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In this paper, we present a fast and adaptive correlation guided enhanced sampling method (CORE-MD
II). The CORE-MD II technique relies in part on partitioning of the entire pathway into short trajectories
that we refer to as instances. The sampling within each instance is accelerated by adaptive path-dependent
Metadynamics simulations. The second part of this approach involves kinetic Monte Carlo (kMC) sampling
between the different states that have been accessed during each instance. Through the combination of the
partition of the total simulation into short non-equilibrium simulations and the kMC-sampling, the CORE-
MD II method is capable of sampling protein folding without any a priori definitions of reaction pathways and
additional parameters. In validation simulations, we applied the CORE-MD II on the dialanine peptide and
the folding of two peptides : TrpCage and TrpZip2. In a comparison with long time equilibrium Molecular
Dynamics (MD), 1 µs replica exchange MD (REMD) and CORE-MD I simulations, we find that the level
of convergence of the CORE-MD II method is improved by a factor of 8.8, while the CORE-MD II method
reaches acceleration factors of approximately 120. In the CORE-MD II simulation of TrpZip2, we observe
the formation of the native state in contrast to the REMD and the CORE-MD I simulations. The method
is broadly applicable for MD-simulations and is not restricted to simulations of protein folding or even
biomolecules, but also applicable to simulations of protein aggregation, protein signaling or even material
science simulations.

I. INTRODUCTION

Molecular Dynamics (MD) and Monte Carlo (MC)
simulations are important theoretical tools for investi-
gations of biological systems on a molecular level. For
the last two decades, theoretical improvements, the im-
provement of forcefield parameter sets and a substantial
rise of the performance of hardware established MD and
MC as methods that are complementary to experiments.
MD and MC strongly contributed to a better under-
standing of the underlying molecular processes of protein
folding1–4, protein aggregation5,6 and protein signaling7.
Both methods play an essential role in the modeling of
drug-host interactions8, protein self-assembly9 and pro-
tein membrane interactions10. Despite the importance
of both techniques, the time-scales of biological pro-
cesses can exceed the accessible computable time-ranges
by many orders of magnitude due to the complexity of
the underlying energy landscapes. This problem has
been tackled through the improvement of the computer
hardware11, a reduction of the complexity through the
development of coarse-grained models12–14 and algorith-
mic improvements that raised the performance of MD
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and MC15–19.

Leaving aside advances based on coarse-grained mod-
eling and the development of efficient hard- and soft-
ware, the group of umbrella sampling methods solve the
time-scale problem through projections of the trajectory
space to underlying energy landscapes that contain the
dimensionality of specific collective variables. Several
groups and sub-groups of methods have emerged that
belong to the class of umbrella sampling methods20–28.
Regardless of the aforementioned classes of methods,
techniques that accelerate the sampling in the trajec-
tory space are adaptive and in most cases do not con-
tain the need of a priori definitions of reaction coordi-
nates, because these developments rely on approxima-
tions of first-principle conjectures29. Here, we refer to
specific classes of constraint methods, while the use of
constraints is not interpreted as an enhanced sampling
in the community, although bonded, non-bonded and
angular constraints can contribute to 2-15 fold speed-
ups of the MD and MC sampling30,31. More broadly,
constraining the internal degrees of motion will enable
even much higher accelerations, such as in simulations
of the Brownian motion of protein complexes or the ex-
tended capture of drug-host interactions32. Although
Langevin- and Brownian dynamics in combination with
constraints contain stochastic terms in the propagation
scheme, the sampling can remain partially determinis-
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FIG. 1. Schematic description of the CORE-MD II algorithm.
The CORE-MD II algorithm relies on two components : (1)
A local path-dependent accelerated Metadynamics sampling
and (2) a kinetic Monte Carlo (kMC) sampling in between
the states that are obtained in instances k. (a) Schematic
diagram of the local pathway Lik (t) that is calculated from
momenta pi(t) and positions ∆xi(t), which defines a correla-
tion function Cik(t). In this graph, the correlation function
Cik(t) is displayed on the left y-axis, while the local pathway
Lik (t) is displayed on the right y-axis. The CORE-MD II for-
malism uses the correlation function Cik (t) to define the sta-
tistical bias-function λik(t), the collective variable σik (t) for
the path-dependent Metadynamics simulation and the corre-
lation dependent time-period τk(t). (b) Schematic description
of the state-to-state dynamics between the instances k−1 and
k using a kinetic Monte Carlo (kMC) algorithm. Depending
on the correlation dependent rates rk(t), transitions are sam-
pled in between the states that arise in each instance (The
possible backward transition is indicated by a dashed arrow.
The selected kMC-step is indicated by a solid arrow).

tic. Hybrid techniques use a combination of the stochas-
tic nature of MC with the deterministic propagation in
MD and have the potential of further improvements of
the sampling efficiency. Hybrid MC approaches range
from the hybrid-MC methodologies33–36 to hybrid kinetic
Monte Carlo/MD (kMC/MD)37–39 approaches that ap-
ply an event-driven acceleration. Especially kMC/MD
approaches allow for larger propagations along the time-
axis dependent from the nature of the move, which has
been shown in simulations of protein folding and pro-
tein signaling40. Although the classes, groups and sub-
groups of methods we discuss here have proven their per-
formance in simulations, a larger fraction of the meth-
ods applies biases or modifications in the energy space
of the system, which leads to the occurrence of non-
equilibrium states and the need to define appropriate re-
action coordinates41,42. Considerable efforts have been

FIG. 2. (a) Correlation function Cik(t) from a CORE-MD II
and CORE-MD I simulation of dialanine as function of MD-
time. (b) Instances k of the CORE-MD II simulation as func-
tion of MD-time. The correlation patterns of the CORE-MD
II technique differ from the CORE-MD I technique, because
the CORE-MD II algorithm sub-divides the trajectory into
sub-instances k and performs a kinetic Monte Carlo sampling
between the states. The separation of the trajectory into
instances k yields an improvement in the sampling of equilib-
rium properties with an error that is 4.2 times lower than in
the CORE-MD I simulation of dialanine.

made in recent work to address the problem of adaptive
definitions of collective variables, most notably using ar-
tificial intelligence (AI)-based techniques.43–47. Although
many of these approaches have been deemed successful
for the systems to which they have been applied, the
new techniques are mathematically complex, difficult to
implement, or require large amounts of suitable train-
ing data. In contrast to these very complex methods,
trajectory space enhanced sampling methods are based
on simple conjectures, which resemble an alternative to
very complex AI-driven approaches, while they remain
computationally easy to handle and lead to reproducible
results. In a recent work, we developed a correlation de-
pendent enhanced sampling method (CORE-MD)48, that
depends only on one single energy parameter and does
not require a priori definitions of reaction coordinates.
The method applies a correlation dependent propensity
as a potential for the sampling of a free energy landscape
that is projected on a dimensionless space. We success-
fully validated the method on the folding of TrpCage and
the conformational landscape of dialanine.
In this work, we developed and implemented a novel

correlation dependent MD method (CORE-MD II),
which is parameter-free or any requirement of an a priori
definition of reaction coordinates. Using a kinetic Monte
Carlo (kMC) formalism, the method performs a statisti-
cal sampling between configurations that have been ac-
cessed previously. Our methodology is based on a correla-
tion dependent probability and a correlation dependent
rate that is used as a sampling parameter in the kMC
technique. We validate the CORE-MD II method on the
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conformational landscape of dialanine and the folding of
two peptides : TrpZip2 and TrpCage49,50. In the simula-
tions, we observe a good agreement with the experiment
and long time-equilibrium MD simulations. We find that
the novel algorithm is capable of sampling the systems
with a high level of convergence compared with equilib-
rium MD data, while the acceleration factors range from
20 to 120.

II. METHODS

The CORE-MD II method uses a central path-
definition and calculates a path-dependent autocorrela-
tion function of the increments along the pathway. Using
a correlation dependent path-definition, a Metadynamics
algorithm samples the system along adaptive pathways.
The CORE-MD II method partitions the total trajec-
tory into instances with independent path-definitions and
correlations. The states that are obtained after each in-
stance are sampled using a hybrid kinetic Monte Carlo
(kMC) algorithm. The CORE-MD II method can be
understood as a non-equilibrium sampling strategy re-
lying on an adaptive, rate-dependent selection of short
enhanced MD trajectories. The total trajectory consists
then of a large number of adaptive and path-dependent
non-equilibrium simulations. In these terms, the CORE-
MD II method can be interpreted as an adaptive rate-
dependent state-to-state dynamics sampling method be-
tween Markovian states51–53. The hybrid kinetic Monte
Carlo/MD (kMC/MD) method does not require any a
priori information on reaction coordinates or collective
variables and does not need additional input parameters.

A. Theory

We start with the definition of the global probability
P (xi(t)) that can be defined overN time-slices or subtra-
jectories k with length τk, which are described by local
probability densities ρk(xi(t)) :

P (xi(t)) = lim
N→∞

N
∏

k

ρk(xi(t)) , (1)

where xi(t) stands for the coordinate of an atom with
the index i. As a result, we divide the total trajectory
into slices with periods of τk, where we observe local path-
ways Lik(t) and local correlation functions Cik(t) (see
Figure 1). In analogy, we express the partition of the
total pathway into instances with the index k :

Li(t) = lim
N→∞

N
∑

k

Lik(t) . (2)

If we then consider the averaging process of a trajec-
tory dependent quantity X(t), the partition into small

trajectories allows for a faster formation of time-averages
than the determination of the expectation value of the
complete trajectory, which is linked to the time-scale
problem of MD-simulations. Therefore, the expectation
value of the complete trajectory can be approximated as
:

〈X(t)〉 = X(t)P (xi(t)) ≈ X(t)

K
∏

k

ρk(xi(t)) , (3)

which states that the partition of the complete trajec-
tory into a finite number ofK sub-trajectories is approxi-
mately sufficient for the sampling of the expectation value
〈X(t)〉. We define the number of configurations K by a
minimal set of the number of atoms Na in the system,
which guarantees a fast forward propagation. In the fol-
lowing, we introduce the expressions for the fragmented
pathway and the local correlation function. Within each
subtrajectory k, the local pathway is described by the
reduced action Lik(t) :

Lik(t) =
∑

t<τk

pi(t)∆xi(t) , (4)

where ∆xi(t) = xi(t) − 〈xi(t)〉 and t is the time. The
local path Lik(t) is used to define the local autocorrela-
tion function Cik

48 :

Cik (t) =
1

τk

∑

t≤τk

(Lik (t
′)− 〈Lik(t)〉)(Lik(t)− 〈Lik(t)〉)

|Lik (t
′)− 〈Lik (t)〉||Lik (t)− 〈Lik (t)〉|

,

(5)

where Lik(t
′) is determined with a frequency equal to

1 ps−1 and 〈...〉 denotes the time-average. In our imple-
mentation, we define a period τk(t) that separates each
individual instance k from the preceding instance (see
Figure 2, where we show an example of the index k and
the correlation function Cik(t) as function of time in a
CORE-MD II simulation of dialanine). The CORE-MD
II algorithm samples the system along a correlation de-
pendent probability between states with an index k using
a kinetic Monte Carlo (kMC) algorithm. We limit the
number of kMC configurations by a minimal set of the
number of atoms Na in the system, which guarantees a
fast forward propagation within a small window of three
possible selections in each kMC-step. With a frequency
of τ−1

k , we perform a kMC-step and express a rate rk for
each instance k as :

rk(t) = νe−ǫ∆Ek(t) , (6)

where ν is a frequency factor (we apply ν = Naτ0 where
Na is the number of atoms and τ0 is the minimal pe-
riod equal to 10 ps−1, which is a relation that connects
to the friction terms in the prefactors of Kramer’s rate
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FIG. 3. Results from validation simulations on the dialanine system using 2 µs equilibrium MD, CORE-MD I48 and CORE-MD
II simulations over 200 ns. (a) Free energy landscape of dialanine as function of the dihedral angles Φ and Ψ (FELΦ−Ψ) averaged
over 2 µs MD (units on all color bars are given in kBT ). (b) FELΦ−Ψ averaged over a simulation of dialanine over 200 ns using
CORE-MD II. (c) ∆∆G difference plot between FELΦ−Ψ in the single CORE-MD II simulation of dialanine and 2 µs MD as
function of Φ and Ψ (∆∆GΦ−Ψ). (d) (left) Transition frequency ν of the Φ-angle for all simulations and (right) average free
energy differences of the CORE-MD I/II simulations and 2 µs equilibrium MD. (e) FELΦ−Ψ averaged over a 200 ns CORE-MD
I simulation. (f) ∆∆GΦ−Ψ from the single CORE-MD I simulation and the 2 µs MD result. The different regions in the FEL
plots are indicated with numbers (1-8) (Conformers are shown in the panel (g)). The results indicate that the CORE-MD II
method with a deviation of 0.15 kBT is 4.2 times more sensitive than CORE-MD I (〈∆GΦ−Ψ〉 = −0.67 kBT ). In general, the
CORE-MD II technique yields an improved sampling along the Φ-dihedral angle with an acceleration factor of 20 compared to
the 2 µs MD simulation, while the CORE-MD I simulation result shows a factor of 38 with a 4 times lower level of convergence.
(g) Representative conformations indexed with the numbers (1-8) from the simulation of dialanine.

theory54,55), ∆Ek(t) = Ek(t)− Ek−1(t) and Ek(t) is the
energy for the instance k :

Ek(t) = Epot
k
(t) + Vk(t) , (7)

where Epot
k
(t) stands for the potential energy in the

instance k, Vk(t) is the bias potential, and ǫ = 1
RT

, where

R = 8.314 J
K mol and T stands for the temperature. We

then define the period τk as :

τk(t) =
1

rk(t)
, (8)

which is the time-scale for the instance k. We then
calculate the cumulative rates Rk(t) =

∑k
j=1 rj(t),

RN (t) =
∑N

j=1 rj(t) and apply the kinetic Monte Carlo

algorithm37,56,57, for the selection of a configuration k
with which a configuration is used for the subsequent
trajectory instance :

Rk−1(t) < RN (t)× ξ ≤ Rk(t) , (9)

where ξ stands for a random number ranging from
0 to 1. The kMC sampling guides the trajectory be-
tween equilibrium configurations of the system, where
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each instance k resembles a state that resides close to
the equilibrium state. We continue with the descrip-
tion of the second component of the CORE-MD II al-
gorithm that applies the local biases. (1) At each ini-
tialization of a new trajectory-fragment, the velocities
are selected from a random distribution. (2) In order to
accelerate the sampling within each instance, we apply
a history dependent bias potential Vik (t) that is related
to Metadynamics22, while the history dependency is lim-
ited by the time-scale of each instance. We consider the
fragmented pathway that depends from the correlation
function and express that the expectation value of a re-
action coordinate 〈σik (t)〉 equals the sum over all local
path-increments of individual instances k :

〈σik(t)〉 ∼

K
∑

k

Lik(t)(1 + βkCik(t))e
−βkCi

k
(t) , (10)

where βk is a normalization factor ranging from 0 to 1.
Therefore, we define a bias potential consisting of an ac-
cumulation of Gaussian functions along a collective vari-
able σik(t) that we define through the correlated path58

:

σik (t) = Lik(t)(1 + βkCik(t))e
−βkCi

k
(t) , (11)

which we normalize by the maximal correlated path
occurring within each instance. The history dependent
potential Vik (t) is accumulated with a frequency of 1 ps−1

:

Vik (t) = −W
∑

t′≤t

exp

{

−

[

σik(t)− σik (t
′)

δσ

]2}

, (12)

where W is the height of the Gaussian, which we de-
termine using W = 10kBT

1ps
τk(t)

, δσ is the width of the

Gaussians, which we set equal to the width of 2 bins in
the histogram (consisting of 100 bins in our implemen-
tation). We add the Gaussians to the history dependent
potential using the Well-tempered Metadynamics tech-
nique through a normalization of the added Gaussians by
the factor exp(−Vik(t)/∆T ), where we apply ∆T = 1000
kJ/mol59. The corresponding bias ∂

∂σi
k
(t)Vik(t) is added

throughout the simulation. Finally, we accelerate the
sampling within each instance and apply the statistical
bias as described in our recent work on the CORE-MD
algorithm48. We implemented the correlation dependent
bias by a factorization with the variable λik(t) with which
we scale the gradient of all atoms in the system. The fac-
tor λik(t) is described by :

λik (t) = (1 + βkCik(t))e
−βkCi

k
(t) . (13)

This statistical bias enhances the decay of the correla-
tion function and accelerates the access of new states by
the system48.

FIG. 4. Autocorrelation function of the Φ dihedral angle from
simulations of dialanine. (a) Autocorrelation function as func-
tion of time. (b) Average autocorrelation value from the dif-
ferent simulations of dialanine using equilibrium MD and the
CORE-MD I/II techniques. CORE-MD II shows a higher
correlated behavior than the CORE-MD I technique, which
explains the higher level of convergence of the CORE-MD II
approach.

B. Algorithm

• Calculate the path using the expression 4 for each
time-step and evaluate the correlation function
given in 5.

• Accumulate the history dependent potential Vik (t)
as described in the equation 12 and apply the sta-
tistical bias from 13.

• With a frequency of τ−1
k , apply the kinetic Monte

Carlo formalism and re-initialize the correlation
function :

– Using the kMC formalism described in the ex-
pression 9, select a new configuration and re-
initialize a new sub-trajectory, while the path-
dependent quantities and the bias potential
Vik(t) are set to values equal zero. Assign the
present configuration to the array of configu-
rations and determine the rate rk.
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FIG. 5. Results from simulations of the TrpZip2 minipeptide using 1 µs replica exchange MD (REMD) with 24 replicas and
CORE-MD I/II simulations over 200 ns. (a) RMSDCα−Cα to the native structure (NMR-model # 1, pdb-code : 1le149)
as function of time from the REMD simulation of TrpZip2. (b) RMSDCα−Cα as function of time from the CORE-MD II
simulation of TrpZip2. (c) RMSDCα−Cα as function of time from the CORE-MD I simulation of TrpZip2. (d) Free energy
landscape (FEL) as function of RMSDCα−Cα and the radius of gyration Rg averaged over a 1 µs REMD simulation. Energies
in the color bar are given in units of kBT . (e) Free energy landscape (FEL) as function of RMSDCα−Cα and the radius of
gyration Rg averaged over a 200 ns CORE-MD II simulation. (f) Free energy landscape (FEL) as function of RMSDCα−Cα

and the radius of gyration Rg averaged over a 200 ns CORE-MD I simulation. (g) Average free energy difference 〈∆∆G〉 to the
1 µs REMD result for the CORE-MD I and the CORE-MD II result. (h) Free energy difference ∆∆G between the CORE-MD
II result and 1 µs REMD as function of RMSDCα−Cα and the radius of gyration Rg . (i) Free energy difference ∆∆G between
the CORE-MD I result and 1 µs REMD as function of RMSDCα−Cα and the radius of gyration Rg . (j) Kinetic network of
RMSDCα−Cα dependent clusters obtained from the CORE-MD II simulation of TrpZip2. The cluster indexes are given below
each cluster, which are displayed in each of the plots above.
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C. Simulation parameters and system setup

For the simulations and parts of the trajectory
analysis, we used the GROMACS-4.5.5 simulation
package60. We implemented the CORE-MD II method
into the same package. In all simulations, we used
the AMBER99SB forcefield61,62 and the Generalized
Born implicit solvent model using the Still algorithm
with a continuum dielectric constant equal 8063. The
electrostatics and van der Waals interactions were
treated using the twin-range cut-off equal 1.0/1.2
nm with a neighborlist cut-off equal 1.0 nm. The
neighborlist was updated every integration step. We
applied the Nosé-Hoover thermostat with a coupling
time τT = 1.0 ps and a target temperature of 300 K. We
modeled the starting structures in an extended confor-
mation using the Ribosome code which we downloaded
from http://folding.chemistry.msstate.edu/ raj /Manu-
als/ribosome.html. In validation simulations we modeled
dialanine (Ace-Ala-NMe), the tryptophan cage minipep-
tide (TrpCage) (NLYIQWLKDGGPSSGRPPPS)50

and the tryptophan zypper peptide 2 (TrpZip2)
(SWTWENGKWTWKX)49. We capped both peptides
N- and C-terminal with an acetyl- and a methyl-group.
For the comparison of the CORE-MD II results, we
applied the CORE-MD I algorithm in simulations of
TrpCage, TrpZip2 and dialanine using a parameter
α = 1.0 kJ/mol48. For the generation of equilibrium
MD data, we ran a equilibrium MD simulation over 2
µs of dialanine and parallel tempering replica exchange
MD (REMD) simulation of TrpCage and TrpZip2 over
1 µs using 24 replicas in the NVT ensemble within a
temperature range from 300 to 396 K64. An exchange
of configurations was attempted every 1000 integration
steps in the conventional REMD simulation. We ran
a total simulation time of 200 ns for dialanine using
CORE-MD I/II and simulated the TrpCage and TrpZip2
minipeptides over 200 ns using the same algorithms.
For the calculation of the root-mean square deviation
of the backbone atoms Cα to the native structure
(RMSDCα−Cα), we used the NMR-models #1 from the
protein data bank (PDB) structure : 1l2y (TrpCage)50.
In parts, the trajectory analysis was performed using
in-house programs. For the determination of the free
energies ∆F , we used :

∆G = −kBT ln

(

P

Pmin

)

, (14)

where kB is Boltzmann’s constant, T is the temper-
ature, P is the probability and Pmin the minimal non-
zero reference value of the same function. We determined
the level of convergence 〈∆∆G〉 by the average difference
value of the free energies from equilibrium MD and the
CORE-MD I/II simulations. We analyzed the frequency
ν of transitions of the Φ-angle of dialanine from values
lower than zero to positive values through counting the
numbers of transitions NΦ from negative to positive val-

ues and normalizing by the total number of frames Nt

:

ν =
NΦ

Nt

. (15)

We clustered the structures using the RMSDCα−Cα

to the native structure. We applied an RMSD threshold
of approximately 0.1 nm for the clustering of the struc-
tures. For TrpCage, we coarse-grained the total configu-
ration space into 8 different clusters, while we divided the
conformation space of TrpZip2 into 7 clusters. We define
the acceleration time by the approximate CPU-time that
is required to sample the identical free energy partition
in relation to the CPU-time in conventional MD- and
REMD-simulations.

D. Program

The CORE-MD II simulation code is implemented into
the GROMACS-4.5.5 simulation package. The code is
available on www.github.com/epeter455/.

III. RESULTS AND DISCUSSION

A. Simulations of dialanine

We validated the CORE-MD II algorithm on the di-
alanine system and compared our results with long time
equilibrium MD and with results from a CORE-MD
I simulation. In Figure 3, we show the free energy
landscapes as function of the dihedral angles Φ and Ψ
(FELΦ−Ψ) and our results related to the dynamical be-
havior of dialanine. In the following, we define the regions
along FELΦ−Ψ as follows : C7eq (−180o < Φ < −160o,
135o < Ψ < 170o) (panels (1,2)), α (−110o < Φ < −60o,
−50o < Ψ < 5o) (panel (5)) and C7ax (40o < Φ < 70o,
−5o < Ψ < 40o) (panel (4)). We define the interfa-
cial regions C7eq ≬ C7ax (panel (3)) (−20o < Φ < 30o,
Ψ ≈ 90o), α ≬ C7ax (panel (6)) (−30o < Φ < 30o,
Ψ ≈ −80o) and α ≬ C7eq (panel (7)) (−60o < Φ < −90o,
Ψ ≈ −80o). In the FELΦ−Ψ averaged over 2 µs equi-
librium MD, we find major minima at the C7eq position
(1,2) (-11 to -12 kBT ), at the region α (5) (-11 to -12
kBT ) and the C7ax position (4) (-6 to -8 kBT ) (see Fig-
ure 3 a). The histogram of the CORE-MD I simulation
is widened at the interfacial regions (6), (7) and (3) by
approximately 10-20 degrees, while the C7eq and the α-
positions are approximately identical to the equilibrium
MD result at -11 to -12 kBT (see Figure 3 e, g). We
find a larger deviation from the equilibrium MD result
at the C7ax position (4), where the minimum is widened
and the regions for values of Ψ above and below posi-
tion (4) are populated with approximately -8 kBT . In
the CORE-MD II result, we find populations at (6), (7)
and (3), with energy values ranging from -11 to -12 kBT .
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FIG. 6. Results from simulations of the TrpCage minipeptide using 1 µs replica exchange MD (REMD) with 24 replicas and
CORE-MD I/II simulations over 200 ns. (a) RMSDCα−Cα to the native structure (NMR-model # 1, pdb-code : 1l2y50)
as function of time from the REMD simulation of TrpCage. (b) RMSDCα−Cα as function of time from the CORE-MD II
simulation of TrpCage. (c) RMSDCα−Cα as function of time from the CORE-MD I simulation of TrpCage. (d) Free energy
landscape (FEL) as function of RMSDCα−Cα and the radius of gyration Rg averaged over a 1 µs REMD simulation. Energies
in the color bar are given in units of kBT . (e) Free energy landscape (FEL) as function of RMSDCα−Cα and the radius of
gyration Rg averaged over a 200 ns CORE-MD II simulation. (f) Free energy landscape (FEL) as function of RMSDCα−Cα

and the radius of gyration Rg averaged over a 200 ns CORE-MD I simulation. (g) Average free energy difference 〈∆∆G〉 to the
1 µs REMD result for the CORE-MD I and the CORE-MD II result. (h) Free energy difference ∆∆G between the CORE-MD
II result and 1 µs REMD as function of RMSDCα−Cα and the radius of gyration Rg . (i) Free energy difference ∆∆G between
the CORE-MD I result and 1 µs REMD as function of RMSDCα−Cα and the radius of gyration Rg . (j) Kinetic network of
RMSDCα−Cα dependent clusters obtained from the CORE-MD II simulation of TrpCage. The cluster indexes are given below
each cluster, which are displayed in each of the plots above.
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At the C7ax position (4), we observe energy values of -6
kBT , which are approximately equivalent to the equilib-
rium MD result (see Figure 3 b, g). We then measured
the free energy differences ∆∆GΦ−Ψ between the sim-
ulations using CORE-MD I/II and the equilibrium MD
result. In a comparison between CORE-MD I and II,
we find that the minima at the C7eq position (1,2) are
shifted only in the CORE-MD I result, where we find a
positive shift of approximately 0.2 kBT (see Figure 3 c,
f, g). At that position, the CORE-MD II result agrees
very well with equilibrium MD. We observe an identical
behavior for the α-position (5), while we find the largest
differences at the interfaces at (3), (6) and (7), where we
observe deviations of up to −3.5 kBT in the CORE-MD
I simulation. In contrast, the CORE-MD II result shows
almost no deviation. At the C7ax position (4), we observe
that the CORE-MD I result is up to 0.5 − 1 kBT lower
compared with equilibrium MD. The CORE-MD II simu-
lation result shows approximately identical energy values
in the sampling of the C7ax position (4). We then looked
at the average deviation in energy 〈∆∆GΦ−Ψ〉, where we
find a value of -0.67 kBT for CORE-MD I and −0.16
kBT for the CORE-MD II simulation. We further in-
vestigated the comparatively strong improvement in the
CORE-MD II simulation and measured the autocorrela-
tion function of the Φ-angle CΦ(t) for all simulations (see
Figure 4 a, b, g). In the equilibrium MD simulation, the
value of CΦ(t) decays from 1 to a value of 0.7 and resides
at this value up to a lag time of 1 µs. The correlation
function CΦ(t) of the CORE-MD I simulation indicates
a less correlated behavior with average values of CΦ(t) in
the range from 0.6 to 0.65. In contrast, the CORE-MD
II simulation show a higher Φ-correlation, where CΦ(t)
remains at values ranging from 0.72 to 0.73. That indi-
cates that the CORE-MD II approach enhances correla-
tion effects within dialanine, in contrast to the CORE-
MD I technique. If we consider the average correlation
〈CΦ(t)〉 and compare the different approaches, the cor-
relation behavior of the CORE-MD II simulation agrees
better with equilibrium MD than the CORE-MD I simu-
lation. CORE-MD I yields the highest transition rate of
the Φ-angle with ν = 4× 10−4 ps−1, while the transition
rates for CORE-MD II reside at approximately 2× 10−4

ps−1 (see Figure 3 d). In a comparison with the equi-
librium MD result, we observe an acceleration factor of
approximately 20 for the CORE-MD II algorithm, while
the level of convergence of the free energy landscapes is
4.2 times higher than the CORE-MD I algorithm.

In the validation simulations on dialanine, we com-
pared 2 µs equilibrium MD with CORE-MD I/II sim-
ulations. The CORE-MD II REMD simulation shows
an optimal sampling behavior with a level of conver-
gence that is 4.2 higher than in the CORE-MD I sim-
ulation, while we observe an acceleration factor of ap-
proximately 20. The differences between the CORE-MD
II and CORE-MD I sampling are given by the separa-
tion into instances k, the kMC-sampling between the in-
stances, a re-evaluation of the correlation function Cik(t)

at each instance and the flexible biasing expression (see
Figure 2). In general, the CORE-MD II method samples
the free energy landscapes with higher internal correla-
tions in the system than CORE-MD I, where the system
is strongly decorrelated. From that correlation behavior,
we deduce that the separation of the system into sub-
instances k in CORE-MD II yields a more realistic de-
scription of the underlying collective variables that guide
the system along its reaction pathways.

B. TrpZip2 folding

As a first validation example, we performed 1 µs
REMD simulations with 24 replicas and enhanced MD
simulations of TrpZip2 using CORE-MD I and II (see
Figure 5). We first analyzed the RMSDCα−Cα to the
native structure as function of simulation time. In the
REMD simulation, we observe a fast drop of the RMSD-
value from 1.2 nm to RMSDCα−Cα of 0.14 nm within
the first 1 ps. In this simulation, the RMSDCα−Cα mi-
grates between extremum values of 0.8 nm and 0.14 nm
with population maxima within 0.3-0.42 nm and 0.42-
0.6 nm (see Figure 5 a). The REMD sampling does
not form conformations with RMSDCα−Cα values be-
low 0.22 nm, which are only accessed within rare-event
fluctuations. The CORE-MD II result on TrpZip2 shows
a different behavior (see Figure 5 b). The CORE-MD II
simulation forms a hairpin structure within the first 10
ps that remains stable for 13 ns (RMSDCα−Cα ≈ 0.22
nm). The event of the first collapse is followed by a
re-opening of the hairpin and a re-orientation of the
Trp-sidechains as we find through a visual analysis of
the conformers. This reopening is followed by a subse-
quent collapse at 30 ns, where the hairpin remains sta-
ble over the next 5 ns. The remaining CORE-MD II
simulation follows the order of hairpin opening and a
subsequent closure within a hydrophobic collapse, where
the Trp-sidechains reorient. The CORE-MD II simula-
tion result on TrpZip2 is the only trajectory in which
we observe the formation of a stable hydrophobic core
consisting of four stacked Trp-sidechains49 (Conforma-
tion (1), see Figure 5 j). The RMSDCα−Cα in the
CORE-MD I simulation shows a similar fluctuation be-
havior as the REMD simulation on TrpZip2. Although
the fluctuations in the CORE-MD I simulation are the
strongest of all three different simulations, the peptide
accesses RMSD-values below 0.22 nm only in rare fluc-
tuations, while TrpZip2 mainly resides around 0.3-0.6
nm (see Figure 5 c). Next, we analyzed the free en-
ergy landscapes (FEL) as function of RMSDCα−Cα and
the radius of gyration Rg for each of the three applied
techniques (see Figure 5 d, e, f). The FEL averaged
over 1 µs REMD results in a population ranging from
0.13 < RMSDCα−Cα < 0.8 nm and 0.56 < Rg < 0.92
nm. We observe minor populations ranging from 0 to
-2 kBT in the range 0.13 < RMSDCα−Cα < 0.24 nm,
0.56 < Rg < 0.8 nm and 0.7 < RMSDCα−Cα < 0.8
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nm, 0.65 < Rg < 0.8 nm. We find higher popu-
lations with energies from -2 to -6 kBT in the range
0.24 < RMSDCα−Cα < 0.4 nm (Conformation (2, 3)),
0.56 < Rg < 0.8 nm and 0.6 < RMSDCα−Cα < 0.7 nm,
0.65 < Rg < 0.8 nm (Conformation (4, 5)) (see Figure 5
j). We locate the maximal population within the range
0.4 < RMSDCα−Cα < 0.6 nm, 0.56 < Rg < 0.8 nm,
where the energy ranges from -8 to -9 kBT . In contrast
to CORE-MD I and the 1 µs REMD simulation, the FEL
in the CORE-MD II simulation contains the only min-
imum in the collapsed state with a stable hydrophobic
core (see Figure 5 e, Conformation (1)). In the CORE-
MD II FEL, we observe minor populations ranging from 0
to -4 kBT in the range 0.11 < RMSDCα−Cα < 0.2 nm,
0.56 < Rg < 0.8 nm and 0.7 < RMSDCα−Cα < 0.9
nm, 0.9 < Rg < 1.05 nm. We find higher popu-
lations with energies from -2 to -6 kBT in the range
0.6 < RMSDCα−Cα < 0.7 nm and 0.65 < Rg < 0.8
nm. We locate two maxima in the population within the
range 0.2 < RMSDCα−Cα < 0.25 nm, 0.56 < Rg < 0.8
nm corresponding to the collapsed native state, and a
near native state at 0.4 < RMSDCα−Cα < 0.6 nm,
0.56 < Rg < 0.8 nm, where the energy ranges from -8 to -
9 kBT . The CORE-MD I result shows the widest popula-
tion range and no energy minimum corresponding to the
native state (see Figure 5 f). In that FEL averaged over
the CORE-MD I simulation, we find minor populations
with energies ranging from 0 to -2 kBT within the range
0.13 < RMSDCα−Cα < 0.22 nm, 0.6 < Rg < 0.8 nm and
0.8 < RMSDCα−Cα < 1 nm,0.9 < Rg < 1.1 nm. In that
validation example, the population rises towards a main
maximum in the range 0.4 < RMSDCα−Cα < 0.6 nm
and 0.65 < Rg < 0.8 nm. We then calculated the relative
differences in the free energies between the CORE-MD
I/II results and the 1 µs REMD simulation of TrpZip2
(see Figure 5 g, h, i). For the CORE-MD II result, the
differences ∆∆G in the populations range from approxi-
mately 5 to -2.5 kBT , where the largest differences can be
found for radii of gyration Rg below 0.65 nm and above
0.87 nm. In the center of the FEL, we find a good agree-
ment of the CORE-MD II simulation and the REMD
result. The CORE-MD I result differs only slightly from
the CORE-MD II difference plot (see Figure 5 i), where
we find approximately the same difference pattern. With
-0.038 kBT , the average deviation 〈∆∆G〉 of the CORE-
MD II result shows that the CORE-MD II method is 1.4
times more precise than the CORE-MD I sampling with
an average deviation of -0.052 kBT (see Figure 5 g). In a
final analysis, we performed a RMSDCα−Cα-dependent
clustering of the conformations in the CORE-MD II sim-
ulation (see Figure 5 j). In contrast to the REMD and
the CORE-MD I simulation, CORE-MD II samples the
formation of the native state with a correct arrangement
of the Trp-residues. As a general observation, we find
that the folding pathways in the CORE-MD II simula-
tion follow a first hydrophobic collapse, after which a re-
ordering of the Trp-sidechain occurs leading to the final
formation of the native fold. The CORE-MD II simula-

tion shows that only the near native states can access the
native state of TrpZip2, while coiled conformers have to
pass through the collapsed state of that peptide towards
folding events with a correct hydrophobic core. These
results agree with prior simulation studies and the ob-
servation of a hydrophobic collapse mechanism of folding
of TrpZip265–69. The approximate acceleration factor of
the CORE-MD II method compared with the 1 µs REMD
simulation is approximately 120, while the REMD sim-
ulation did not sample the formation of the native fold
correctly.

C. TrpCage folding

As a second validation example, we performed 1
µs REMD simulations with 24 replicas and enhanced
MD simulations of TrpCage using CORE-MD I and II
(see Figure 6). In a first analysis, we measured the
RMSDCα−Cα to the native structure as function of sim-
ulation time. In the REMD simulation, the RMSD-value
decreases from 1.6 nm to RMSDCα−Cα of 0.2 nm within
the first 50 ns. The RMSDCα−Cα fluctuates between ex-
tremum values of 0.7 nm and 0.13 nm with a population
maximum at 0.2-0.32 nm (see Figure 5 a). The CORE-
MD II result on TrpCage shows an almost identical be-
havior (see Figure 6 b). The CORE-MD II simulation
forms a helical structure within the first 1-2 ns that re-
mains stable for 9.5 ns (RMSDCα−Cα ≈ 0.22 nm). The
event of the first collapse is followed by a re-opening of
the native fold and a re-organization of the sidechain in-
volving Trp6 and Tyr3 as we find through a visual anal-
ysis of the conformers. This reopening is followed by a
subsequent collapse at 25 ns, where the peptide remains
stable over the next 56 ns. The remaining CORE-MD
II simulation follows the order of opening and a subse-
quent closure of the PPII helix and the N-terminal α-
helix within a hydrophobic collapse. The CORE-MD II
simulation result on TrpCage differs from the CORE-MD
I result, where we do not observe the formation of a stable
hydrophobic core (see Figure 6 c). The RMSDCα−Cα in
the CORE-MD I simulation shows the strongest fluctu-
ations in contrast to the CORE-MD II simulation. As
the fluctuations in the CORE-MD I simulation are the
strongest of all three different simulations, the peptide
accesses RMSD-values below 0.22 nm only through rare-
event fluctuations, while TrpCage mainly resides around
0.3-0.6 nm (see Figure 6 c). Next, we analyzed the free
energy landscapes (FEL) as function of RMSDCα−Cα

and the radius of gyration Rg for each of the three ap-
plied techniques (see Figure 6 d, e, f). The FEL averaged
over 1 µs REMD results in a population ranging from
0.13 < RMSDCα−Cα < 0.8 nm and 0.63 < Rg < 0.92
nm. We observe minor populations ranging from 0 to
-3 kBT in the range 0.13 < RMSDCα−Cα < 0.17 nm,
0.63 < Rg < 0.85 nm and 0.7 < RMSDCα−Cα < 0.93
nm, 0.63 < Rg < 0.8 nm. We find higher popu-
lations with energies from -3 to -8 kBT in the range
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0.17 < RMSDCα−Cα < 0.2 nm, 0.63 < Rg < 0.85 nm
and 0.4 < RMSDCα−Cα < 0.93 nm, 0.65 < Rg < 0.8
nm. We locate the maximal population within the range
0.2 < RMSDCα−Cα < 0.3 nm, 0.63 < Rg < 0.8 nm,
where the energy ranges from -9 to -10.5 kBT . In agree-
ment with the 1 µs REMD simulation, the FEL in the
CORE-MD II simulation contains a single minimum in
the collapsed state with a stable hydrophobic core (see
Figure 6 e). In the CORE-MD II FEL, we observe mi-
nor populations ranging from 0 to -4 kBT in the range
0.11 < RMSDCα−Cα < 0.2 nm, 0.63 < Rg < 0.9 nm
and 0.6 < RMSDCα−Cα < 0.9 nm, 0.9 < Rg < 1.1
nm. We find higher populations with energies from -2 to
-6 kBT in the range 0.5 < RMSDCα−Cα < 0.8 nm and
0.65 < Rg < 0.9 nm. We locate the maximum in the pop-
ulation within the range 0.19 < RMSDCα−Cα < 0.42
nm, 0.63 < Rg < 0.7 nm corresponding to the collapsed
native state and a near native state, where the energy
ranges from -8 to -8.5 kBT . The CORE-MD I result
shows the widest population range and an energy mini-
mum corresponding to the native state (see Figure 6 f).
In that FEL averaged over the CORE-MD I simulation,
we find minor populations with energies ranging from 0
to -2 kBT within the range 0.11 < RMSDCα−Cα < 0.24
nm, 0.63 < Rg < 0.9 nm and 0.6 < RMSDCα−Cα < 1
nm,0.9 < Rg < 1.1 nm. In that validation example, the
population rises towards a main maximum in the range
0.22 < RMSDCα−Cα < 0.4 nm and 0.65 < Rg < 0.8
nm. We then calculated the relative differences in the
free energies between the CORE-MD I/II results and the
1 µs REMD simulation of TrpCage (see Figure 6 g, h,
i). For the CORE-MD II result, the differences ∆∆G in
the populations range from approximately 5 to -5 kBT ,
where the largest differences can be found for radii of gy-
ration Rg below 0.8 nm and above 0.9 nm. In the center
of the FEL, we find a good agreement of the CORE-MD
II simulation and the REMD result. The CORE-MD I
result differs strongly from the CORE-MD II difference
plot (see Figure 6 i), where we observe that the CORE-
MD I result shows ∆∆G values of up to -10 kBT at Rg

values of 0.83 nm. With -0.063 kBT , the average devia-
tion 〈∆∆G〉 of the CORE-MD II result shows that the
CORE-MD II method is 8.8 times more precise than the
CORE-MD I sampling with an average deviation of -0.53
kBT (see Figure 6 g). In a final analysis, we performed
a RMSDCα−Cα-dependent clustering of the conforma-
tions in the CORE-MD II simulation (see Figure 6 j). As
a general observation, we find that the folding pathways
in the CORE-MD II simulation follow a first hydropho-
bic collapse, after which a re-ordering of the N-terminal
and the 310-helical segment occurs leading to the final
formation of the native fold (Conformations 4, 5), while
the PPII helical element does not perform a strong inter-
nal restructuring. The CORE-MD II simulation shows
that only the near native states can access the native
state of TrpCage (Conformations 2, 3), while opened
conformers have to pass through the collapsed state of
that peptide towards folding events with a correct hy-

drophobic core (Conformation 1). The folding pathways
observed in the CORE-MD II validation simulation is
dominated by the formation of the secondary structure
and a internal reorganization towards the formation of
the native fold37,70. The CORE-MD I technique sam-
ples the formation of the native state correctly, while
the fluctuations in the CORE-MD I simulation lead to
a stronger relative deviation from the native state as in
the CORE-MD II simulation. Related to the total con-
vergence to the folded state, the CORE-MD II algorithm
shows a 8.8 times higher convergence than the CORE-
MD I technique. The approximate acceleration factor
of the CORE-MD II method compared with the 1 µs
REMD simulation is approximately 120. Our results are
in agreement with our previous findings and other theo-
retical studies37,70–79.

IV. CONCLUSIONS

In this paper, we presented a fast and adaptive cor-
relation guided enhanced sampling MD method (CORE-
MD II) that raises the performance of the CORE-MD I
methodology. The CORE-MD II technique applies a par-
tition of the total pathway into short trajectories that we
refer to as instances. Within each instance, the CORE-
MD II technique samples independent states using adap-
tive path-dependent Metadynamics. Using a detailed
balance criterion, the technique applies a kinetic Monte
Carlo (kMC) sampling between the different states that
have been accessed in the individual instances. Through
the combination of the partition of the total simulation
into short non-equilibrium simulations and the kMC-
sampling, the CORE-MD II method is capable of sam-
pling protein folding in an adaptive and non-parameter
dependent way. In contrast to the CORE-MD I method,
the CORE-MD II technique considers the local hetero-
geneity of correlation patterns and reaction pathways,
while the CORE-MD I method applies the global corre-
lation function and the associated probability function.
Compared to the CORE-MD I technique, the combina-
tion of short path-dependent Metadynamics simulations
and the kMC-sampling of the instances leads to an im-
provement in the accuracy and the performance of the
CORE-MD II algorithm. We applied the CORE-MD II
state-to-state dynamics on the dialanine peptide and the
folding of two peptides : TrpCage and TrpZip2. In a com-
parison with long time equilibrium MD and 1 µs REMD
simulations, we find that the level of convergence of the
CORE-MD II method is up to 8.8 times higher than the
CORE-MD I method, while the CORE-MD II method
reaches acceleration factors of approximately 120.
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51J. D. Chodera and F. Noé, Curr. Opin. Struct. Biol. 25, 135–144
(2014).

52U. Sengupta and B. Strodel, Phil. Trans. R. Soc. B 373, 20170178
(2018).

53V. Pande, K. Beauchamp, and G. R. Bowman, Methods 52,
99–105 (2010).

54H. A. Kramers, Physica (Utrecht) 7, 284 (1940).
55P. Haenggi, P. Talkner, and M. Borkovec, Rev. Modern Phys.
62, 251–332 (1990).

56A. B. Bortz, M. H. Kalos, and J. L. Lebowitz, J. Comput. Phys.
17, 10–18 (1975).

57D. T. Gillespie, J. Comput. Phys. 2, 403–434 (1976).
58E. K. Peter, J. Chem. Phys. 147, 214902 (2017).
59M. Bonomi and M. Parrinello, Phys. Rev. Lett. 104, 190601
(2010).



13

60B. Hess, C. Kutzner, D. van der Spoel, and E. Lindahl, J. Chem.
Theory Comput. 4, 435–447 (2008).

61P. A. Kollman, Acc. Chem. Res. 29, 461–469 (1996).
62V. Hornak, R. Abel, A. Okur, B. Strockbine, A. Roitberg, and
C. Simmerling, Proteins 65, 712–725 (2006).

63W. C. Still, A. Tempczyk, R. C. Hawley, and T. Hendrickson,
J. Am. Chem. Soc. 112, 6127–6129 (1990).

64K. Hukushima and K. Nemoto, J. Phys. Soc. Jpn. 65, 1604–1608
(1996).

65Y. Xiao, C. Chen, and Y. He, Int. J. Mol. Sci. 10, 2838–2848
(2009).

66C. Chen and Y. Xiao, Bioinformatics 24, 659–665 (2008).
67G. H. Zerze, B. Uz, and J. Mittal, Proteins 83, 1307–1315 (2015).
68J. Juraszek and P. G. Bolhuis, J. Phys. Chem. B 113, 16184–
16196 (2009).

69T. Wu, R. Zhang, H. Li, L. Yang, and W. Zhuang, J. Chem.
Phys. 140, 055101 (2014).

70H. Meuzelaar, K. A. Marino, A. Huerta-Viga, M. R. Panman,
L. E. J. Smeenk, A. J. Kettelarij, P. T. J. H. van Maarseveen,
P. G. Bolhuis, and S. Woutersen, J. Phys. Chem. B 117, 11490–
11501 (2013).

71L. Qiu, S. A. Pabit, A. E. Roitberg, and S. J. Hagen, J. Am.
Chem. Soc. 124, 12952–12953 (2002).

72H. Neuweiler, S. Doose, and M. Sauer, Proc. Natl. Acad. Sci.
U.S.A. 102, 16650–16655 (2005).

73R. M. Culik, A. L. Serrano, M. R. Bunagan, and F. Gai, Angew.
Chemie 123, 11076–11079 (2011).

74J. Juraszek and P. G. Bolhuis, Proc. Natl. Acad. Sci. U.S.A. 103,
15859–15864 (2006).

75J. Juraszek and P. G. Bolhuis, Biophys. J. 95, 4246–4257 (2008).
76F. Marinelli, F. Pietrucci, A. Laio, and S. Piana, PLOS Comput.
Biol. 5, e1000452 (2009).

77C. D. Snow, B. Zagrovic, and V. S. Pande, J. Am. Chem. Soc.
124, 14548–14549 (2002).

78H. Ren, Z. Lai, J. D. Biggs, J. Wang, and S. Mukamel, Phys.
Chem. Chem. Phys. 15, 19457–19464 (2013).

79R. Zhou, Proc. Natl. Acad. Sci. U.S.A 100, 13280–13285 (2003).


