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CrossMark
Abstract
Objective. Direct synthesis of speech from neural signals could provide a fast and natural way
of communication to people with neurological diseases. Invasively-measured brain activity
(electrocorticography; ECoG) supplies the necessary temporal and spatial resolution to decode
fast and complex processes such as speech production. A number of impressive advances in
speech decoding using neural signals have been achieved in recent years, but the complex
dynamics are still not fully understood. However, it is unlikely that simple linear models can
capture the relation between neural activity and continuous spoken speech. Approach. Here
we show that deep neural networks can be used to map ECoG from speech production areas
onto an intermediate representation of speech (logMel spectrogram). The proposed method
uses a densely connected convolutional neural network topology which is well-suited to work
with the small amount of data available from each participant. Main results. In a study with six
participants, we achieved correlations up to » = 0.69 between the reconstructed and original
logMel spectrograms. We transfered our prediction back into an audible waveform by applying
a Wavenet vocoder. The vocoder was conditioned on logMel features that harnessed a much
larger, pre-existing data corpus to provide the most natural acoustic output. Significance. To
the best of our knowledge, this is the first time that high-quality speech has been reconstructed
from neural recordings during speech production using deep neural networks.

Keywords: speech synthesis, neural networks, Wavenet, electrocorticography, brain—computer
interfaces, BCI
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1. Introduction

The ability to speak is crucial for our daily interaction.
However, a number of diseases and disorders can result in
a loss of this ability, for example brainstem stroke, cerebral
palsy [1], amyotrophic lateral sclerosis [2, 3] and laryn-
geal cancer [4]. Various technologies have been proposed to
restore the ability to speak or to provide a means of commu-
nication (see [5] for a review), including brain computer inter-
faces (BCIs, [6]). The most natural approach for BCIs would
be to directly decode brain processes associated with speech
[7]. Invasively-measured brain activity, such as ECoG is par-
ticularly well-suited for the decoding of speech processes [8—
11], as it balances a very high spatial and temporal resolution
with broad coverage of the cortex.

In recent years, significant progress has been made in the
decoding of speech processes from intracranial signals. The
spatio-temporal dynamics of word retrieval during speech
production was shown in [12]. Other approaches demon-
strated that speech can be decoded from invasively measured
brain activity such as words [13], phonemes [14, 15], phonetic
features [16, 17], articulatory gestures [18] and continuous
sentences [19, 20].

These great advances would require a two-step approach
to restore a natural conversation, where in the first step neural
signals are transformed into a corresponding textual represen-
tations via a speech recognition system and in the second step
this text is transformed into audible speech via text-to-speech
synthesis.

However, using the textual representation as pivot has sev-
eral disadvantages [5]: (1) recognition/classification errors are
propagated to the downstream processes, i.e. if the speech rec-
ognition system produces wrong results, the speech synthesis
will be wrong as well, (2) since the recognition process needs
to take place prior to resynthesis, the two-step approach is too
time-consuming (>50ms [21, 22]) for real-time scenarios
where immediate audio feedback is needed, and (3) speech
carries information about prosody, emphasis, emotion etc
which are lost once transformed into text. For these reasons, it
would be desirable for spoken communication to directly syn-
thesize an audible speech waveform from the neural record-
ings [23].

In [24], Santoro et al reconstructed the spectro-temporal
modulations of real-life sounds from fMRI response patterns.
Kubanek et al [25] were able to track the speech envelope
from ECoG. Neural signatures of speech prosody in recep-
tive [26] and productive [27] speech cortices have been
described. Studies were able to reconstruct perceived speech
from ECoG signals [28] and to reconstruct spectral dynamics
of speech from ECoG [29]. In a pilot study, we showed that
it was possible to reconstruct an audio waveform from ECoG
signals during speech production [30], but to the best of our
knowledge, no study has reconstructed a high-quality audio
waveform of produced speech from ECoG using deep neural
networks.

Neural networks have shown great success in speech rec-
ognition [31] and speech synthesis [32]. However, so far

they have been used only rarely for brain recordings. This is
partially due to the very limited amount of speech data avail-
able for individual participants and the requirement to train
speaker dependent models. In traditional speech processing,
speaker dependent systems use dozens of hours of data for
training while high performing speaker independent systems
accumulate thousands of hours.

More recently, initial studies have successfully applied
deep learning methods to brain data [33-36] and BCI applica-
tions [37-42]. Here, we show that densely-connected convolu-
tional neural networks can be trained on limited training data
to map ECoG dynamics directly to a speech spectrogram. This
densely connected network architecture is specifically tailored
to cope with the small amount of data. We then use a Wavenet
vocoder [43] conditioned on logMel features to transform the
reconstructed logMel spectrogram to an audio waveform. In
this study, we restrict the vocoder to the conversion from an
encoded speech representation to an audible wavefile. The
Wavenet vocoder uses a much larger training corpus to map
the logMel spectrograms directly onto an acoustic speech
signal.

Recent BCI studies [40, 44, 45] apply deep neural net-
works on raw signals to avoid their dependency on hand-
crafted features by learning low-level features in the front
layers and high-level patterns at later stages. However, fea-
ture extraction on raw signals has to be trained by the net-
work and requires a sufficient amount of data to optimize the
additional parameters. In order to keep the number of param-
eters inside the densely-connected convolutional neural net-
works small, we have used specific hand-crafted features
to extract information in the high-gamma band. Previous
studies have shown that these features are suitable for the
transformation into a textual representation [19] and spectral
coefficients [30].

The resulting audio is of high quality and reconstructed
words are often intelligible. Thus, we present the first deep
neural network reconstructing high-quality audio from neural
signals during speech production.

2. Material and methods

2.1. Experiment and data recording

We recorded ECoG from six native English speaking par-
ticipants while they underwent awake craniotomies for brain
tumor resection. All participants gave informed consent and
the study was approved by the Institutional Review Board at
Northwestern University. All subjects had normal speech and
language function and normal hearing. ECoG was recorded
with a medium-density, 64-channel, 8 x 8 electrode grid
(Integra, 4 mm spacing) placed over the ventral motor cortex
(M1v), premotor cortex (PMv) and inferior frontal gyrus pars
opercularis (IFG). Grid locations were determined using ana-
tomical landmarks and direct cortical stimulation to confirm
coverage of speech articulatory sites. ECoG recordings were
sampled at 2kHz with Neuroport data acquisition system
(Blackrock Microsystems, Inc.).
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Figure 1. Illustration of the experiment. Participants are asked to repeat words shown on a screen. During speech production, ECoG data

and acoustic stream are recorded simultaneously.

Participants were asked to read aloud single words shown
to them on a screen while we recorded ECoG signals. These
words were predominantly monosyllabic and consonant-
vowel-consonant, and mostly compiled from the Modified
Rhyme Test [46]. Participants read between 244 and 372
words resulting in recording length between 8.5 and 12.7 min.
Note the extremely limited amount of subject dependent data
compared to traditional speech synthesis. Acoustic speech was
recorded using a unidirectional lapel microphone (Sennheiser)
and sampled at 48 kHz. Figure | visualizes our experimental
procedure. Stimulus presentation and simultaneous recording
were facilitated using BCI2000 [47].

2.2. Data processing

We first applied linear detrending to the ECoG signals and
attenuated the first harmonic of the 60 Hz line noise using
elliptic IIR notch filter (118-122 Hz, filter order 13). To extract
meaningful information from the ECoG signals, we calcu-
lated logarithmic power in the broadband-gamma frequency
range (70-170 Hz, filter order 13 and 14, respectively), which
is thought to largely reflect ensemble spiking [48] and con-
tains localized information about movement and speech pro-
cesses [49]. Broadband-gamma power was extracted in 50 ms
windows with an overlap of 10ms. This time interval was
chosen short enough to capture the fast processes of speech
production while simultaneously being long enough to esti-
mate broadband-gamma reliably. To estimate signal power,
we calculated the mean of the squared signal in each window.
We applied a logarithm transform to the extracted broadband-
gamma features to make their distribution more Gaussian.
We normalized broadband-gamma activity of each elec-
trode individually to zero mean and unit variance. To capture
the long-range dependencies of the speech production pro-
cess [50, 51], we included neighboring broadband-gamma
activity up to 200ms into the past and future in our study,
resulting in nine temporal contexts being stacked to form
our final features. This results in a feature space of size
64 electrodes x 9 temporal offsets. To represent the spatial

topography of the electrode array, we arranged our features as
a 8 x 8 x 9 matrix for decoding each time window.

For processing the acoustic data, we first downsampled the
speech signal to 16kHz. We transformed the waveform data
into the spectral domain using 50 ms windows with an overlap
of 10ms to maintain alignment with the neural data. We dis-
carded the phase information and only used the magnitude
of the spectrograms [28, 29, 52]. To compress the magnitude
spectrograms, we used 40 logarithmic mel-scaled spectral
bins which should better represent the acoustic information
in the speech data [53]. The logarithmic mel-scaled spectro-
grams (logMels) are extracted by taking the magnitude spec-
trogram and mapping it onto the mel-scale using triangular
filter banks. The compression is based on the usage of the mel-
scale which condenses frequency bands in accordance to the
human perception [53]. From now on we refer to the logMel
representation as the spectrogram.

2.3. Decoding approach

To transform the recorded neural signals into an audio wave-
form, we first trained densely connected convolutional neural
networks (DenseNets) [54] to map the spatio-temporal broad-
band-gamma activity onto logarithmic mel-scaled spectro-
grams. This was done for each participant individually, as
electrode grid placements and underlying brain topologies are
vastly different between participants. The DenseNet regres-
sion model is described in section 2.4.

We then used a Wavenet vocoder conditioned on the same
spectral features of speech to recreate an audio waveform
from the reconstructions of our densely connected convo-
lutional neural network. For this Wavenet vocoder, a much
larger data corpus could be used, as no user specific mapping
had to be learned. Section 2.5 describes the Wavenet vocoder
in more detail. Figure 2 highlights our decoding approach.
The broadband-gamma activity over time (purple) is fed into
the DenseNet regression model to reconstruct spectral fea-
tures of speech (yellow). These are then transformed into an
audio waveform using the Wavenet vocoder.
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Figure 3. Overview of the DenseNet network structure. Input samples are preprocessed features of the neural signal with the shape
8 x 8 x 9. The first two dimensions are used for the spatial alignment of the electrodes, while the third dimension comprises the temporal
dynamics. The network architecture consists of three Dense Blocks to map the neural features onto the speech spectrogram.

2.4. DenseNet regression model

The DenseNet architecture is a feed-forward multilayer net-
work which uses additional paths between earlier and later
layers in a dense structure. Each layer receives all feature
maps of previous layers as an input and propagates its own
feature maps to all subsequent layers. By passing the feature
maps to subsequent layers, shortcut connections are estab-
lished which improve the gradient and information flow in
the training. This behavior is similar to the ResNet [55] archi-
tecture, where an identity function is used to circumvent the
degradation problem. DenseNets were previously found to
require fewer parameters to achieve a similar performance as
ResNet [54]. ResNet’s solution relies on a residual mapping
which combines the input and the output of a layer sequence
by an addition operation. In contrast, DenseNet concatenates
the feature maps of preceding layers. This way, each convolu-
tion adds its local information to the collective knowledge in
the network and therewith forms an implicit global state. In
a classification task, the final softmax layer can be seen as a
classifier which takes the output of the previous layer and all
preceding feature maps under consideration for its prediction.

A few adjustments needed to be done to adapt DenseNet
for our regression task. On the one hand, it is intended for
the convolution operations to apply on all three dimensions,
namely the x and y position within the electrode grid and time,

to find pattern in the spatio-temporal space. We therefore used
3D convolutions as well as 3D pooling layers throughout the
network instead of their 2D counterparts used in traditional
image processing. On the other hand, we changed the output
layer to a fully connected layer with 40 neurons and a linear
activation function to create a continuous output for the spec-
tral coefficients.

Figure 3 shows an overview of the network structure and its
integration inside the synthesis pipeline. The architecture con-
sists of three dense blocks which group together a sequence
of sublayers. Each sublayer is a composition of the following
consecutive functions: batch normalization, rectified linear
unit (ReLU) and a 3 x 3 x 3 convolution. The number of
feature maps is set initially to 20 and increases according
to a growth rate of k = 10. Two sublayers were used in each
dense block yielding a total amount of 80 feature maps. Dense
blocks are connected through transition layers, which are
used as a downsampling operation for the feature maps of
preceding layers, to fit their dimensions for the input of the
next block. The output layer is a regressor, which estimates
the spectral coefficients based on the input data and the fea-
ture maps in the collective knowledge. Overall, our resulting
network comprises around 83000 trainable parameters. For
the training procedure, we used Adam [56] to minimize the
mean squared error loss and used a fixed number of 80 epochs.
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2.5. Wavenet vocoder for the reconstruction of audible
waveforms

In the transformation process of acoustic data into loga-
rithmic mel-scaled coefficients, we discard phase informa-
tion. Nevertheless, this information is crucial for the inversion
from the frequency domain back into a temporal signal.
Recent studies show that high quality speech waveforms can
be synthesized by using Wavenet [57] conditioned on acoustic
features estimated from a mel-cepstrum vocoder [58]. During
network training, the model learns the link between speech
signal and its acoustic features automatically without making
any assumptions about prior knowledge of speech. The syn-
thesized acoustic waveform generated by Wavenet recovers
the phase information previously lost.

In this paper, we conditioned Wavenet in the same way on
logarithmic mel-scaled coefficients as described in Tacotron-2
[43] for text-to-speech synthesis. The filterbank features tend
to outperform cepstral coefficients for local conditioning [59].
We used a separate dataset for training our Wavenet model.
The LJ-Speech corpus [60] contains utterances from a single
speaker reading passages from seven non-fictional books. The
length of an utterance varies between one and ten seconds

and sums up to a total amount of around 24 h of speech data.
Empirical tests based on the spectral coefficients of the refer-
ence data showed that this corpus is suitable to train Wavenet
and reconstruct high quality acoustic waveforms containing
intelligible speech and capturing the speaker characteristics
of the participants.

The internal architecture is depicted in figure 4. The
model expects two feature matrices with possibly differing
dimensions as inputs: the acoustic speech waveform x and
the spectral features ¢ for the local conditioning. Due to
the fact that the dimensions of both input data might not
match, a transformation is needed as an adjustment. An
initial 1 x 1 convolution is used to increase the number of
channels, known as residual channels. The spectral features
get upsampled by four consecutive transpose convolutions
to match the dimensions with the convolved acoustic speech
signal.

After adjusting both input sequences, a stack of residual
blocks is used whose interior is illustrated inside figure 4.
Each block contains a gated activation function which calcu-
lates a hidden state z given the following equations:

FU) = Wf(.j) xxU™D 4 Vf(.j) *C (1)
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Table 1. Overview of the hyperparameter choices made for our
Wavenet vocoder.

Hyperparameter Choice
Residual channels 512
Skip connections 256
Receptive field ~0.5s
Residual blocks 30
. . - .
G(/) — Wé/) *X(] ) + Vg(l) % C (2)
7 = tanh( FU) ) ® of G4 ) (3)

where * implies a dilated causal convolution, ©® denotes the
hadamard product and o(-) corresponds to the sigmoid func-
tion. The superscript j indicates the current residual block. W,
W, Vr and V, are trainable weights of the convolution. In the
gated activation function, the equations F' and G indicate the
filter and gate, respectively. A residual block uses two outputs
to speed up the training procedure of the network. Both out-
puts are based on the intermediate result of the hidden state z.
The residual blocks are connected throughout their stack by
using residual connections [55] which enable training of very
deep neural networks. For the prediction of the next audio
sample, the network uses skip connections. Both outputs are
computed in the following way:

D = RU) 4 Z(j) +x(j—1) 4)

st = §U) 4 ()] (5)

where * denotes a 1 x 1 convolution to adjust the dimension-
ality of the channels. R and S represent trainable weights of
their convolution operation.

In the stack of residual blocks, the dilation rate of the
dilated causal convolution increases exponentially and gets
reset after a fixed amounts of layers to start a new cycle.
Parameter choices have been made in accordance to the
Tacotron-2 System [43] which results in a stack of 30 residual
blocks and three dilation cycles.

Wavenet is an autoregressive model which predicts the
next audio sample based on all previously seen samples inside
its receptive field and its conditioning features:

P(y | Cy Xj— 1y eens xi—R)~ (6)

For the prediction of the next audio sample, the model con-
siders all skip connections from the residual blocks by summa-
tion and processes the results through a sequence of rectified
linear units and 1 x 1 convolutions as shown in figure 4.

Recent improvements suggest to model the generated
speech with a discretized mixture of logistic distributions
[61, 62]. We follow the proposed approach from Tacotron 2
and use a linear projection layer to predict the parameters for
each mixture component [43]. The Wavenet vocoder uses a
ten-component mixture of logistic distributions to model the
reconstructed speech signal.

In network training, we use Adam as our optimization
method with an initial leaning rate of 0.001. We trained our

Wavenet vocoder for a fixed amount of 600000 update steps.
All hyperparameter choices are summarized in table 1. We
based our Wavenet vocoder on an open source implementa-
tion available on GitHub [63].

3. Results

For each participant, we partitioned the recorded data into
disjoint sets for training and testing in a five-fold cross vali-
dation. This approach ensured that the complete spectrogram
could be reconstructed without operating on data that has been
seen before. Twenty percent of the training data are reserved
as a separate validation set to analyze the optimization process
of the network training. The reconstruction from DenseNet is
frame based and yields a spectrogram of the same length as
the original one.

We used the Pearson product-moment correlation for the
evaluation of our synthesized speech. The correlations are
computed for each frequency bin individually between the
reconstructed spectrogram and its original counterpart. For
comparison, we computed a chance level by splitting the data
at a random point in time and swapping both partitions. This
ensures that the structure of the neural signals is preserved
but the alignment to the spectral representation of speech is
shifted. To reconstruct a spectrogram based on broken align-
ment, we performed additional network training in a five-fold
cross validation with the randomized dataset. For each partici-
pant, we repeated the estimation of a random chance level 60
times by using unique splits along the temporal dimension to
approximate chance level.

Figure 5(a) summarizes our results for all participants
showing average correlations and their corresponding
standard deviation. We achieve correlations significantly
better than chance level (p < 0.001) for all six participants
with scores (mean + standard deviation) of r; = 0.19 & 0.12,
r =029+0.06, r; =0.56£0.18, s =034+£0.12, r5 =
0.69 £ 0.10 and r¢ = 0.41 4+ 0.07, respectively. Participant
five clearly outperforms the other participants. We hypoth-
esize that this might be due to having electrodes placed in
a better position to capture articulator-related information.
Across all participants, correlations of reconstructed spectro-
grams are considerably above chance level.

In figure 5(b) we investigate the distribution of Pearson cor-
relation coefficients for Participant 5 in more detail. For each
spectral bin, the chance level is given by the mean correlation
coefficient under consideration of all 60 spectrograms from
the baseline approximation. Our decoding approach achieves
consistently high correlations above chance level across all
spectral bins.

In order to evaluate the intelligibility of our reconstructed
speech waveform, we employed the short-time objective intel-
ligibilty measure (STOI) [64]. We used the original audio from
the recording of the experiment as our reference. Figure 5(c)
reports the STOI scores for each participant. For the chance
level, we took the randomized spectrogram that was better
than 95% of the randomization to estimate a waveform using
the Wavenet vocoder.
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An example reconstruction of an excerpt from the experi-
ment session of participant 5 is shown in figure 6(a) for visual
inspection. The top row corresponds to the spectrogram of the
reference data while the bottom row contains the time aligned
spectral coefficients estimated by the DenseNet model. It is
evident that the model has learned a distinguishable represen-
tation between silence and acoustic speech and captures many
of the intricate dynamics of human speech. Furthermore, early
characteristics of resonance frequencies are present in the
spectral coefficients of the predicted word articulation.

Figure 6(b) shows the resynthesized acoustic waveforms
of the same excerpt from the reconstruction example by using
the described Wavenet vocoder. Additionally, some listening
examples of original and reconstructed audio can be found in
the supplementary material (stacks.iop.org/JNE/16/036019/
mmedia). To compensate for artifacts of this conversion, we
applied the transformation on the original and reconstructed

spectrograms to isolate the synthesis quality of the trained
network.

4. Discussion

We have shown that speech audio can be decoded from ECoG
signals recorded from brain areas associated with speech pro-
duction. We achieve this by combining two deep neural net-
work topologies specifically designed for very different goals.
In the first step, we employ a densely connected convolu-
tional neural network which is well-suited to be trained on the
extremely limited datasets. This network transforms the mea-
sured brain activity to spectral features of speech. Correlations
of up to r = 0.69 across all frequency bands were achieved
by this network. Subsequently, a Wavenet vocoder is utilized
to map these spectral features of speech back onto an audio
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waveform. As this model does not have to be trained for each
participant individually, it is trained on a much larger speech
dataset and the topology is tailored to maximize speech
output quality. Selected examples of reconstructed audio can
be found in the supplementary material in which the original
articulation of participant 5 and the corresponding reconstruc-
tion is presented in pairs.

To the best of our knowledge, this is the first time that
high quality audio of speech has been reconstructed from
neural recordings of speech production using deep neural
networks. This is especially impressive considering the very
small amount of training data available. In general, traditional
speaker dependent speech processing models are trained with
dozens of hours of data. This is an important step towards
neural speech prostheses for speech impaired users. However,
in its current state, the proposed method is based on an offline
analysis. Due to its computational complexity, it is not yet
suitable for a real-time application. The integration of our
approach into a closed-loop system is limited by two draw-
backs. First, the optimization of the DenseNet regression
model described in section 2.4 is time-consuming and exceeds
the recording time of a typical experimental session. Second,
the transformation from the logMel spectrogram into audible
audio using the Wavenet vocoder is in its current implementa-
tion not able to generate an acoustic signal in real-time.

In the future, further investigation is needed to improve
training and decoding time to make it feasable to implement
in a real-time scenario. Such a real-time performance is nec-
essary for the embedding in a closed-loop system. Various
strategies such as parallel training and model averaging have
demonstrated reduced training time [65] and could be applied
to DenseNet model training. Considering the decoding phase,
recent studies using the Wavenet architecture have shown
promising results that a parallel feed-forward network [62] or
arecurrent neural network [66] can be trained for high-fidelity
audio generation.

While our study uses overtly-produced speech in motor-
intact participants, there are recent advances in decoding
motor function [67-70] in paralyzed patients that might be
extended to the decoding of speech from motor areas in the
future. Initial studies in the decoding of attempted [71] and
imagined speech [72] emphasize this point.

Our approach is a first step towards communication for
speech impaired users, but more research is needed to under-
stand speech representations in paralyzed patients. In sum-
mary, we show for the first time how two specialized deep
learning approaches can be used to reconstruct high-quality
speech from intracranial recordings during speech production.
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