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Abstract. We construct some positive entropy automorphisms of rational surfaces with no
periodic curves. The surfaces in question, which we term tri-Coble surfaces, are blow-ups
of P2 at 12 points which have contractions down to three different Coble surfaces. The
automorphisms arise as compositions of lifts of Bertini involutions from certain degree 1
weak del Pezzo surfaces.

1. Introduction

Suppose that X is a projective surface over an algebraically closed field K and that
ϕ : X → X is an automorphism of X. When K = C, a theorem of Gromov and Yomdin
asserts that ϕ has positive topological entropy if and only if the spectral radius of ϕ∗ :
N1(X) → N1(X) is greater than 1, where N1(X) denotes the (finite dimensional) real vector
space of divisors on X modulo numerical equivalence. In a mild abuse of notation, for an
arbitrary algebraically closed field K we will say that an automorphism ϕ : X → X has
positive entropy if ϕ∗ : N1(X) → N1(X) has spectral radius greater than 1.

Rational surfaces have proved to be an especially compelling source of examples of such
automorphisms: although we do not attempt to provide an exhaustive bibliography, some
representative constructions can be found in [2, 6, 10, 12]. McMullen asked whether any
rational surface X admitting a positive entropy automorphism must have a pluri-anticanonical
curve, i.e. a curve belonging to some linear system |−mKX | [10, Question, pg. 87]. Since any
automorphism f : X → X preserves these linear systems, if one of them is nonempty then f
must have invariant curves.

Bedford and Kim gave an elegant construction answering this question in the negative [3].
Considering the family of birational maps fa,b : P2 ‧‧➡ P2 defined in affine coordinates by

(x, y) ↦→
(︃
y,
y + a

x+ b

)︃
,

they show that by carefully choosing values for the parameters a and b and passing to a
suitable blow-up, one obtains an automorphism of a rational surface with no periodic curves
at all.

In this note, we exhibit new positive entropy automorphisms of rational surfaces with
no periodic curves. We hope that these examples may still be of interest, as they have
some new features: the examples are easily understood geometrically, exist in a positive
dimensional family, and can be defined over the rational numbers. (There are other examples
of positive-dimensional families of rational surface automorphisms, for instance in [4], but
these examples have invariant curves.)
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The strategy underlying the construction is straightforward. Suppose that p = {p1, . . . , pr}
and q = {q1, . . . , qs} are two configurations of points in P2, and let Sp and Sq denote the cor-
responding blow-ups. Suppose too that both these surfaces admit nontrivial automorphisms,
say ϕp : Sp → Sp and ϕq : Sq → Sq. If ϕp fixes every point of q \ p, and ϕq fixes every
point of p \ q, then both automorphisms ϕp and ϕq lift to automorphisms of the common
resolution Spq. Even if ϕp and ϕq each has an invariant curve, there is no reason to expect
that the composition ϕp ◦ ϕq will fix either of these curves, let alone any other.

The difficulty lies in finding such configurations: for two automorphisms to each fix the
base points of the other requires that these configurations be quite special (at least over C;
we observe in §6 that finding such configurations of points over the fields Fp is essentially
trivial).

We ultimately employ this approach using not two but three sets of points, p, q, and
r. These will all be 8-tuples, but with six points common to all three. Each of the three
blow-ups Sp, Sq, and Sr is a weak del Pezzo surface of degree 1, and the three configurations
are chosen so that the corresponding Bertini involutions all lift to the common model Spqr.
Although the composition of any two of the involutions has invariant curves, we show that
the composition of all three has none. (A similar construction using certain de Jonquières
involutions is given by Blanc [5]; however, that map fixes a curve pointwise.)

Before delving into the details, we give a quick description of the automorphism. First, we
construct the rational surface X:

(1) Choose three smooth quadrics Q1, Q2, and Q3 in P3 so that any pair Qi and Qj are
tangent at two points. This determines three pairs of points, p, q, and r. (Such
configurations can easily be visualized; see Figure 1.)

(2) Choose a cubic surface S ⊂ P3 which passes through all six points, and is tangent
to both of the quadrics passing through each. Such cubics surely exist, as there is a
19-dimensional family of cubics and the tangency requirements impose only 6×3 = 18
conditions.

(3) Let X be the blow-up of S at the six points of tangency.

Figure 1. A configuration of three tangent quadrics. In this case, two of the
quadrics are tangent along an entire curve.

Now, to the three pairs p, q, and r, we associate involutions τp, τq, and τr as follows.

(4) Given a general point z on S, let Π ⊂ P3 denote the plane through z and the two
points of p = {p1, p2}.
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(5) The intersection C = S ∩ Π is a smooth genus 1 curve in Π, passing through p1, p2,
and z.

(6) There exists a unique conic γ ⊂ Π which is tangent to C at p1 and p2 and passes
through z.

(7) τp(z) is defined to be the residual sixth point of intersection of γ with C.
(8) The maps τq and τr are defined analogously.

Our main result is then:

Theorem 1. Let S be a cubic surface containing three pairs of points p, q, and r as above.
Let X = Spqr be the blow-up of the cubic at 6 points. For general parameter choices, the
maps τp, τq, and τr all lift to biregular involutions of X, and the composition τp ◦ τq ◦ τr is
an automorphism of positive entropy which has no periodic curves.

2. Coble surfaces and the Bertini involution

We begin by recalling some classical geometry surrounding weak del Pezzo surfaces of
degree 1, the Bertini involution, and Coble rational surfaces. A reference for most of the
results in this section is [7, Chapter 8].

A del Pezzo surface of degree k is a surface for which −KS is ample, i.e. for which
(−KS)2 = k > 0 and −KS · C > 0 for any curve C; such surfaces exist for 1 ≤ k ≤ 9. Over
an algebraically closed field, any del Pezzo surface can be realized as the blow-up of P2 at
a configuration of 9 − k points, except in the case k = 8 when S = P1 × P1 is also possible.
Conversely, any blow-up of P2 at a general configuration of points – for which no three points
are collinear, etc. – is a del Pezzo surface.

A weak del Pezzo surface of degree k is a surface for which −KS is big and nef and
(−KS)2 = k > 0 and −KS ·C ≥ 0 for any curve C. The distinction is that there may now be
a finite number of curves C for which −KS · C = 0. The weaker big and nef condition allows
blow-ups of P2 at points in mildly degenerate configurations, for example configurations with
3 collinear points but which are otherwise general.

If X is a del Pezzo surface of degree 3, the anticanonical linear system |−KS| is ample and
basepoint-free, and the corresponding map ϕ−|KS | : S → P3 realizes S as a cubic surface in P3.
Under this embedding, elements of |−KS| are given by hyperplane sections of S. Conversely,
any smooth cubic surface in P3 is a del Pezzo surface of degree 3, and is isomorphic to the
blow-up of P2 at a suitable configuration of 6 points.

If S is a weak del Pezzo surface, the anticanonical map ϕ|−KS | remains basepoint-free and
determines a map ϕ : S → P3, but this map is not an isomorphism: any curves C with
−KS · C = 0 are contracted to singular points. In this setting, the image of ϕ|−KS | is again a
cubic surface, but it may have du Val singularities.

The geometry of degree 1 (weak) del Pezzos is also of central importance to us. A del
Pezzo of degree 1 can be realized as the blow-up of P2 at a suitable configuration of 8 points.
Since any blow-up of P2 at six general points is isomorphic to a cubic surface, any del Pezzo
surface of degree 1 can be realized at the blow-up of a cubic surface at two points. Note that
this representation is not unique: there are many choices for which two (−1)-curves should
be contracted to obtain a del Pezzo of degree 3. The next lemma collects some basic facts
about the geometry of degree 1 weak del Pezzo surfaces.

Proposition 2 ([7, 8.3.2]). Suppose that S is a weak del Pezzo surface of degree 1. Then

(1) |−KS| is a pencil of genus 1 curves with one basepoint and smooth general member;
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(2) |−2KS| is 4-dimensional and basepoint-free, and the 2-anticanonical map ϕ|−2KS | :
S → P3 is generically 2-to-1, with image a quadric cone.

The Bertini involution τ : S → S is defined to be the covering involution associated to ϕ|−2KS |,
which extends to a biregular map.

The Bertini involution admits a simple description in terms of the pencil |−KS|. Given
a general point z ∈ S, there is a unique smooth genus 1 curve C ∈ |−KS| passing through
z. Since −2KS · C = 2, there is a unique point z′ on C for which (−2KS)|C ⊗OC(−z − z′)
is trivial in Pic0(C), and so every element of |−2KS| passing through z also passes through
z′. This z′ is the image of z under the Bertini involution. As a result, we get a convenient
characterization of the fixed points of Bertini involution:

Lemma 3. Suppose that S is a weak del Pezzo surface of degree 1 and that z is a point which
lies on a smooth curve C ∈ |−KS|. Then z is fixed by τ if and only if (−2KS)|C⊗OC(−2z) = 0
in Pic0(C).

A degree 1 del Pezzo can be obtained by blowing up 2 suitable points on a cubic surface,
and it is easy to characterize when such two-point blow-ups are weak del Pezzo:

Lemma 4. Suppose that S ⊂ P3 is a smooth cubic surface and that Sp = S is the blow-up
of S at two points p = {p1, p2}. Then Sp is a weak del Pezzo surface if and only if the line
between p1 and p2 is not contained in S.

Proof. Let E1 and E2 be the exceptional divisors of π : Blp P3 → P3, and let H = π∗OP3(1).
Then −KS = (H − E1 − E2)|S. The divisor H − E1 − E2 on Blp P3 is not nef, since it has
intersection −1 with the strict transform of the line through p1 and p2. However, this is the
only curve with which it has negative intersection, and so (H − E1 − E2)|S is nef as long as
this line is not contained in S. Since (−KS)2 = 1, we conclude that −KS is big. □

Note that if S is the blow-up of a cubic in P3 at two points p1 and p2, |−2KS| consists of
quadric surfaces which are tangent to the cubic at each blown up point. The family of such
quadrics is 3-dimensional. This gives rise to a convenient description of the Bertini involution
on such blow-ups [1, pg. 128]. Given a point z ∈ S, there is 2-dimensional family of quadric
surfaces which are tangent to S at the two points of p and pass though the point z. This net
of quadrics has a unique basepoint on S, which coincides with τ(z).

The existence of the additional basepoint may be readily seen in this context. Consider the
plane P passing through p1, p2, and z. A quadric Q which is tangent to S at p1 and p2 and
passes through z yields a plane conic Q ∩ P in P which is tangent to the cubic curve S ∩ P
at both p1 and p2 and passes through z. Since there is only one such plane conic – we have
imposed five linear conditions – all of these quadric surfaces must have the same intersection
with P . The basepoint τ(z) is the residual sixth point of intersection between Q ∩ P and
S ∩ P .

According to Lemma 3, a point z is fixed by τ if in the plane Π = Πp1p2z, there exists a
plane conic C ⊂ Π which is tangent to S ∩ Π at the three points p1, p2, and z.

Weak del Pezzo surfaces never admit automorphisms of positive entropy, and it is necessary
to look at rational surfaces obtained by blowing up additional points. Central to our analysis
are the Coble surfaces.

Definition 1. A Coble surface S is a smooth rational surface for which |−KS| is empty but
|−2KS| is not. A simple Coble surface is a Coble surface for which |−2KS| is represented by
a smooth rational curve.
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An application of the adjunction theorem shows that on a simple Coble surface, the rational
curve C ∈ |−2KS| has self-intersection −4. Such S can be obtained, for example, by blowing
up the nodes of an irreducible, rational plane sextic with exactly ten nodes [6].

Suppose that S ⊂ P3 is a smooth cubic surface and that p is a quadruple of points on S.
If there exists a quadric surface Q which is tangent to S at the points p and such that Q∩ S
has strict transform on Sp = Blp S which is smooth and irreducible, then Sp is a simple
Coble surface, with Q ∩ S ∈

⃓⃓
−2KSp

⃓⃓
. As a result, simple Coble surfaces can sometimes be

obtained by blowing up 4 special points on a smooth cubic.
To carry out the strategy outlined in the introduction, we would need a cubic surface S

with two pairs of points p = {p1, p2} and q = {q1, q2} such that τp fixes q and τq fixes p. If
this is the case, then both τp and τq lift to the blow-up Spq. One might expect that τp ◦ τq
has no invariant curves, but the next result shows that this is too much to hope for.

Theorem 5. Suppose that S is a weak del Pezzo surface of degree 3 and that p and q are
two disjoint pairs of points on S such that Sp and Sq are both weak del Pezzo surfaces of
degree 1. Suppose further that two non-degeneracy conditions are satisfied:

(N1) The element of |−KS| through any three of the four points is smooth and irreducible,
and these curves are distinct.

(N2) When S is realized as a cubic in P3 under the anticanonical embedding, the tangent
plane to S at any of the four points does not pass through any other.

Then Spq is a Coble surface if and only if τp fixes each point of q and τq fixes each point of p.

Since any automorphism of a Coble surface has an invariant curve, the unique element of⃓⃓
−2KSpq

⃓⃓
, the compositions τp ◦ τq must have an invariant curve, and it will be necessary to

refine our approach. Before giving the proof, we record a simple geometric lemma.

Lemma 6. Suppose that p0, p1, p2, p3 are four non-coplanar points in P3, and for 0 ≤ i ≤ 3,
let Πi denote the plane passing through the three points other than pi. Suppose that there
exist four smooth conics Ci ⊂ Πi such that:

(1) Each Ci passes through the three points pj which lie on Πi;
(2) At the point pi, we have dim(TpiCj + TpiCk + TpiCℓ) = 2.

Then there exists a quadric Q ⊂ P3 so that Ci = Q ∩ Πi.

Proof. We may choose coordinates [X0, X1, X2, X3] on P3 so that the points are the four
standard coordinate points. Then the plane Πi is defined by Xi = 0.

That the conics each pass through three of these points and lie in a plane Xi = 0 means
that they are given by equations of the form

F0 = a12X1X2 + a13X1X3 + a23X2X3 = 0,

F1 = b02X0X2 + b03X0X3 + b23X2X3 = 0,

F2 = c01X0X1 + c03X0X3 + c13X1X3 = 0,

F3 = d01X0X1 + d02X0X2 + d12X1X2 = 0

To show that there exists a quadric Q as claimed, we must show that we may replace each
Fi by a suitable multiple and arrange that any monomial XiXj has the same coefficient in
both of the equations in which it appears. The quadric Q is then defined by the polynomial
obtained by combining all of these monomials.
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We next work out the conditions on the coefficients given by the assumed tangency. First
consider the point p0. In the affine chart on P3 given by X0 = 1, this point is the origin, and
the three quadrics are given by

F1 = b02X2 + b03X3 + b23X2X3 = 0

F2 = c01X1 + c03X3 + c13X1X3 = 0

F3 = d01X1 + d02X2 + d12X1X2 = 0

Tangent vectors to these curves at the origin in A3 are then given by

(0, b03,−b02), (c03, 0,−c01), (d02,−d01, 0).

The vectors are coplanar if the determinant of the matrix with these as rows vanishes, and
and analogous computations at the other three coordinate points yield the four conditions

b02c03d01 − b03c01d02 = 0, a12c13d01 − a13c01d12 = 0,

a12b23d02 − a23b02d12 = 0, a13b23c03 − a23b03c13 = 0.

That the conics are smooth implies that none of the coefficients vanish, and so after multiplying
the equations by constants we may assume that the coefficients on the X0X1 and X2X3 terms
are already equal, so that c01 = d01 = 1 and a23 = b23 = 1. Our system of equations then
becomes:

b02c03 − b03d02 = 0 a12c13 − a13d12 = 0

a12d02 − b02d12 = 0 a13c03 − b03c13 = 0.

This shows that
a12
d12

=
b02
d02

=
a13
c13

=
b03
c03
.

Multiplying the equations F2 and F3 by this common value, we obtain multiples of the
defining equations which have all corresponding coefficients equal. □

Proof of Theorem 5. The surface S can be mapped to P3 by the anticanonical map. This
map contracts the (−2)-curves on S, and the image is a cubic surface with du Val singularities.
The assumption that Sp and Sq are weak del Pezzo implies that none of the blown up points
lies on a (−2)-curve, so the four points of p and q are all mapped to smooth points. The
distinctness assumption in (N1) implies that no four of these points have coplanar image.

One direction of the proof is simple. Suppose that Spq is a Coble surface. Then there exists
a quadric Q which is tangent to S at the four points p ∪ q. According to our description of
the Bertini involution on a 2-point blow-up of the cubic, the point q1 is fixed by τp if and
only if there exists a conic C in the plane Π = Πpq1 such that C is double on the smooth
cubic S ∩ Π at these three points. But there certainly exists such a conic: we can simply
take C = Q ∩ Π, which is tangent at the points since Q and S are. The other fixed point
conditions follow in the same way.

Suppose instead that τp fixes the points of q and τq fixes the points of p. Let Π denote
the plane through p and q1. There exists a plane conic C ⊂ Π which is double on the plane
cubic S ∩ Π at p1, p2, and q1.

We claim that C must be smooth. If not, then C is a union of two lines. There are two
possibilities: either (i) C is the double of a line L passing through both p1 and p2 or (ii) one
of the lines L is tangent to S ∩ C at p1. Case (i) is ruled out by (N1), since this would mean
that q1 lies on the line between p1 and p2, so that the four points are coplanar. Case (ii) is
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ruled by (N2): if L passes through p2 or q, this would mean that the tangent plane to S at
p1 passes through p2 or q. If L misses both these points, then the second line L′ must be
tangent to S ∩ Π at both p2 and q, which again contradicts (N2).

Making the same argument for other triples of points, we conclude that in any plane Π
through three of the four points in p ∪ q, there exists a conic smooth C tangent to S ∩ Π at
these three points. Three such conics pass through each of the points in p ∪ q, and at each
point the three conics have coplanar tangent directions, since all the tangents are contained
in the tangent plane to S.

It follows from Lemma 6 that there is in fact a quadric surface Q ⊂ P3 which is tangent to
S at each of the four points, which shows that

⃓⃓
−2KSpq

⃓⃓
is nonempty. Since (N1) implies that

the four points are not coplanar,
⃓⃓
−KSpq

⃓⃓
is empty, and so the Spq is a Coble surface. □

⇒

Figure 2. τp fixes q and τq fixes p if and only if S is tangent to four conic
curves. According to Lemma 6, this is possible only if S is tangent to a conic
surface, which means that Spq is a Coble surface.

Blowing up two pairs of points on a cubic as in Theorem 5 yields a Coble surface, and
every automorphism has an invariant curve. This is illustrated in Figure 2We thus proceed
to blow up a third pair of points, leading to the following definition.

Definition 2. Let S be a weak del Pezzo surface of degree 3 and suppose that there exist
three disjoint pairs of points p, q, and r on S such that:

(T1) Sp, Sq, and Sr are weak del Pezzo surfaces of degree 1, with corresponding Bertini
involutions τp, τq and τr;

(T2) τp fixes the points of q∪ r, τq fixes the points of p∪ r, and τr fixes the points of p∪q.
(T3) Each of the 4-tuples p ∪ q, p ∪ r, and p ∪ q satisfies the nondegeneracy conditions

(N1) and (N2).

Then we term the blow-up X = Spqr a tri-Coble surface. Notice that X may be contracted
to each of Spq, Spr, and Sqr, which are all Coble surfaces according to Lemma 5. If any one
of these three is a simple Coble surface, then we call X a simple tri-Coble surface.

Suppose that S is a smooth cubic surface in P3. For τp to fix the points of q and τq to fix
the points of p means that there is a quadric Q1 which is tangent to S at the four points
of p ∪ q. Similarly, there must exist a quadric Q2 tangent to S at p ∪ r, and a quadric Q3

tangent to S at q∪ r. If such configurations can be constructed on S, and the non-degeneracy
conditions are satisfied, then the blow-up Spqr will be an example of a tri-Coble surfaces.
If some intersection S ∩ Qi has strict transform on the blow-up which is smooth, then we
obtain a simple tri-Coble surface.
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3. No invariant curves

We will mostly be interested in the composition ϕ = τp ◦ τq ◦ τr. The bi-anticanonical
curve on Spq is invariant under both τp and τq, but there are no obvious curves invariant
under all three of these involutions, and so it seems reasonable to expect that ϕ does not
have any invariant curves at all.

Theorem 7. Suppose that X = Spqr is a tri-Coble surface. Then each of the involutions τp,
τq, and τr lifts to a biregular involution of X. Let ϕ = τp ◦ τq ◦ τr be the composition. Then
ϕ is an automorphism of positive entropy. If X is a simple tri-Coble surface, then ϕ∗ does
not fix any pseudoeffective class. In particular, ϕ has no periodic curves.

Proof. First, observe that if C is a ϕ-periodic curve, then
⋃︁

n ϕ
n(C) is a ϕ-invariant (albeit

reducible) curve, and so it suffices to show that there is no invariant curve.
The action of the Bertini involution on N1(S) for a degree 1 weak del Pezzo surface was

known classically [7]. If S is presented as a blow-up of P2 at eight points with exceptional
divisors E1, . . . , E8, then with respect to the basis H, E1,. . . ,E8:

τ ∗ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

17 6 6 6 6 6 6 6 6
−6 −3 −2 −2 −2 −2 −2 −2 −2
−6 −2 −3 −2 −2 −2 −2 −2 −2
−6 −2 −2 −3 −2 −2 −2 −2 −2
−6 −2 −2 −2 −3 −2 −2 −2 −2
−6 −2 −2 −2 −2 −3 −2 −2 −2
−6 −2 −2 −2 −2 −2 −3 −2 −2
−6 −2 −2 −2 −2 −2 −2 −3 −2
−6 −2 −2 −2 −2 −2 −2 −2 −3

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

The induced action of τp on a tri-Coble surface is obtained by appending a 4 × 4 identity
matrix to the matrix τ ∗, corresponding to the 4 exceptional divisors above the points q ∪ r
which are invariant under τp. The matrices for the other involutions are computed analogously,
and multiplying all three together we obtain

ϕ∗ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

377 126 126 126 126 126 126 150 150 30 30 6 6
−126 −43 −42 −42 −42 −42 −42 −50 −50 −10 −10 −2 −2
−126 −42 −43 −42 −42 −42 −42 −50 −50 −10 −10 −2 −2
−126 −42 −42 −43 −42 −42 −42 −50 −50 −10 −10 −2 −2
−126 −42 −42 −42 −43 −42 −42 −50 −50 −10 −10 −2 −2
−126 −42 −42 −42 −42 −43 −42 −50 −50 −10 −10 −2 −2
−126 −42 −42 −42 −42 −42 −43 −50 −50 −10 −10 −2 −2
−6 −2 −2 −2 −2 −2 −2 −3 −2 0 0 0 0
−6 −2 −2 −2 −2 −2 −2 −2 −3 0 0 0 0
−30 −10 −10 −10 −10 −10 −10 −12 −12 −3 −2 0 0
−30 −10 −10 −10 −10 −10 −10 −12 −12 −2 −3 0 0
−150 −50 −50 −50 −50 −50 −50 −60 −60 −12 −12 −3 −2
−150 −50 −50 −50 −50 −50 −50 −60 −60 −12 −12 −2 −3

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

A direct calculation shows that the characteristic polynomial is

χϕ∗(t) = (t− 1)(t+ 1)10(t2 − 110t+ 1),

and so the first dynamical degree is λ1(ϕ) = 55 + 12
√

21 ≈ 109.99 and ϕ has positive entropy.
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Moreover, the 1-eigenspace of ϕ∗ is 1-dimensional, spanned by the canonical class KX .
Consequently, the only possible ϕ-invariant curve would be pluri-anticanonical, and to prove
that τ admits no periodic curve, it suffices to show that |−mKX | is not effective for any
m > 0. This is done in Corollary 10 below. □

In fact, we will show that the anticanonical class on a simple tri-Coble surface X is not
even pseudoeffective, (i.e. numerically a limit of effective classes), which implies that |−mKX |
is empty for every m > 0. This is straightforward: the Coble surface Spq has anti-bicanonical
class represented by an irreducible curve of negative self-intersection. A anti-bicanonical curve
on X = Spqr would correspond to a member of

⃓⃓
−2KSpq

⃓⃓
with nodes at the two points of r.

But this linear system contains only a single, smooth, rigid curve: it can not be deformed to
have nodes at the points r. This already shows that |−2KX | is not effective, and the fact
that it is not pseudoeffective is an easy extension of the argument.

Lemma 8. Suppose that X is a smooth projective surface containing an irreducible curve C1

with C2
1 < 0. Let C2 be another curve satisfying C1 · C2 ≥ 0. Then for any ϵ > 0, the class

C1 − ϵC2 is not pseudoeffective.

Proof. Let A be an ample class on X. We show first that any effective representative of
a class C1 − ϵC2 + δA for small δ must have C1 in its support with multiplicity close to 1.
Indeed, suppose that C1 + ϵA+ δA ≡ rC1 + F , where F is an effective divisor whose support
does not contain C1. Then F = (1 − r)C1 − ϵC2 + δA. Intersecting both sides with C1, we
obtain

F · C1 = (1 − r)C2
1 − ϵC1 · C2 + δA · C1

0 ≤ (1 − r)C2
1 + δA · C1

1 − r ≤ −δA · C1

C2
1

.

The second line follows from the fact that F ·C1 ≥ 0 while the third requires C2
1 < 0. Now

compute

F · A = (1 − r)C1 · A− ϵC2 · A+ δA2

≤
(︃
−δA · C1

C2
1

)︃
C1 · A− ϵC2 · A+ δA2

= δ

(︃
A2 − A · C1

C2
1

)︃
− ϵC2 · A.

If ϵ is fixed and δ <
(︂
A2 − A·C1

C2
1

)︂−1

(A · C2) is taken sufficiently small, the right side is

evidently negative, so that F · A < 0, which is impossible if F is effective. It follows that
C1−ϵC2+δA is not effective for sufficiently small δ, so that C1−ϵC2 is not pseudoeffective. □

Lemma 9. Suppose that S is a smooth surface and C ⊂ S is a smooth, irreducible curve
with C2 < 0. Let p be any point of S, and let π : S ′ → S be the blow-up of S at p, with
exceptional divisor E. Then the class π∗C − eE is not pseudoeffective for any e > 1.

Proof. The strict transform C ′ of C on S ′ has has class π∗C − bE, where b is either 0 or 1
(depending on whether p lies on C). Then C ′ is a smooth, irreducible curve with (C ′)2 < 0,
and the claim follows from Lemma 8 taking C1 = C ′ and C2 = E. □
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Corollary 10. Let X be a simple tri-Coble surface. Then −KX is not pseudoeffective, and
every linear system |−mKX | is empty.

Proof. The simplicity hypothesis means that X is obtained by blowing up two points on Spq,
where Spq has a unique irreducible rational curve in

⃓⃓
−2KSpq

⃓⃓
. From the adjunction theorem,

this curve is smooth of self-intersection −4, and since −2KX = π∗(−2KSpq) − 2(E1 + E2), it
follows from Lemma 9 that this class is not pseudoeffective. □

4. The existence of tri-Coble surfaces

There is still one piece missing: we must prove that tri-Coble surfaces actually exist. The
proof is by direct construction. By definition, a tri-Coble surface is a 6-point blow-up of a
smooth degree-3 weak del Pezzo surface S. To construct a tri-Coble surface, we will take S
to be a particular cubic surface in P3 and then blow up three pairs of points on S, which arise
as the tangency points S with three quadric surfaces, as described following Definition 2.

To actually find such configurations, it is helpful to invert our perspective. Rather than
fixing a cubic surface S ⊂ P3 and searching for six points p,q, r such that there exist three
quadrics each tangent at four of the six, we begin with three quadrics Q1, Q2, Q3 ⊂ P3 such
that each pair of quadrics are tangent at two points. Only after fixing the quadrics and the
six tangency points do we construct the cubic surface. For a cubic surface to pass through a
point and have a given tangent plane there imposes 3 conditions. Since the space of cubic
surfaces has dimension 19, we expect that given six points and prescribed tangent planes
at those points, there should exist a 19 − 6 × 3 = 1-dimensional pencil of satisfactory cubic
surfaces.

We must then check several non-degeneracy conditions to ensure that our surface is actually
a simple tri-Coble surface:

(1) S is smooth and irreducible;
(2) the blow-ups Sp, Sq, Sr are weak del Pezzo;
(3) no four of the six points are coplanar;
(4) the intersection of S with any plane through any three of the six points is a smooth

cubic;
(5) the tangent plane to S at any point does not pass through any other points;
(6) the intersections Qi ∩ Spqr are smooth and irreducible.

(Here (1) and (2) show that (T1) is satisfied. (3) and (4) together imply that (N1) holds
as required by (T2), while (5) checks (N2). At last, (6) implies that the surface is actually a
simple tri-Coble surface, so that one of the three blow-down Coble surfaces has a smooth
bi-anticanonical curve.)

With a bit of computer-aided experimentation, this strategy readily yields examples where
the quadrics and the tangency points are all defined over Q. Consider the following three
quadric surfaces in P3, with coordinates (w : x : y : z):

Q1 : 59w2 + x2 + y2 − 20wz + z2 = 0,

Q2 : −9w2 − x2 + 9y2 + z2 = 0,

Q3 : −9w2 − x2 + 9y2 − 6z2 = 0,
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as well as the six points

p1 = (1 : 4 : 0 : 5), q1 = (1 : 0 : 5 : 6), r1 = (12 : −15 : 13 : 0),

p2 = (1 : −4 : 0 : 5), q2 = (1 : 0 : −5 : 6), r2 = (−3 : 12 : 5 : 0).

The following table gives the tangent spaces TpiQj at the six points, using the coordinates
from the dual P3. An “X” in a column indicates that the surface does not pass through the
point.

Q1 Q2 Q3

p1 (−9 : −4 : 0 : 5) (−9 : −4 : 0 : 5) X
p2 (−9 : 4 : 0 : 5) (−9 : 4 : 0 : 5) X
q1 (1 : 0 : −5 : 4) X (1 : 0 : −5 : 4)
q2 (1 : 0 : 5 : 4) X (1 : 0 : 5 : 4)
r1 X (−36 : 5 : 39 : 0) (−36 : 5 : 39 : 0)
r2 X (9 : −4 : 15 : 0) (9 : −4 : 15 : 0)

An examination of the table shows that these quadrics satisfy the required pointwise
tangency conditions. It is then an exercise in linear algebra to write down a cubic surface
with the prescribed tangent planes at all six of these points. There is in fact a 1-dimensional
family of such cubics, with one such surface S defined by the vanishing of the equation

F = 9963w3 + 56187w2x+ 27707wx2 + 3018x3 + 12069w2y + 366x2y + 11457wy2

+ 3213xy2 + 351y3 − 5358w2z − 11610wxz − 3002x2z − 4140wyz + 18y2z(∗)

− 7643wz2 − 1857xz2 + 111yz2 + 38z3.

Remark. An easy dimension count suggests that on a general cubic S it should be possible
to find pairs p, q, and r so that the blow-up Spqr is a tri-Coble surface. However, actually
finding such points, even on the Fermat cubic, leads to equations with no obvious solutions.
The approach followed in this section seems to be more straightforward, even if it leads to a
somewhat cumbersome cubic surface.

To show Spqr is tri-Coble surface, it is still necessary to verify non-degeneracy conditions
(1)-(6) ensuring that the automorphisms τp, τq, and τr are all well-defined and that their
composition has no periodic curves. It seems unsurprising that these non-degeneracy condi-
tions hold, but since the cubic S is constructed as the solution to an interpolation problem,
it is difficult to directly control its geometry.

Although these verifications are tedious to carry out by hand, they are routine on a
computer. Notice that checking (2) does not actually necessitate the relatively difficult task
of finding the 27 lines on S: it is enough to check that the particular lines connecting pairs
of points are not contained in S. The nondegeneracy properties are checked for the specific
cubic (∗) in the Sage script nondegen.sage, which can be obtained at [8]. Note that all of
these are open conditions, and so the general cubic in the pencil constructed earlier also
satisfies these conditions.

5. Further properties of the automorphism group

In this section, we study the full group Aut(X) in somewhat more detail, proving the
following:

Theorem 11. Let X be a tri-Coble surface. Then:
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(1) The involutions τp, τq, and τr generate a free subgroup G ∼= (Z/2Z)∗3 ⊆ Aut(X).
(2) Suppose that f ∈ G is an automorphism in this subgroup. Then f has an invariant

curve if and only if it is conjugate to an iterate of one of the maps τp, τq, τr, τp ◦ τq,
τp ◦ τr, or τq ◦ τr.

(3) Aut(X) contains a subgroup isomorphic to Z ∗ Z, every non-trivial element of which
is an automorphism with no periodic curves.

Let G ⊂ Aut(X) be the subgroup generated by τp, τq, and τr. The proof is based on
constructing an action of G on a hyperbolic plane. We first describe a subspace of N1(X)
which is invariant under pulling back by elements of G. Write Ep for the sum of the two
exceptional divisors obtained by blowing up the two points of p, and similarly for the other
pairs. Consider first the involution τp. It must be that τ ∗p(KX) = KX . Similarly, we have
τ ∗p(Eq) = Eq and τ ∗p(Er) = Er, since these are the exceptional divisors obtained by blowing
up fixed points of τp. From the matrix for the pullback τ ∗ of the Bertini involution, choosing
Ep to be the sum E7 + E8, we see that

τ ∗(Ep) = 12H − 4
8∑︂

i=1

Ei − Ep = −4KX − Ep + 4Eq + 4Er.

It follows that the four-dimensional subspace W spanned by the classes KX , Ep, Eq, and
Er is invariant under τp. By the same argument, this same subspace is invariant under τq
and τr as well. Furthermore, since these automorphisms all preserve the intersection form on
N1(X), the orthogonal complement V = K⊥

X ⊂ W is also invariant. This is a 3-dimensional
subspace, spanned by the three classes Fp = −4KX + 3Eq + 3Er, Fq = −4KX + 3Ep + 3Er,
and Fr = −4KX + 3Ep + 3Eq. (It might seem simpler to choose the classes −4KX + 6Ep,
but we will see that the Fp are nef.)

With respect to the basis given by these classes, the three involutions act as:

(τp|V )∗ =

⎛⎝1 5 5
0 0 −1
0 −1 0

⎞⎠ , (τq|V )∗ =

⎛⎝ 0 0 −1
5 1 5
−1 0 0

⎞⎠ , (τr|V )∗ =

⎛⎝ 0 −1 0
−1 0 0
5 5 1

⎞⎠ .

Based on these matrices, one sees that the pullbacks given by the involutions on V are given
by reflection in the hyperplanes H⊥

p , H⊥
q , and H⊥

r , where

Hp = 5Fp − Fq − Fr

Hq = 5Fq − Fp − Fr

Hr = 5Fr − Fp − Fq.

Now, the intersection form on N1(X) restricts to V as a form with signature (1, 2). Since
the automorphism group preserves the intersection form, considering the subset ∆ ⊂ V
determined by classes x with ⟨x, x⟩ = 1, we obtain an action of Aut(X) on a real hyperbolic
plane. One can see in Figure 3 that the hyperplanes H⊥

p , H⊥
q , and H⊥

r do not intersect inside
∆, so the action of G is given by reflections in disjoint hyperplanes. This implies that there
are no relations among the involutions (e.g. by Poincaré’s polygon theorem [9]), yielding a
free group G ∼= (Z/2Z)∗3 ⊂ Aut(X). This proves the first claim of Theorem 11.

We next consider the three compositions σpq = τp ◦ τq, σpr = τp ◦ τr, and σqr = τq ◦ τr.
Each of these maps is of positive entropy, but has an invariant curve: for σpq, this is the
strict transform of the unique element of

⃓⃓
−2KSpq

⃓⃓
. Write Cpq, Cpr, and Cqr for these three

invariant curves.
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The 2-dimensional subspace in V spanned by 4Fp − Fr and 4Fq − Fr is invariant under
σpq, with similar formulas for the other pairs. As a result, pullback by σpq leaves invariant
the geodesic line Lpq ⊂ ∆ obtained as the intersection of this subspace with ∆, and σ∗

pq acts
on Lpq by a translation. Lines Lpr and Lqr are constructed in the same way. At last, write
θ+pq and θ−pq for the endpoints of these geodesics on the boundary of ∆. These are nef classes
which are eigenvectors for pullback by the corresponding automorphisms.

Since Cpq is invariant under σpq, we obtain
⟨︁
Cpq, θ

±
pq

⟩︁
= 0. Moreover, the form ⟨Cpq,−⟩

is nontrivial on V , with ker(⟨Cpq,−⟩) ∩ ∆ = Lpq. It follows that Amp(V ) = V ∩ Amp(X)
has intersection with ∆ lying entirely on one side of the geodesic line Lpq; classes in the
shaded areas of Figure 3 are not nef, because they have negative intersection with one of
Cpq, Cpr, and Cqr.

Let Σ denote the right-angled hyperbolic hexagon with edges determined by H⊥
p , H⊥

q ,

H⊥
r , Lp, Lq, and Lr. The six vertices of the hexagon are given by 3Fp + Fq − Fr and its

permutations. Figure 3 illustrates the important points and geodesics in ∆.

Σ

H⊥p

H⊥q H⊥r

θ+
pr

θ+
pq

θ+
qr

θ−pq

θ−qr

θ−pr
Lqr

LprLpq

Figure 3. The action of G on ∆

We claim any class in the interior of Σ is ample. Indeed, such a class is a linear combination
of the six eigenvector classes θ±pq, θ±pr, and θ±qr, hence is nef, and it has positive self-intersection.
So it suffices to check that there is no curve B for which ⟨µ,B⟩ = 0 for some µ in the hexagon
Σ. Suppose on the contrary that there is a curve B that has intersection 0 with a class µ in
Σ.

Suppose first that ⟨B,−⟩ = 0 identically on V , so that B lies in V ⊥. The action of G
on V ⊥ is of finite order, and so the union of the images of B under G is an invariant curve
for the entire group. However, we have seen that there is no such invariant curve. Instead,
suppose that ⟨B, v⟩ = 0 for some class in v ∈ V . Then the set of elements of ∆ orthogonal to
B gives a geodesic γ which meets Σ. Some of the six classes θ±pq, θ±pr, θ

±
qr lie on one side of γ,

and some lie on the other. In particular, one of these classes has negative intersection with
B, which is impossible since the classes are nef. We conclude that Σ ⊂ Amp(V ).

By taking the orbit of Σ under the maps σ∗
pq, σ∗

pr, and σ∗
qr, we obtain many more ample

regions in ∆. Similarly, taking the orbit of the shaded regions yields many non-ample regions.
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Indeed, the union of these two sets completely covers the interior of ∆, and we obtain a
complete picture of Amp(V ).

Let Λ be the limit set of G acting on ∂∆. This is a Cantor set, with complement the union
of the shaded intervals in Figure 4. The hyperbolic convex hull Conv(Λ) is the closure of
Amp(V ); it is the unshaded region in the figure. Observe that the boundary of Conv(Λ) is
given by curves of the form γ(Lpq), γ(Lpr), and γ(Lqr), for automorphisms γ ∈ G.

Figure 4. The set Conv(Λ)

Since G ∼= (Z/2Z)∗3, the only elements of finite order are conjugate to the generating
involutions. Suppose then that ψ ∈ G is of infinite order and that it has an invariant curve
B. Consider B⊥ ⊂ ∆. Since ∆ contains ample classes, B⊥ is a proper subset of ∆, and so it
is a geodesic. Since the orbit of an ample class under iterates of ψ must converge to B⊥, this
geodesic has nonempty intersection with the boundary of the nef cone. From the description
of the boundary of the nef cone, the only possibility is that that geodesic B⊥ is of the form
γ(Lpq), γ(Lpr), or γ(Lqr) for some γ ∈ G. If B⊥ = γ(Lpq), then ψ and γ ◦ σpq ◦ γ−1 both
preserve γ(Lpq). Since G is discrete it follows that ψ is an iterate of γ ◦ σpq ◦ γ−1. This
proves the second part of Theorem 11.

At last we must exhibit a free subgroup of Aut(X) with no elements conjugate to any
power of τp, τq, τr, σpq, σpr, or σqr. Let ξ = τpτqτr. Define

α = (τpτq)ξ(τpτq)

β = (τpτr)ξ(τpτr).

Let H = ⟨α, β⟩ ⊂ G ⊆ Aut(X) be the subgroup generated by α and β. When forming
any of the six products αα, αβ, αβ−1, ββ, βα, βα−1, or their inverses, there is at most one
cancellation of two consecutive copies of the same involution, which guarantees that H is free.

Finally, we will show that H has trivial intersection with the conjugacy classes mentioned
above. Any conjugacy class in the free product G ∼= (Z/2Z)∗3 has a unique (up to cyclic
permutation) representative in which the first and last letters are different (i.e. which is
cyclically reduced). Suppose that

w = αj1βj1 · · ·αjnβjn
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is an element of H. After replacing w by a conjugate by some element of H, we may assume
that it is cyclically reduced as an element of H with respect to the generators and α and β.
After expressing w as a word in τp, τq, and τr, from the definitions of α and β we again see
that cyclically permutation yields at most one additional cancellation. In particular, if w is
nontrivial, then it is conjugate to a cyclically reduced word which contains within it either
the product ξ = τpτqτr or ξ−1. However, no power of any of the six conjugacy classes of the
statement has a cyclically reduced representative which involves all three generators. We
conclude that w is not conjugate to any of these elements.

6. examples over Fp

In general it seems difficult to find configurations p and q with positive-entropy auto-
morphisms ϕp and ϕq for which q \ p is invariant under ϕp and p \ q is invariant under

ϕq. However, we observe now that over the field k = Fp, the algebraic closure of a finite
field, essentially any configuration will do. Most constructions of automorphisms of rational
surfaces, such as those of Bedford–Kim [2] or McMullen [10], work perfectly well over these
fields, although one must exercise some care that the characteristic is large enough to ensure
that the configurations p constructed there actually consist of sets of distinct points.

Theorem 12. Let p and q be two configurations of points in P2 for which there exist
automorphisms ϕp : Sp → Sp and ϕq : Sq → Sq. Then there exist positive integers m and n
so that ϕm

p ◦ ϕn
q lifts to an automorphism of Spq.

Proof. ϕp : Sp → Sp is defined over an algebraically closed field Fp. There exists a finite field
Fq such that all the points of p and q and the maps ϕp and ϕq are all defined over Fq.

Now, the number of Fq-points on Sp is finite, and these points are permuted by ϕp, so
some iterate ϕm

p fixes all the points of q \ p. Similarly, an iterate ϕn
q fixes all the points in

p \ q. Then the composition ϕm
p ◦ ϕn

q of these two iterates lifts to an automorphism of the
blow-up Spq. □

Let Sall
q denote the blow-up of P2

Fp
at all Fq-points for some prime power q = ps. The proof

of Theorem 12 shows that if p is a configuration defined over Fq, then any automorphism
ϕ : Sp → Sp has an iterate that lifts to an automorphism of Sall

q , so it seems reasonable to
expect that this group is quite large once q is sufficiently big.

Question 1. What can be said about the group Aut(Sall
q )? Is it finitely generated?
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[5] Jérémy Blanc. Dynamical degrees of (pseudo)-automorphisms fixing cubic hypersurfaces. Indiana Univ.
Math. J., 62(4):1143–1164, 2013.

[6] Arthur B. Coble. The Ten Nodes of the Rational Sextic and of the Cayley Symmetroid. Amer. J. Math.,
41(4):243–265, 1919.

[7] Igor V. Dolgachev. Classical algebraic geometry: A modern view. Cambridge University Press, Cambridge,
2012.

[8] John Lesieutre. Code for “Tri-Coble surfaces and their automorphisms”. https://doi.org/10.26207/
xwyq-hc68.
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