

1 Quantifying the causes and consequences of variation in satellite-derived population indices: a case
2 study of emperor penguins

3
4 Authors: Sara Labrousse^{1,2}, David Iles^{2,3}, Lise Viollat², Peter Fretwell⁴, Philip N. Trathan⁴, Daniel P.
5 Zitterbart^{2,5}, Stephanie Jenouvrier², Michelle LaRue^{1,6}

- 6
7 1. Department of Earth and Environmental Sciences, University of Minnesota, Minneapolis, MN
8 USA
9 2. Woods Hole Oceanographic Institution, Woods Hole, MA, USA
10 3. Canadian Wildlife Service, Environment and Climate Change Canada, Ottawa, ON, CAN
11 4. British Antarctic Survey, Cambridge, UK
12 5. Department of Physics, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen,
13 Germany
14 6. School of Earth and Environment, University of Canterbury, Christchurch, NZ
15

16 Corresponding author: Sara Labrousse, Mail Stop #50, Woods Hole Oceanographic Institution, 266
17 Woods Hole Road, Woods Hole, MA 02543-1050 U.S.A., sara.labrousse@gmail.com

18
19 Keywords: emperor penguin; intra-seasonal variability; population trend; satellite imagery.
20

21 **Abstract**

22 Very high-resolution satellite (VHR) imagery is a promising tool for estimating the abundance of
23 wildlife populations, especially in remote regions where traditional surveys are limited by logistical
24 challenges. Emperor penguins (*Aptenodytes forsteri*) were the first species to have a circumpolar
25 population estimate derived via VHR imagery. Here we address an untested assumption from
26 Fretwell et al. (2012) that a single image of an emperor penguin colony is a reasonable representation
27 of the colony for the year the image was taken. We evaluated satellite-related and environmental
28 variables that might influence the calculated area of penguin pixels to reduce uncertainties in
29 satellite-based estimates of emperor penguin populations in the future. We focused our analysis on
30 multiple VHR images from three representative colonies: Atka Bay, Stancomb-Wills (Weddell Sea
31 sector) and Coulman Island (Ross Sea sector) between September and December during 2011. We
32 replicated methods in Fretwell et al. (2012), which included using supervised classification tools in

33 ArcGIS 10.7 software to calculate area occupied by penguins (hereafter referred to as “population
34 indices”) in each image. We found that population indices varied from 2 to nearly 6-fold, suggesting
35 that penguin pixel areas calculated from a single image may not provide a complete understanding
36 of colony size for that year. Thus, we further highlight the important roles of: i) sun azimuth and
37 elevation through image resolution and ii) penguin patchiness (aggregated versus distributed) on the
38 calculated areas. We found an effect of wind and temperature on penguin patchiness. Despite intra-
39 seasonal variability in population indices, simulations indicate that reliable, robust population trends
40 are possible by including satellite-related and environmental covariates and aggregating indices
41 across time and space. Our work provides additional parameters that should be included in future
42 models of population size for emperor penguins.

43

44 Introduction

45 Very high-resolution (VHR; 0.3-0.6m spatial resolution) satellite imagery has been a disruptive
46 technology for studying wildlife populations, especially in Antarctica (LaRue *et al.*, 2011; Fretwell *et*
47 *al.*, 2012; Lynch and LaRue, 2014; McMahon *et al.*, 2014; Strycker *et al.*, 2020; Wege, Salas and LaRue,
48 2020). Emperor penguins (*Aptenodytes forsteri*), icons of the Antarctic, are a model species for direct,
49 satellite-based investigation of their distribution and numbers: they leave a representative guano
50 stain on the fast ice (i.e., sea ice fastened to the coastline) that indicates colony presence (Barber-
51 Meyer, Kooyman and Ponganis, 2007; Fretwell and Trathan, 2009; Fretwell *et al.*, 2012); they are
52 available for detection in austral spring when satellite images of the coastline are easily acquired;
53 and good contrast (black penguins on white snow), makes their enumeration straight-forward.

54 Emperor penguins were the first species to have a circumpolar population estimate derived
55 via VHR imagery (Fretwell *et al.*, 2012). Most emperor penguin colonies are difficult to access due to
56 their location on remote sections of Antarctic fast ice, and very few of the 66 known colonies (Fretwell
57 and Trathan, 2020) are available to survey using ground counts or aerial surveys (Ancel, Gendner, *et*
58 *al.*, 1992; Barbraud and Weimerskirch, 2001; Kooyman and Ponganis, 2017; Richter *et al.*, 2018a).
59 However, gaining empirical understanding of population change at multiple spatial scales is critical,
60 as modeling studies suggest that most breeding colonies will be quasi-extinct by 2100 under ‘business
61 as usual’ emissions scenarios (Jenouvrier *et al.*, 2014, 2020), resulting in dramatic declines in the
62 global population size, even under optimistic dispersal scenarios (Jenouvrier *et al.* 2017). The ability
63 to apply the baseline population provided by Fretwell *et al.* (2012) to monitor population trends will

64 improve our understanding and predictions of emperor penguin populations at multiple spatial
65 scales, which is critical for conservation (Trathan *et al.*, 2020).

66 Emperor penguins breed on fast ice during total darkness in the winter when reproductive
67 birds gather at the colony to mate, and raise and feed their chicks (Ancel, Kooyman, *et al.*, 1992;
68 Kirkwood and Robertson, 1997). Strong winds (>130 km/h) combined with low temperatures (<40°
69 C) favor huddling behavior of the males (Gilbert *et al.*, 2007) during incubation, and also to keep
70 chicks warm through the winter and into the spring. Thus, the ideal time to estimate abundance of
71 emperor penguins would be during austral winter, when only males are present at the colony, making
72 enumeration straight-forward (counting of males in the huddle represents the number of breeding
73 pairs). However, optical VHR imagery of the Antarctic coastline is only available between September
74 and March, and emperor penguins spend January through April foraging away from their colonies.
75 Thus, the only period when emperor penguin abundance can be estimated from VHR imagery is
76 austral spring, during chick-rearing.

77 Furthermore, satellite-based estimates of emperor penguins during spring may be influenced
78 by factors related directly to penguin behavior and by features of the satellite platform itself (i.e., the
79 observation process). Breeding failure and foraging trips by adult penguins introduces variation into
80 the number of birds available for detection by the satellite sensor at a colony (see an analogous
81 discussion of this issue for surveys on King Penguins [*Aptenodytes patagonicus*] in Foley *et al.* (2020).
82 Additionally, huddling behavior fluctuates during chick-rearing period and can introduce variation
83 into satellite-based counts (Richter *et al.*, 2018b), particularly if birds are so densely huddled that the
84 ability to distinguish individual birds becomes difficult (i.e., because multiple birds can potentially fit
85 within a single VHR pixel). Additional variation in satellite-derived counts could be introduced by
86 imprecision in the supervised classification, or by differences in the quality of images among
87 successive counts (i.e., owing to differences in spatial resolution or sun angle). Given the remoteness
88 of most emperor penguin colonies, satellite-based monitoring of population trends is currently the
89 only viable method for monitoring this species across the species range and could play a central role
90 in determining its conservation status. Thus, generating precise indices of annual abundance at
91 individual colonies, and in turn, estimates of population trends, could heavily depend upon an ability
92 to remove this “noise” in satellite-derived indices (i.e., observation error that is caused by the within-
93 season huddling behavior, satellite-related covariates, or other factors described above). Conversely,
94 an inability to sufficiently remove spurious observation error at individual emperor penguin colonies
95 would suggest that either colonies must be monitored for many years to derive reliable trend

96 estimates, or that satellite-based monitoring will only be useful for estimating regional population
97 trends in the short term (i.e., where observation error will “average out” across many colonies).

98 Here, we addressed an untested assumption from Fretwell *et al.* (2012) that a single VHR
99 image of an emperor penguin colony would reasonably represent colony size for that year (calculated
100 as number of breeding pairs; Fretwell *et al.*, 2012). Specifically, we aimed to understand satellite-
101 related and environmental variables that might influence the calculated area of penguin pixels
102 (hereafter referred to as the population indices) to reduce potential uncertainties associated with
103 using only one image per year to assess colony size. We use the term “population indices” to refer to
104 the calculated area of penguin pixels from each VHR image because the penguins available for
105 detection on each image are a benchmark for colony status in that year. While our goals are not to
106 complete the process of estimating populations, it is critical we test the representativeness of
107 population indices calculated from a single VHR image because we already know that only one image
108 per colony per year is available over the course of ~10 years; see available imagery via Maxar
109 Technologies: discover.digitalglobe.com).

110 Finally, we conducted a series of simulations to evaluate the potential for covariates to
111 improve estimates of population trends at a range of scales (i.e., from local populations to regional
112 aggregations) and across different time horizons.

113 We hypothesized:

- 114 1. Satellite platform, e.g. spatial resolution of the panchromatic band will influence the
115 area occupied by penguins in each image (i.e., population index) calculated from VHR
116 images (i.e., lower resolution imagery will result in greater area of penguins, which
117 could be interpreted as a higher population index);
- 118 2. Sun elevation angle and sun azimuth will influence the population index (i.e., lower
119 sun elevation will cast more shadows resulting greater area of penguins; and sun
120 azimuth could result in shadows being cast from surrounding features like ice cliffs
121 would obscure penguins). Moreover, sun elevation is correlated with the day of the
122 year and may integrate seasonal changes in penguin movements.
- 123 3. The spatial patchiness of penguins within a colony during a satellite survey (i.e.
124 compactly-huddled versus widely-spread) will influence the population index given
125 variation in density of birds; areas calculated from compact aggregations will be
126 smaller than areas calculated from spread aggregations of birds.

127 4. Wind speed and temperature during the satellite survey will influence the population
128 index, owing to the huddling behavior of emperor penguins during cold/windy
129 conditions, which would result in compact groups that may lead to smaller population
130 indices.

131 5. Population trends can be estimated more precisely at the colony level, and with fewer
132 years of monitoring if these sources of spurious variation in counts are accounted for
133 and removed. This hypothesis was tested using simulations to show how we improve
134 population trends with those sources of variation; however, the translation of
135 population indices (i.e., area of penguin pixel) to population size is not the goal of this
136 research.

137

138 Materials and Methods

139 Study area

140 We focused our examination of variance in population indices (as calculated by area of
141 penguin pixels on VHR images) on three emperor penguin colonies: the Stancomb-Wills (~5,455
142 breeding pairs) and Atka Bay (~9657 breeding pairs) colonies in the Weddell Sea sector, and the
143 Coulman Island colony (~25,000 breeding pairs) in the Ross Sea sector (Fig. 1; Fretwell et al. 2012).
144 These three colonies were chosen because they are each larger-than-average (average colony size in
145 2009 was ~4,300 breeding pairs; Fretwell et al., 2012), they have been monitored by aerial or ground
146 surveys on several occasions, are relatively stable in their annual occupancy, and were also unlikely
147 to be impacted by confounding factors such as proximity to research stations, tourism, or pollution.
148 Both the Weddell Sea and Ross Sea are characterized by wide bathymetric continental slopes,
149 relatively cold waters, high primary productivity (particularly in the case of the Ross Sea, which is
150 home to the largest open-ocean polynya in the Southern Ocean; Smith et al. (2014)), relatively stable
151 sea ice regimes, and finally, both regions are likely to be refugia for emperor penguins in the future
152 (Jenouvrier et al., 2020). In other words, these colonies represent locations where human-induced
153 variation is likely to be minimal, but where natural, intra-seasonal variation may be relatively high
154 given the most-recent colony estimates (in number of breeding pairs of adults; Fretwell et al., 2012;
155 Kooyman and Ponganis 2017). Further, the colonies were sufficiently large, increasing the probability
156 that any intra-seasonal changes could be detected. Changes or error in the estimation at small
157 colonies are less consequential in understanding overall population status. In other words,

158 substantial intra-season fluctuations at large colonies are more consequential to estimating
159 populations than changes at smaller colonies.

160

161 **VHR imagery and image processing**

162 We selected high-quality (i.e. cloud-free, no banding; Barber-Meyer *et al.*, 2007) VHR images
163 acquired for each of the three study colonies during spring 2011 (September through December), the
164 year with the highest number of repeat images acquired by DigitalGlobe, Inc. (now Maxar
165 Technologies) around the Antarctic coastline. Indeed, other than 2011, there are ~5 images at any
166 colony and in most cases there is one only useable image per colony. Images were primarily from
167 WorldView-2 (~0.46m panchromatic spatial resolution) and QuickBird-2 (~0.65m panchromatic
168 spatial resolution) satellites and were processed (e.g., pansharpened, orthorectified, and projected
169 to Antarctic Polar Stereographic) by the Polar Geospatial Center (PGC) at the University of Minnesota
170 (processing code on GitHub: <https://github.com/PolarGeospatialCenter/>).

171 To gain a population index of emperor penguins for each image and to test the assumption of
172 the representativeness of a single image per colony per year, we replicated methods first outlined in
173 Barber-Meyer *et al.* (2007) and built upon in Fretwell *et al.* (2012). Briefly, these methods involved
174 using ArcGIS software to first clip the image to our area of interest (the colony; Fig. 2A) and then
175 define three training classes (using a point shapefile with attribute classes of penguin, guano, and
176 snow, Fig. 2B-C; Barber-Meyer *et al.*, 2007) for a supervised classification on pansharpened images
177 of Antarctic fast ice. Notably, field tests of emperor penguin reflectance from satellite imagery have
178 not been conducted, let alone for various environmental scenarios (light cloud cover vs sunny
179 conditions) and therefore time-consuming, human interpretation was required in every step of the
180 process to ensure accuracy.

181 Once the training dataset was compiled, we then conducted a maximum likelihood
182 classification resulting in an output raster, which we converted to a polygon shapefile. Within the
183 polygon shapefile, we extracted only the penguin class (based on the grid value, which was defined
184 as aforementioned) since we were not interested in the amount of area of guano or snow (Fig. 2D-
185 E). Because of the simplicity of the maximum likelihood classifier, to ensure accuracy of results, and
186 to maintain one aim of Fretwell *et al.* (2012), which was to ensure this work could occur in fairly
187 accessible GIS software (e.g., ArcGIS rather than ENVI), we then visually reviewed each population
188 index on each image. Visual inspections of the resulting polygons included a combination of three
189 processes: 1. Accepting the results as-is; or 2. Retraining the supervised classification and re-running

190 the maximum likelihood classifier; and/or 3. Manually editing the population indices where minor
191 adjustments were needed. Our final step was to then calculate the areas that comprise the penguins-
192 only polygon to arrive at the calculated area of penguin pixels on each image, which represents the
193 population index we report here, for each image date at each colony (Fig. 2E). This population index
194 is the response variable for our statistical modeling (below).

195 Though one analyst was responsible for the majority of images analyzed here (largely due to
196 the amount of time required for one person to conduct all analyses, let alone more people),
197 independent analysis of one image per colony per year occurred, which we used as a basis for spot-
198 checking results (please see bold data in Table 1).

199

200 **Statistical modeling**

201 We constructed a series of linear models to evaluate the factors that influence population
202 indices of adult emperor penguins derived from satellites, which was our response variable. In all
203 models, the population index was log-transformed to accommodate a normally-distributed error
204 structure and to facilitate proportional comparisons among colonies of different mean sizes
205 (according to Fretwell *et al.*, 2012). We included a fixed effect of colony in all models to account for
206 differences in average colony size. To evaluate our primary hypotheses and thereby evaluate the
207 factors that account for seasonal variation in satellite-derived estimates of penguin abundance, we
208 constructed a series of alternative models containing different explanatory covariates. We describe
209 this suite of models and justification for each explicit covariate below.

210 We were first interested in whether characteristics of the VHR image itself would influence
211 the population index at each colony due to human interpretation of pixels classified as penguins
212 versus other items on the landscape, such as shadows or guano (Hypotheses 1 and 2). In R (R Core
213 Team, 4.0.1, 2020), we developed a linear model using the function *lm* from the package *stats*; our
214 response variable was the population index (penguin area in meters) per image within a season (year
215 2011) for each colony. Our explanatory variables were effective panchromatic ground resolution (the
216 spatial size of a pixel given the on-nadir band resolution for the platform combined with the actual
217 off-nadir angle of the satellite platform; expressed in meters), the sun elevation angle, the sun
218 azimuth (range: 0-360 degrees) and colony.

219 While breeding, emperor penguins remain within a larger area that encompasses the whole
220 breeding site during a season, although the location of the actual colony at the micro-scale changes
221 (Richter *et al.*, 2018a). To address hypothesis 3 (effects of colony patchiness on the population index),

222 we qualitatively categorized the colony patchiness on each image into “compact” and “spread”. We
223 defined “compact” as when the birds were observed in discrete groups with little space between
224 individuals (i.e., huddling behavior), and “spread” was defined as when there was obvious space
225 between birds and the groups were more dispersed (Fig. 3). We developed a linear model in R with
226 population index as the response variable, and patchiness (spread and compact) and colony as fixed
227 effects.

228 To understand the variability of population indices related to environmental conditions
229 (hypothesis 4), three different environmental variables likely influencing emperor penguins and their
230 patchiness were tested (Richter *et al.*, 2018b): (i) the 10m zonal wind (U wind); (ii) the 10 m
231 meridional wind (V wind); the 2m air temperature. We obtained these data from the European
232 Centre for Medium-Range Weather Forecasts (ECMWF) “ERA5 hourly data on single levels from 1979
233 to present” dataset and computed for every hour. We extracted data from August 1st to December
234 31th 2011, with an hourly temporal resolution and a 0.25° x 0.25° spatial resolution
235 (<https://cds.climate.copernicus.eu/>). We fit linear model in R with population index as the response
236 variable and absolute wind speed derived from 10m meridional and zonal winds, 2 m temperature
237 and colony as fixed effects.

238 We used Akaike Information Criterion (AIC) for model selection, combining both forward and
239 backward selection (i.e. function *stepAIC* of the MASS package, R). For hypothesis 4, final models
240 were developed for the environmental window of the date of image acquisition, and for 2-days, or
241 3-days prior to image acquisition. A comparison of AIC allowed us to choose the best environmental
242 window. For all models, validations were checked by plotting Pearson residuals against fitted values,
243 and against each explanatory variable, verifying homogeneity and normality of residuals (Zuur, Leno
244 and Elphick, 2010). These models did not take into account temporal autocorrelation, but we checked
245 temporal correlation of the residuals by plotting the residuals of the final model versus the Julian
246 dates and checking the correlation (i.e. 0.0014).

247 Finally, to select the best covariates for accounting and removing sources of spurious variation
248 in population indices, we used model selection to identify the most parsimonious model combining
249 all satellite-related and environmental covariates. Two linear models combining all three colonies
250 were fitted: one model was fitted with “colony” as fixed effects and the other included the satellite-
251 related and environmental variables. We then calculated the proportion of variance explained by the
252 covariates by comparing the R-squared from a model that included the satellite-related and
253 environmental covariates to one that omitted them (but still retained the fixed effect of colonies).

254 The day of year was correlated (>0.5) with the sun elevation and the temperature so we did not
255 include day of year in the models. However, we checked the absence of correlation between the final
256 model residuals and the day of year.

257

258 **Simulation to evaluate the effects of observation error on precision of trend estimates**

259 Residual variance in our fitted models measures the magnitude of observation error among
260 repeated surveys within a season. The null model includes the maximum amount of residual variance
261 in surveys, while the “top” model indicates the degree to which covariates can reduce this variance
262 by “correcting” for factors that influence the population index during a survey (e.g., weather
263 conditions that cause penguins to densely huddle, resulting in a lower than expected count). To
264 illustrate the potential effects of observation error on trend estimates, we focus our remaining
265 analysis on comparisons between residual variance from these two models (i.e., the null and “top”
266 model).

267 We conducted a series of simulations in which we introduced different magnitudes of
268 observation error into population time series. We then evaluated the effects of this observation error
269 on the resulting precision of trend estimates at multiple temporal and spatial scales. To achieve this,
270 we simulated a known log-linear population trend of -0.037, resulting in ~30% population decline
271 after 10 years and ~84% population decline after 50 years. While the magnitude of decline has no
272 effect on estimates of trend precision, we included this trend for illustrative purposes and because it
273 aligns with the IUCN Red List Criteria for “Vulnerable” Status. Parameter values for these simulations
274 are described in Appendix S1. Our simulations assumed each colony was surveyed once per year (i.e.,
275 with a single VHR image), and observed population indices for each colony were subject to log-normal
276 error ($\varepsilon_{i,t}$) with standard deviation equal to the residual standard error estimated from the statistical
277 models described above. Using these simulated satellite observations as data, we then estimated
278 population trends and annual expected population indices ($N_{i,t}$) independently for each of the i
279 simulated colonies. The trend model for each colony was therefore:

280
$$\log(\text{Count}_{i,t}) \sim \text{Normal} \left(\log(N_{i,t}) - \frac{1}{2} \sigma_i^2, \sigma_i^2 \right),$$

281
$$\log(N_{i,t}) = \alpha_i + \beta_i(t - 1).$$

282 Accordingly, the log-linear trend for an individual colony is described by the parameter β_i and initial
283 population index is equal to $\exp(\alpha_i)$, while observed satellite counts represent normally distributed

284 deviations from the (log-scale) annual expected population index, with variance σ_i^2 . The term $\frac{1}{2}\sigma_i^2$
285 corrects for asymmetries in estimating the mean of a log-normal distribution and ensures that
286 aggregated population indices from multiple colonies are not artificially inflated.

287 We intentionally omitted inter-annual temporal process variance from our simulations (i.e.,
288 variance in β_i from year to year), given that we were unable to estimate this quantity from a single
289 year of surveys (our study), and there are currently insufficient data to evaluate its likely magnitude
290 from other studies. However, we note that process variance is a strong determinant of precision in
291 trend estimates and is distinct from observation error (the focus of this study). Thus, our simulations
292 represent a “best case scenario” that illustrate the potential improvement in precision that could be
293 attained by accounting for environmental covariates during surveys, if process variance is zero. In
294 practice, improvements in precision will be lower if process variance is high.

295 We examined how the precision of trend estimates changed with an increasing number of
296 survey years by refitting the trend model to different lengths of simulated data ($t = 10$ to 40 years for
297 each colony). Additionally, to examine the potential to improve trend precision by aggregating annual
298 population estimates for multiple colonies, we selected different numbers of colonies (ranging from
299 $I = 2$ to 40) and summed their annual indices to generate an estimated “regional” index where $R_t =$
300 $\sum_{i=1}^I N_{i,t}$. We calculated the temporal trend for the regional population as $\frac{\log(R_t) - \log(R_1)}{(t-1)}$. Further
301 details of simulation and trend analyses, including model fitting procedures, are described in
302 Appendix S1. In all simulations, we quantified the precision associated with trend estimates as the
303 width of the 95% equal-tailed credible interval. We repeated this simulation exercise 100 times for
304 each variance scenario (residual variance based on either the null or “top covariate” model), and
305 each combination of monitoring length (10-40 years) and colony aggregation (1-40 colonies
306 aggregated). We report mean trend precision for the repeated simulations. We considered trends to
307 be estimated with “high precision” if the width of the confidence interval was less than 0.035 (i.e., a
308 change of approximately 3.5% per year). This threshold is consistent with the high precision category
309 for other large-scale avian monitoring programs (e.g., [Status of Birds in Canada; Environment Canada](#)
310 [2019](#)), but we note that any categorical threshold is somewhat arbitrary and mainly used for
311 illustrative purposes.

312

313 **Results**

314 We analyzed a total of 44 images across three colonies during spring 2011 and found that the
315 population index (again, area of penguin pixels in m^2) calculated by VHR imagery within a single
316 season varied among repeated surveys at all three emperor penguin colonies (Tables 1 and 2; Figs. 1
317 and 4). Both colonies in the Weddell Sea varied by a factor of ~5 and Coulman Island (in the Ross Sea)
318 varied by a maximum factor of two throughout spring 2011. Dates of minimum population indices
319 occurred in September across all three colonies but the date of maximum population indices varied
320 (Table 2, Fig. 1). We failed to support hypothesis 1, as satellite resolution during a survey was not
321 correlated with the population index on that survey. However, in support of hypothesis 2, sun
322 elevation and sun azimuth had a significant positive effect on the population index within a season
323 at these colonies (Table 3).

324 In our test of hypothesis 3, all three colonies were categorized as both “spread” and
325 “compact”, roughly equally through the season, with no tendency toward one or the other at any
326 point (i.e., colonies were not necessarily defined “compact” in early season versus later). We did find,
327 however, that patchiness (i.e., compact vs. spread) had a significant effect on the population index
328 across all colonies (Table 4): when penguins were spread out, the population indices were
329 approximately 1.7% bigger (i.e. median of 10781 m^2 for spread and 6283 m^2 for compact) than when
330 the colony was categorized as “compact”. Thus, colonies fluctuate between “compact” and “spread”
331 patterns throughout the spring survey period (September through December), which influences the
332 resulting index of population on any given survey.

333 Population indices were negatively correlated with strong wind speeds and low temperatures
334 on the day of the survey (hypothesis 4; Table 5). Environmental conditions in the 2- and 3-day period
335 leading up to a survey were also correlated with population indices but received less support in our
336 models than a 1-day environmental window.

337 To examine the overall effect of accounting for these covariates, we constructed a final model
338 that included additive combinations of the covariates from our hypothesis tests. We again included
339 a fixed effect of colony in all models to account for differences in the mean index among colonies.
340 After model selection, we retained variables: wind speed for the date of VHR image acquisition, sun
341 elevation, sun azimuth, and satellite resolution (though this effect was not significant using a p-value
342 threshold of 0.05). In combination, these covariates explained 46% of the variance in population
343 indices among surveys within a colony (Table 6). This reflects the variance in population indices
344 explained among repeated surveys within colonies, and is independent from the variance explained
345 among colonies by the fixed colony effect.

346 With regard to our simulations, residual observation error led to uncertainty in estimates of
347 population trend (Appendix S1; Fig. 5). As expected, trend estimates were more precise (95% credible
348 interval widths smaller) when colonies were monitored for a longer duration and when annual
349 estimates were aggregated for multiple colonies. Trend precision was also considerably higher after
350 accounting for survey covariate effects (compare Fig. 5B to 5A). On average, trends at individual
351 colonies could be estimated with “precision” (i.e., 95% credible interval width < 0.035) after 24 years
352 of monitoring if survey covariates were accounted for. In contrast, 31 years of monitoring were
353 required to achieve precision if survey covariates were not accounted for. Population trends for
354 aggregations of multiple colonies could be estimated with high precision with fewer years of
355 monitoring. For example, when accounting for environmental covariates, high precision in trend
356 estimates could be achieved after only 10 years of monitoring if approximately 18 colonies were
357 aggregated. Conversely, without accounting for environmental covariates, approximately 33 colonies
358 must be aggregated to achieve high precision in trend estimates after 10 years of monitoring.
359 Accounting for the environmental and behavioral drivers of observation error can substantially
360 improve confidence in population trends.

361

362 **Discussion**

363 Our analysis is the first to i) address the intra-seasonal variability in VHR-derived population
364 indices at three emperor penguin colonies, and to ii) identify covariates that can correct for these
365 sources’ observation error. In the first study to estimate the global population of emperor penguins
366 using VHR surveys, Fretwell *et al.* (2012) assumed that area of penguin pixels (our “population
367 indices” here) derived from a single image within a season would reasonably represent colony size
368 for that year. This assumption appears to be valid for coarse comparisons among colonies that differ
369 substantially in size; VHR-derived surveys can readily distinguish a colony of many thousands of
370 individuals (e.g., Coulman Island) from a colony of several hundred (e.g., Beaufort Island, Fretwell *et*
371 *al.*, 2012). However, our study revealed that VHR-derived population indices vary substantially
372 among repeated surveys throughout a single season at each of our three colonies. Further, we
373 showed that satellite-related and environmental variables can describe intra-season variation in area
374 of penguin pixel at a colony, which is essential for calculating robust estimates of population size and
375 trends in the future, especially when only one satellite image is typically available per year. This work
376 has major implications for the future assessment of emperor penguin responses to climate change.

377 Overall, population indices range from 2326 to 11748 m² for Atka Bay, from 14964 to 31005
378 m² for Coulman Island and from 3155 to 18724 m² for Stancomb-Wills. Variation in population indices
379 among repeated surveys arises from intrinsic behavior of the birds (e.g., foraging trips by adults that
380 cause temporary fluctuations in colony abundance throughout a season, or huddling behavior that
381 obscures individuals from view) and counting errors owing to imprecision in the observation process
382 (e.g., differences in satellite position, or other factors that cannot be controlled during surveys).
383 Collectively, this “within-season” observation error causes surveys to deviate from a seasonal
384 expected count at the colony. Encouragingly, our study demonstrates that covariates can be used to
385 “correct” for several important drivers of observation error, such as sun angles and weather during
386 a survey. Large-scale monitoring programs routinely correct for variables known to influence counts
387 during surveys. For example, the North American Breeding Bird Survey corrects for observer
388 experience (Sauer, Peterjohn and Link, 1994), and numerous covariates are used to correct for
389 phenological and environmental effects during harbor seal (*Phoca vitulina*) surveys (Hoef, 2003).
390 Recently, Foley *et al.* (2020) developed a phenological correction model for King Penguins that
391 accounts for the seasonal timing of surveys and corrects for attrition of multiple life cycle stages. This
392 was a necessary step to “standardize” surveys collected in many different years, often in different
393 stages of the species’ life cycle. In the present study, a large proportion of observation error remains
394 to be explained, and some may in fact be unexplainable (i.e., controlled by a combination of factors
395 that are irreducibly complex, for example the movements of adults to and from the colony on
396 foraging trips). Nevertheless, improvements to VHR-derived population indices described here are
397 an important step toward any future research and monitoring and are therefore critical for the
398 conservation of the species (Trathan *et al.*, 2020).

399 Emperor penguin colonies are highly dynamic within a season (Figs. 1, 3 and 4). Depending
400 upon the prevailing conditions, penguins may disperse and spread out, or they may cluster and
401 aggregate forming compact groups in response to local weather conditions (Richter *et al.*, 2018b).
402 Our results confirmed that compact huddling behavior was detectable with VHR imagery and was
403 more likely to occur in cold and windy conditions. This makes sense because penguins form huddles
404 to conserve energy (Le Maho, 1977; Gilbert *et al.*, 2009), and huddling increases with colder
405 temperatures and stronger wind speed (Gilbert *et al.*, 2006, 2007). Importantly, this behavior
406 affected the resulting population index during a survey. Cold and windy conditions resulted in fewer
407 pixels classified as “penguin”, likely because multiple huddling individuals fit within a single pixel. As

408 a result, population indices were ~0.6% smaller (i.e. based on medians) when colonies were
409 categorized as “compact”.

410 Future application of these satellite- and environmental-based corrections will need to
411 account for sources of observation error that are likely to differ among colonies. Some sites may be
412 less exposed to winds and cold temperatures (e.g., sheltered colonies located in the lee of islands or
413 peninsulas, or within ice creeks), which could affect the probability a colony will be densely huddled
414 during a survey. Factors that affect the supervised classification process may also differ among
415 colonies. Clouds, shadows, and dense guano stains make images more difficult to interpret (Barber-
416 Meyer *et al.*, 2007), resulting in a less precise classification and a potential overestimate of
417 abundance. Here we showed that lower sun elevation will cast more shadows and increase the
418 number of pixels classified as “penguin”. Similarly, sun azimuth values that result in shadows being
419 cast from surrounding features like ice cliffs could obscure penguins that would otherwise be visible.
420 Unfortunately, in practice we do not have the option to choose which date range(s) have the highest
421 quality cloud-free images at a colony. In the rare cases where multiple high-quality images exist
422 within a season, we strongly advocate for the approach we adopted in this study (i.e., leveraging
423 information from *all* available images and statistically accounting for factors that introduce
424 sampling variation). Ongoing efforts to identify these sources of spurious variation (and bias) in
425 surveys are required for improved monitoring of this species.

426 The application of these methods and use future results has implications for Research and
427 Monitoring Plans, which are a prerequisite for marine protected areas (MPA) designated by the
428 Commission on the Conservation of Antarctic Marine Living Resources (CCAMLR). To advance our
429 understanding of emperor penguins status within current MPAs (e.g., the largest MPA in the world,
430 Ross Sea) and future MPAs, our work would facilitate the development of such a framework. Our
431 simulations found that several emperor penguins colonies need to be aggregated to detect real
432 metapopulation changes as detailed in Kooyman and Ponganis (2017); this suggests the need for a
433 regional network of monitoring and is instructive in the context of the creation of marine protected
434 areas based on ecoregions (Brooks *et al.*, 2020). Given that a primary tenet of the CAMLR Convention
435 is to ensure “maintenance of the ecological relationships between harvested, dependent and related
436 populations of Antarctic marine living resources” – and that emperor penguins are dependent and
437 related populations – it is possible that we would not be able to detect alterations to the ecosystem
438 with monitoring tools at present. Our results therefore support a regional network of emperor
439 penguin colony monitoring, which could take the form of a network of MPAs.

440

441 **Acknowledgements**

442 Geospatial support for this work provided by the Polar Geospatial Center under NSF-OPP awards
443 1043681 and 1559691. NCAR- PPC visitor funds and Ian Nisbet that supported the internship of LV.
444 WWF-UK supported PNT and PTF under grant GB095701. DZ was supported by The Penzance
445 Endowed Fund and The Grayce B. Kerr Fund in Support of Assistant Scientists. To SJ, ML, SL, LV, NSF
446 OPP 1744794. Special thanks go to Rose Nichol-Foster for analyzing one image of Coulman Island for
447 comparison and to Frédéric Le Manach for figure designs.

448

449 **Authors' contributions**

450 SJ, SL, DI and ML conceived the ideas and designed methodology. SJ and ML obtained funding for the
451 analyses; SL and LV analysed the satellite VHR with the help of ML; SL and LV performed the statistical
452 analysis and DI developed the population model and performed the simulation study with the help
453 of SJ. SL led the writing of the manuscript with DI and ML. All authors contributed critically to the
454 final draft and gave final approval for publication.

455

456 **Data availability statement**

457 Data and data products related to the paper will be available on the following repository
458 <http://dx.doi.org/10.17632/kz6j2m4m7t.1> upon acceptance.

459

460 **References**

- 461 Ancel, A., Kooyman, G. L., *et al.* (1992) 'Foraging behaviour of emperor penguins as a resource
462 detector in winter and summer', *Nature*, 360(6402), pp. 336–339. doi: 10.1038/360336a0.
- 463 Ancel, A., Gendner, J. P., *et al.* (1992) 'Satellite radio-tracking of emperor penguins walking on sea-
464 ice to refeed at sea', *Wildlife Telemetry Remote Monitoring and Tracking of Animals*. Ellis Horwood,
465 New York, NY, pp. 201–202.
- 466 Barber-Meyer, S. M., Kooyman, G. L. and Ponganis, P. J. (2007) 'Estimating the relative abundance of
467 emperor penguins at inaccessible colonies using satellite imagery', *Polar Biology*, 30(12), pp. 1565–
468 1570. doi: 10.1007/s00300-007-0317-8.
- 469 Barbraud, C. and Weimerskirch, H. (2001) 'Emperor penguins and climate change', *Nature*, 411, pp.
470 183–186. doi: 10.1038/35075554.

- 471 Brooks, C. M. *et al.* (2020) 'Progress towards a representative network of Southern Ocean protected
472 areas', *PLOS ONE*. Edited by Y. Ropert-Coudert, 15(4), p. e0231361. doi:
473 10.1371/journal.pone.0231361.
- 474 Foley, C. M., Fagan, W. F. and Lynch, H. J. (2020) 'Correcting for within-season demographic turnover
475 to estimate the island-wide population of King Penguins (*Aptenodytes patagonicus*) on South
476 Georgia', *Polar Biology*, 43(3), pp. 251–262. doi: 10.1007/s00300-020-02627-0.
- 477 Fretwell, P. T. *et al.* (2012) 'An Emperor Penguin Population Estimate: The First Global, Synoptic
478 Survey of a Species from Space', *PLoS ONE*. Edited by A. Chiaradia, 7(4), p. e33751. doi:
479 10.1371/journal.pone.0033751.
- 480 Fretwell, P. T. and Trathan, P. N. (2009) 'Penguins from space: faecal stains reveal the location of
481 emperor penguin colonies', *Global Ecology and Biogeography*, 18, pp. 543–552.
- 482 Fretwell, P. T. and Trathan, P. N. (2020) 'Discovery of new colonies by Sentinel2 reveals good and bad
483 news for emperor penguins', *Remote Sensing in Ecology and Conservation*. Edited by K. Scales and P.
484 Bouchet, p. rse2.176. doi: 10.1002/rse2.176.
- 485 Gilbert, C. *et al.* (2006) 'Huddling behavior in emperor penguins: Dynamics of huddling', *Physiology
486 & Behavior*, 88(4–5), pp. 479–488. doi: 10.1016/j.physbeh.2006.04.024.
- 487 Gilbert, C. *et al.* (2007) 'How do weather conditions affect the huddling behaviour of emperor
488 penguins?', *Polar Biology*, 31(2), pp. 163–169. doi: 10.1007/s00300-007-0343-6.
- 489 Gilbert, C. *et al.* (2009) 'One for all and all for one: the energetic benefits of huddling in endotherms',
490 *Biological Reviews*, p. no-no. doi: 10.1111/j.1469-185X.2009.00115.x.
- 491 Hoef, J. M. V. (2003) 'A Bayesian Hierarchical Model for Monitoring Harbor Seal Changes in Prince
492 William Sound, Alaska', *Environmental and Ecological Statistics*, 10(2), pp. 201–219. doi:
493 10.1023/A:1023626308538.
- 494 Jenouvrier, S. *et al.* (2014) 'Projected continent-wide declines of the emperor penguin under climate
495 change', *Nature Climate Change*, 4(8), pp. 715–718. doi: 10.1038/nclimate2280.
- 496 Jenouvrier, S. *et al.* (2020) 'The Paris Agreement objectives will likely halt future declines of emperor
497 penguins', *Global Change Biology*, 26(3), pp. 1170–1184. doi: 10.1111/gcb.14864.
- 498 Kirkwood, R. and Robertson, G. (1997) 'Seasonal change in the foraging ecology of emperor penguins
499 on the Mawson Coast, Antarctica', *Marine Ecology Progress Series*, 156, pp. 205–223.
- 500 Kooyman, G. L. and Ponganis, P. J. (2017) 'Rise and fall of Ross Sea emperor penguin colony
501 populations: 2000 to 2012', *Antarctic Science*. 2016/12/05 edn, 29(3), pp. 201–208. doi:
502 10.1017/S0954102016000559.
- 503 LaRue, M. A. *et al.* (2011) 'Satellite imagery can be used to detect variation in abundance of Weddell
504 seals (*Leptonychotes weddellii*) in Erebus Bay, Antarctica', *Polar Biology*, 34(11), pp. 1727–1737. doi:
505 10.1007/s00300-011-1023-0.

- 506 Le Maho, Y. (1977) 'The emperor penguin: A strategy to live and breed in the cold: Morphology,
507 physiology, ecology, and behavior distinguish the polar emperor penguin from other penguin species,
508 particularly from its close relative, the king penguin', *American Scientist*, 65(6), pp. 680–693.
- 509 Lynch, H. J. and LaRue, M. A. (2014) 'First global census of the Adélie Penguin', *The Auk*, 131(4), pp.
510 457–466. doi: 10.1642/AUK-14-31.1.
- 511 McMahon, C. R. *et al.* (2014) 'Satellites, the All-Seeing Eyes in the Sky: Counting Elephant Seals from
512 Space', *PLoS ONE*. Edited by Y. Ropert-Coudert, 9(3), p. e92613. doi: 10.1371/journal.pone.0092613.
- 513 R Core Team (2020). R: A language and environment for statistical computing. R Foundation for
514 Statistical Computing, Vienna, Austria. URL <https://www.R-project.org/>.
- 515 Richter, S. *et al.* (2018a) 'A remote-controlled observatory for behavioural and ecological research: A
516 case study on emperor penguins', *Methods in Ecology and Evolution*, 9(5), pp. 1168–1178. doi:
517 10.1111/2041-210X.12971.
- 518 Richter, S. *et al.* (2018b) 'Phase transitions in huddling emperor penguins', *Journal of Physics D:
519 Applied Physics*, 51(21), p. 214002. doi: 10.1088/1361-6463/aabb8e.
- 520 Sauer, J. R., Peterjohn, B. G. and Link, W. A. (1994) 'Observer Differences in the North American
521 Breeding Bird Survey', *The Auk*, 111(1), pp. 50–62. doi: 10.2307/4088504.
- 522 Smith, W. O. *et al.* (2014) 'The Oceanography and Ecology of the Ross Sea', *Annual Review of Marine
523 Science*, 6(1), pp. 469–487. doi: 10.1146/annurev-marine-010213-135114.
- 524 Strycker, N. *et al.* (2020) 'A global population assessment of the Chinstrap penguin (*Pygoscelis
525 antarctica*)', *Scientific Reports*, 10(1), p. 19474. doi: 10.1038/s41598-020-76479-3.
- 526 Trathan, P. N. *et al.* (2020) 'The emperor penguin - Vulnerable to projected rates of warming and sea
527 ice loss', *Biological Conservation*, p. 108216. doi: 10.1016/j.biocon.2019.108216.
- 528 Wege, M., Salas, L. and LaRue, M. (2020) 'Citizen science and habitat modelling facilitates
529 conservation planning for crabeater seals in the Weddell Sea', *Diversity and Distributions*. Edited by
530 A. Grech, 26(10), pp. 1291–1304. doi: 10.1111/ddi.13120.
- 531 Zuur, A. F., Leno, E. N. and Elphick, C. S. (2010) 'A protocol for data exploration to avoid common
532 statistical problems: Data exploration', *Methods in Ecology and Evolution*, 1(1), pp. 3–14. doi:
533 10.1111/j.2041-210X.2009.00001.x.
- 534
- 535
- 536
- 537
- 538

539 **Tables and Figures**

540

541 **Table 1.** List of the images used in the study for the three colonies and their estimated penguin areas
 542 (expressed in m²). In bold is indicated the areas calculated from two different analysts for
 543 comparisons, the replicated images indicated with a star were not used in the analysis.

Colony	Image ID	Date	Satellite	Area (m ²)	Analysts
Coulman Island	101001000E224A00	09/17/2011	QB02	23985.05	Lise Viollat
Coulman Island	101001000E23DB00	09/18/2011	QB02	24899.15	Lise Viollat
Coulman Island	101001000E283100	09/21/2011	QB02	15047.01	Lise Viollat
Coulman Island	101001000E311E00	09/27/2011	QB02	29729.95	Lise Viollat
Coulman Island	101001000E32A400	09/28/2011	QB02	20738.58	Lise Viollat
Coulman Island	101001000E357300	09/30/2011	WV02	14964.65	Lise Viollat
Coulman Island	101001000E36F100	10/01/2011	QB02	18488.57	Lise Viollat
Coulman Island	101001000E418600	10/08/2011	QB02	23490.58	Lise Viollat
Coulman Island	101001000E59A900	10/24/2011	QB02	23490.84	Lise Viollat
Coulman Island	101001000E59A900	10/24/2011	QB02	25274.66	Rose Nichol*
Coulman Island	101001000E686700	11/03/2011	QB02	23718.13	Lise Viollat
Coulman Island	103001000F7F8800	11/19/2011	WV02	31005.29	Lise Viollat
Atka Bay	103001000D400A00	09/03/2011	WV02	6001.51	Lise Viollat
Atka Bay	103001000D023100	09/04/2011	WV02	6565.007	Lise Viollat
Atka Bay	103001000D5A8100	09/06/2011	WV02	2326.293	Lise Viollat
Atka Bay	103001000D295800	09/15/2011	WV02	11748.12	Lise Viollat
Atka Bay	101001000E24BD00	09/19/2011	QB02	5558.519	Lise Viollat
Atka Bay	101001000E262100	09/20/2011	QB02	8367.776	Lise Viollat
Atka Bay	103001000D63FD00	09/20/2011	WV02	8533.22	Lise Viollat
Atka Bay	103001000D63FD00	09/20/2011	WV02	8449.75	Peter Fretwell*
Atka Bay	103001000DD35500	09/21/2011	WV02	6506.849	Lise Viollat
Atka Bay	101001000E291500	09/22/2011	QB02	8774.873	Lise Viollat
Atka Bay	103001000D965F00	09/22/2011	WV02	5108.962	Lise Viollat
Atka Bay	101001000E2BBA00	09/24/2011	QB02	3450.174	Lise Viollat
Atka Bay	103001000E2B6200	09/25/2011	WV02	9401.531	Lise Viollat
Atka Bay	101001000E3F5200	10/07/2011	QB02	7760.415	Lise Viollat
Atka Bay	101001000E526C00	10/19/2011	QB02	7480.21	Lise Viollat
Atka Bay	103001000FD05F00	11/21/2011	WV02	10422.23	Lise Viollat
Stancomb-Wills	103001000DB9F900	09/13/2011	WV02	4685.562	Lise Viollat
Stancomb-Wills	103001000E7F2B00	09/14/2011	WV02	3864.594	Lise Viollat
Stancomb-Wills	101001000E21CB00	09/17/2011	QB02	8232.159	Lise Viollat
Stancomb-Wills	101001000E21CB00	09/17/2011	QB02	6132	Peter Fretwell*
Stancomb-Wills	103001000D081200	09/18/2011	WV02	4727.548	Lise Viollat
Stancomb-Wills	103001000D1DD300	09/19/2011	WV02	5626.239	Lise Viollat
Stancomb-Wills	103001000DA3AC00	09/20/2011	WV02	4895.73	Lise Viollat
Stancomb-Wills	103001000D01A900	09/25/2011	WV02	3155.904	Lise Viollat
Stancomb-Wills	101001000E2DBA00	09/25/2011	QB02	3441.86	Lise Viollat
Stancomb-Wills	103001000EC82200	10/04/2011	WV02	8727.082	Lise Viollat
Stancomb-Wills	101001000E3ACA00	10/04/2011	QB02	11141.14	Lise Viollat
Stancomb-Wills	103001000E6D7F00	10/05/2011	WV02	9964.59	Lise Viollat
Stancomb-Wills	101001000E43EE00	10/10/2011	QB02	12289.29	Lise Viollat
Stancomb-Wills	101001000E458800	10/11/2011	QB02	11540.82	Lise Viollat
Stancomb-Wills	101001000E510200	10/18/2011	QB02	9488.866	Lise Viollat
Stancomb-Wills	101001000E7D1500	11/19/2011	QB02	15267.16	Lise Viollat
Stancomb-Wills	101001000E874200	11/27/2011	QB02	9863.186	Lise Viollat
Stancomb-Wills	103001000F3B6500	12/11/2011	WV02	18724.48	Lise Viollat
Stancomb-Wills	1030010010C89E00	12/14/2011	WV02	13013.86	Lise Viollat

544

545

546 Table 2. Range of “penguin estimated area” (i.e. population index) calculated via supervised
547 classification on VHR imagery at three emperor penguin colonies in Antarctica, including the average
548 area over the season, number of images analyzed per colony, minimum area calculated (m^2), date of
549 the image when minimum area was calculated, maximum area calculated (m^2), date of the image
550 when the maximum area was calculated, and the ratio between the maximum and minimum area
551 calculations per colony to exemplify the magnitude of intra-season change.

552

Colony Name	Avg area	# images	Min. Area	Date Min. Area	Max. Area	Date Max. Area	Max:min
Atka Bay	7,200	15	2,326	Sept 6, 2011	11,748	Sept 15, 2011	5.05
Coulman Island	22,687	11	14,965	Sept 30, 2011	31,005	Nov 19, 2011	2.07
Stancomb-Wills	8,814	18	3,156	Sept 25, 2011	18,724	Dec 11, 2011	5.93

553

554 Table 3. Results of the linear model to determine whether attributes of the satellite platform
555 (resolution (expressed in meters), sun elevation and sun azimuth angles (expressed in degrees);
556 hypotheses 1 and 2) influenced the emperor penguin population indices (expressed in log scale of
557 the area in m^2) calculated from VHR imagery. Adjusted $r^2 = 0.7191$. The colony effect and values are
558 not displayed on the table.

559

	Value	Std. Error	DF	t-value	p-value
Intercept	7.79	0.31	36	24.903	<2e-16
Panchromatic resolution	0.42	0.42	36	1.014	0.317
Sun elevation angle	0.028	0.008	36	3.622	0.000895
Sun azimuth angle	0.0078	0.002	36	3.707	0.000702

560

561 Table 4. Results of the linear model to address whether patchiness (i.e., “compact” or “spread”)
562 influenced the emperor penguin population indices calculated (expressed in log scale of the area in
563 m^2) from VHR imagery (hypothesis 3). Adjusted $r^2 = 0.7647$. The colony effect and values are not
564 displayed on the table.

565

	Value	Std. Error	DF	t-value	p-value
Intercept	9.62	0.16	38	60.385	<2e-16
patchiness	-0.61	0.098	38	-5.825	9.91e-07

566

567 Table 5. Results of the best linear model to address hypothesis 4; testing the influence of
568 environmental covariates (wind (expressed in $m.s^{-1}$) and temperature (expressed in degrees Celsius))
569 on the emperor penguin population indices (expressed in log scale of the area in m^2) calculated from
570 VHR imagery. Adjusted $r^2 = 0.7245$.

571

	Value	Std. Error	DF	t-value	p-value
Intercept	0.71	2.68	37	0.264	0.79320
Absolute wind speed 10m	-0.067	0.021	37	-3.258	0.00241
Surface temperature	0.034	0.011	37	3.206	0.00277

572

573 Table 6. Results of the best linear model linking survey covariates (resolution (meters), sun elevation
574 and sun azimuth angles (degrees) and wind (in $m.s^{-1}$)) with emperor penguin population indices
575 (expressed in log scale of the area in m^2) to account for observation error during surveys of emperor
576 penguins using VHR imagery. Adjusted $r^2 = 0.75$ (compared to 0.54 for a “null” model that only
577 included a fixed effect of colony but no survey covariates). The proportion of variance within colonies
578 explained by the survey covariates is 46% (note this is distinct from the proportion of variance among
579 colonies, explained by the colony fixed effect).

580

	Value	Std. Error	DF	t-value	p-value
Intercept	8.19	0.33	35	24.552	< 2e-16
Panchromatic resolution	0.51	0.39	35	1.320	0.19527
Sun elevation angle	0.024	0.007	35	3.215	0.00280
Sun azimuth angle	0.006	0.002	35	2.955	0.00556
Absolute wind speed 10m	-0.052	0.021	35	-2.496	0.01742

581

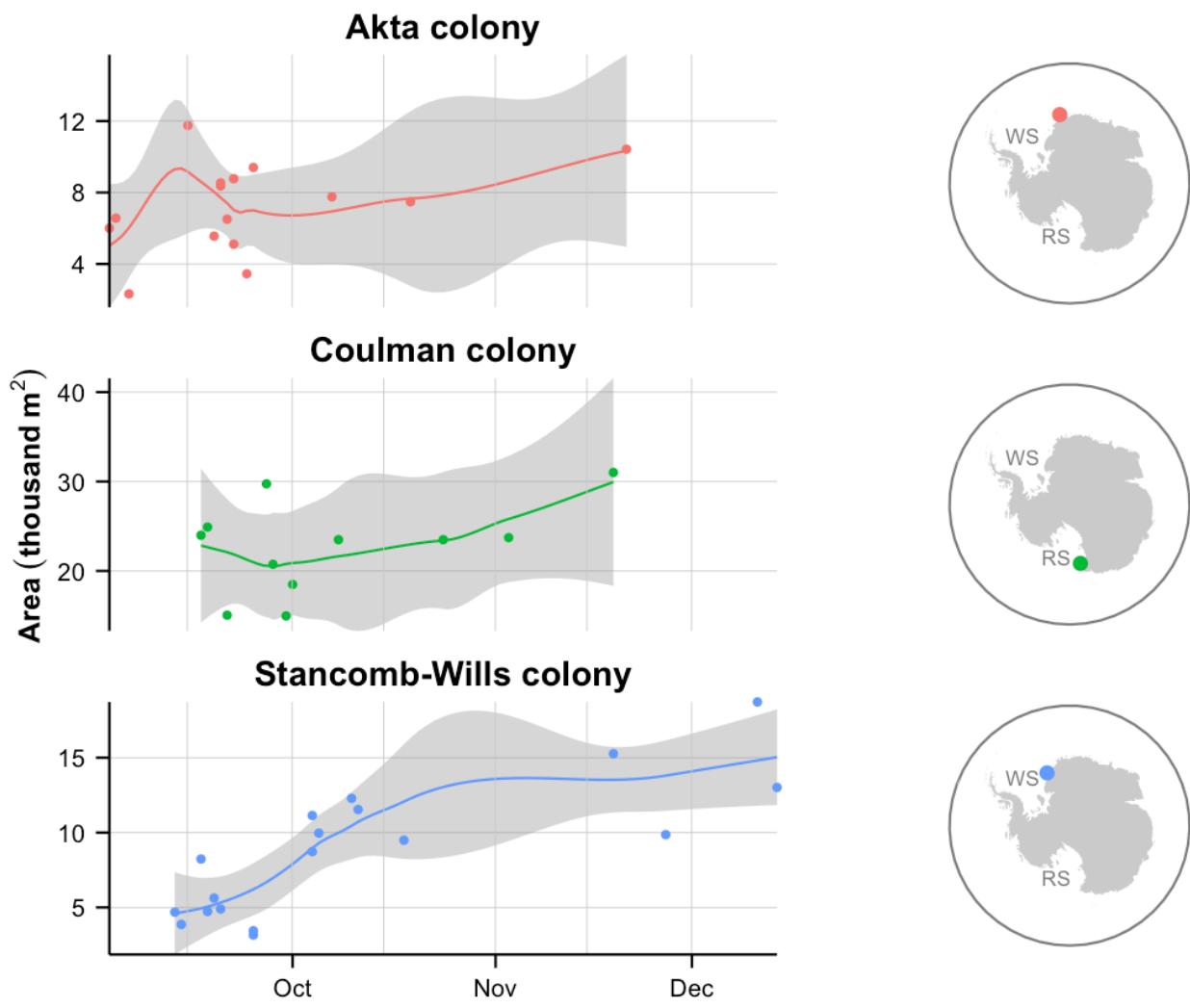
582

583

584

585

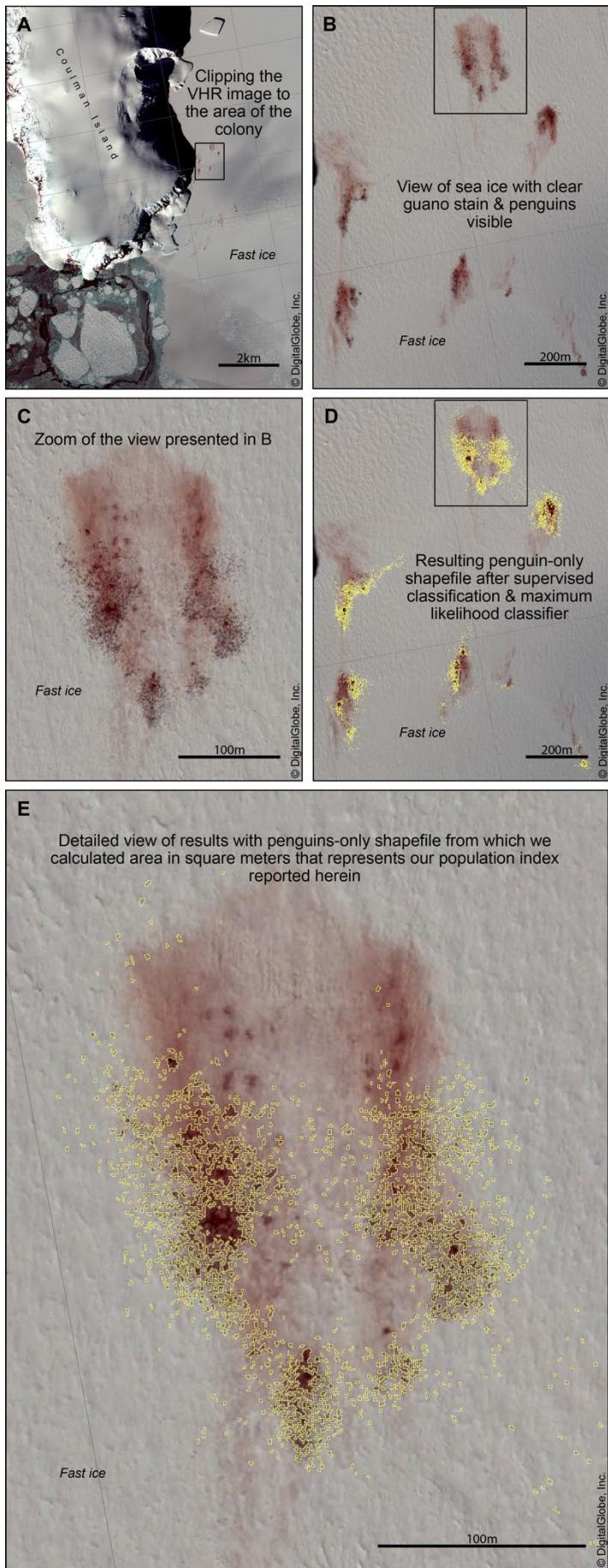
586



587

588 **Figure 1.** Time-series of the population indices (in thousand m²) for the three emperor penguin
 589 colonies (left panels), with the location of these colonies given in the right panels (WS = Weddell Sea;
 590 RS = Ross Sea). A 'locally weighted smoothing' (loess) regression was applied to each time-series
 591 (degree = 1 and default span of 0.75) using R's loess function; vertical bars indicate the 1st and 15th
 592 day of each month between 15 September 2011 and 1 December 2011.

593



595 **Figure 2.** Diagram outlining the method protocol for the VHR image processing using an example for
596 the Coulman Island colony. The VHR image is a Quickbird-02 image of Coulman Island emperor
597 penguin colony acquired on October 24, 2011 (catalog ID: 101001000E59A900). Imagery copyright
598 DigitalGlobe, Inc.

599

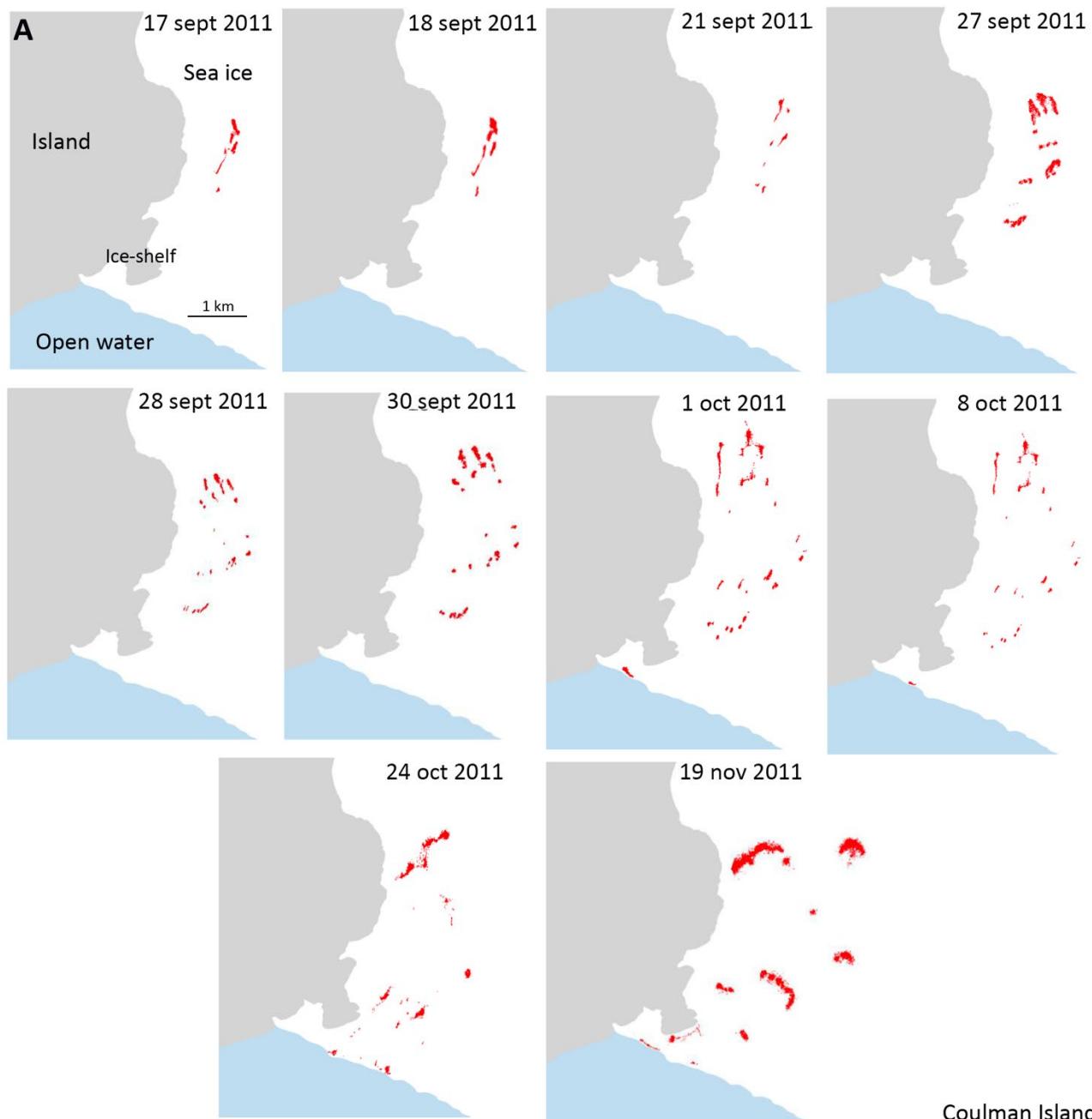
600

601

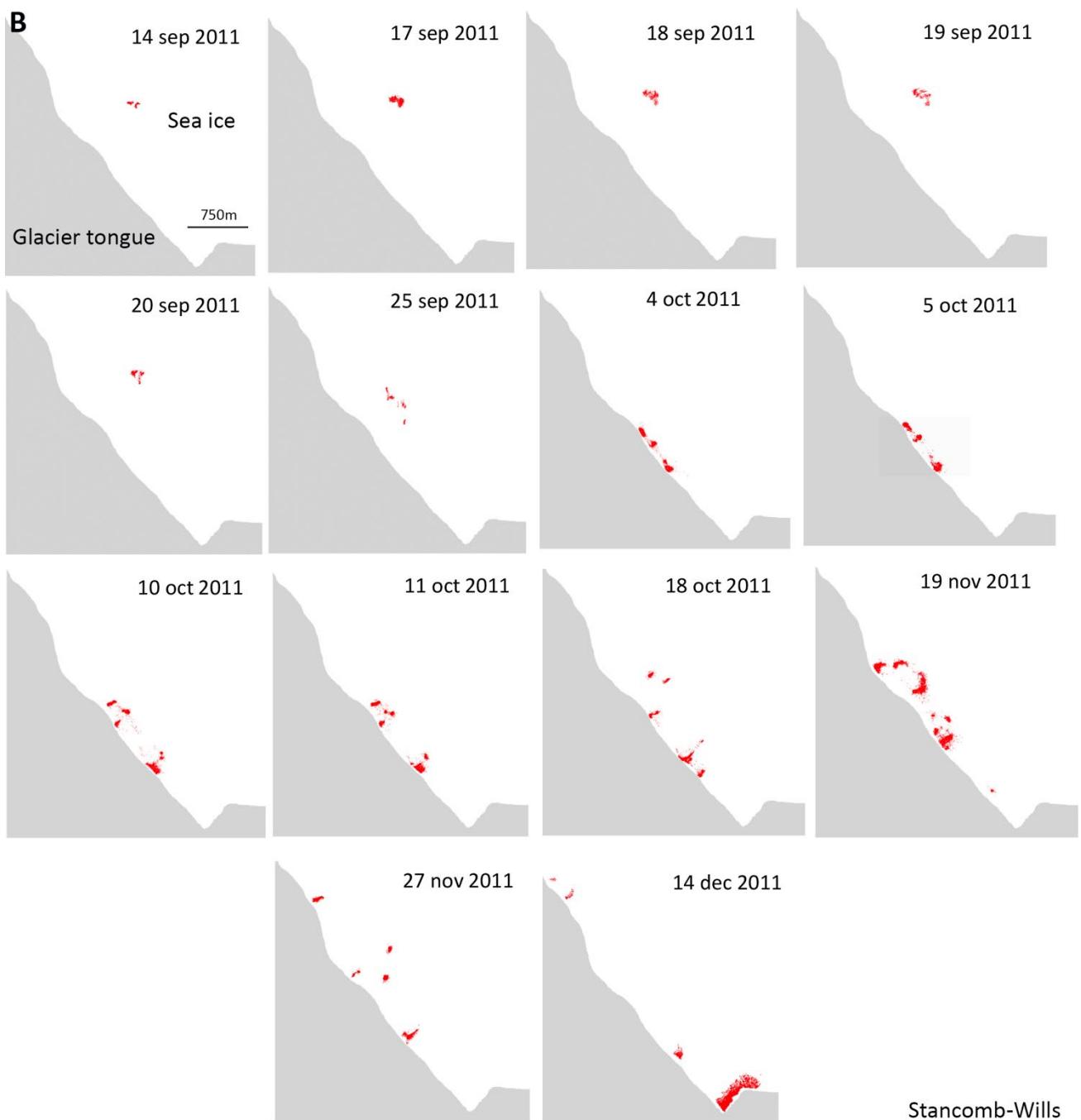
602 **Figure 3.** WorldView-2 satellite image from Atka Bay emperor penguin colony for September 3rd 2011
603 (A), exemplifying “compact” patchiness (group of birds is circled) and WorldView-2 satellite image
604 from Atka Bay later in the season, on September 25th 2011 (B), showing an example of “spread”

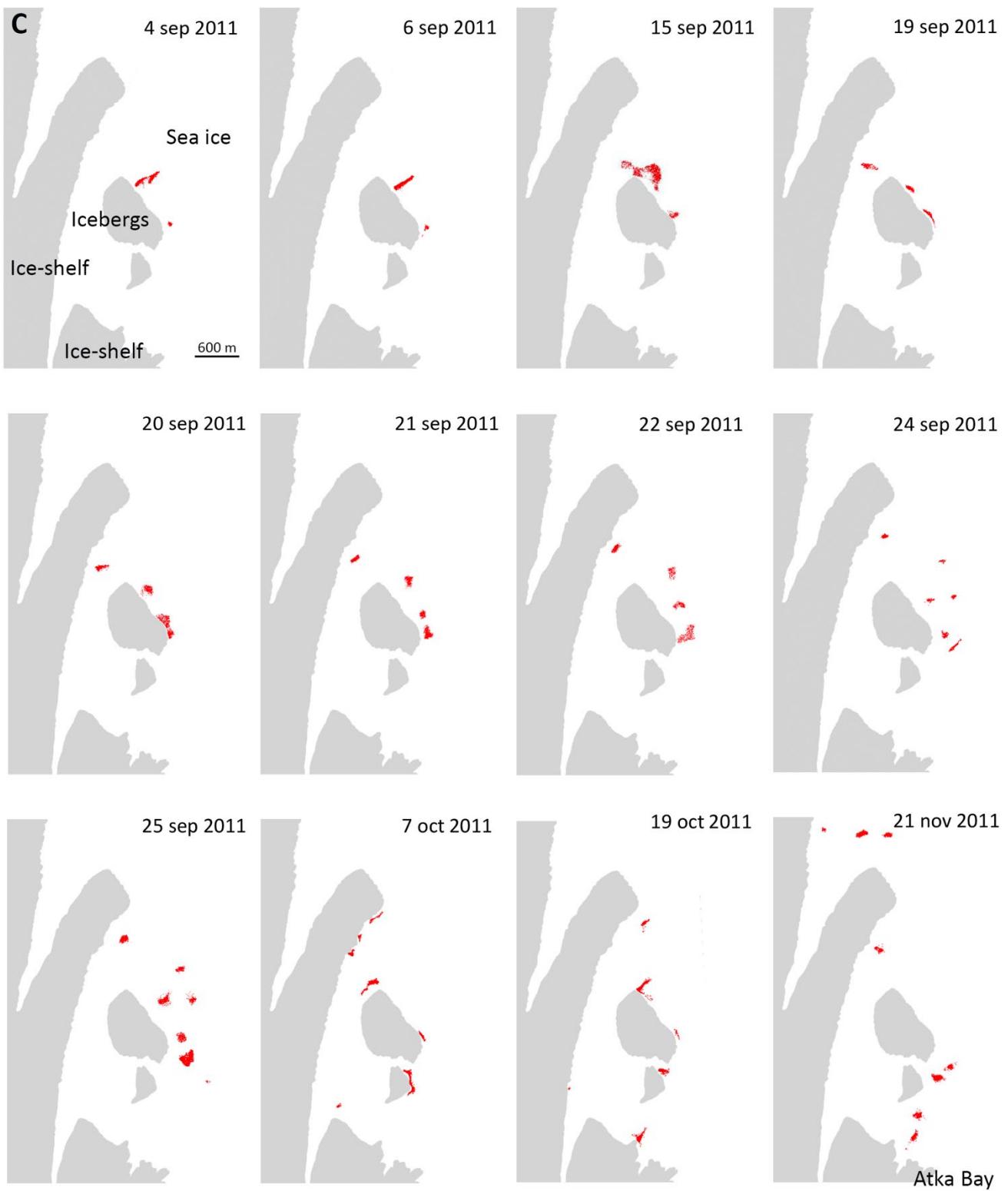
605 patchiness (the group of birds is circled again, and the guano stain spread out over a much larger
606 area). Image courtesy DigitalGlobe, Inc. (Maxar Technologies) and scale bars on bottom right of each
607 image are 500m and 2,000 feet.

608



609

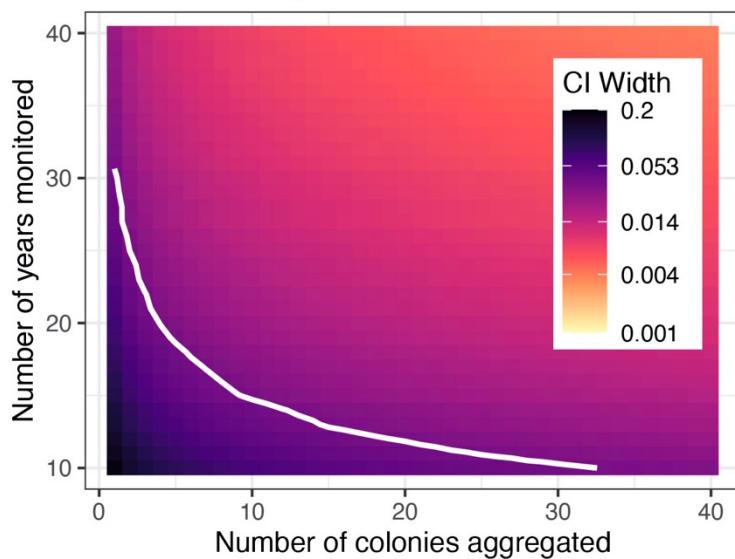




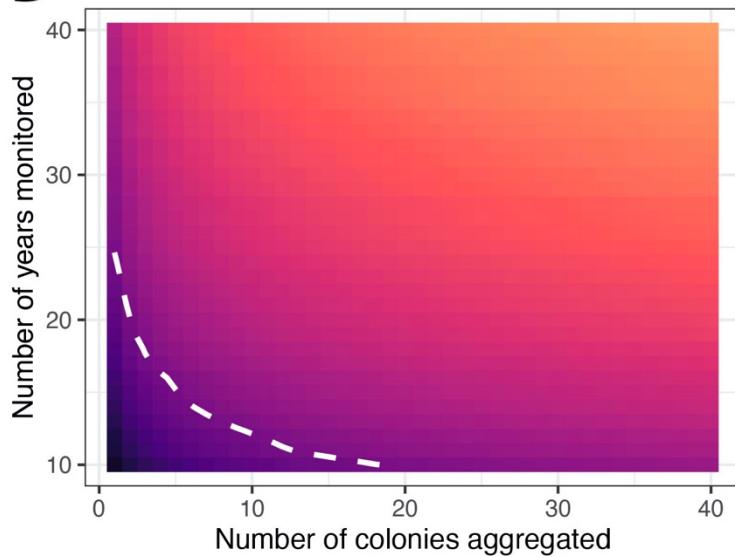
611

612 **Figure 4.** Emperor penguin estimated areas (i.e. population indices) at Coulman Island (panel A),
 613 Stancomb-Wills (panel B) and Atka Bay (panel C) colonies during the breeding season. Gray shapes
 614 represent the island, ice-shelves, icebergs or glacier tongue near the colony, blue shapes the open
 615 water and red shapes the emperor penguin estimated surface areas. All images are not represented,
 616 please see the list of images in Table 1.

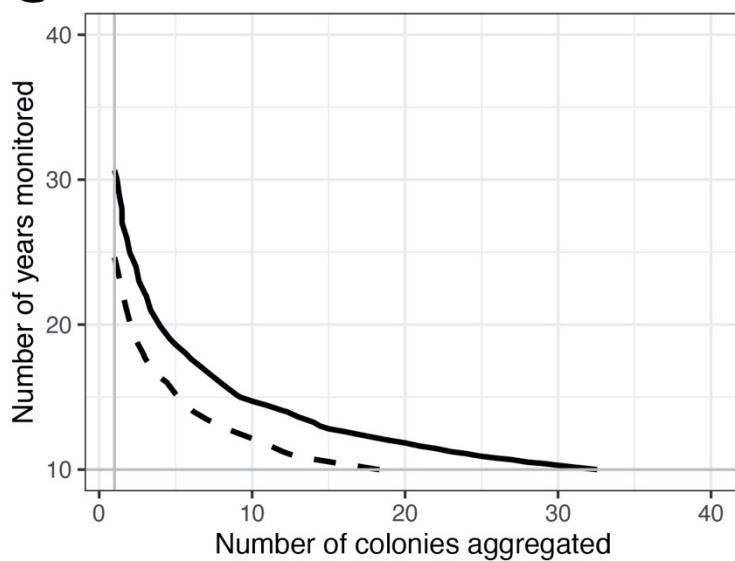
A Not accounting for survey covariates



B After accounting for survey covariates



C Comparison



618 **Figure 5.** Precision associated with trend estimates resulting from simulations that incorporate
619 residual variance in annual population indices from a null model (panel A) and a model that accounts
620 for the effects of environmental drivers on daily population indices (panel B). X-axis denotes the
621 number of colonies that are aggregated; Y-axis denotes the number of years each colony is monitored
622 for. Shading indicates the resulting precision of estimated log-linear trend, measured as width of the
623 95% equal-tailed credible interval associated with trend estimate. Solid and dashed contour lines in
624 each panel denote the boundary at which trends can be estimated with “high precision” (using a
625 threshold where credible interval width is equal to 0.035). Panel C represents the comparison of
626 panel A & B.