
 

Quantifying the causes and consequences of variation in satellite-derived population indices: a case 1 

study of emperor penguins 2 

 3 

Authors: Sara Labrousse1,2, David Iles2,3, Lise Viollat2, Peter Fretwell4, Philip N. Trathan4, Daniel P. 4 

Zitterbart2,5, Stephanie Jenouvrier2, Michelle LaRue1,6 5 

 6 

1. Department of Earth and Environmental Sciences, University of Minnesota, Minneapolis, MN 7 

USA 8 

2. Woods Hole Oceanographic Institution, Woods Hole, MA, USA 9 

3. Canadian Wildlife Service, Environment and Climate Change Canada, Ottawa, ON, CAN 10 

4. British Antarctic Survey, Cambridge, UK 11 

5. Department of Physics, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, 12 

Germany  13 

6. School of Earth and Environment, University of Canterbury, Christchurch, NZ 14 

 15 

Corresponding author: Sara Labrousse, Mail Stop #50, Woods Hole Oceanographic Institution, 266 16 

Woods Hole Road, Woods Hole, MA 02543-1050 U.S.A., sara.labrousse@gmail.com 17 

 18 

Keywords: emperor penguin; intra-seasonal variability; population trend; satellite imagery. 19 

 20 

Abstract 21 

Very high-resolution satellite (VHR) imagery is a promising tool for estimating the abundance of 22 

wildlife populations, especially in remote regions where traditional surveys are limited by logistical 23 

challenges. Emperor penguins (Aptenodytes forsteri) were the first species to have a circumpolar 24 

population estimate derived via VHR imagery. Here we address an untested assumption from 25 

Fretwell et al. (2012) that a single image of an emperor penguin colony is a reasonable representation 26 

of the colony for the year the image was taken. We evaluated satellite-related and environmental 27 

variables that might influence the calculated area of penguin pixels to reduce uncertainties in 28 

satellite-based estimates of emperor penguin populations in the future. We focused our analysis on 29 

multiple VHR images from three representative colonies: Atka Bay, Stancomb-Wills (Weddell Sea 30 

sector) and Coulman Island (Ross Sea sector) between September and December during 2011. We 31 

replicated methods in Fretwell et al. (2012), which included using supervised classification tools in 32 
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ArcGIS 10.7 software to calculate area occupied by penguins (hereafter referred to as “population 33 

indices”) in each image. We found that population indices varied from 2 to nearly 6-fold, suggesting 34 

that penguin pixel areas calculated from a single image may not provide a complete understanding 35 

of colony size for that year. Thus, we further highlight the important roles of: i) sun azimuth and 36 

elevation through image resolution and ii) penguin patchiness (aggregated versus distributed) on the 37 

calculated areas. We found an effect of wind and temperature on penguin patchiness. Despite intra-38 

seasonal variability in population indices, simulations indicate that reliable, robust population trends 39 

are possible by including satellite-related and environmental covariates and aggregating indices 40 

across time and space. Our work provides additional parameters that should be included in future 41 

models of population size for emperor penguins. 42 

 43 

Introduction 44 

Very high-resolution (VHR; 0.3-0.6m spatial resolution) satellite imagery has been a disruptive 45 

technology for studying wildlife populations, especially in Antarctica (LaRue et al., 2011; Fretwell et 46 

al., 2012; Lynch and LaRue, 2014; McMahon et al., 2014; Strycker et al., 2020; Wege, Salas and LaRue, 47 

2020). Emperor penguins (Aptenodytes forsteri), icons of the Antarctic, are a model species for direct, 48 

satellite-based investigation of their distribution and numbers: they leave a representative guano 49 

stain on the fast ice (i.e., sea ice fastened to the coastline) that indicates colony presence (Barber-50 

Meyer, Kooyman and Ponganis, 2007; Fretwell and Trathan, 2009; Fretwell et al., 2012); they are 51 

available for detection in austral spring when satellite images of the coastline are easily acquired; 52 

and good contrast (black penguins on white snow), makes their enumeration straight-forward.  53 

Emperor penguins were the first species to have a circumpolar population estimate derived 54 

via VHR imagery (Fretwell et al., 2012). Most emperor penguin colonies are difficult to access due to 55 

their location on remote sections of Antarctic fast ice, and very few of the 66 known colonies (Fretwell 56 

and Trathan, 2020) are available to survey using ground counts or aerial surveys (Ancel, Gendner, et 57 

al., 1992; Barbraud and Weimerskirch, 2001; Kooyman and Ponganis, 2017; Richter et al., 2018a). 58 

However, gaining empirical understanding of population change at multiple spatial scales is critical, 59 

as modeling studies suggest that most breeding colonies will be quasi-extinct by 2100 under ‘business 60 

as usual’ emissions scenarios (Jenouvrier et al., 2014, 2020), resulting in dramatic declines in the 61 

global population size, even under optimistic dispersal scenarios (Jenouvrier et al. 2017). The ability 62 

to apply the baseline population provided by Fretwell et al. (2012) to monitor population trends will 63 



 

improve our understanding and predictions of emperor penguin populations at multiple spatial 64 

scales, which is critical for conservation (Trathan et al., 2020).  65 

Emperor penguins breed on fast ice during total darkness in the winter when reproductive 66 

birds gather at the colony to mate, and raise and feed their chicks (Ancel, Kooyman, et al., 1992; 67 

Kirkwood and Robertson, 1997). Strong winds (>130 km/h) combined with low temperatures (<40° 68 

C) favor huddling behavior of the males (Gilbert et al., 2007) during incubation, and also to keep 69 

chicks warm through the winter and into the spring. Thus, the ideal time to estimate abundance of 70 

emperor penguins would be during austral winter, when only males are present at the colony, making 71 

enumeration straight-forward (counting of males in the huddle represents the number of breeding 72 

pairs). However, optical VHR imagery of the Antarctic coastline is only available between September 73 

and March, and emperor penguins spend January through April foraging away from their colonies. 74 

Thus, the only period when emperor penguin abundance can be estimated from VHR imagery is 75 

austral spring, during chick-rearing. 76 

Furthermore, satellite-based estimates of emperor penguins during spring may be influenced 77 

by factors related directly to penguin behavior and by features of the satellite platform itself (i.e., the 78 

observation process). Breeding failure and foraging trips by adult penguins introduces variation into 79 

the number of birds available for detection by the satellite sensor at a colony (see an analogous 80 

discussion of this issue for surveys on King Penguins [Aptenodytes patagonicus] in Foley et al. (2020). 81 

Additionally, huddling behavior fluctuates during chick-rearing period and can introduce variation 82 

into satellite-based counts (Richter et al., 2018b), particularly if birds are so densely huddled that the 83 

ability to distinguish individual birds becomes difficult (i.e., because multiple birds can potentially fit 84 

within a single VHR pixel). Additional variation in satellite-derived counts could be introduced by 85 

imprecision in the supervised classification, or by differences in the quality of images among 86 

successive counts (i.e., owing to differences in spatial resolution or sun angle). Given the remoteness 87 

of most emperor penguin colonies, satellite-based monitoring of population trends is currently the 88 

only viable method for monitoring this species across the species range and could play a central role 89 

in determining its conservation status. Thus, generating precise indices of annual abundance at 90 

individual colonies, and in turn, estimates of population trends, could heavily depend upon an ability 91 

to remove this “noise” in satellite-derived indices (i.e., observation error that is caused by the within-92 

season huddling behavior, satellite-related covariates, or other factors described above). Conversely, 93 

an inability to sufficiently remove spurious observation error at individual emperor penguin colonies 94 

would suggest that either colonies must be monitored for many years to derive reliable trend 95 



 

estimates, or that satellite-based monitoring will only be useful for estimating regional population 96 

trends in the short term (i.e., where observation error will “average out” across many colonies). 97 

Here, we addressed an untested assumption from Fretwell et al. (2012) that a single VHR 98 

image of an emperor penguin colony would reasonably represent colony size for that year (calculated 99 

as number of breeding pairs; Fretwell et al., 2012). Specifically, we aimed to understand satellite-100 

related and environmental variables that might influence the calculated area of penguin pixels 101 

(hereafter referred to as the population indices) to reduce potential uncertainties associated with 102 

using only one image per year to assess colony size. We use the term “population indices” to refer to 103 

the calculated area of penguin pixels from each VHR image because the penguins available for 104 

detection on each image are a benchmark for colony status in that year. While our goals are not to 105 

complete the process of estimating populations, it is critical we test the representativeness of 106 

population indices calculated from a single VHR image because we already know that only one image 107 

per colony per year is available over the course of ~10 years; see available imagery via Maxar 108 

Technologies: discover.digitalglobe.com).  109 

Finally, we conducted a series of simulations to evaluate the potential for covariates to 110 

improve estimates of population trends at a range of scales (i.e., from local populations to regional 111 

aggregations) and across different time horizons.  112 

We hypothesized: 113 

1. Satellite platform, e.g. spatial resolution of the panchromatic band will influence the 114 

area occupied by penguins in each image (i.e., population index) calculated from VHR 115 

images (i.e., lower resolution imagery will result in greater area of penguins, which 116 

could be interpreted as a higher population index); 117 

2. Sun elevation angle and sun azimuth will influence the population index (i.e., lower 118 

sun elevation will cast more shadows resulting greater area of penguins; and sun 119 

azimuth could result in shadows being cast from surrounding features like ice cliffs 120 

would obscure penguins). Moreover, sun elevation is correlated with the day of the 121 

year and may integrate seasonal changes in penguin movements.  122 

3. The spatial patchiness of penguins within a colony during a satellite survey (i.e. 123 

compactly-huddled versus widely-spread) will influence the population index given 124 

variation in density of birds; areas calculated from compact aggregations will be 125 

smaller than areas calculated from spread aggregations of birds. 126 



 

4. Wind speed and temperature during the satellite survey will influence the population 127 

index, owing to the huddling behavior of emperor penguins during cold/windy 128 

conditions, which would result in compact groups that may lead to smaller population 129 

indices. 130 

5. Population trends can be estimated more precisely at the colony level, and with fewer 131 

years of monitoring if these sources of spurious variation in counts are accounted for 132 

and removed. This hypothesis was tested using simulations to show how we improve 133 

population trends with those sources of variation; however, the translation of 134 

population indices (i.e., area of penguin pixel) to population size is not the goal of this 135 

research. 136 

 137 

Materials and Methods 138 

Study area 139 

We focused our examination of variance in population indices (as calculated by area of 140 

penguin pixels on VHR images) on three emperor penguin colonies: the Stancomb-Wills (~5,455 141 

breeding pairs) and Atka Bay (~9657 breeding pairs) colonies in the Weddell Sea sector, and the 142 

Coulman Island colony (~25,000 breeding pairs) in the Ross Sea sector (Fig. 1; Fretwell et al. 2012). 143 

These three colonies were chosen because they are each larger-than-average (average colony size in 144 

2009 was ~4,300 breeding pairs; Fretwell et al., 2012), they have been monitored by aerial or ground 145 

surveys on several occasions, are relatively stable in their annual occupancy, and were also unlikely 146 

to be impacted by confounding factors such as proximity to research stations, tourism, or pollution. 147 

Both the Weddell Sea and Ross Sea are characterized by wide bathymetric continental slopes, 148 

relatively cold waters, high primary productivity (particularly in the case of the Ross Sea, which is 149 

home to the largest open-ocean polynya in the Southern Ocean; Smith et al. (2014)), relatively stable 150 

sea ice regimes, and finally, both regions are likely to be refugia for emperor penguins in the future 151 

(Jenouvrier et al., 2020). In other words, these colonies represent locations where human-induced 152 

variation is likely to be minimal, but where natural, intra-seasonal variation may be relatively high 153 

given the most-recent colony estimates (in number of breeding pairs of adults; Fretwell et al., 2012; 154 

Kooyman and Ponganis 2017). Further, the colonies were sufficiently large, increasing the probability 155 

that any intra-seasonal changes could be detected. Changes or error in the estimation at small 156 

colonies are less consequential in understanding overall population status. In other words, 157 



 

substantial intra-season fluctuations at large colonies are more consequential to estimating 158 

populations than changes at smaller colonies. 159 

 160 

VHR imagery and image processing 161 

We selected high-quality (i.e. cloud-free, no banding; Barber-Meyer et al., 2007) VHR images 162 

acquired for each of the three study colonies during spring 2011 (September through December), the 163 

year with the highest number of repeat images acquired by DigitalGlobe, Inc. (now Maxar 164 

Technologies) around the Antarctic coastline. Indeed, other than 2011, there are ~5 images at any 165 

colony and in most cases there is one only useable image per colony. Images were primarily from 166 

WorldView-2 (~0.46m panchromatic spatial resolution) and QuickBird-2 (~0.65m panchromatic 167 

spatial resolution) satellites and were processed (e.g., pansharpened, orthorectified, and projected 168 

to Antarctic Polar Stereographic) by the Polar Geospatial Center (PGC) at the University of Minnesota 169 

(processing code on GitHub: https://github.com/PolarGeospatialCenter/). 170 

To gain a population index of emperor penguins for each image and to test the assumption of 171 

the representativeness of a single image per colony per year, we replicated methods first outlined in 172 

Barber-Meyer et al. (2007) and built upon in Fretwell et al. (2012). Briefly, these methods involved 173 

using ArcGIS software to first clip the image to our area of interest (the colony; Fig. 2A) and then 174 

define three training classes (using a point shapefile with attribute classes of penguin, guano, and 175 

snow, Fig.  2B-C; Barber-Meyer et al., 2007) for a supervised classification on pansharpened images 176 

of Antarctic fast ice. Notably, field tests of emperor penguin reflectance from satellite imagery have 177 

not been conducted, let alone for various environmental scenarios (light cloud cover vs sunny 178 

conditions) and therefore time-consuming, human interpretation was required in every step of the 179 

process to ensure accuracy.  180 

Once the training dataset was compiled, we then conducted a maximum likelihood 181 

classification resulting in an output raster, which we converted to a polygon shapefile. Within the 182 

polygon shapefile, we extracted only the penguin class (based on the grid value, which was defined 183 

as aforementioned) since we were not interested in the amount of area of guano or snow (Fig. 2D-184 

E). Because of the simplicity of the maximum likelihood classifier, to ensure accuracy of results, and 185 

to maintain one aim of Fretwell et al. (2012), which was to ensure this work could occur in fairly 186 

accessible GIS software (e.g., ArcGIS rather than ENVI), we then visually reviewed each population 187 

index on each image. Visual inspections of the resulting polygons included a combination of three 188 

processes: 1. Accepting the results as-is; or 2. Retraining the supervised classification and re-running 189 



 

the maximum likelihood classifier; and/or 3. Manually editing the population indices where minor 190 

adjustments were needed. Our final step was to then calculate the areas that comprise the penguins-191 

only polygon to arrive at the calculated area of penguin pixels on each image, which represents the 192 

population index we report here, for each image date at each colony (Fig. 2E). This population index 193 

is the response variable for our statistical modeling (below). 194 

Though one analyst was responsible for the majority of images analyzed here (largely due to 195 

the amount of time required for one person to conduct all analyses, let alone more people), 196 

independent analysis of one image per colony per year occurred, which we used as a basis for spot-197 

checking results (please see bold data in Table 1). 198 

 199 

Statistical modeling  200 

We constructed a series of linear models to evaluate the factors that influence population 201 

indices of adult emperor penguins derived from satellites, which was our response variable. In all 202 

models, the population index was log-transformed to accommodate a normally-distributed error 203 

structure and to facilitate proportional comparisons among colonies of different mean sizes 204 

(according to Fretwell et al., 2012). We included a fixed effect of colony in all models to account for 205 

differences in average colony size. To evaluate our primary hypotheses and thereby evaluate the 206 

factors that account for seasonal variation in satellite-derived estimates of penguin abundance, we 207 

constructed a series of alternative models containing different explanatory covariates. We describe 208 

this suite of models and justification for each explicit covariate below. 209 

We were first interested in whether characteristics of the VHR image itself would influence 210 

the population index at each colony due to human interpretation of pixels classified as penguins 211 

versus other items on the landscape, such as shadows or guano (Hypotheses 1 and 2). In R (R Core 212 

Team, 4.0.1, 2020), we developed a linear model using the function lm from the package stats; our 213 

response variable was the population index (penguin area in meters) per image within a season (year 214 

2011) for each colony. Our explanatory variables were effective panchromatic ground resolution (the 215 

spatial size of a pixel given the on-nadir band resolution for the platform combined with the actual 216 

off-nadir angle of the satellite platform; expressed in meters), the sun elevation angle, the sun 217 

azimuth (range: 0-360 degrees) and colony. 218 

 While breeding, emperor penguins remain within a larger area that encompasses the whole 219 

breeding site during a season, although the location of the actual colony at the micro-scale changes 220 

(Richter et al., 2018a). To address hypothesis 3 (effects of colony patchiness on the population index), 221 



 

we qualitatively categorized the colony patchiness on each image into “compact” and “spread”. We 222 

defined “compact” as when the birds were observed in discrete groups with little space between 223 

individuals (i.e., huddling behavior), and “spread” was defined as when there was obvious space 224 

between birds and the groups were more dispersed (Fig. 3). We developed a linear model in R with 225 

population index as the response variable, and patchiness (spread and compact) and colony as fixed 226 

effects. 227 

To understand the variability of population indices related to environmental conditions 228 

(hypothesis 4), three different environmental variables likely influencing emperor penguins and their 229 

patchiness were tested (Richter et al., 2018b): (i) the 10m zonal wind (U wind); (ii) the 10 m 230 

meridional wind (V wind); the 2m air temperature. We obtained these data from the European 231 

Centre for Medium-Range Weather Forecasts (ECMWF) “ERA5 hourly data on single levels from 1979 232 

to present” dataset and computed for every hour. We extracted data from August 1st to December 233 

31th 2011, with an hourly temporal resolution and a 0.25° x 0.25° spatial resolution 234 

(https://cds.climate.copernicus.eu/). We fit linear model in R with population index as the response 235 

variable and absolute wind speed derived from 10m meridional and zonal winds, 2 m temperature 236 

and colony as fixed effects. 237 

We used Akaike Information Criterion (AIC) for model selection, combining both forward and 238 

backward selection (i.e. function stepAIC of the MASS package, R). For hypothesis 4, final models 239 

were developed for the environmental window of the date of image acquisition, and for 2-days, or 240 

3-days prior to image acquisition. A comparison of AIC allowed us to choose the best environmental 241 

window. For all models, validations were checked by plotting Pearson residuals against fitted values, 242 

and against each explanatory variable, verifying homogeneity and normality of residuals (Zuur, Leno 243 

and Elphick, 2010). These models did not take into account temporal autocorrelation, but we checked 244 

temporal correlation of the residuals by plotting the residuals of the final model versus the Julian 245 

dates and checking the correlation (i.e. 0.0014). 246 

Finally, to select the best covariates for accounting and removing sources of spurious variation 247 

in population indices, we used model selection to identify the most parsimonious model combining 248 

all satellite-related and environmental covariates. Two linear models combining all three colonies 249 

were fitted: one model was fitted with “colony” as fixed effects and the other included the satellite-250 

related and environmental variables. We then calculated the proportion of variance explained by the 251 

covariates by comparing the R-squared from a model that included the satellite-related and 252 

environmental covariates to one that omitted them (but still retained the fixed effect of colonies). 253 
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The day of year was correlated (>0.5) with the sun elevation and the temperature so we did not 254 

include day of year in the models. However, we checked the absence of correlation between the final 255 

model residuals and the day of year. 256 

 257 

Simulation to evaluate the effects of observation error on precision of trend estimates 258 

Residual variance in our fitted models measures the magnitude of observation error among 259 

repeated surveys within a season. The null model includes the maximum amount of residual variance 260 

in surveys, while the “top” model indicates the degree to which covariates can reduce this variance 261 

by “correcting” for factors that influence the population index during a survey (e.g., weather 262 

conditions that cause penguins to densely huddle, resulting in a lower than expected count). To 263 

illustrate the potential effects of observation error on trend estimates, we focus our remaining 264 

analysis on comparisons between residual variance from these two models (i.e., the null and “top” 265 

model).  266 

We conducted a series of simulations in which we introduced different magnitudes of 267 

observation error into population time series. We then evaluated the effects of this observation error 268 

on the resulting precision of trend estimates at multiple temporal and spatial scales. To achieve this, 269 

we simulated a known log-linear population trend of -0.037, resulting in ~30% population decline 270 

after 10 years and ~84% population decline after 50 years. While the magnitude of decline has no 271 

effect on estimates of trend precision, we included this trend for illustrative purposes and because it 272 

aligns with the IUCN Red List Criteria for “Vulnerable” Status. Parameter values for these simulations 273 

are described in Appendix S1. Our simulations assumed each colony was surveyed once per year (i.e., 274 

with a single VHR image), and observed population indices for each colony were subject to log-normal 275 

error (𝜀𝜀𝑖𝑖,𝑡𝑡) with standard deviation equal to the residual standard error estimated from the statistical 276 

models described above. Using these simulated satellite observations as data, we then estimated 277 

population trends and annual expected population indices (𝑁𝑁𝑖𝑖,𝑡𝑡) independently for each of the i 278 

simulated colonies. The trend model for each colony was therefore: 279 

𝑙𝑙𝑙𝑙𝑙𝑙�𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖,𝑡𝑡�~𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 � 𝑙𝑙𝑙𝑙𝑙𝑙�𝑁𝑁𝑖𝑖,𝑡𝑡�  −
1
2
𝜎𝜎𝑖𝑖2,𝜎𝜎𝑖𝑖2�, 280 

𝑙𝑙𝑙𝑙𝑙𝑙(𝑁𝑁𝑖𝑖,𝑡𝑡)  =  𝛼𝛼𝑖𝑖 + 𝛽𝛽𝑖𝑖(𝑡𝑡 − 1). 281 

Accordingly, the log-linear trend for an individual colony is described by the parameter 𝛽𝛽𝑖𝑖 and initial 282 

population index is equal to 𝑒𝑒𝑒𝑒𝑒𝑒(𝛼𝛼𝑖𝑖), while observed satellite counts represent normally distributed 283 



 

deviations from the (log-scale) annual expected population index, with variance 𝜎𝜎𝑖𝑖2. The term 1
2
𝜎𝜎𝑖𝑖2 284 

corrects for asymmetries in estimating the mean of a log-normal distribution and ensures that 285 

aggregated population indices from multiple colonies are not artificially inflated. 286 

We intentionally omitted inter-annual temporal process variance from our simulations (i.e., 287 

variance in 𝛽𝛽𝑖𝑖 from year to year), given that we were unable to estimate this quantity from a single 288 

year of surveys (our study), and there are currently insufficient data to evaluate its likely magnitude 289 

from other studies. However, we note that process variance is a strong determinant of precision in 290 

trend estimates and is distinct from observation error (the focus of this study). Thus, our simulations 291 

represent a “best case scenario” that illustrate the potential improvement in precision that could be 292 

attained by accounting for environmental covariates during surveys, if process variance is zero. In 293 

practice, improvements in precision will be lower if process variance is high. 294 

We examined how the precision of trend estimates changed with an increasing number of 295 

survey years by refitting the trend model to different lengths of simulated data (t = 10 to 40 years for 296 

each colony). Additionally, to examine the potential to improve trend precision by aggregating annual 297 

population estimates for multiple colonies, we selected different numbers of colonies (ranging from 298 

𝐼𝐼 = 2 to 40) and summed their annual indices to generate an estimated “regional” index where 𝑅𝑅𝑡𝑡 =299 

∑ 𝑁𝑁𝑖𝑖,𝑡𝑡𝐼𝐼
𝑖𝑖=1 . We calculated the temporal trend for the regional population as 𝑙𝑙𝑙𝑙𝑙𝑙(𝑅𝑅𝑡𝑡) − 𝑙𝑙𝑙𝑙𝑙𝑙(𝑅𝑅1)

(𝑡𝑡−1)
. Further 300 

details of simulation and trend analyses, including model fitting procedures, are described in 301 

Appendix S1. In all simulations, we quantified the precision associated with trend estimates as the 302 

width of the 95% equal-tailed credible interval. We repeated this simulation exercise 100 times for 303 

each variance scenario (residual variance based on either the null or “top covariate” model), and 304 

each combination of monitoring length (10-40 years) and colony aggregation (1-40 colonies 305 

aggregated). We report mean trend precision for the repeated simulations. We considered trends to 306 

be estimated with “high precision” if the width of the confidence interval was less than 0.035 (i.e., a 307 

change of approximately 3.5% per year). This threshold is consistent with the high precision category 308 

for other large-scale avian monitoring programs (e.g., Status of Birds in Canada; Environment Canada 309 

2019), but we note that any categorical threshold is somewhat arbitrary and mainly used for 310 

illustrative purposes. 311 

 312 

Results 313 
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We analyzed a total of 44 images across three colonies during spring 2011 and found that the 314 

population index (again, area of penguin pixels in m2) calculated by VHR imagery within a single 315 

season varied among repeated surveys at all three emperor penguin colonies (Tables 1 and 2; Figs. 1 316 

and 4). Both colonies in the Weddell Sea varied by a factor of ~5 and Coulman Island (in the Ross Sea) 317 

varied by a maximum factor of two throughout spring 2011. Dates of minimum population indices 318 

occurred in September across all three colonies but the date of maximum population indices varied 319 

(Table 2, Fig. 1). We failed to support hypothesis 1, as satellite resolution during a survey was not 320 

correlated with the population index on that survey. However, in support of hypothesis 2, sun 321 

elevation and sun azimuth had a significant positive effect on the population index within a season 322 

at these colonies (Table 3).  323 

In our test of hypothesis 3, all three colonies were categorized as both “spread” and 324 

“compact”, roughly equally through the season, with no tendency toward one or the other at any 325 

point (i.e., colonies were not necessarily defined “compact” in early season versus later). We did find, 326 

however, that patchiness (i.e., compact vs. spread) had a significant effect on the population index 327 

across all colonies (Table 4): when penguins were spread out, the population indices were 328 

approximately 1.7% bigger (i.e. median of 10781 m2 for spread and 6283 m2 for compact) than when 329 

the colony was categorized as “compact”. Thus, colonies fluctuate between “compact” and “spread” 330 

patterns throughout the spring survey period (September through December), which influences the 331 

resulting index of population on any given survey. 332 

 Population indices were negatively correlated with strong wind speeds and low temperatures 333 

on the day of the survey (hypothesis 4; Table 5). Environmental conditions in the 2- and 3-day period 334 

leading up to a survey were also correlated with population indices but received less support in our 335 

models than a 1-day environmental window.  336 

 To examine the overall effect of accounting for these covariates, we constructed a final model 337 

that included additive combinations of the covariates from our hypothesis tests. We again included 338 

a fixed effect of colony in all models to account for differences in the mean index among colonies. 339 

After model selection, we retained variables: wind speed for the date of VHR image acquisition, sun 340 

elevation, sun azimuth, and satellite resolution (though this effect was not significant using a p-value 341 

threshold of 0.05). In combination, these covariates explained 46% of the variance in population 342 

indices among surveys within a colony (Table 6). This reflects the variance in population indices 343 

explained among repeated surveys within colonies, and is independent from the variance explained 344 

among colonies by the fixed colony effect.  345 



 

With regard to our simulations, residual observation error led to uncertainty in estimates of 346 

population trend (Appendix S1; Fig. 5). As expected, trend estimates were more precise (95% credible 347 

interval widths smaller) when colonies were monitored for a longer duration and when annual 348 

estimates were aggregated for multiple colonies. Trend precision was also considerably higher after 349 

accounting for survey covariate effects (compare Fig. 5B to 5A). On average, trends at individual 350 

colonies could be estimated with “precision” (i.e., 95% credible interval width < 0.035) after 24 years 351 

of monitoring if survey covariates were accounted for. In contrast, 31 years of monitoring were 352 

required to achieve precision if survey covariates were not accounted for. Population trends for 353 

aggregations of multiple colonies could be estimated with high precision with fewer years of 354 

monitoring. For example, when accounting for environmental covariates, high precision in trend 355 

estimates could be achieved after only 10 years of monitoring if approximately 18 colonies were 356 

aggregated. Conversely, without accounting for environmental covariates, approximately 33 colonies 357 

must be aggregated to achieve high precision in trend estimates after 10 years of monitoring. 358 

Accounting for the environmental and behavioral drivers of observation error can substantially 359 

improve confidence in population trends.  360 

 361 

Discussion 362 

Our analysis is the first to i) address the intra-seasonal variability in VHR-derived population 363 

indices at three emperor penguin colonies, and to ii) identify covariates that can correct for these 364 

sources’ observation error. In the first study to estimate the global population of emperor penguins 365 

using VHR surveys, Fretwell et al. (2012) assumed that area of penguin pixels (our “population 366 

indices” here) derived from a single image within a season would reasonably represent colony size 367 

for that year. This assumption appears to be valid for coarse comparisons among colonies that differ 368 

substantially in size; VHR-derived surveys can readily distinguish a colony of many thousands of 369 

individuals (e.g., Coulman Island) from a colony of several hundred (e.g., Beaufort Island, Fretwell et 370 

al., 2012). However, our study revealed that VHR-derived population indices vary substantially 371 

among repeated surveys throughout a single season at each of our three colonies. Further, we 372 

showed that satellite-related and environmental variables can describe intra-season variation in area 373 

of penguin pixel at a colony, which is essential for calculating robust estimates of population size and 374 

trends in the future, especially when only one satellite image is typically available per year. This work 375 

has major implications for the future assessment of emperor penguin responses to climate change.  376 



 

Overall, population indices range from 2326 to 11748 m2 for Atka Bay, from 14964 to 31005 377 

m2 for Coulman Island and from 3155 to 18724 m2 for Stancomb-Wills. Variation in population indices 378 

among repeated surveys arises from intrinsic behavior of the birds (e.g., foraging trips by adults that 379 

cause temporary fluctuations in colony abundance throughout a season, or huddling behavior that 380 

obscures individuals from view) and counting errors owing to imprecision in the observation process 381 

(e.g., differences in satellite position, or other factors that cannot be controlled during surveys). 382 

Collectively, this “within-season” observation error causes surveys to deviate from a seasonal 383 

expected count at the colony. Encouragingly, our study demonstrates that covariates can be used to 384 

“correct” for several important drivers of observation error, such as sun angles and weather during 385 

a survey. Large-scale monitoring programs routinely correct for variables known to influence counts 386 

during surveys. For example, the North American Breeding Bird Survey corrects for observer 387 

experience (Sauer, Peterjohn and Link, 1994), and numerous covariates are used to correct for 388 

phenological and environmental effects during harbor seal (Phoca vitulina) surveys (Hoef, 2003). 389 

Recently, Foley et al. (2020) developed a phenological correction model for King Penguins that 390 

accounts for the seasonal timing of surveys and corrects for attrition of multiple life cycle stages. This 391 

was a necessary step to “standardize” surveys collected in many different years, often in different 392 

stages of the species’ life cycle. In the present study, a large proportion of observation error remains 393 

to be explained, and some may in fact be unexplainable (i.e., controlled by a combination of factors 394 

that are irreducibly complex, for example the movements of adults to and from the colony on 395 

foraging trips). Nevertheless, improvements to VHR-derived population indices described here are 396 

an important step toward any future research and monitoring and are therefore critical for the 397 

conservation of the species (Trathan et al., 2020).  398 

Emperor penguin colonies are highly dynamic within a season (Figs. 1, 3 and 4). Depending 399 

upon the prevailing conditions, penguins may disperse and spread out, or they may cluster and 400 

aggregate forming compact groups in response to local weather conditions (Richter et al., 2018b). 401 

Our results confirmed that compact huddling behavior was detectable with VHR imagery and was 402 

more likely to occur in cold and windy conditions. This makes sense because penguins form huddles 403 

to conserve energy (Le Maho, 1977; Gilbert et al., 2009), and huddling increases with colder 404 

temperatures and stronger wind speed (Gilbert et al., 2006, 2007). Importantly, this behavior 405 

affected the resulting population index during a survey. Cold and windy conditions resulted in fewer 406 

pixels classified as “penguin”, likely because multiple huddling individuals fit within a single pixel. As 407 



 

a result, population indices were ~0.6% smaller (i.e. based on medians) when colonies were 408 

categorized as “compact”. 409 

Future application of these satellite- and environmental-based corrections will need to 410 

account for sources of observation error that are likely to differ among colonies. Some sites may be 411 

less exposed to winds and cold temperatures (e.g., sheltered colonies located in the lee of islands or 412 

peninsulas, or within ice creeks), which could affect the probability a colony will be densely huddled 413 

during a survey. Factors that affect the supervised classification process may also differ among 414 

colonies. Clouds, shadows, and dense guano stains make images more difficult to interpret (Barber-415 

Meyer et al., 2007), resulting in a less precise classification and a potential overestimate of 416 

abundance. Here we showed that lower sun elevation will cast more shadows and increase the 417 

number of pixels classified as “penguin”. Similarly, sun azimuth values that result in shadows being 418 

cast from surrounding features like ice cliffs could obscure penguins that would otherwise be visible. 419 

Unfortunately, in practice we do not have the option to choose which date range(s) have the highest 420 

quality cloud-free images at a colony. In the rare cases where multiple high-quality images exist 421 

within a season, we strongly advocate for the approach we adopted in this study (i.e., leveraging 422 

information from *all* available images and statistically accounting for factors that introduce 423 

sampling variation). Ongoing efforts to identify these sources of spurious variation (and bias) in 424 

surveys are required for improved monitoring of this species.  425 

The application of these methods and use future results has implications for Research and 426 

Monitoring Plans, which are a prerequisite for marine protected areas (MPA) designated by the 427 

Commission on the Conservation of Antarctic Marine Living Resources (CCAMLR). To advance our 428 

understanding of emperor penguins status within current MPAs (e.g., the largest MPA in the world, 429 

Ross Sea) and future MPAs, our work would facilitate the development of such a framework. Our 430 

simulations found that several emperor penguins colonies need to be aggregated to detect real 431 

metapopulation changes as detailed in Kooyman and Ponganis (2017); this suggests the need for a 432 

regional network of monitoring and is instructive in the context of the creation of marine protected 433 

areas based on ecoregions (Brooks et al., 2020). Given that a primary tenet of the CAMLR Convention 434 

is to ensure “maintenance of the ecological relationships between harvested, dependent and related 435 

populations of Antarctic marine living resources” – and that emperor penguins are dependent and 436 

related populations – it is possible that we would not be able to detect alterations to the ecosystem 437 

with monitoring tools at present. Our results therefore support a regional network of emperor 438 

penguin colony monitoring, which could take the form of a network of MPAs.  439 
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Tables and Figures 539 

 540 

Table 1. List of the images used in the study for the three colonies and their estimated penguin areas 541 

(expressed in m2). In bold is indicated the areas calculated from two different analysts for 542 

comparisons, the replicated images indicated with a star were not used in the analysis. 543 

Colony Image ID Date Satellite Area (m2) Analysts 
Coulman Island 101001000E224A00 09/17/2011 QB02 23985.05 Lise Viollat 
Coulman Island 101001000E23DB00 09/18/2011 QB02 24899.15 Lise Viollat 
Coulman Island 101001000E283100 09/21/2011 QB02 15047.01 Lise Viollat 
Coulman Island 101001000E311E00 09/27/2011 QB02 29729.95 Lise Viollat 
Coulman Island 101001000E32A400 09/28/2011 QB02 20738.58 Lise Viollat 
Coulman Island 101001000E357300 09/30/2011 WV02 14964.65 Lise Viollat 
Coulman Island 101001000E36F100 10/01/2011 QB02 18488.57 Lise Viollat 
Coulman Island 101001000E418600 10/08/2011 QB02 23490.58 Lise Viollat 
Coulman Island 101001000E59A900 10/24/2011 QB02 23490.84 Lise Viollat 
Coulman Island 101001000E59A900 10/24/2011 QB02 25274.66 Rose Nichol* 
Coulman Island 101001000E686700 11/03/2011 QB02 23718.13 Lise Viollat 
Coulman Island 103001000F7F8B00 11/19/2011 WV02 31005.29 Lise Viollat 

Atka Bay 103001000D400A00 09/03/2011 WV02 6001.51 Lise Viollat 
Atka Bay 103001000D023100 09/04/2011 WV02 6565.007 Lise Viollat 
Atka Bay 103001000D5A8100 09/06/2011 WV02 2326.293 Lise Viollat 
Atka Bay 103001000D295800 09/15/2011 WV02 11748.12 Lise Viollat 
Atka Bay 101001000E24BD00 09/19/2011 QB02 5558.519 Lise Viollat 
Atka Bay 101001000E262100 09/20/2011 QB02 8367.776 Lise Viollat 
Atka Bay 103001000D63FD00 09/20/2011 WV02 8533.22 Lise Viollat 
Atka Bay 103001000D63FD00 09/20/2011 WV02 8449.75 Peter Fretwell* 
Atka Bay 103001000DD35500 09/21/2011 WV02 6506.849 Lise Viollat 
Atka Bay 101001000E291500 09/22/2011 QB02 8774.873 Lise Viollat 
Atka Bay 103001000D965F00 09/22/2011 WV02 5108.962 Lise Viollat 
Atka Bay 101001000E2BBA00 09/24/2011 QB02 3450.174 Lise Viollat 
Atka Bay 103001000E2B6200 09/25/2011 WV02 9401.531 Lise Viollat 
Atka Bay 101001000E3F5200 10/07/2011 QB02 7760.415 Lise Viollat 
Atka Bay 101001000E526C00 10/19/2011 QB02 7480.21 Lise Viollat 
Atka Bay 103001000FD05F00 11/21/2011 WV02 10422.23 Lise Viollat 

Stancomb-Wills 103001000DB9F900 09/13/2011 WV02 4685.562 Lise Viollat 
Stancomb-Wills 103001000E7F2B00 09/14/2011 WV02 3864.594 Lise Viollat 
Stancomb-Wills 101001000E21CB00 09/17/2011 QB02 8232.159 Lise Viollat 
Stancomb-Wills 101001000E21CB00 09/17/2011 QB02 6132 Peter Fretwell* 
Stancomb-Wills 103001000D081200 09/18/2011 WV02 4727.548 Lise Viollat 
Stancomb-Wills 103001000D1DD300 09/19/2011 WV02 5626.239 Lise Viollat 
Stancomb-Wills 103001000DA3AC00 09/20/2011 WV02 4895.73 Lise Viollat 
Stancomb-Wills 103001000D01A900 09/25/2011 WV02 3155.904 Lise Viollat 
Stancomb-Wills 101001000E2DBA00 09/25/2011 QB02 3441.86 Lise Viollat 
Stancomb-Wills 103001000EC82200 10/04/2011 WV02 8727.082 Lise Viollat 
Stancomb-Wills 101001000E3ACA00 10/04/2011 QB02 11141.14 Lise Viollat 
Stancomb-Wills 103001000E6D7F00 10/05/2011 WV02 9964.59 Lise Viollat 
Stancomb-Wills 101001000E43EE00 10/10/2011 QB02 12289.29 Lise Viollat 
Stancomb-Wills 101001000E458800 10/11/2011 QB02 11540.82 Lise Viollat 
Stancomb-Wills 101001000E510200 10/18/2011 QB02 9488.866 Lise Viollat 
Stancomb-Wills 101001000E7D1500 11/19/2011 QB02 15267.16 Lise Viollat 
Stancomb-Wills 101001000E874200 11/27/2011 QB02 9863.186 Lise Viollat 
Stancomb-Wills 103001000F3B6500 12/11/2011 WV02 18724.48 Lise Viollat 
Stancomb-Wills 1030010010C89E00 12/14/2011 WV02 13013.86 Lise Viollat 

 544 

 545 



 

Table 2. Range of “penguin estimated area” (i.e. population index) calculated via supervised 546 
classification on VHR imagery at three emperor penguin colonies in Antarctica, including the average 547 
area over the season, number of images analyzed per colony, minimum area calculated (m2), date of 548 
the image when minimum area was calculated, maximum area calculated (m2), date of the image 549 
when the maximum area was calculated, and the ratio between the maximum and minimum area 550 
calculations per colony to exemplify the magnitude of intra-season change. 551 

 552 

Colony Name Avg area # images Min. Area Date Min. Area Max. Area Date Max. Area Max:min 

Atka Bay  7,200 15 2,326 Sept 6, 2011 11,748 Sept 15, 2011 5.05 

Coulman Island 22,687 11 14,965 Sept 30, 2011 31,005 Nov 19, 2011 2.07 

Stancomb-Wills 8,814 18 3,156 Sept 25, 2011 18,724 Dec 11, 2011 5.93 

 553 

Table 3. Results of the linear model to determine whether attributes of the satellite platform 554 
(resolution (expressed in meters), sun elevation and sun azimuth angles (expressed in degrees); 555 
hypotheses 1 and 2) influenced the emperor penguin population indices (expressed in log scale of 556 
the area in m2) calculated from VHR imagery. Adjusted r2 = 0.7191. The colony effect and values are 557 
not displayed on the table. 558 

 559 

  Value Std. Error DF t-value p-value 

Intercept 7.79 0.31 36 24.903 <2e-16 

Panchromatic resolution 0.42 0.42 36 1.014 0.317 

Sun elevation angle 0.028 0.008 36 3.622 0.000895  

Sun azimuth angle 0.0078 0.002 36 3.707 0.000702 

 560 

Table 4. Results of the linear model to address whether patchiness (i.e., “compact” or “spread”) 561 

influenced the emperor penguin population indices calculated (expressed in log scale of the area in 562 

m2) from VHR imagery (hypothesis 3). Adjusted r2 = 0.7647. The colony effect and values are not 563 

displayed on the table. 564 

 565 

  Value Std. Error DF t-value p-value 

Intercept 9.62 0.16 38 60.385 <2e-16 

patchiness -0.61 0.098 38 -5.825 9.91e-07  

 566 



 

Table 5. Results of the best linear model to address hypothesis 4; testing the influence of 567 

environmental covariates (wind (expressed in m.s-1) and temperature (expressed in degrees Celsius)) 568 

on the emperor penguin population indices (expressed in log scale of the area in m2) calculated from 569 

VHR imagery. Adjusted r2 = 0.7245.  570 

 571 

  Value Std. Error DF t-value p-value 

Intercept 0.71 2.68 37 0.264 0.79320 

Absolute wind speed 10m -0.067 0.021 37 -3.258 0.00241 

Surface temperature 0.034 0.011 37 3.206 0.00277 

 572 

Table 6. Results of the best linear model linking survey covariates (resolution (meters), sun elevation 573 

and sun azimuth angles (degrees) and wind (in m.s-1)) with emperor penguin population indices 574 

(expressed in log scale of the area in m2) to account for observation error during surveys of emperor 575 

penguins using VHR imagery. Adjusted r2 = 0.75 (compared to 0.54 for a “null” model that only 576 

included a fixed effect of colony but no survey covariates). The proportion of variance within colonies 577 

explained by the survey covariates is 46% (note this is distinct from the proportion of variance among 578 

colonies, explained by the colony fixed effect). 579 

 580 

  Value Std. Error DF t-value p-value 

Intercept 8.19 0.33 35 24.552 < 2e-16 

Panchromatic resolution 0.51 0.39 35 1.320 0.19527 

Sun elevation angle 0.024 0.007 35 3.215 0.00280 

Sun azimuth angle 0.006 0.002 35 2.955 0.00556 

Absolute wind speed 10m -0.052 0.021 35 -2.496 0.01742 

      

 581 
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 587 

Figure 1. Time-series of the population indices (in thousand m2) for the three emperor penguin 588 

colonies (left panels), with the location of these colonies given in the right panels (WS = Weddell Sea; 589 

RS = Ross Sea). A ‘locally weighted smoothing’ (loess) regression was applied to each time-series 590 

(degree = 1 and default span of 0.75) using R's loess function; vertical bars indicate the 1st and 15th 591 

day of each month between 15 September 2011 and 1 December 2011. 592 
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 594 



 

Figure 2. Diagram outlining the method protocol for the VHR image processing using an example for 595 

the Coulman Island colony. The VHR image is a Quickbird-02 image of Coulman Island emperor 596 

penguin colony acquired on October 24, 2011 (catalog ID: 101001000E59A900). Imagery copyright 597 

DigitalGlobe, Inc. 598 

 599 

 600 

 601 

Figure 3. WorldView-2 satellite image from Atka Bay emperor penguin colony for September 3rd 2011 602 

(A), exemplifying “compact” patchiness (group of birds is circled) and WorldView-2 satellite image 603 

from Atka Bay later in the season, on September 25th 2011 (B), showing an example of “spread” 604 



 

patchiness (the group of birds is circled again, and the guano stain spread out over a much larger 605 

area). Image courtesy DigitalGlobe, Inc. (Maxar Technologies) and scale bars on bottom right of each 606 

image are 500m and 2,000 feet.  607 

 608 

 609 



 

 610 



 

611 

Figure 4. Emperor penguin estimated areas (i.e. population indices) at Coulman Island (panel A), 612 

Stancomb-Wills (panel B) and Atka Bay (panel C) colonies during the breeding season. Gray shapes 613 

represent the island, ice-shelves, icebergs or glacier tongue near the colony, blue shapes the open 614 

water and red shapes the emperor penguin estimated surface areas. All images are not represented, 615 

please see the list of images in Table 1. 616 
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Figure 5. Precision associated with trend estimates resulting from simulations that incorporate 618 

residual variance in annual population indices from a null model (panel A) and a model that accounts 619 

for the effects of environmental drivers on daily population indices (panel B). X-axis denotes the 620 

number of colonies that are aggregated; Y-axis denotes the number of years each colony is monitored 621 

for. Shading indicates the resulting precision of estimated log-linear trend, measured as width of the 622 

95% equal-tailed credible interval associated with trend estimate. Solid and dashed contour lines in 623 

each panel denote the boundary at which trends can be estimated with “high precision” (using a 624 

threshold where credible interval width is equal to 0.035). Panel C represents the comparison of 625 

panel A & B.  626 


