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The balance of inverted pendulum on inclined surfaces is
the precursor to their control in unstructured environments.
Researchers have devised control algorithms with feedback
from contact (encoders - placed at the pendulum joint) and
non-contact (gyroscopes, tilt) sensors. We present feedback
control of Inverted Pendulum Cart (IPC) on variable inclines
using non-contact sensors and a modified error function. The
system is in the state of equilibrium when it is not accel-
erating and not falling over (rotational equilibrium). This
is achieved when the pendulum is aligned along the gravity
vector. The control feedback is obtained from non-contact
sensors comprising of a pair of accelerometers placed on the
inverted pendulum and one on the cart. The proposed modi-
fied error function is composed of the dynamic (non-gravity)
acceleration of the pendulum and the velocity of the cart. We
prove that the system is in equilibrium when the modified er-
ror is zero. We present algorithm to calculate the dynamic
acceleration and angle of the pendulum, and incline angle
using accelerometer readings. Here, the cart velocity and
acceleration are assumed to be proportional to the motor
angular velocity and acceleration. Thereafter, we perform
simulation using noisy sensors to illustrate the balance of
IPC on surfaces with unknown inclination angles using PID
feedback controller with saturated motor torque, including
valley profile that resembles a downhill, flat and uphill com-
bination. The successful control of the system using the pro-
posed modified error function and accelerometer feedback
argues for future design of controllers for unstructured and
unknown environments using all-accelerometer feedback.

Nomenclature
{x j,y j,z j} Orthonormal basis vectors of { j} coordinate

system
sα,cα Abbreviation of sin(α),cos(α) respectively
aaa j

Q Acceleration of point Q represented in { j} coordinate
system

Rab Rotation matrix that transforms vector representation
from coordinate system {b} to {a}

Rz(α) Rotation matrix for rotation of angle α about z axis.

Rz(α) =

[
cα sα

−sα cα

]

1 Introduction
The inverted pendulum problem is a classic dynamics

and controls problem. The problem generates excitement
even among children when they balance a broom in their
hand. The feedback received by the child can be charac-
terized as non-contact and contact sensors. Contact sen-
sors are placed at the joint, e.g., encoders (or the child’s
palm), and are most prevalent due to their simplicity. Non-
contact sensors, e.g., gyroscopes, tilt-sensors (child’s vi-
sion), are also used in tandem for feedback. For exam-
ple, the JOE robot1 used a gyroscope to find the angle and
angular velocity of the pendulum. Other works have sup-
plemented the encoder feedback with feedback from gy-
roscopes, accelerometers, tilt-sensor and vision.2–4 They
have been controlled using multiple techniques that in-
clude partial feedback-linearization, geometric proportional-
integral-derivative (PID) and Lyapunov-based controllers.5–9

Application-wise, the wheeled inverted pendulum (WIP), a
variant of an inverted pendulum on a cart (IPC), models
self-balancing personal transporters e.g., segway and uni-
cyle. Additionally, the IPC model has also been used as a
reduced order model for human motion.10 Locomotion and
balance of such systems on inclined surfaces requires identi-
fication of the equilibrium position, hence, the incline angle.2

Recently, balance of WIP on soft surfaces using full-state
feedback PID controllers has been investigated.11

The equilibrium position of an inverted pendulum is de-
fined as the ‘dynamic equilibrium axis’ that is parallel to the
acceleration of the surface of contact.12, 13 This definition
explains why we lean forward or backward while sprinting
and stopping, align our body along the gravity vector while
standing on an incline rather than the surface normal, and the
lack of equilibrium position in zero-gravity (space) environ-



Fig. 1. (a) IPC on an incline where the coordinate systems {s},{i} and {b} are fixed in the inertial, incline and body reference frames.
The angle between {s}−{i} and {i}−{b} are the incline angle β, and the pendulum angle θ respectively. Non-contact sensors comprise
of one accelerometer A3 on the cart and (b) two accelerometers A1, A2 on the inverted pendulum at distances rrrO→1,rrrO→2

ments. Accelerometers are non-contact sensors that measure
linear acceleration and unlike gyroscopes, are stable (bias
does not drift). They have potential to give feedback that is
true to the equilibrium axis and subsequent estimation of the
surface incline angle. The challenge for an all-accelerometer
arrangement is that it can estimate angular velocity and ac-
celeration, however, cannot differentiate between gravity and
dynamic acceleration.14

Contribution: The research proposes a balance of the
IPC using (i) a modified feedback error as cart velocity and
dynamic acceleration of the pendulum, (ii) using feedback
from non-contact accelerometer sensors - a pair on the pen-
dulum and one on the cart, and motor encoder velocity and
acceleration. In contrast to traditional error functions that
comprise of system states (five in this case) that need to be
controlled, the modified error function is ‘sensor based’ and
comprises of only three inputs (mean of accelerometers and
cart velocity). The zero error implies pendulum alignment
with the gravity vector and movement of the cart at a desired
velocity. In the process, the accelerometer and motor en-
coder feedback is able to estimate the angle of the incline,
and compensate for gravity to determine the dynamic ac-
celeration. In comparison to encoders, the all-accelerometer
feedback provide algorithmic and mechanical design advan-
tages. Algorithmically, they facilitate estimation of the in-
cline angle and the modified error function ensures rotational
equilibrium. Mechanically, they are non-contact and need
not be applied at the cart-pendulum revolute joint.

The rest of the paper is structured as follows: Sec 2 de-
fines the problem and the equilibrium position. Next, Sec 3
discusses the modified error function. Here, we present the
proof of how the system is in equilibrium when the modified
error is zero. Thereafter, algorithms for estimating incline
and pendulum angle are presented. Sec 4 describes the simu-
lation and feedback control details. The results are discussed
in the subsequent Sec 5 before the final conclusion in Sec 6.
The simulation video of the system balancing in variable in-
cline scenario is shared at https://youtu.be/K-ABH04Mwp8.

2 Problem definition and equilibrium position
Consider an IPC as shown in Figure 1 where the cart

moves on an incline at an angle β. Three coordinate systems
are defined - {s} to be fixed in the inertial reference frame
with origin at the intersection of incline and horizontal with
{xs,ys,zs} orthonormal basis vectors, {i} fixed on the cart
reference frame and origin at point O with xi along the incline
and zi out of the plane of the paper, and {b} fixed on the
pendulum reference frame with origin at O and yb along the
pendulum. The cart has mass M, and the pendulum has mass
m with moment of inertia I about the center of mass B located
at distance l along the pendulum from point O.

Rotation matrices Rsi = Rz(β),Rib = Rz(θ) define the
relationship between the coordinate systems {s},{i} and
{i},{b} respectively. Rz(α) ∈ R2×2 corresponds to rotation
of angle α along axis z,15 and sα,cα are abbreviations for
sin(α),cos(α) respectively.

Subsequently, the kinematics, and the kinetic T and po-
tential energy V of the system are

rrrO = xx̂i, vvvO = ẋx̂i

rrrB = xx̂i + lŷb, vvvB = (ẋ− lcθθ̇)x̂i− lsθθ̇ŷi (1)

ωωωsb = θ̇ẑs

T =
1
2

mvvvT
OvvvO +

1
2

MvvvT
BvvvB +

1
2

Iωωω
T
sbωωωsb

=
1
2

Iθ̇
2 +

1
2

Mẋ2 +
1
2

m(l2
θ̇

2−2lcθθ̇ẋ+ ẋ2) (2)

V = MgggT (rrrO)+mgggT (rrrB)

= (M+m)gxsβ +mglc(β+θ) (3)

where the gravity ggg = gŷs = gsβx̂i + gcβŷi. The following
equations of motion are obtained using Lagrangian mechan-
ics where the Lagrangian L = T −V , and x,θ are the gener-
alized coordinates[

(M+m) −mlcθ

−mlcθ (I +ml2)

][
ẍ
θ̈

]
+

[
mlθ̇2sθ +(M+m)gsβ +F

−mgls(θ+β)

]
= 0 (4)

https://youtu.be/K-ABH04Mwp8


Objective and equilibrium position: The objective is to bal-
ance the IPC on variable inclined surfaces that have a slope
of β such that the pendulum does not fall over and the cart
moves at a desired constant velocity. Consequently, the equi-
librium position of the system is

ẍ∗ = θ̈
∗ = θ̇

∗ = 0, θ
∗ =−β (5)

Sensor feedback: The sensor feedback is obtained from the
three accelerometers and motor (actuator) encoders

1. Pair of accelerometers aaa1,aaa2 placed at rrrO→1,rrrO→2 on
the inverted pendulum. Their mean and difference are
defined as

aaad = aaa1−aaa2, rrrd = rrrO→1− rrrO→2 (6)

aaam =
aaa1 +aaa2

2
, rrrm =

rrrO→1 + rrrO→2

2

2. Accelerometer aaa3 placed on the cart

aaa3 = aaai
O =

[
ẍ
0

]
+Risgggs, gggs =

[
0
g

]
(7)

3. Motor encoder measurements φ̇motor, φ̈motor are assumed
to be proportional to the cart speed and acceleration that
depend on mechanical parameters, e.g., wheel radius
and gear ratio.

ẋ = Kẋφ̇motor, ẍ = Kẍφ̈motor (8)

3 Modified error function
For analyzing all-accelerometer feedback, we re-write

the acceleration of any point Q on the inverted pendulum as

aaab
Q = aaab

O +αααbs× rrrO→Q +ωωωbs× (ωωωbs× rrrO→Q)

= aaab
O +D(rrrO→Q)yyy (9)

D(rrr) =
[
−rx −ry
−ry rx

]
for rrr =

[
rx
ry

]
, yyy =

[
θ̇2

θ̈

]

Proposition 1: For an error function eee1 = aaaS
m−gggS, and ẍ = 0

eee1 = 0⇒ θ̈ = θ̇ = 0, θ =−β (10)

Proof. Using Eqns 6,9 the mean acceleration is

aaab
m = Rbiaaai

O +D(rrrm)yyy

aaai
O =

[
ẍ
0

]
+Risgggs

⇒ aaas
m = Rsbaaab

m = Rsiaaai
O +RsbD(rrrm)yyy

⇒ eee1 = Rsi

[
ẍ
0

]
+RsbD(rrrm)yyy

= RsbD(rrrm)yyy, for ẍ = 0

eee1 = 0⇒ yyy = 0 ∵ |RsbD(rrrm)| 6= 0⇒ rank(RsbD(rrrm)) = 2.
Hence, θ̈ = θ̇ = 0. Additionally, using the second row from
Eqn 4, it can be deduced that (θ+β) = 0 for yyy = 0, ẍ = 0. �

Corollary: For the modified error function eee = [ẋ −
ẋdes,eeeT

1 ]
T , the condition of eee = 0 implies that the IPC is

at equilibrium while moving at desired constant velocity of
ẋdes. �

Construction of this modified error requires calculation
of the rotation matrix Rsb = Rz(θ+β). These angles are ob-
tained by comparing the same vector in two different coordi-
nate systems.
Lemma 1: Given a vector vvv representation in {i},{ j}, the
angle between the coordinate systems is given by

φi j = atan2
((

vvvi× vvv j) ,(vvvi · vvv j)) (11)

s.t. vvvi = Rz(φi j)vvv j, vvvk =

[
vk

1
vk

2

]
∀k = {i, j}

(vvvi× vvv j) =
(
v1

iv2
j− v2

iv1
j) , (vvvi · vvv j) =

(
v1

iv2
i + v1

jv2
j)

where atan2 is the four-quadrant inverse tangent.

Proof. The coordinate systems {i},{ j} are related by rota-
tion of φi j about zi axis (out of the plane).

vvvi = Rz(φi j)vvv j =

[
cφi j sφi j

−sφi j cφi j

]
vvv j

=

[
v j

2 v j
1

−v j
1 v j

2

][
sφi j

cφi j

]

⇒
[

sφi j

cφi j

]
=

1
||vvv j||2

[
v j

2 −v j
1

v j
1 v j

2

][
vi

1
vi

2

]

As ||vvvi||2 = ||vvv j||2, it can be seen that sφi j =

(
v1

iv2
j− v2

iv1
j
)

||vvvi||2

and cφi j =

(
v1

iv2
i + v1

jv2
j
)

||vvvi||2
. Geometrically, these are the

cross and dot products of the two vectors. The ||vvvi||2 factor
can be ignored for the atan2 function as it is a positive non-
zero quantity. �

3.1 Estimating pendulum angle θ

Proposition 2: The acceleration of the point O in {b} can be
calculated using two accelerometers placed on the pendulum
aaai placed at known displacements rrrO→i for i = 1,2.

aaab
O = aaam−D(rrrm)D(rrrd)

−1aaad (12)

Proof. Using Eqns 6, 9, the difference of the accelerometer
readings is

aaad = aaa1−aaa2 = D(rrrd)yyy ⇒ yyy = D(rrrd)
−1aaad



where D(rrr) is invertible for nonzero rrr. Similarly,

aaam =
aaa1 +aaa2

2
= aaab

O +D(rrrm)yyy

⇒ aaab
O = aaam−D(rrrm)D(rrrd)

−1aaad �

Hence, using Lemma 1 and Eqn 12,

θ = atan2
((

aaa3×aaab
O

)
,
(

aaa3 ·aaab
O

))
(13)

3.2 Estimating incline angle β

The accelerometer on the cart measures aaai
O

aaa3 =

[
a3,x
a3,y

]
=

[
ẍ
0

]
+

[
cβ sβ

−sβ cβ

][
0
g

]
=

[
ẍ+gsβ

gcβ

]

Hence, the inclination angle β can be uniquely determined
by observing the linear acceleration ẍ

β = atan2(a3,x− ẍ, a3,y) s.t. ẍ = K
φ̈motor

φ̈motor (14)

The modified error eee is constructed by including the con-
stant desired velocity of the cart ẋdes, Fig 2.

eee =
[

ẋ− ẋdes
Rz(θ+β)aaam−ggg

]
, s.t. ẋ = K

φ̇
φ̇motor (15)

Fig. 2. The modified error is constructed using desired cart velocity
ẋdes and gravity vector gggS.

M 0.711 kg m 0.063 kg l 0.585 m

rrrO→1 [0.585,0]T m rrrO→2 [0.5,0]T m I 0.0079 kg ·m2

Table 1. System parameters used in the simulation

4 Simulation and feedback control
The nonlinear model of the IPC cart, Eqn 4, was sim-

ulated in MATLAB®where the accelerometers were as-
sumed to have white Gaussian noise with power density
of 400µg/

√
Hz and sampling frequency of 100 Hz, from

datasheet of Invensense MPU6050. The other simulation pa-
rameters are provided in Tab 1 and the gravitational accel-
eration is assumed to be g = 9.81m/sec2. Motor torque is
assumed to be proportional to the force F saturated at ±25N
and the system is controlled using PI feedback such that

F = KPeee+KI

∫
eeedt

KP = [43.86kg · sec−1,43.86kg,5.86kg]

KI = [40.03kg · sec−2,5.04kg · sec−1,1.04kg · sec−1]

The block diagram for the simulation is shown in Fig. 3
where the plant model is constructed using Eqns 4 and ac-
celerometer readings are constructed by adding Gaussian
noise to the true signal. Similarly, the modified error gen-
erator represents the green-box in Fig 2.

Fig. 3. Block diagram of the Simulink® for the system control.

5 Results and Discussion
We perform simulation to investigate the balancing abil-

ity of the IPC (a) using the modified error function and esti-
mation of β on different inclination angles between±15 deg,
(b) for different ẋdes, and (c) along a terrain similar to a val-
ley (downhill, flat and then uphill) where the incline angle
changes from −15 deg to 0 deg and finally 15 deg. Initial
conditions are assumed to be θ̇(0) = θ(0) = ẋ(0) = x(0) = 0.

In the first scenario, the pendulum response is observed
for different incline angles β between−15 deg and +15 deg,



for ẋdes = 2 m/s. The system comes to a state of equilibrium
where θ=−β, i.e., the pendulum aligns itself along the grav-
ity vector and the dynamic acceleration ẍ is zero, Fig. 4. The
system response changes with β and is more desirable (less
pendulum oscillation) for declines. The reason it is easier
to balance a pendulum going downhill than it is going up-
hill is due to the fact that more work must be put into the
system that is increasing its potential energy. Integral to this

Fig. 4. Position of the pendulum over time w.r.t. (a) the cart θ and
(b) the inertial coordinate system for ẋdes = 2 m/s. The plots illus-
trate the balance of IPC and convergence to the equilibrium angle
θ =−β.

balancing ability is estimation of the incline angle β. The
Fig. 5 illustrates the error in estimation of inclination angle
for ẋdes = 2 m/s. The standard deviation and the maximum
error are denoted by σ and max(∆β). This estimation error
occurs during the sudden change in slope as the system ac-
celerates and converges to the true value over time.

In the second scenario, we vary the ẋdes between−4 m/s
to +4m/s for β =+15deg and observe the absolute position
of pendulum, Fig. 6. The system response is symmetric in
the sense that the behavior for a given ẋdes,β is same as that
of −ẋdes,−β, e.g., for the given initial conditions the uphill
motion on β = +15deg with ẋdes = +4 m/s will be similar
to that of downhill motion with ẋdes = −4 m/s. The Fig. 6
also reinforces our intuitive hypothesis that there is an op-
timal desired velocity for an incline that generates minimal
oscillation, e.g., ẋdes =−2 m/s for the given PI controller on
β = +15deg. These observations pose questions about de-

Fig. 5. Error in estimation of β for variable inclines and ẋdes =
2 m/s. The root mean square error(standard deviation) is denoted
by σ

sign of controllers that minimize system oscillations (θ+β)
as ẋdes is also varied with time as a function of slope β until
the final desired value is achieved.

Fig. 6. Absolute position of the pendulum (θ+β) over time as ẋdes
is varied for β = 15deg.

For the final scenario, we simulate movement of IPC
along a valley where the incline angle changes from−15deg
to 0deg and then +15deg for ẋdes = 2 m/s. The incline angle
β changes at 10sec and 20sec. The system is able to success-
fully balance as the incline is suddenly changed. The simu-
lation video of the IPC balancing for this scenario is avail-
able at https://youtu.be/K-ABH04Mwp8. As the equilibrium
state, the system aligns itself along gravity vector θ = −β

(Fig. 6a), with zero dynamic acceleration and constant ve-
locity, Fig. 6b.

6 Conclusion and Future Work
We presented control of an IPC using feedback from

non-contact sensors - a pair of accelerometers located on the
pendulum and one on the cart. The proposed modified error
function comprises of the dynamic acceleration of the pendu-
lum, and velocity error of the cart. We proved that when this
error was zero, the system does not accelerate and fall over,

https://youtu.be/K-ABH04Mwp8


Fig. 7. Balance of IPC on ”a valley” where β changes from−15deg
to 0deg and +15deg at 10,20sec respectively. (a) The pendulum
angle adjusts to the sudden change in inclination. (b) The cart ve-
locity and acceleration also converge to ẋdes = 2m/s and 0m/s
respectively.

i.e., aligns itself along the gravity vector. In process, the an-
gle of the incline and the pendulum are estimated using a
proposed algorithm where the cart velocity and acceleration
are assumed to be proportional to the motor angular velocity
and acceleration. The simulation is performed using noisy
accelerometers and the results illustrate that the system bal-
ances along different inclines, including a “valley” scenario.
This scenario simulates a combination of downhill, flat and
uphill terrain. The system response to variation in desired ve-
locity is investigated and yields encouraging results. These
promising results argue for design of accelerometer sensor-
based feedback controllers for unstructured and unknown en-
vironments where inclines change over time.
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“Lyapunov-Based Controller for the Inverted Pendu-
lum Cart System”. Nonlinear Dynamics, 40(4), June,
pp. 367–374.

[10] Kwon, T., and Hodgins, J., 2010. “Control systems for
human running using an inverted pendulum model and
a reference motion capture sequence”. In Proceedings
of the 2010 ACM SIGGRAPH/Eurographics Sympo-
sium on Computer Animation, SCA ’10, Eurographics
Association, pp. 129–138.

[11] Kiselev, O. M., 2020. “Stabilization of the wheeled in-
verted pendulum on a soft surface”. arXiv:2006.05450
[nlin], June. arXiv: 2006.05450.

[12] Vikas, V., and Crane, C., 2015. “Bioinspired dynamic
inclination measurement using inertial sensors”. Bioin-
spiration & Biomimetics, 10(3), p. 036003.

[13] Vikas, V., and Crane, C. D., 2010. “Inclination esti-
mation and balance of robot using Vestibular Dynamic
Inclinometer”. In IEEE/RAS International Conference
on Humanoid Robots, pp. 245–250.

[14] Zorn, A., 2002. “A merging of system technologies:
All-accelerometer inertial navigation and gravity gra-
diometry”. In Position Location and Navigation Sym-
posium, 2002 IEEE, IEEE, pp. 66–73.

[15] Murray, R. M., and Sastry, S. S., 1994. A mathematical
introduction to robotic manipulation. CRC press.


	Introduction
	Problem definition and equilibrium position
	Modified error function
	Estimating pendulum angle 
	Estimating incline angle 

	Simulation and feedback control
	Results and Discussion
	Conclusion and Future Work

