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Abstract

Very high-resolution satellite (VHR) imagery is a promising tool for estimating the abundance of
wildlife populations, especially in remote regions where traditional surveys are limited by logistical
challenges. Emperor penguins (Aptenodytes forsteri) were the first species to have a circumpolar
population estimate derived via VHR imagery. Here we address an untested assumption from
Fretwell et al. (2012) that a single image of an emperor penguin colony is a reasonable representation
of the colony for the year the image was taken. We evaluated satellite-related and environmental
variables that might influence the calculated area of penguin pixels to reduce uncertainties in
satellite-based estimates of emperor penguin populations in the future. We focused our analysis on
multiple VHR images from three representative colonies: Atka Bay, Stancomb-Wills (Weddell Sea
sector) and Coulman Island (Ross Sea sector) between September and December during 2011. We

replicated methods in Fretwell et al. (2012), which included using supervised classification tools in
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ArcGIS 10.7 software to calculate area occupied by penguins (hereafter referred to as “population
indices”) in each image. We found that population indices varied from 2 to nearly 6-fold, suggesting
that penguin pixel areas calculated from a single image may not provide a complete understanding
of colony size for that year. Thus, we further highlight the important roles of: i) sun azimuth and
elevation through image resolution and ii) penguin patchiness (aggregated versus distributed) on the
calculated areas. We found an effect of wind and temperature on penguin patchiness. Despite intra-
seasonal variability in population indices, simulations indicate that reliable, robust population trends
are possible by including satellite-related and environmental covariates and aggregating indices
across time and space. Our work provides additional parameters that should be included in future

models of population size for emperor penguins.

Introduction

Very high-resolution (VHR; 0.3-0.6m spatial resolution) satellite imagery has been a disruptive
technology for studying wildlife populations, especially in Antarctica (LaRue et al., 2011; Fretwell et
al., 2012; Lynch and LaRue, 2014; McMahon et al., 2014; Strycker et al., 2020; Wege, Salas and LaRue,
2020). Emperor penguins (Aptenodytes forsteri), icons of the Antarctic, are a model species for direct,
satellite-based investigation of their distribution and numbers: they leave a representative guano
stain on the fast ice (i.e., sea ice fastened to the coastline) that indicates colony presence (Barber-
Meyer, Kooyman and Ponganis, 2007; Fretwell and Trathan, 2009; Fretwell et al., 2012); they are
available for detection in austral spring when satellite images of the coastline are easily acquired;
and good contrast (black penguins on white snow), makes their enumeration straight-forward.

Emperor penguins were the first species to have a circumpolar population estimate derived
via VHR imagery (Fretwell et al., 2012). Most emperor penguin colonies are difficult to access due to
their location on remote sections of Antarctic fast ice, and very few of the 66 known colonies (Fretwell
and Trathan, 2020) are available to survey using ground counts or aerial surveys (Ancel, Gendner, et
al., 1992; Barbraud and Weimerskirch, 2001; Kooyman and Ponganis, 2017; Richter et al., 2018a).
However, gaining empirical understanding of population change at multiple spatial scales is critical,
as modeling studies suggest that most breeding colonies will be quasi-extinct by 2100 under ‘business
as usual’ emissions scenarios (Jenouvrier et al., 2014, 2020), resulting in dramatic declines in the
global population size, even under optimistic dispersal scenarios (Jenouvrier et al. 2017). The ability

to apply the baseline population provided by Fretwell et al. (2012) to monitor population trends will
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improve our understanding and predictions of emperor penguin populations at multiple spatial
scales, which is critical for conservation (Trathan et al., 2020).

Emperor penguins breed on fast ice during total darkness in the winter when reproductive
birds gather at the colony to mate, and raise and feed their chicks (Ancel, Kooyman, et al., 1992;
Kirkwood and Robertson, 1997). Strong winds (>130 km/h) combined with low temperatures (<40°
C) favor huddling behavior of the males (Gilbert et al., 2007) during incubation, and also to keep
chicks warm through the winter and into the spring. Thus, the ideal time to estimate abundance of
emperor penguins would be during austral winter, when only males are present at the colony, making
enumeration straight-forward (counting of males in the huddle represents the number of breeding
pairs). However, optical VHR imagery of the Antarctic coastline is only available between September
and March, and emperor penguins spend January through April foraging away from their colonies.
Thus, the only period when emperor penguin abundance can be estimated from VHR imagery is
austral spring, during chick-rearing.

Furthermore, satellite-based estimates of emperor penguins during spring may be influenced
by factors related directly to penguin behavior and by features of the satellite platform itself (i.e., the
observation process). Breeding failure and foraging trips by adult penguins introduces variation into
the number of birds available for detection by the satellite sensor at a colony (see an analogous
discussion of this issue for surveys on King Penguins [Aptenodytes patagonicus] in Foley et al. (2020).
Additionally, huddling behavior fluctuates during chick-rearing period and can introduce variation
into satellite-based counts (Richter et al., 2018b), particularly if birds are so densely huddled that the
ability to distinguish individual birds becomes difficult (i.e., because multiple birds can potentially fit
within a single VHR pixel). Additional variation in satellite-derived counts could be introduced by
imprecision in the supervised classification, or by differences in the quality of images among
successive counts (i.e., owing to differences in spatial resolution or sun angle). Given the remoteness
of most emperor penguin colonies, satellite-based monitoring of population trends is currently the
only viable method for monitoring this species across the species range and could play a central role
in determining its conservation status. Thus, generating precise indices of annual abundance at
individual colonies, and in turn, estimates of population trends, could heavily depend upon an ability
to remove this “noise” in satellite-derived indices (i.e., observation error that is caused by the within-
season huddling behavior, satellite-related covariates, or other factors described above). Conversely,
an inability to sufficiently remove spurious observation error at individual emperor penguin colonies

would suggest that either colonies must be monitored for many years to derive reliable trend
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estimates, or that satellite-based monitoring will only be useful for estimating regional population
trends in the short term (i.e., where observation error will “average out” across many colonies).

Here, we addressed an untested assumption from Fretwell et al. (2012) that a single VHR
image of an emperor penguin colony would reasonably represent colony size for that year (calculated
as number of breeding pairs; Fretwell et al., 2012). Specifically, we aimed to understand satellite-
related and environmental variables that might influence the calculated area of penguin pixels
(hereafter referred to as the population indices) to reduce potential uncertainties associated with
using only one image per year to assess colony size. We use the term “population indices” to refer to
the calculated area of penguin pixels from each VHR image because the penguins available for
detection on each image are a benchmark for colony status in that year. While our goals are not to
complete the process of estimating populations, it is critical we test the representativeness of
population indices calculated from a single VHR image because we already know that only one image
per colony per year is available over the course of ~10 years; see available imagery via Maxar
Technologies: discover.digitalglobe.com).

Finally, we conducted a series of simulations to evaluate the potential for covariates to
improve estimates of population trends at a range of scales (i.e., from local populations to regional
aggregations) and across different time horizons.

We hypothesized:

1. Satellite platform, e.g. spatial resolution of the panchromatic band will influence the
area occupied by penguins in each image (i.e., population index) calculated from VHR
images (i.e., lower resolution imagery will result in greater area of penguins, which
could be interpreted as a higher population index);

2. Sun elevation angle and sun azimuth will influence the population index (i.e., lower
sun elevation will cast more shadows resulting greater area of penguins; and sun
azimuth could result in shadows being cast from surrounding features like ice cliffs
would obscure penguins). Moreover, sun elevation is correlated with the day of the
year and may integrate seasonal changes in penguin movements.

3. The spatial patchiness of penguins within a colony during a satellite survey (i.e.
compactly-huddled versus widely-spread) will influence the population index given
variation in density of birds; areas calculated from compact aggregations will be

smaller than areas calculated from spread aggregations of birds.
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4. Wind speed and temperature during the satellite survey will influence the population
index, owing to the huddling behavior of emperor penguins during cold/windy
conditions, which would result in compact groups that may lead to smaller population
indices.

5. Population trends can be estimated more precisely at the colony level, and with fewer
years of monitoring if these sources of spurious variation in counts are accounted for
and removed. This hypothesis was tested using simulations to show how we improve
population trends with those sources of variation; however, the translation of
population indices (i.e., area of penguin pixel) to population size is not the goal of this

research.

Materials and Methods
Study area

We focused our examination of variance in population indices (as calculated by area of
penguin pixels on VHR images) on three emperor penguin colonies: the Stancomb-Wills (~5,455
breeding pairs) and Atka Bay (~9657 breeding pairs) colonies in the Weddell Sea sector, and the
Coulman Island colony (~25,000 breeding pairs) in the Ross Sea sector (Fig. 1; Fretwell et al. 2012).
These three colonies were chosen because they are each larger-than-average (average colony size in
2009 was ~4,300 breeding pairs; Fretwell et al., 2012), they have been monitored by aerial or ground
surveys on several occasions, are relatively stable in their annual occupancy, and were also unlikely
to be impacted by confounding factors such as proximity to research stations, tourism, or pollution.
Both the Weddell Sea and Ross Sea are characterized by wide bathymetric continental slopes,
relatively cold waters, high primary productivity (particularly in the case of the Ross Sea, which is
home to the largest open-ocean polynya in the Southern Ocean; Smith et al. (2014)), relatively stable
sea ice regimes, and finally, both regions are likely to be refugia for emperor penguins in the future
(Jenouvrier et al., 2020). In other words, these colonies represent locations where human-induced
variation is likely to be minimal, but where natural, intra-seasonal variation may be relatively high
given the most-recent colony estimates (in number of breeding pairs of adults; Fretwell et al., 2012;
Kooyman and Ponganis 2017). Further, the colonies were sufficiently large, increasing the probability
that any intra-seasonal changes could be detected. Changes or error in the estimation at small

colonies are less consequential in understanding overall population status. In other words,
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substantial intra-season fluctuations at large colonies are more consequential to estimating

populations than changes at smaller colonies.

VHR imagery and image processing

We selected high-quality (i.e. cloud-free, no banding; Barber-Meyer et al., 2007) VHR images
acquired for each of the three study colonies during spring 2011 (September through December), the
year with the highest number of repeat images acquired by DigitalGlobe, Inc. (now Maxar
Technologies) around the Antarctic coastline. Indeed, other than 2011, there are ~5 images at any
colony and in most cases there is one only useable image per colony. Images were primarily from
WorldView-2 (~0.46m panchromatic spatial resolution) and QuickBird-2 (~0.65m panchromatic
spatial resolution) satellites and were processed (e.g., pansharpened, orthorectified, and projected
to Antarctic Polar Stereographic) by the Polar Geospatial Center (PGC) at the University of Minnesota
(processing code on GitHub: https://github.com/PolarGeospatialCenter/).

To gain a population index of emperor penguins for each image and to test the assumption of
the representativeness of a single image per colony per year, we replicated methods first outlined in
Barber-Meyer et al. (2007) and built upon in Fretwell et al. (2012). Briefly, these methods involved
using ArcGIS software to first clip the image to our area of interest (the colony; Fig. 2A) and then
define three training classes (using a point shapefile with attribute classes of penguin, guano, and
snow, Fig. 2B-C; Barber-Meyer et al., 2007) for a supervised classification on pansharpened images
of Antarctic fast ice. Notably, field tests of emperor penguin reflectance from satellite imagery have
not been conducted, let alone for various environmental scenarios (light cloud cover vs sunny
conditions) and therefore time-consuming, human interpretation was required in every step of the
process to ensure accuracy.

Once the training dataset was compiled, we then conducted a maximum likelihood
classification resulting in an output raster, which we converted to a polygon shapefile. Within the
polygon shapefile, we extracted only the penguin class (based on the grid value, which was defined
as aforementioned) since we were not interested in the amount of area of guano or snow (Fig. 2D-
E). Because of the simplicity of the maximum likelihood classifier, to ensure accuracy of results, and
to maintain one aim of Fretwell et al. (2012), which was to ensure this work could occur in fairly
accessible GIS software (e.g., ArcGIS rather than ENVI), we then visually reviewed each population
index on each image. Visual inspections of the resulting polygons included a combination of three

processes: 1. Accepting the results as-is; or 2. Retraining the supervised classification and re-running
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the maximum likelihood classifier; and/or 3. Manually editing the population indices where minor
adjustments were needed. Our final step was to then calculate the areas that comprise the penguins-
only polygon to arrive at the calculated area of penguin pixels on each image, which represents the
population index we report here, for each image date at each colony (Fig. 2E). This population index
is the response variable for our statistical modeling (below).

Though one analyst was responsible for the majority of images analyzed here (largely due to
the amount of time required for one person to conduct all analyses, let alone more people),
independent analysis of one image per colony per year occurred, which we used as a basis for spot-

checking results (please see bold data in Table 1).

Statistical modeling

We constructed a series of linear models to evaluate the factors that influence population
indices of adult emperor penguins derived from satellites, which was our response variable. In all
models, the population index was log-transformed to accommodate a normally-distributed error
structure and to facilitate proportional comparisons among colonies of different mean sizes
(according to Fretwell et al., 2012). We included a fixed effect of colony in all models to account for
differences in average colony size. To evaluate our primary hypotheses and thereby evaluate the
factors that account for seasonal variation in satellite-derived estimates of penguin abundance, we
constructed a series of alternative models containing different explanatory covariates. We describe
this suite of models and justification for each explicit covariate below.

We were first interested in whether characteristics of the VHR image itself would influence
the population index at each colony due to human interpretation of pixels classified as penguins
versus other items on the landscape, such as shadows or guano (Hypotheses 1 and 2). In R (R Core
Team, 4.0.1, 2020), we developed a linear model using the function Im from the package stats; our
response variable was the population index (penguin area in meters) per image within a season (year
2011) for each colony. Our explanatory variables were effective panchromatic ground resolution (the
spatial size of a pixel given the on-nadir band resolution for the platform combined with the actual
off-nadir angle of the satellite platform; expressed in meters), the sun elevation angle, the sun
azimuth (range: 0-360 degrees) and colony.

While breeding, emperor penguins remain within a larger area that encompasses the whole
breeding site during a season, although the location of the actual colony at the micro-scale changes

(Richter et al., 2018a). To address hypothesis 3 (effects of colony patchiness on the population index),
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we qualitatively categorized the colony patchiness on each image into “compact” and “spread”. We
defined “compact” as when the birds were observed in discrete groups with little space between
individuals (i.e., huddling behavior), and “spread” was defined as when there was obvious space
between birds and the groups were more dispersed (Fig. 3). We developed a linear model in R with
population index as the response variable, and patchiness (spread and compact) and colony as fixed
effects.

To understand the variability of population indices related to environmental conditions
(hypothesis 4), three different environmental variables likely influencing emperor penguins and their
patchiness were tested (Richter et al., 2018b): (i) the 10m zonal wind (U wind); (ii) the 10 m
meridional wind (V wind); the 2m air temperature. We obtained these data from the European
Centre for Medium-Range Weather Forecasts (ECMWF) “ERA5 hourly data on single levels from 1979
to present” dataset and computed for every hour. We extracted data from August 1% to December
31th 2011, with an hourly temporal resolution and a 0.25° x 0.25° spatial resolution

(https://cds.climate.copernicus.eu/). We fit linear model in R with population index as the response

variable and absolute wind speed derived from 10m meridional and zonal winds, 2 m temperature
and colony as fixed effects.

We used Akaike Information Criterion (AIC) for model selection, combining both forward and
backward selection (i.e. function stepAIC of the MASS package, R). For hypothesis 4, final models
were developed for the environmental window of the date of image acquisition, and for 2-days, or
3-days prior to image acquisition. A comparison of AIC allowed us to choose the best environmental
window. For all models, validations were checked by plotting Pearson residuals against fitted values,
and against each explanatory variable, verifying homogeneity and normality of residuals (Zuur, Leno
and Elphick, 2010). These models did not take into account temporal autocorrelation, but we checked
temporal correlation of the residuals by plotting the residuals of the final model versus the Julian
dates and checking the correlation (i.e. 0.0014).

Finally, to select the best covariates for accounting and removing sources of spurious variation
in population indices, we used model selection to identify the most parsimonious model combining
all satellite-related and environmental covariates. Two linear models combining all three colonies
were fitted: one model was fitted with “colony” as fixed effects and the other included the satellite-
related and environmental variables. We then calculated the proportion of variance explained by the
covariates by comparing the R-squared from a model that included the satellite-related and

environmental covariates to one that omitted them (but still retained the fixed effect of colonies).
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The day of year was correlated (>0.5) with the sun elevation and the temperature so we did not
include day of year in the models. However, we checked the absence of correlation between the final

model residuals and the day of year.

Simulation to evaluate the effects of observation error on precision of trend estimates

Residual variance in our fitted models measures the magnitude of observation error among
repeated surveys within a season. The null model includes the maximum amount of residual variance
in surveys, while the “top” model indicates the degree to which covariates can reduce this variance
by “correcting” for factors that influence the population index during a survey (e.g., weather
conditions that cause penguins to densely huddle, resulting in a lower than expected count). To
illustrate the potential effects of observation error on trend estimates, we focus our remaining
analysis on comparisons between residual variance from these two models (i.e., the null and “top”
model).

We conducted a series of simulations in which we introduced different magnitudes of
observation error into population time series. We then evaluated the effects of this observation error
on the resulting precision of trend estimates at multiple temporal and spatial scales. To achieve this,
we simulated a known log-linear population trend of -0.037, resulting in ~30% population decline
after 10 years and ~84% population decline after 50 years. While the magnitude of decline has no
effect on estimates of trend precision, we included this trend for illustrative purposes and because it
aligns with the IUCN Red List Criteria for “Vulnerable” Status. Parameter values for these simulations
are described in Appendix S1. Our simulations assumed each colony was surveyed once per year (i.e.,
with a single VHR image), and observed population indices for each colony were subject to log-normal
error (&; ;) with standard deviation equal to the residual standard error estimated from the statistical
models described above. Using these simulated satellite observations as data, we then estimated
population trends and annual expected population indices (N;.) independently for each of the i

simulated colonies. The trend model for each colony was therefore:
1
log(Count;;)~Normal ( log(Ni¢) — Eal-z, al-z),
log(Nip) = a;+ Bi(t —1).

Accordingly, the log-linear trend for an individual colony is described by the parameter f; and initial

population index is equal to exp(«;), while observed satellite counts represent normally distributed
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L . . . 1
deviations from the (log-scale) annual expected population index, with variance al-z. The term 5(71'2

corrects for asymmetries in estimating the mean of a log-normal distribution and ensures that
aggregated population indices from multiple colonies are not artificially inflated.

We intentionally omitted inter-annual temporal process variance from our simulations (i.e.,
variance in [5; from year to year), given that we were unable to estimate this quantity from a single
year of surveys (our study), and there are currently insufficient data to evaluate its likely magnitude
from other studies. However, we note that process variance is a strong determinant of precision in
trend estimates and is distinct from observation error (the focus of this study). Thus, our simulations
represent a “best case scenario” that illustrate the potential improvement in precision that could be
attained by accounting for environmental covariates during surveys, if process variance is zero. In
practice, improvements in precision will be lower if process variance is high.

We examined how the precision of trend estimates changed with an increasing number of
survey years by refitting the trend model to different lengths of simulated data (t = 10 to 40 years for
each colony). Additionally, to examine the potential to improve trend precision by aggregating annual
population estimates for multiple colonies, we selected different numbers of colonies (ranging from

I = 2 to 40) and summed their annual indices to generate an estimated “regional” index where R; =

log(Ry) — log(Ry)

D . Further

Z{zl N; ;. We calculated the temporal trend for the regional population as

details of simulation and trend analyses, including model fitting procedures, are described in
Appendix S1. In all simulations, we quantified the precision associated with trend estimates as the
width of the 95% equal-tailed credible interval. We repeated this simulation exercise 100 times for
each variance scenario (residual variance based on either the null or “top covariate” model), and
each combination of monitoring length (10-40 years) and colony aggregation (1-40 colonies
aggregated). We report mean trend precision for the repeated simulations. We considered trends to
be estimated with “high precision” if the width of the confidence interval was less than 0.035 (i.e., a
change of approximately 3.5% per year). This threshold is consistent with the high precision category

for other large-scale avian monitoring programs (e.g., Status of Birds in Canada; Environment Canada

2019), but we note that any categorical threshold is somewhat arbitrary and mainly used for

illustrative purposes.

Results
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We analyzed a total of 44 images across three colonies during spring 2011 and found that the
population index (again, area of penguin pixels in m?) calculated by VHR imagery within a single
season varied among repeated surveys at all three emperor penguin colonies (Tables 1 and 2; Figs. 1
and 4). Both colonies in the Weddell Sea varied by a factor of ~5 and Coulman Island (in the Ross Sea)
varied by a maximum factor of two throughout spring 2011. Dates of minimum population indices
occurred in September across all three colonies but the date of maximum population indices varied
(Table 2, Fig. 1). We failed to support hypothesis 1, as satellite resolution during a survey was not
correlated with the population index on that survey. However, in support of hypothesis 2, sun
elevation and sun azimuth had a significant positive effect on the population index within a season
at these colonies (Table 3).

In our test of hypothesis 3, all three colonies were categorized as both “spread” and
“compact”, roughly equally through the season, with no tendency toward one or the other at any
point (i.e., colonies were not necessarily defined “compact” in early season versus later). We did find,
however, that patchiness (i.e., compact vs. spread) had a significant effect on the population index
across all colonies (Table 4): when penguins were spread out, the population indices were
approximately 1.7% bigger (i.e. median of 10781 m? for spread and 6283 m? for compact) than when
the colony was categorized as “compact”. Thus, colonies fluctuate between “compact” and “spread”
patterns throughout the spring survey period (September through December), which influences the
resulting index of population on any given survey.

Population indices were negatively correlated with strong wind speeds and low temperatures
on the day of the survey (hypothesis 4; Table 5). Environmental conditions in the 2- and 3-day period
leading up to a survey were also correlated with population indices but received less support in our
models than a 1-day environmental window.

To examine the overall effect of accounting for these covariates, we constructed a final model
that included additive combinations of the covariates from our hypothesis tests. We again included
a fixed effect of colony in all models to account for differences in the mean index among colonies.
After model selection, we retained variables: wind speed for the date of VHR image acquisition, sun
elevation, sun azimuth, and satellite resolution (though this effect was not significant using a p-value
threshold of 0.05). In combination, these covariates explained 46% of the variance in population
indices among surveys within a colony (Table 6). This reflects the variance in population indices
explained among repeated surveys within colonies, and is independent from the variance explained

among colonies by the fixed colony effect.
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With regard to our simulations, residual observation error led to uncertainty in estimates of
population trend (Appendix S1; Fig. 5). As expected, trend estimates were more precise (95% credible
interval widths smaller) when colonies were monitored for a longer duration and when annual
estimates were aggregated for multiple colonies. Trend precision was also considerably higher after
accounting for survey covariate effects (compare Fig. 5B to 5A). On average, trends at individual
colonies could be estimated with “precision” (i.e., 95% credible interval width < 0.035) after 24 years
of monitoring if survey covariates were accounted for. In contrast, 31 years of monitoring were
required to achieve precision if survey covariates were not accounted for. Population trends for
aggregations of multiple colonies could be estimated with high precision with fewer years of
monitoring. For example, when accounting for environmental covariates, high precision in trend
estimates could be achieved after only 10 years of monitoring if approximately 18 colonies were
aggregated. Conversely, without accounting for environmental covariates, approximately 33 colonies
must be aggregated to achieve high precision in trend estimates after 10 years of monitoring.
Accounting for the environmental and behavioral drivers of observation error can substantially

improve confidence in population trends.

Discussion

Our analysis is the first to i) address the intra-seasonal variability in VHR-derived population
indices at three emperor penguin colonies, and to ii) identify covariates that can correct for these
sources’ observation error. In the first study to estimate the global population of emperor penguins
using VHR surveys, Fretwell et al. (2012) assumed that area of penguin pixels (our “population
indices” here) derived from a single image within a season would reasonably represent colony size
for that year. This assumption appears to be valid for coarse comparisons among colonies that differ
substantially in size; VHR-derived surveys can readily distinguish a colony of many thousands of
individuals (e.g., Coulman Island) from a colony of several hundred (e.g., Beaufort Island, Fretwell et
al., 2012). However, our study revealed that VHR-derived population indices vary substantially
among repeated surveys throughout a single season at each of our three colonies. Further, we
showed that satellite-related and environmental variables can describe intra-season variation in area
of penguin pixel at a colony, which is essential for calculating robust estimates of population size and
trends in the future, especially when only one satellite image is typically available per year. This work

has major implications for the future assessment of emperor penguin responses to climate change.
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Overall, population indices range from 2326 to 11748 m? for Atka Bay, from 14964 to 31005
m? for Coulman Island and from 3155 to 18724 m? for Stancomb-Wills. Variation in population indices
among repeated surveys arises from intrinsic behavior of the birds (e.g., foraging trips by adults that
cause temporary fluctuations in colony abundance throughout a season, or huddling behavior that
obscures individuals from view) and counting errors owing to imprecision in the observation process
(e.g., differences in satellite position, or other factors that cannot be controlled during surveys).
Collectively, this “within-season” observation error causes surveys to deviate from a seasonal
expected count at the colony. Encouragingly, our study demonstrates that covariates can be used to
“correct” for several important drivers of observation error, such as sun angles and weather during
a survey. Large-scale monitoring programs routinely correct for variables known to influence counts
during surveys. For example, the North American Breeding Bird Survey corrects for observer
experience (Sauer, Peterjohn and Link, 1994), and numerous covariates are used to correct for
phenological and environmental effects during harbor seal (Phoca vitulina) surveys (Hoef, 2003).
Recently, Foley et al. (2020) developed a phenological correction model for King Penguins that
accounts for the seasonal timing of surveys and corrects for attrition of multiple life cycle stages. This
was a necessary step to “standardize” surveys collected in many different years, often in different
stages of the species’ life cycle. In the present study, a large proportion of observation error remains
to be explained, and some may in fact be unexplainable (i.e., controlled by a combination of factors
that are irreducibly complex, for example the movements of adults to and from the colony on
foraging trips). Nevertheless, improvements to VHR-derived population indices described here are
an important step toward any future research and monitoring and are therefore critical for the
conservation of the species (Trathan et al., 2020).

Emperor penguin colonies are highly dynamic within a season (Figs. 1, 3 and 4). Depending
upon the prevailing conditions, penguins may disperse and spread out, or they may cluster and
aggregate forming compact groups in response to local weather conditions (Richter et al., 2018b).
Our results confirmed that compact huddling behavior was detectable with VHR imagery and was
more likely to occur in cold and windy conditions. This makes sense because penguins form huddles
to conserve energy (Le Maho, 1977; Gilbert et al., 2009), and huddling increases with colder
temperatures and stronger wind speed (Gilbert et al., 2006, 2007). Importantly, this behavior
affected the resulting population index during a survey. Cold and windy conditions resulted in fewer

pixels classified as “penguin”, likely because multiple huddling individuals fit within a single pixel. As
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a result, population indices were ~0.6% smaller (i.e. based on medians) when colonies were
categorized as “compact”.

Future application of these satellite- and environmental-based corrections will need to
account for sources of observation error that are likely to differ among colonies. Some sites may be
less exposed to winds and cold temperatures (e.g., sheltered colonies located in the lee of islands or
peninsulas, or within ice creeks), which could affect the probability a colony will be densely huddled
during a survey. Factors that affect the supervised classification process may also differ among
colonies. Clouds, shadows, and dense guano stains make images more difficult to interpret (Barber-
Meyer et al., 2007), resulting in a less precise classification and a potential overestimate of
abundance. Here we showed that lower sun elevation will cast more shadows and increase the
number of pixels classified as “penguin”. Similarly, sun azimuth values that result in shadows being
cast from surrounding features like ice cliffs could obscure penguins that would otherwise be visible.
Unfortunately, in practice we do not have the option to choose which date range(s) have the highest
quality cloud-free images at a colony. In the rare cases where multiple high-quality images exist
within a season, we strongly advocate for the approach we adopted in this study (i.e., leveraging
information from *all* available images and statistically accounting for factors that introduce
sampling variation). Ongoing efforts to identify these sources of spurious variation (and bias) in
surveys are required for improved monitoring of this species.

The application of these methods and use future results has implications for Research and
Monitoring Plans, which are a prerequisite for marine protected areas (MPA) designated by the
Commission on the Conservation of Antarctic Marine Living Resources (CCAMLR). To advance our
understanding of emperor penguins status within current MPAs (e.g., the largest MPA in the world,
Ross Sea) and future MPAs, our work would facilitate the development of such a framework. Our
simulations found that several emperor penguins colonies need to be aggregated to detect real
metapopulation changes as detailed in Kooyman and Ponganis (2017); this suggests the need for a
regional network of monitoring and is instructive in the context of the creation of marine protected
areas based on ecoregions (Brooks et al., 2020). Given that a primary tenet of the CAMLR Convention
is to ensure “maintenance of the ecological relationships between harvested, dependent and related
populations of Antarctic marine living resources” — and that emperor penguins are dependent and
related populations — it is possible that we would not be able to detect alterations to the ecosystem
with monitoring tools at present. Our results therefore support a regional network of emperor

penguin colony monitoring, which could take the form of a network of MPAs.
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539 Tables and Figures

540

541  Table 1. List of the images used in the study for the three colonies and their estimated penguin areas
542  (expressed in m?). In bold is indicated the areas calculated from two different analysts for

543  comparisons, the replicated images indicated with a star were not used in the analysis.

544

545

Colony Image ID Date Satellite Area (m?) Analysts
Coulman Island | 101001000E224A00 09/17/2011 QB02 23985.05 Lise Viollat
Coulman Island 101001000E23DB00 09/18/2011 QB02 24899.15 Lise Viollat
Coulman Island 101001000E283100 09/21/2011 QB02 15047.01 Lise Viollat
Coulman Island 101001000E311E00 09/27/2011 QB02 29729.95 Lise Viollat
Coulman Island | 101001000E32A400 09/28/2011 QB02 20738.58 Lise Viollat
Coulman Island 101001000E357300 09/30/2011 WV02 14964.65 Lise Viollat
Coulman Island 101001000E36F100 10/01/2011 QB02 18488.57 Lise Viollat
Coulman Island 101001000E418600 10/08/2011 QB02 23490.58 Lise Viollat
Coulman Island 101001000E59A900 10/24/2011 QB02 23490.84 Lise Viollat
Coulman Island 101001000E59A900 10/24/2011 QB02 25274.66 Rose Nichol*
Coulman Island 101001000E686700 11/03/2011 QB02 23718.13 Lise Viollat
Coulman Island 103001000F7F8B00 11/19/2011 WV02 31005.29 Lise Viollat

Atka Bay 103001000D400A00 09/03/2011 WV02 6001.51 Lise Viollat
Atka Bay 103001000D023100 09/04/2011 WV02 6565.007 Lise Viollat
Atka Bay 103001000D5A8100 09/06/2011 WV02 2326.293 Lise Viollat
Atka Bay 103001000D295800 09/15/2011 WV02 11748.12 Lise Viollat
Atka Bay 101001000E24BD00 09/19/2011 QB02 5558.519 Lise Viollat
Atka Bay 101001000E262100 09/20/2011 QB02 8367.776 Lise Viollat
Atka Bay 103001000D63FD0O0 09/20/2011 Wvo02 8533.22 Lise Viollat
Atka Bay 103001000D63FD0O0 09/20/2011 Wvo02 8449.75 Peter Fretwell*
Atka Bay 103001000DD35500 09/21/2011 WV02 6506.849 Lise Viollat
Atka Bay 101001000E291500 09/22/2011 QB02 8774.873 Lise Viollat
Atka Bay 103001000D965F00 09/22/2011 WV02 5108.962 Lise Viollat
Atka Bay 101001000E2BBAOO 09/24/2011 QB02 3450.174 Lise Viollat
Atka Bay 103001000E2B6200 09/25/2011 WV02 9401.531 Lise Viollat
Atka Bay 101001000E3F5200 10/07/2011 QB02 7760.415 Lise Viollat
Atka Bay 101001000E526C00 10/19/2011 QB02 7480.21 Lise Viollat
Atka Bay 103001000FDO5F00 11/21/2011 WV02 10422.23 Lise Viollat
Stancomb-Wills 103001000DB9F900 09/13/2011 WV02 4685.562 Lise Viollat
Stancomb-Wills 103001000E7F2B00 09/14/2011 WV02 3864.594 Lise Viollat
Stancomb-Wills | 101001000E21CB00 09/17/2011 QB02 8232.159 Lise Viollat
Stancomb-Wills | 101001000E21CB00 09/17/2011 QB02 6132 Peter Fretwell*
Stancomb-Wills 103001000D081200 09/18/2011 WV02 4727.548 Lise Viollat
Stancomb-Wills | 103001000D1DD300 09/19/2011 WV02 5626.239 Lise Viollat
Stancomb-Wills | 103001000DA3AC00 09/20/2011 WV02 4895.73 Lise Viollat
Stancomb-Wills 103001000D01A900 09/25/2011 WV02 3155.904 Lise Viollat
Stancomb-Wills | 101001000E2DBAOO 09/25/2011 QB02 3441.86 Lise Viollat
Stancomb-Wills 103001000EC82200 10/04/2011 WV02 8727.082 Lise Viollat
Stancomb-Wills 101001000E3ACAO0 10/04/2011 QB02 11141.14 Lise Viollat
Stancomb-Wills 103001000E6D7F00 10/05/2011 WV02 9964.59 Lise Viollat
Stancomb-Wills | 101001000E43EE00 10/10/2011 QB02 12289.29 Lise Viollat
Stancomb-Wills | 101001000E458800 10/11/2011 QB02 11540.82 Lise Viollat
Stancomb-Wills 101001000E510200 10/18/2011 QB02 9488.866 Lise Viollat
Stancomb-Wills 101001000E7D1500 11/19/2011 QB02 15267.16 Lise Viollat
Stancomb-Wills 101001000E874200 11/27/2011 QB02 9863.186 Lise Viollat
Stancomb-Wills 103001000F3B6500 12/11/2011 WV02 18724.48 Lise Viollat
Stancomb-Wills 1030010010C89E00 12/14/2011 WV02 13013.86 Lise Viollat
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Table 2. Range of “penguin estimated area” (i.e. population index) calculated via supervised
classification on VHR imagery at three emperor penguin colonies in Antarctica, including the average
area over the season, number of images analyzed per colony, minimum area calculated (m?), date of
the image when minimum area was calculated, maximum area calculated (m?), date of the image
when the maximum area was calculated, and the ratio between the maximum and minimum area
calculations per colony to exemplify the magnitude of intra-season change.

Colony Name Avg area # images Min. Area  Date Min. Area  Max. Area Date Max. Area Max:min
Atka Bay 7,200 15 2,326 Sept 6, 2011 11,748 Sept 15, 2011 5.05
Coulman Island 22,687 11 14,965 Sept 30, 2011 31,005 Nov 19, 2011 2.07
Stancomb-Wills 8,814 18 3,156 Sept 25, 2011 18,724 Dec 11, 2011 5.93

Table 3. Results of the linear model to determine whether attributes of the satellite platform
(resolution (expressed in meters), sun elevation and sun azimuth angles (expressed in degrees);
hypotheses 1 and 2) influenced the emperor penguin population indices (expressed in log scale of
the area in m?) calculated from VHR imagery. Adjusted r? = 0.7191. The colony effect and values are
not displayed on the table.

Value Std. Error DF t-value p-value
Intercept 7.79 0.31 36 24.903 <2e-16
Panchromatic resolution 0.42 0.42 36 1.014 0.317
Sun elevation angle 0.028 0.008 36 3.622 0.000895
Sun azimuth angle 0.0078 0.002 36 3.707 0.000702

Table 4. Results of the linear model to address whether patchiness (i.e., “compact” or “spread”)
influenced the emperor penguin population indices calculated (expressed in log scale of the area in
m?) from VHR imagery (hypothesis 3). Adjusted r? = 0.7647. The colony effect and values are not

displayed on the table.

Value Std. Error DF t-value p-value
Intercept 9.62 0.16 38 60.385 <2e-16
patchiness -0.61 0.098 38 -5.825 9.91e-07
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Table 5. Results of the best linear model to address hypothesis 4; testing the influence of
environmental covariates (wind (expressed in m.s ) and temperature (expressed in degrees Celsius))
on the emperor penguin population indices (expressed in log scale of the area in m?) calculated from

VHR imagery. Adjusted r? = 0.7245.

Value Std. Error DF t-value p-value
Intercept 0.71 2.68 37 0.264 0.79320
Absolute wind speed 10m -0.067 0.021 37 -3.258 0.00241
Surface temperature 0.034 0.011 37 3.206 0.00277

Table 6. Results of the best linear model linking survey covariates (resolution (meters), sun elevation
and sun azimuth angles (degrees) and wind (in m.s?)) with emperor penguin population indices
(expressed in log scale of the area in m?) to account for observation error during surveys of emperor

I”

penguins using VHR imagery. Adjusted r?> = 0.75 (compared to 0.54 for a “null” model that only
included a fixed effect of colony but no survey covariates). The proportion of variance within colonies
explained by the survey covariates is 46% (note this is distinct from the proportion of variance among

colonies, explained by the colony fixed effect).

Value Std. Error DF t-value p-value
Intercept 8.19 0.33 35 24.552 <2e-16
Panchromatic resolution 0.51 0.39 35 1.320 0.19527
Sun elevation angle 0.024 0.007 35 3.215 0.00280
Sun azimuth angle 0.006 0.002 35 2.955 0.00556
Absolute wind speed 10m -0.052 0.021 35 -2.496 0.01742
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Figure 1. Time-series of the population indices (in thousand m?) for the three emperor penguin
colonies (left panels), with the location of these colonies given in the right panels (WS = Weddell Sea;
RS = Ross Sea). A ‘locally weighted smoothing’ (loess) regression was applied to each time-series
(degree = 1 and default span of 0.75) using R's loess function; vertical bars indicate the 1st and 15th

day of each month between 15 September 2011 and 1 December 2011.



594



595
596
597
598
599
600

601
602

603
604

Figure 2. Diagram outlining the method protocol for the VHR image processing using an example for
the Coulman Island colony. The VHR image is a Quickbird-02 image of Coulman Island emperor

penguin colony acquired on October 24, 2011 (catalog ID: 101001000E59A900). Imagery copyright

DigitalGlobe, Inc.

Figure 3. WorldView-2 satellite image from Atka Bay emperor penguin colony for September 3742011
(A), exemplifying “compact” patchiness (group of birds is circled) and WorldView-2 satellite image

from Atka Bay later in the season, on September 25t 2011 (B), showing an example of “spread”
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patchiness (the group of birds is circled again, and the guano stain spread out over a much larger

area). Image courtesy DigitalGlobe, Inc. (Maxar Technologies) and scale bars on bottom right of each

image are 500m and 2,000 feet.
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Figure 4. Emperor penguin estimated areas (i.e. population indices) at Coulman Island (panel A),

Stancomb-Wills (panel B) and Atka Bay (panel C) colonies during the breeding season. Gray shapes

represent the island, ice-shelves, icebergs or glacier tongue near the colony, blue shapes the open

water and red shapes the emperor penguin estimated surface areas. All images are not represented,

please see the list of images in Table 1.
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Figure 5. Precision associated with trend estimates resulting from simulations that incorporate
residual variance in annual population indices from a null model (panel A) and a model that accounts
for the effects of environmental drivers on daily population indices (panel B). X-axis denotes the
number of colonies that are aggregated; Y-axis denotes the number of years each colony is monitored
for. Shading indicates the resulting precision of estimated log-linear trend, measured as width of the
95% equal-tailed credible interval associated with trend estimate. Solid and dashed contour lines in
each panel denote the boundary at which trends can be estimated with “high precision” (using a
threshold where credible interval width is equal to 0.035). Panel C represents the comparison of

panel A & B.



