysis such as the ones presented in the paper

with greater ease. While we illustrate the approach for the FGT poverty indices, the

approach is general and can deal with other important indices such as the ones given

in sustainable development goals. We have taken one working model to illustrate the

approach, but the approach is general and can be applied to other models that are

deemed appropriate in other projects.
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