2021 Design, Automation & Test in Europe Conference & Exhibition (DATE) | 978-3-9819263-5-4/21/$31.00 ©202110.23919/DATE51398.2021.9473995

978-3-9819263-5-4/DATE21/©)2021 EDAA

COMPACT: Flow-Based Computing on Nanoscale
Crossbars with Minimal Semiperimeter

Sven Thijssen
Department of Computer Science
University of Central Florida
Orlando, USA
sven.thijssen @knights.ucf.edu

Abstract—In-memory computing is a promising solution strat-
egy for data-intensive applications to circumvent the von Neumann
bottleneck. Flow-based computing is the concept of performing in-
memory computing using sneak paths in nanoscale crossbar ar-
rays. The limitation of previous work is that the resulting crossbar
representations have large dimensions. In this paper, we present a
framework called COMPACT for mapping Boolean functions to
crossbar representations with minimal semiperimeter (the number
of wordlines plus bitlines). The COMPACT framework is based
on an analogy between binary decision diagrams (BDDs) and
nanoscale memristor crossbar arrays. More specifically, nodes and
edges in a BDD correspond to wordlines/bitlines and memristors
in a crossbar array, respectively. The relation enables a function
represented by a BDD with n nodes and an odd cycle transversal
of size k£ to be mapped to a crossbar with a semiperimeter
of n+k. The k extra wordlines/bitlines are introduced due to
crosshbar connection constraints, i.e. wordlines (bitlines) cannot
directly be connected to wordlines (bitlines). For multi-input
multi-output functions, COMPACT can also be applied to shared
binary decision diagrams (SBDDs), which further reduces the
size of the crossbar representations. Compared with the state-
of-the-art mapping technique, the semiperimeter is reduced from
2.13n to 1.09n on the average, which translates into crossbar
representations with 78% smaller area. The power consumption
and the computation delay are on the average reduced by 7% and
52%, respectively.

Index Terms—flow-based, in-memory, computing, memristor,
crossbar, synthesis

I. INTRODUCTION

Many modern computer architectures are based on the con-
cepts defined in First draft of a report on the EDVAC by
von Neumann [1]. These computer architectures suffer from
the von Neumann bottleneck. This bottleneck is an inevitable
consequence of the data transfer between separated memory
units and processing units. [2]. The in-memory computing
paradigm aims to solve this bottleneck by unifying memory
storage and computation.

In 1971, L. Chua introduced a new circuit element, which
he called memristor [3]. In 2008, Hewlett Packard Laboratories
was the first to finally develop a physical model of this fourth
fundamental circuit element [4]. This led to the development of
new computing paradigms using memristors, such as material-
based implication logic (IMPLY) [5], memory-aided logic

This work was in part supported by NSF awards CCF-1755825,
CNS-1908471, and CCF-1822976.

Sumit Kumar Jha
Department of Computer Science
University of Texas at San Antonio

San Antonio, USA

sumit.jha@utsa.edu

232

Rickard Ewetz
Department of ECE
University of Central Florida
Orlando, USA
rickard.ewetz@ucf.edu

(MAGIC) [6] and flow-based computing [7]. Each of these
approaches have their respective strengths and weaknesses.
For IMPLY-based logic, a major drawback is the number of
complex computational steps required to synthesize a Boolean
function [8], [9]. On the other hand, the parallelism within the
MAGIC-style is fundamentally limited.

The flow-based computing paradigm is based on taking
advantage of the natural flow of electrical current. By pro-
gramming the resistance of memristors in a crossbar based
on Boolean variables, Boolean functions can be evaluated by
applying a high potential to the bottom most wordline and
measuring the output current from a predefined wordline. The
function evaluates to true if and only if there exists at least one
path from the input to the output containing only memristors
in the low resistive state.

Flow-based computing has been explored based on nega-
tion normal form (NNF) [7], disjunctive normal form (DNF),
conjunctive normal form (CNF), simulated annealing [10] and
satisfiability modulo theories (SMT) [11]. Unfortunately, these
initial methods were computationally expensive or resulted in
crossbar representations with large dimensions. To overcome
these shortcomings, recent studies are based on mapping binary
decision diagrams (BDDs) to crossbars using inductive staircase
structures. The mapping of BDDs in the form of reduced
ordered binary decision diagrams (ROBDD) and free binary
decision diagrams (FBDD) has been explored [12], [13].

The staircase structures span from the bottom-left corner to
the top-right corner of the crossbar. These inductive techniques
are promising because both the number of rows and columns
can be proved to grow linearly with the number of nodes in
the BDD [12]. In particular, the dimensions of the nanoscale
crossbar is upper bounded by 3n by n [12], where n is the
number of nodes in the BDD. Fortunately, it can be observed
that the crossbar representations have a dimension of closer to
n by n in practice. Nevertheless, some rather simple Boolean
functions still result in crossbars with excessive dimensions.

In this paper, we propose a framework called COMPACT
for mapping BDDs into crossbar representations with minimal
semiperimeter. The framework is based on an analogy between
BDDs and nanoscale memristor crossbars. More specifically,
nodes and edges in a BDD correspond to wordlines/bitlines and
memristors in a crossbar, respectively. The relation enables a

Authorized licensed use limited to: University of Central Florida. Downloaded on October 04,2021 at 18:16:11 UTC from IEEE Xplore. Restrictions apply.

Boolean function instance |:
é=1,b=1¢c=0

Input
(Verilog, PLA, BLIF)

!
1
B
1
B
1
:
1
—-I BDD I—DI Crossbar Design . Crossbar Instance Evaluation
1

1
1
8 1 # V.
1 —{— out 1 1 —8— out 1 —ﬁ‘—v‘*‘iam
i =
module oct_example (a, b, ¢, f); : ‘ l I ‘
input a, b, c;) :
output f; i a - By — .
assign f=(a&b) | c; ." ‘ H l
. 1
endmodule i ' [
1
in —8 —Cc : in —0 —— 1 Vi, —S8= . 1

(a) Verilog code (b) ROBDD

(c) Crossbar design D

(d) Crossbar instance Z (e) Evaluation f =1

Fig. 1. Overview of the flow-based computing paradigm

BDD with n nodes and an odd cycle transversal of size k to be
mapped into a crossbar representation with a semiperimeter of
n+k. COMPACT determines such crossbar representations by
viewing the BDD as a graph and formulating a node labeling
problem. The node labeling problem is equivalent to an odd
cycle transversal problem, which can be solved using a vertex
cover formulation. We also observe that for multi-input multi-
output functions, COMPACT can be directly applied to shared
binary decision diagrams (SBDDs), which further improves the
crossbar size. Compared with previous works, the experimental
results show that the semiperimeter and area is reduced by 54%
and 78% on average, respectively.

The remainder of the paper is organized, as follows: back-
ground in Section II, the BDD-crossbar analogy is given in
Section III. The COMPACT framework is presented in Sec-
tion IV and the extension to SBDDs in Section V. The paper
is concluded with experimental results in Section VI.

II. BACKGROUND
A. Binary decision diagrams

A BDD is a graph representation of a Boolean function. The
internal nodes are Boolean variables and the leaf nodes are
either ‘0’ or ‘1’. A BDD is evaluated by traversing the nodes
along a path from the root node to a leaf node. At each internal
node of the BDD, depending on the value of the Boolean
variable, one must decide which path to follow to evaluate an
instance. [14] ROBDDs and FBDDs are extensions of BDDs
for multi-input single-output functions that are optimized to
minimize number of nodes and edges. BDDs can be extended to
multi-input multi-output functions using shared binary decision
diagrams (SBDDs). In SBDDs, multiple ROBDDs are merged
together [15].

B. Nanoscale memristor crossbars

A memristor crossbar is a two-dimensional array consisting
of two layers of nanowires. The horizontal nanowires are
wordlines and the vertical nanowires are bitlines. Each layer
is a set of parallel nanowires with each layer being perpen-
dicular to one another. A memristor connects one layer with
another at the intersections of the perpendicular nanowires [7].
Memristors with high endurance and fast switching speed have

been demonstrated for memory applications [16]. A major
concern for memory applications is the occurrence of currents
on sneak paths, which reduces the effective write voltage [16].
In contrast, flow-based computing is based on leveraging the
sneak paths to perform computation.

C. Flow-based in-memory computing

Flow-based computing is based on evaluating Boolean func-
tions using the sneak currents that naturally occur in nanoscale
crossbars. Computing within the paradigm is performed using
a one-time costly initialization phase and an efficient and fast
evaluation phase, which is illustrated in Figure 1.

In the initialization phase, a Boolean function f is converted
into a crossbar representation D. The Boolean function f
is specified using a Verilog, BLIF or PLA file. A Boolean
function f = (a A b) V ¢ is shown in Figure 1(a). Next, a
BDD representation of f is constructed using ABC/CUDD [17],
which is shown in Figure 1(b). Previous work mainly utilized
BDDs in the form of ROBDDs [12]. The next step is to
map the BDD into a crossbar representation D. This involves
assigning each memristor in the crossbar to logical ‘0" or ‘1’
or a Boolean variable {a,b,c} or the negation of a Boolean
variable {—a,—b,—c}. An input port and an output port are also
assigned to the crossbar. A crossbar representation that realizes
the BDD in Figure 1(b) is shown in Figure 1(c).

In the evaluation phase, the Boolean function is evaluated
using the crossbar representation and an instance of the Boolean
variables. The first step is to program the memristors in
the crossbar based on the instance of the Boolean variables.
Memristors in the crossbar are programmed to have low (high)
resistance if the assigned logic expression is true (false). In the
example, the crossbar instantiation for a =1, b=1and ¢ =0
is shown in Figure 1(d). Next, an input voltage V;,, is applied
to the bottom most wordline and f is evaluated by measuring
the output voltage V,,; across a sensing resistor, which is
connected to ground. In the example, it can be observed that
there exists a path from the input to the output that only
contains memristors with low resistance. Therefore, the output
voltage is high and the Boolean function f evaluates to true,
which is shown in Figure 1(e).

Design, Automation and Test in Europe Conference (DATE 2021)

Authorized licensed use limited to: University of Central Florida. Downloaded on October 04,2021 at 18:16:11 UTC from IEEE Xplore. Restrictions apply.

233

234

Problem formulation: The objective of this paper is to find
the smallest valid crossbar representation D that realizes a
Boolean function ¢. In this paper, the size of the crossbar rep-
resentations is evaluated in terms of semiperimeter (wordlines
plus bitlines) and area (wordlines times bitlines). A crossbar
representation D is a valid representation of a Boolean function
¢ if and only if for every instance of the Boolean variables,
there exists a path from the input to the output using only
memristors in the low resistive state when ¢ evaluates to true.

III. ANALOGY BETWEEN BDDS AND CROSSBARS

The COMPACT framework in this paper is based on the
observation that an analogy exists between BDDs and memris-
tor crossbars. More specifically, the nodes and edges within a
BDD correspond to the bitlines/wordlines and memristors in a
crossbar, respectively. Theoretically, a BDD with n nodes can
be mapped to a crossbar with a semiperimeter of n. However, a
memristor crossbar places inherent constraints on the connec-
tions realized by the memristors; wordlines cannot be connected
directly to wordlines and bitlines cannot be connected directly
to bitlines. Therefore, extra hardware resources (intermediate
bitlines or wordlines) are needed to realize such connections.
One way to circumvent the connection constraint problem is
to map each node to both a wordline and a bitline. However,
this leads to a crossbar representation with a semiperimeter of
2n. The COMPACT framework aims to find smaller crossbar
designs by mapping as few nodes as possible to both wordlines
and bitlines while resolving the connection constraints. In fact,
COMPACT is capable of assigning the fewest possible BDD
nodes to both wordlines and bitlines, which results in crossbar
representations with minimal semiperimeter.

IV. THE COMPACT FRAMEWORK

The flow of the COMPACT framework is shown in Figure 2
and illustrated with an example in Figure 3. The input to
the framework is a Boolean multi-input single-output function
represented using a ROBDD or a Boolean multi-input multi-
output function represented using a SBDD, which is illustrated
in Figure 3(a). The output of the framework is a crossbar
representation D of the Boolean function.

The main steps of COMPACT are graph pre-processing, VH-
labeling and crossbar mapping. In the graph pre-processing
step, the BDD is converted into a graph representation. In the
VH-labeling step, each node in the graph is assigned a label
V., H or VH, indicating if they will be mapped to a vertical
bitline (V'), horizontal wordline (H), or both a vertical bitline
and a horizontal wordline (V H). In the crossbar mapping step,
nodes in the graph are bound to specific wordlines/bitlines
according to the assigned labels. The edges in the graph are
correspondingly assigned to memristors in the crossbar.

A. Graph pre-processing

In this section, the input BDD is converted into an undirected
graph G. This is performed by first removing terminal node
‘0’ and its incoming edges. The zero can be removed because
flow-based computing aims to only capture the ‘1’ output.
Finally, the graph representation is obtained by mapping each

Input

l

‘ Graph pre-processing ‘

BDD
v
Undirected graph G

v
Minimum vertex cover (MVC) |

] Cartesian product P = GO K,

/
/
/
/
/
\
\
\
\

‘ VH-labeling ‘ 17
0dd cycle transversal (OCT)

v
Node labeling of G
”‘] Node assignment

‘ Crossbar mapping ‘ v
i \J Edge assignment

Output

Fig. 2. Overview of the COMPACT framework

node/edge in the BDD to an node/edge in an undirected graph.
The resulting graph G of the BDD in Figure 3(a) is shown in
Figure 3(b).

B. VH-labeling

The input to the VH-labeling step is the undirected graph
G. The step involves assigning a label V, H, or VH to each
node in the graph. The labels are introduced to ensure that
all edges in the graph can later be realized using a memristor
in the subsequent crossbar mapping step, i.e., preemptively
handling the connection constraints. We first define the VH-
labeling problem as a mathematical optimization problem in
Section IV-B1. Next, we provide an optimal algorithm to solve
the VH-labeling problem in Section IV-B2.

1) The VH-labeling problem: Let G = (U, E) be a graph
with a set of vertices U and a set of edges . The VH-labeling
problem consists of assigning a label {V,H,V H} to each node
in the graph such that the number of V' H labels are minimized
while satisfying the connection constraints. We formally define
the VH-labeling problem as follows:

{v|v= L' (VH)}|
st. =(L(u) =V AL(v)=V), (u,v) € E
—(L(u) = H A L(v) = H) (u,v) € E

where u and v are vertices in U. L : U — {V,H,VH} is the
label given to node v.

The objective directly minimizes the number of V H labels,
which explicitly defines the semiperimeter of the resulting
crossbar representation. The semiperimeter is equal to n+k
if the graph has n nodes and £ V H labels. The area is
implicitly optimized by minimizing the semiperimeter. The two
constraints ensure that no adjacent nodes in the graph G are
assigned (V,V) or (H,H) labels, as it would be impossible
to connect the corresponding bitlines or wordlines using a
memristor.

2) Solving the VH-labeling problem: In this section, we
provide an optimal algorithm to solve the VH-labeling problem,
which results in crossbar representations with the minimal
semiperimeter.

min

)]

Design, Automation and Test in Europe Conference (DATE 2021)

Authorized licensed use limited to: University of Central Florida. Downloaded on October 04,2021 at 18:16:11 UTC from IEEE Xplore. Restrictions apply.

Undirected
graph G

VH Node
labeling

-a

(f)
1 Node assignment

a out

L)
b 1050

Edge assignment
—_—

‘ ‘ G@
b b
in

()

out

()

Fig. 3. Example of the COMPACT framework

If G is bipartite, it is trivial to determine an optimal solution
to Eq (1) using 2-coloring. The colors would be the labels V'
and H. If G is not bipartite, no 2-coloring exists [18]. Hence,
not every pair of adjacent nodes can be given a label V' and
H. Consequently, a V H label must be assigned to at least one
node. A necessary condition for a graph to be bipartite is that
it does not contain an odd-length cycle [18].

Our optimal solution to the VH-labeling problem lies in the
observation that solving Eq (1) is equivalent to finding the
largest induced bipartite subgraph Gp of the graph G. The
nodes in G that are not part of Gp are the nodes labeled
V' H. The nodes in Gp can trivially be labeled V and H
using 2-coloring. Moreover, finding the largest induced bipartite
subgraph is equivalent to the odd-cycle transversal problem.

Definition 1 (Odd Cycle Transversal): The odd cycle
transversal (OCT) of an undirected graph G = (V. E) is a
set X C V, |X| < k, such that V' — X is a bipartite graph.
(19]

We use lemma 1 to find such odd cycle transversal for G.

Lemma 1: A graph G = (V, E) with |[V| = n has an odd
cycle transversal X, | X| < k, if and only if P = GUK has a
vertex cover VC(P) such that |VC(P)| <n+ k. [19]

We leverage this solution method to finding a minimum
vertex cover of P and thus to finding a smallest odd cycle
transversal of G. In Figure 3(c), we show the graph P =
GOKos, i.e., the Cartesian product of G with K5. K5 is a graph
with two nodes connected by an edge. The resulting graph P
contains two duplicates of graph GG. Above this, a node’s two

duplicates are connected by an edge. If the nodes in K5 are
given a name 0 and 1, then the name of a node in P is the
concatenation of the node’s respective name in G and either
0 or 1. For example, node a in graph G is duplicated in two
nodes, a0 and al in graph P. A vertex cover W = VC(G)
for a graph G = (U, E) is a set of nodes W C U such that
for each edge e = (u,v) € E at least one node w or v is in
W. The minimum vertex cover problem can be solved using
integer linear programming (ILP) [20]. The minimum vertex
cover of P in Figure 3(c) is shown in Figure 3(d). If both
products vy and v; of a node v are present in the vertex cover
W, then v belongs to the odd cycle transversal X of G. It can
be observed that both b0 and b1 belong to the vertex cover in
Figure 3(e), which results in that the node is part of the OCT
and is labeled V' H in Figure 3(f). Finally, the largest induced
bipartite subgraph G is obtained by only considering the
nodes in G which are not labeled V H. The labeling of G is
performed using traditional 2-coloring, as shown in Figure 3(f).

C. Crossbar mapping

In the crossbar mapping step, we bind the graph G to a
crossbar representation D according to the assigned labels,
which ensures that the connection constraints can be satisfied.

The mapping is performed by using a node assignment step
and an edge assignment step. In the node assignment step, each
node in the graph is assigned to a bitline, wordline, or both a
bitline and a wordline according to the label in the graph, i.e.,
nodes labeled V' (H) are assigned to bitlines (wordlines). Nodes
labeled V H are assigned to both a bitline and a wordline.
However, these wordlines and bitlines are supposed to be
connected. Therefore, we also program the memristor in the
intersection of the corresponding wordline and bitline to have
low resistance or ‘1°. The crossbar representation following the
node assignment step is shown in Figure 3(g).

In the edge assignment step, each edge in the graph is
mapped to a memristor in the crossbar such that it connects
the bitlines and wordlines that correspond to the nodes in the
graph. Following the node assignment step, the edge assignment
step maps the variables and their negations onto the crossbar
representation, as shown in Figure 3(h). The output is a crossbar
design D for a Boolean function ¢ using the COMPACT
framework.

V. EXTENSION OF COMPACT 1O SBDD

Previous work on flow-based computing for multi-input
multi-output functions relied on splitting the function into
many multi-input single-output functions. Next, each multi-
input single-output function was converted into a BDD and
mapped to a crossbar design. These separate crossbar designs
can be placed in a single crossbar by aligning the designs along
the diagonal. We observe that using COMPACT there is no
need to specify a single function for each output. Instead, we
can directly convert the multi-input multi-output function into a
SBDD. Next, the SBDD can directly be mapped into a crossbar
design. This may result in smaller crossbar designs as some
parts of the single-output BDDs can be shared across multiple
outputs.

Design, Automation and Test in Europe Conference (DATE 2021)

Authorized licensed use limited to: University of Central Florida. Downloaded on October 04,2021 at 18:16:11 UTC from IEEE Xplore. Restrictions apply.

235

236

TABLE 1
COMPARISON OF FLOW-BASED COMPUTING ALGORITHMS IN TERMS OF NUMBER OF BDD NODES, ROWS, COLUMNS, SEMIPERIMETER, AREA AND
SYNTHESIS TIME.

Chakraborty et al. with ROBDD [12] COMPACT with ROBDD COMPACT with SBDD

Benchmark | Nodes Rows Cols Semi Area Time | Nodes Rows Cols Semi Area Time | Nodes Rows Cols Semi Area Time

(num) (num) (num) (num) (num) (min) | (num) (num) (num) (num) (num) (min) | (num) (num) (num) (num) (num) (min)
parity 32 31 32 63 992 0.1 32 16 16 32 256 0.1 32 16 16 32 256 0.1
cml50a 33 32 48 80 1536 0.0 33 12 22 34 264 0.0 33 12 22 34 264 0.0
481 33 32 37 69 1184 0.0 33 17 23 40 391 0.0 33 17 23 40 391 0.0
cml62a 53 48 67 115 3216 1.7 53 29 34 63 986 2.0 53 29 34 63 986 2.0
x2 59 52 74 126 3848 0.0 59 33 35 68 1155 0.1 59 33 35 68 1155 0.1
cml63a 79 66 90 156 5940 0.1 79 41 46 87 1886 0.1 51 25 31 56 775 0.0
misex 1 79 72 92 164 6624 0.0 79 39 47 86 1833 0.1 48 21 29 50 609 0.0
cordic 101 99 131 230 12969 0.0 101 52 53 105 2756 0.0 81 42 44 86 1848 0.1
Sxpl 127 117 155 272 18135 0.1 127 67 71 138 4757 0.1 89 52 53 105 2756 0.1
clip 153 148 186 334 27528 0.0 153 84 84 168 7056 0.0 153 84 84 168 7056 0.0
alud 1289 1281 1461 2742 1871541 0.4 1289 683 686 1369 468538 1.5 1289 683 686 1369 468538 1.5
misex3 1566 1552 1670 3222 2591840 0.4 1566 845 858 1703 725010 4.7 1302 674 676 1350 455624 22
apex2 1647 1644 1645 3289 2704380 1.4 1647 909 936 1845 850824 1.1 1647 909 936 1845 850824 1.1
apex4 1662 1644 1789 3433 2941116 0.4 1662 806 945 1751 761670 0.4 1022 508 528 1036 268224 23
apex5 2759 2674 3591 6265 9602334 1.0 2759 1409 1497 2906 2109273 0.9 2759 1409 1497 2906 2109273 0.9
seq 3266 3231 3690 6921 11922390 1.5 3266 1743 1778 3521 3099054 1.1 3266 1743 1778 3521 3099054 1.1
Normalized 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.54 0.49 0.51 0.27 1.88 0.89 0.48 0.44 0.46 0.22 2.01

VI. EXPERIMENTAL EVALUATION

The COMPACT framework is implemented in Python and
the experiments have been conducted on a machine with
Intel(R) Core(TM) i7-6600U CPU @ 2.60GHz, 2808 Mhz with
2 cores and 4 logical processors. We evaluate the effectiveness
of the COMPACT framework using 16 combinational circuits
from the RevLib benchmark suite [21]. A summary of the
properties of the circuits is shown in Table II.

TABLE II
OVERVIEW OF INPUT CIRCUITS.
ROBDD SBDD
Benchmark | Inputs Outputs | Vertices Edges | Vertices Edges
parity 16 1 32 60 32 60
cm150a 21 1 33 48 33 48
481 16 1 33 58 33 58
cml62a 14 5 53 83 53 83
X2 10 7 59 89 59 89
cml63a 16 13 79 92 51 78
misex 1 8 7 79 101 48 72
cordic 23 2 101 170 81 142
5xpl 7 10 127 185 89 162
clip 9 5 153 253 153 253
alu4 14 8 1289 2299 1289 2299
misex3 14 14 1566 2486 1302 2292
apex2 39 3 1647 2759 1647 2759
apex4 9 19 1662 2912 1022 1910
apex5 117 88 2759 4352 2759 4352
seq 41 35 3266 4982 3266 4982

Performance is evaluated in terms of hardware utilization,
power consumption, synthesis time and computation delay.
Hardware utilization is evaluated in terms of the crossbar
dimensions, i.e. in terms of rows, columns, semiperimeter and
area. Power consumption is proportional to the number of
rows of the crossbar design. The synthesis time is the run-
time of COMPACT in the one-time initialization phase. The
computation delay is the number of time-steps required to
evaluate the Boolean function in the evaluation phase. The
number of time steps is equal to the number of rows plus
one. One time step per wordline is required to program the
devices [22] and one time step is required to evaluate the
Boolean function. Note that we have verified that all the
crossbar designs are valid using SPICE simulations and the
memristor model in [22].

We compare COMPACT with the state-of-the-art flow-based
computing algorithm in Section VI-A. We compare COMPACT
with other in-memory computing paradigms in Section VI-B.

A. Comparison with previous work on flow-based computing

In this section, we compare COMPACT based on both ROB-
DDs and SBDDs with the state-of-the-art flow-based computing
algorithm in [12]. We evaluate the performance in terms of
hardware utilization in Table I. The computation delay and
power consumption are evaluated in Figure 4.

The number of BDD nodes, the number of rows, columns,
semiperimeter and area for each of the techniques is shown
in Table I. It can be observed that the algorithm in [12] is
capable of mapping all the input circuits into valid crossbar
representations. The semiperimeter is approximately 2.13n,
where n is the number of BDD nodes. The run-time is less
than two minutes for all circuits.

Compared with the algorithm in [12], COMPACT based on
ROBDDs reduces the number of rows, columns, semiperimeter
and area, with 46%, 51%, 49%, 73%, respectively. Smaller
crossbar designs are obtained due to the fact that most BDD
nodes are only mapped to a single wordline or bitline, whereas
in the previous work all nodes are mapped to at least one
wordline and one bitline. The semiperimeter is approximately
1.09n, which demonstrates that only 9% of the nodes in the
BDD are labeled V' H and are mapped to both a wordline and
bitline. COMPACT based on SBDDs reduces the the rows,
columns, semiperimeter and area by 52%, 56%, 54% and 78%,
respectively. This stems from that the number of nodes required
to represent a function using a SBDD instead of multiple
ROBDDs is smaller, as the semiperimeter is 1.09n, where n
again is the number of BDD nodes. Note that merging the
ROBDDs for the different outputs does not always generate a
smaller SBDD. This explains why the same results are obtained
for both ROBDD and SBDD on several circuits.

Figure 4 shows the normalized power and computation delay
for the three methods across all the circuits. It can be observed
that COMPACT based on ROBDDs and the algorithm in [12]
result in the same power consumption. This stems from that
the number of memristors that are required to be programmed

Design, Automation and Test in Europe Conference (DATE 2021)

Authorized licensed use limited to: University of Central Florida. Downloaded on October 04,2021 at 18:16:11 UTC from IEEE Xplore. Restrictions apply.

[3 COMPACT with ROBDD B COMPACT with SBDD

1.20

O 100 RS B
N ,‘/
R s
s XXX
i o0
< ey s
i (R ettt
0.60 ksl [RRe80
[R50 4
0.40 g gt
R R
o R Posssesss
20 R s
0.2 s s
B s

(a) Power consumption (b) Computation delay

Fig. 4. Flow-based computing

is equal to the number of edges in the ROBDD, which is
shown in Table II. COMPACT based on SBDDs reduces the
power consumption with 7%, because the SBDDs have 7%
fewer edges on the average. Compared with [12], COMPACT
based on ROBDDs and SBDDs reduces the computation delay
with 46% and 52%, respectively. This stems from that crossbar
designs with fewer rows are synthesized, which results in that
it takes shorter time to program the memristors in the crossbar
based on the Boolean input variables.

B. Comparison with other in-memory computing paradigms

In this section, we compare COMPACT with in-memory
computing based on MAGIC and IMPLY logic [8], [23]. The
results for [8] have been obtained from [24]. A comparison in
terms of power consumption and computation delay is shown
in Figure 5(a) and Figure 5(b), respectively. The figure shows
that COMPACT improves the normalized computation delay
from 2.15X to 3.91X. The improvements stem from that it
is difficult to achieve high parallelism within the MAGIC and
IMPLY logic styles. While it is possible to evaluate many “logic
gates” in a single time step, the subsequent time steps will
be spent attempting to realign the data to perform a highly
parallel operation again. COMPACT also improves the number
of devices that are required to be programmed in [8] with
1.33X. The power consumption in [8] is 1.13X due to the high
number of computational steps.

B COMPACT with SBDD (1[3] M [22]

4.00

3.00

(a) Power consumption

Normalized

e
=3
S

(b) Computation delay

Fig. 5. Comparison of COMPACT with other logic styles for in-memory
computing in terms of power and delay.

VII. CONCLUSION AND FUTURE WORK

In this paper, we presented COMPACT for mapping Boolean
functions to crossbar representations for flow-based in-memory
computing. By utilizing an analogy between a BDD and a
crossbar, COMPACT reduces the semiperimeter by 54% and
the area by 78% compared with previous work on flow-based

Design, Automation and Test in Europe Conference (DATE 2021)

computing. In the future, we plan to extend COMPACT to
handle limited device yield. We hypothesize that COMPACT
using alternative data structures can even further improve the
semiperimeter and area.

REFERENCES

[1] J. Von Neumann, “First draft of a report on the edvac,” IEEE Annals of
the History of Computing, vol. 15, no. 4, pp. 27-75, 1993.

[2] J. Backus, “Can programming be liberated from the von neumann style?:
A functional style and its algebra of programs,” CACM, vol. 21, no. 8,
pp. 613-641, 1978.

[3] L. Chua, “Memristor-the missing circuit element,” IEEE Transactions on
Circuit Theory, vol. 18, no. 5, pp. 507-519, 1971.

[4] D. B. Strukov, G. S. Snider, D. R. Stewart, and R. S. Williams, “The

missing memristor found,” Nature, vol. 453, no. 7191, pp. 80-83, 2008.

S. Kvatinsky, G. Satat, N. Wald, E. G. Friedman, A. Kolodny, and U. C.

Weiser, “Memristor-based material implication (imply) logic: Design

principles and methodologies,” IEEE Transactions on VLSI Systems,

vol. 22, no. 10, pp. 2054-2066, 2013.

S. Kvatinsky, D. Belousov, S. Liman, G. Satat, N. Wald, E. G. Friedman,

A. Kolodny, and U. C. Weiser, “Magic—memristor-aided logic,” IEEE

Transactions on Circuits and Systems II: Express Briefs, vol. 61, no. 11,

pp. 895-899, 2014.

[7] S. K. Jha, D. E. Rodriguez, J. E. Van Nostrand, and A. Velasquez, “Com-

putation of boolean formulas using sneak paths in crossbar computing,”

Apr. 19 2016. US Patent 9,319,047.

S. Shirinzadeh, M. Soeken, and R. Drechsler, “Multi-objective bdd

optimization for rram circuit design,” in JEEE DDECS 2016, pp. 1-6,

2016.

E. Lehtonen, J. Poikonen, and M. Laiho, “Implication logic synthesis

methods for memristors,” in JEEE ISCAS 2012, pp. 2441-2444, IEEE,

2012.

[10] D. Chakraborty, S. Raj, S. L. Fernandes, and S. K. Jha, “Input-aware
flow-based computing on memristor crossbars with applications to edge
detection,” IEEE JETCAS 2019, vol. 9, no. 3, pp. 580-591, 2019.

[11] A. Velasquez and S. K. Jha, “Fault-tolerant in-memory crossbar comput-
ing using quantified constraint solving,” in IEEE ICCD 2015, pp. 101-
108, IEEE, 2015.

[12] D. Chakraborty and S. K. Jha, “Automated synthesis of compact crossbars
for sneak-path based in-memory computing,” in IEEE DATE 2017,
pp. 770-775, 1IEEE, 2017.

[13] A. U. Hassen, D. Chakraborty, and S. K. Jha, “Free binary decision
diagram-based synthesis of compact crossbars for in-memory computing,”
IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 65,
no. 5, pp. 622-626, 2018.

[14] R. E. Bryant, “Graph-based algorithms for boolean function manipula-

tion,” Computers, IEEE Transactions on, vol. 100, no. 8, pp. 677-691,

1986.

S.-i. Minato, N. Ishiura, and S. Yajima, “Shared binary decision diagram

with attributed edges for efficient boolean function manipulation,” in

ACM/IEEE DAC 1990, pp. 52-57, IEEE, 1990.

C. Xu, D. Niu, N. Muralimanohar, R. Balasubramonian, T. Zhang, S. Yu,

and Y. Xie, “Overcoming the challenges of crossbar resistive memory

architectures,” in JEEE HPCA 2015, pp. 476-488, 1IEEE, 2015.

[17] A. Berkeley, “A system for sequential synthesis and verification,” 2009.

[18] D. B. West, Introduction to Graph Theory, vol. 2. Prentice hall Upper
Saddle River, NJ, 1996.

[19] M. Cygan, F. V. Fomin, £. Kowalik, D. Lokshtanov, D. Marx,

M. Pilipczuk, M. Pilipczuk, and S. Saurabh, Parameterized Algorithms,

vol. 4. Springer, 2015.

V. V. Vazirani, Approximation Algorithms. Springer Science & Business

Media, 2013.

R. Wille, D. GroBe, L. Teuber, G. W. Dueck, and R. Drechsler, “Revlib:

An online resource for reversible functions and reversible circuits,” in

ISMVL 2008, pp. 220-225, IEEE, 2008.

C. Yakopcic, T. M. Taha, G. Subramanyam, and R. E. Pino, “Memristor

spice model and crossbar simulation based on devices with nanosecond

switching time,” in IJCNN 2013, pp. 1-7, IEEE, 2013.

[23] F. S. Marranghello, V. Callegaro, A. I. Reis, and R. P. Ribas, “Four-level
forms for memristive material implication logic,” IEEE Transactions on
VLSI Systems, vol. 27, no. 5, pp. 1228-1232, 2019.

[24] R.B. Hur, N. Wald, N. Talati, and S. Kvatinsky, “Simple magic: Synthesis
and in-memory mapping of logic execution for memristor-aided logic,”
in IEEE/ACM ICCAD 2017, pp. 225-232, 1IEEE, 2017.

[5

[6

[8

[9

[15]

[16]

[20]

[21]

[22]

Authorized licensed use limited to: University of Central Florida. Downloaded on October 04,2021 at 18:16:11 UTC from IEEE Xplore. Restrictions apply.

237

