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Abstract

This paper presents a new model and open-source algorithm for reconstruct-
ing prior β phase orientation and grain shapes from measured α-phase electron
backscatter diffraction data in α/β titanium alloys. It is based on the image
segmentation model of Mumford and Shah, which includes a regularization term
that helps create smooth boundaries and overcomes shortcomings of prior re-
construction techniques. Additionally, the new algorithm is resilient to noise.
Our algorithm’s effectiveness is demonstrated on simulated and real world data.
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In titanium and titanium alloys, the crystal structure undergoes phase trans-
formation from cubic (bcc) β phase at elevated temperature to hexagonal close
packed (hcp) α phase at low temperature.

The distribution of parent β grain sizes and shapes are important with re-
spect to the orientations and sizes of the α colonies that form from those parent
grains during cooling from above the β transus which, in turn, affect quasi-
static, fatigue, and fracture properties. The problem of inferring the parent β
grains, or prior-β grains, from observations of α phase orientations is of great
interest because titanium alloys have extensive use within the aerospace indus-
try, and the characteristics of these parent β grains cannot be easily measured
directly. Most earlier approaches have focused on the crystallographic relation-
ship between the parent β phase and the possible α orientations formed within
it (Burgers orientation relationship, viz., (0001) α || {110} β and 〈11− 20〉 α ||
〈111〉 β) as well as the misorientations between the 12 possible α variants orig-
inating from the same parent β grain. These methods are generally successful,
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but are subject to issues including the 111 mirror plane that is not included in
the rotational symmetry operators as discussed by Cayron [1]. Additionally, in
certain instances two colonies on opposite sides of a parent β grain boundary
may share one of the five special misorientations between two α colonies with the
same parent β grain such that the fortuitously aligned colony can get assigned
to its neighboring β grain during reconstruction resulting in the prediction of
nonphysical grain shapes and incorrect textures.

In this paper, we propose an automated method for recovering the par-
ent β grain microstructure from α-phase orientations measured with electron
backscatter diffraction (EBSD). Our method treats reconstruction as a com-
puter vision image segmentation problem and seeks to recognize regions occu-
pied by distinct objects in a given field of view. The new method is based on
the well-known, variational model of Mumford-Shah for image segmentation [2].
In fact, this famous model from computer vision literature was inspired by ma-
terials science variational models of grain boundary motion. As a result, it is
particularly well-suited to the reconstruction task because it favors physically
probable grain shapes.

In this work, we focus on EBSD measurements of the important and widely
used titanium alloy, Ti-6Al-4V. To our knowledge, this is the first time a varia-
tional image segmentation model has been developed specifically for the β grain
reconstruction problem. Previous methods rely on measuring the misorienta-
tion angle of potential parent β grains of neighboring α colonies (which our
method does not have to find beforehand) [3, 4, 5], or individual voxels (The
flood fill algorithm [6]). These methods can produce physically improbable grain
shapes. In contrast, BetaTD favors physically reasonable grain shapes. As such,
and with its optimization based approach, it also differs from earlier works e.g.
[7, 8, 9, 10] that employ a form of region growing. BetaTD is available as an
open-source code at https://github.com/AZaitzeff/betaTD.

Let Ω denote the region in the plane occupied by the titanium alloy, and let
Σ1,Σ2, . . . ,Σn denote the (unknown) regions occupied by the distinct, parent
β grains. Let β1, β2, . . . , βn denote the (also unknown) orientations of those
parent β grains. The Σi should occupy the entire material Ω, and may border
each other but otherwise cannot overlap:

n⋃
i=1

Σi = Ω, and Σi ∩ Σj = (∂Σi) ∩ (∂Σj) if i 6= j. (1)

We will consider situations where there may be partial information available
from experimental measurements on the α and β phases. To that end, let A ⊂ Ω
be the subset of the domain Ω that contains α grain orientation measurements
and B ⊂ Ω be the subset that contains β phase orientation measurements.

In order to segment the domain Ω into regions containing distinct β phase
grains, we minimize the following energy, denoted E below, which is a variant of
the piecewise constant Mumford-Shah energy [2] adapted to the β reconstruction
problem, subject to the constraint Eq. (1):
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E(Σ1, . . . ,Σn;β1, . . . , βn) =
n∑
i=1

Per(Σi,Ω)

+ λ

(∫
Σi∩A

W (x)dα(βi, fα(x))dx +

∫
Σi∩B

W (x)dβ(βi, fβ(x))dx

)
. (2)

Here, Per(Σi,Ω) denotes the perimeter (length of the boundary) of the i-th
phase Σi in the entire computational domain Ω. A and B are subsets of the
domain Ω where we have α or β orientation data available, respectively, given
by the functions fα(x) : A → SO(3) and fβ(x) : B → SO(3). W (x) is a weight
function on the data. The function dα(·, ·) is the misorientation angle between
a β orientation and the closest parent of an α orientation and dβ(·, ·) is the
misorientation angle between two β orientations. These are given by

dα(β′, α′) = min
P∈G,T∈T

arccos

(
trace

(
Pβ′(Tα′)−1

)
− 1

2

)

dβ(β1, β2) = min
P∈G

arccos

(
trace

(
Pβ1(β2)−1

)
− 1

2

)
for the cubic symmetry group G and α-phase to β-phase transformations T . The
first term in the energy, often called the regularization, controls the expected
roughness of the boundary, encouraging shortest, simplest, most regular curves
consistent with the measurements, as well as 120◦ angles at triple junctions.
The second term, often called the fidelity term, encourages consistency with the
measurements (i.e. observations, experimental data). Ours is a weighted one
norm penalty on the error, for robustness to outliers. The sole parameter in
the model, λ, sets the scale (level of detail) expected in the segmentation, and
can be related to e.g. the number of grains expected, and to the level of noise.
At the moment this set by the user. An essential benefit of a continuum model
such as (2) is resolution independence: The parameter λ need not be adjusted
to the sampling frequency used in obtaining the experimental data.

The piecewise constant Mumford-Shah model has achieved substantial pop-
ularity in segmentation problems, due in part to the geometric regularization
imposed on class boundaries that easily allows selecting a desired scale (level
of detail) for the segmentation [11, 12]. Related models have been employed
for segmenting images of grains e.g. [13, 14] but not in the specific context of
parent grain reconstruction. There are a great variety of algorithms for carrying
out approximate minimization of Mumford-Shah based variational segmentation
models such as (2). Many of them alternate minimization with respect to shapes
of the grains Σi and their orientations βi. Typically, an essential difficulty in
the optimization – in the form of stiffness of the numerical scheme – comes from
the regularization term, which is of higher order than the fidelity term. Our al-
gorithm, BetaTD (Algorithm 1), is based on threshold dynamics [15] for quickly
simulating gradient descent. This scheme is unconditionally stable, enabling
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arbitrarily large gradient descent steps independent of the spatial resolution,
and can handle very large numbers of grains efficiently: for instance, it has
been used in grain boundary motion simulations with hundreds of thousands
of grains in both two and three dimensions. It therefore scales well for high
resolution images potentially containing large numbers of parent grains. Nev-
ertheless, we note that optimization literature for cost functions related to the
Mumford-Shah functional is vast, and there may be other algorithms that are
at least as effective on our new variational model.

Algorithm 1 BetaTD - Algorithm [15] Applied to Eq. (2).

1: Given a initial partition Σ0
1, . . . ,Σ

0
N and a time step ∆t.

2: Let number of time steps, T , be sufficiently large to allow the scheme to
reach steady state.

3: Let G∆t(x) = 1
4π∆te

− |x|
2

4∆t be the heat kernel.
4: Set βi = arg minβ∗

∑
x∈Σ0

i
d(β∗, f(x))

5: for t← 1 to T do
6: Si(x) = W (x)d(βi, f(x)).
7: φti = − 2√

∆t
(G∆t ∗ 1Σt−1

i
) + λSi.

8: Σti = {x : φti(x) = minj φ
t
j(x)}

9: end for

The β1, . . . , βn need not be updated at every time step. In practice, we
update the βi once the Σi have changed sufficiently under BetaTD from the last
time the βi were updated. For given Σ1, . . . ,Σn, we find the optimal βi, i.e.

βi = arg min
β∗

∫
Σi∩A

W (x)dα(β∗, fα(x)) dx +

∫
Σi∩B

W (x)dβ(β∗, fβ(x)) dx

using the expectation maximization - von Mises-Fisher algorithm [16].
It should be noted that the algorithm immediately extends to 3d data. Ad-

ditionally, by simply changing the misorientation angle function, the methods
can work for any reconstruction problem or, more generally, any single phase
grain segmentation.

The BetaTD algorithm carries out gradient descent for the variational model
(2). As such, it can only be expected to find a local minimum. There are more
globally – albeit more costly – optimization approaches in the literature, which
may be explored in future work. Since BetaTD only finds a local minimum,
we run the algorithm multiple times, usually 12 or 16 runs, starting from dif-
ferent initial conditions containing an abundance of possible parent β grains,
overestimating their true number. During the energy minimization, unneeded
grains typically become empty and are thus effectively removed. Among the
multiple runs, we choose the one leading to the lowest final energy, Eq. (2), as
the output of the segmentation process. We call this random initialization. We
can run the algorithm on the data without cleaning it beforehand, as we do in
all the examples in this paper. As such, we use the weight function, denoted as
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Figure 1: Simulated data set. The simulated parent β grains and simulated α colonies are
shown top left and top center respectively. The top right shows the noisy α phase orientations.
The bottom left shows the predicted β grains shapes and orientations from BetaTD and the
bottom right shows the output of algorithm used in [4] for comparison.

W (x) in Eq. (2), to indicate how confident that we are that a measurement is
correct. This is naturally given by a function of the confidence index. Based on
experience with working with TI-alloyed data, we used

W (x) = max
{

min
{

0 ,
CI(x)− .03

.07

}
, 1
}
.

where CI(x) is the confidence index at data point x. If clean up is done on the
data beforehand, a weight function is not needed.

We begin by running BetaTD on a synthetic (simulated) data set. This anal-
ysis starts from a simulated parent β microstructure as shown in the top left of
Fig. 1. From this microstructure, we generate many α lathes for each β grain as
shown in the top center of Fig. 1. The orientation of each α lathe is produced by
randomly picking one of the twelve variants from the α/β relationship. Then we
randomly rotate 10% of orientations to simulate misidentifying the orientation.
Following this, 5% of the orientation data is corrupted and given a confidence
index of zero. We generate noise by adding random values from a mean zero,
variance 1

100 normal to the Bunge Euler angles of the data. This results in
a noisy image of α colonies generated from a “ground truth” image of 15 β
grains, shown in the top right of Fig. 1. The parent β microstructure predicted
by BetaTD is shown in the bottom left image in Fig. 1. For comparison, we ran
the algorithm from [4] on the data (shown in the bottom right). The predicted
microstructure from BetaTD had 0.26% of its orientations differ by 3 degrees
or more from the ground truth compared to the algorithm from [4] which had
0.99%.

To see how our algorithm scales with the size and number of grains we tiled
our simulated data set by a factor of 2, 3 and 4 so the resulting images were
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Voxels Number of Grains Average Time (in min)
4002 15 11.2
8002 60 48.4
12002 105 116.9
16002 240 209.8

Table 1: Timings of tiled simulated data sets.

Data Size Chosen Notes
Set λ
1 436 by 831 50 Highly Textured
2 620 by 1095 75 Textured
3 256 by 256 100 Few α colonies per β grain

Table 2: Data Sets

4, 9 and 16 times bigger respectively. Table 1 reports the average time to run
BetaTD from a single random initial condition over 24 different attempts. The
algorithm scales almost linearly.

Now, we report the results of the algorithm used to predict the parent β
microstructure on three real EBSD data sets of various levels of difficulty. The
data sets are summarized in Table 2.

To choose the parameter λ in Eq. (2), we ran the model on a subset of the
data with a variety of different values of λ. Based on the output, we chose which
λ to run on the full data set.

Fig. 2 shows the result on data set 1, a particularly clean image of α colonies
that has resulted from a fairly low number (around 25) of parent β grains.
We used random initialization. The segmentation by BetaTD creates realistic
looking grains and segments the data well. Note that the orientation seems to
vary across the β grain in the top left of the image. Because our model assumes
that each grain has constant orientation, it finds an extra boundary with a
misorientation angle of 1.36 degrees. Our energy, Eq. (2), can be adapted to
allow the orientation to vary smoothly across each parent β grain, which is left
for future work. We also note the detection of additional grains compared with
the results of the algorithm used in [4].

Fig. 3 shows the result on data set 2, which contains substantially more
parent β grains. Compared to the algorithm used in [4], shown on the bottom,
our algorithm gives cleaner boundaries and finds far fewer spurious grains. We
found our initial orientations and boundaries for BetaTD with a version of the
algorithm in [4].

Finally, Fig. 4 shows the result on data set 3. This data set did not con-
tain sufficient α orientation information to determine the β grain orientation
uniquely. Despite this, the algorithm picks out the same boundaries when run
with different random analytical initial boundaries. The results indicate that the
algorithm can pick out the boundaries of parent β grains even with insufficient
α orientation data to determine the parent β grain orientation.
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Figure 2: Data set 1. Top Left: The input α platelet orientations. Top Right: BetaTD
predicted boundaries and in order to visually evaluate the results better, we choose to color
each pixel by picking among the six possible β-parents of each α orientation the one closest to
the βi found by BetaTD. Bottom left: The IPF keys of the α phase (left) and β phase (right)
orientations for the images in this paper. Bottom Right: Predicted results of the algorithm
presented in [4].

In this article, we introduced a new variational model, Eq. (2), for recon-
structing parent β grains from α colonies based on the segmentation method
of Mumford-Shah. The model is particularly well suited to the β reconstruc-
tion problem because it is biased towards producing segmentations in which
each region resembles a plausible grain, with a regular, clean, sharp bound-
ary across which the crystallographic orientation changes discontinuously. This
translated into much more localized and well defined boundaries than what
has been obtained with the previous pointwise reconstruction approach [6] or α
grain reconstruction approaches [3, 4, 5]. We demonstrated these properties on
simulated and real images with satisfactory results.

While this is an encouraging first step, there remains more to be done. Future
work could implement a piecewise smooth Mumford-Shah (as opposed to the
piecewise constant version) which would give better segmentation when the ori-
entation across each parent β grains is not nearly constant. Additionally, the al-
gorithm could be extended to non-Burgers orientation relation microstructures.
The code for BetaTD is available at https://github.com/AZaitzeff/betaTD.
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