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Abstract

Objective. Direct synthesis of speech from neural signals could provide a fast and natural way 
of communication to people with neurological diseases. Invasively-measured brain activity 
(electrocorticography; ECoG) supplies the necessary temporal and spatial resolution to decode 
fast and complex processes such as speech production. A number of impressive advances in 
speech decoding using neural signals have been achieved in recent years, but the complex 
dynamics are still not fully understood. However, it is unlikely that simple linear models can 
capture the relation between neural activity and continuous spoken speech. Approach. Here 
we show that deep neural networks can be used to map ECoG from speech production areas 
onto an intermediate representation of speech (logMel spectrogram). The proposed method 
uses a densely connected convolutional neural network topology which is well-suited to work 
with the small amount of data available from each participant. Main results. In a study with six 
participants, we achieved correlations up to r  =  0.69 between the reconstructed and original 
logMel spectrograms. We transfered our prediction back into an audible waveform by applying 
a Wavenet vocoder. The vocoder was conditioned on logMel features that harnessed a much 
larger, pre-existing data corpus to provide the most natural acoustic output. Significance. To 
the best of our knowledge, this is the first time that high-quality speech has been reconstructed 
from neural recordings during speech production using deep neural networks.

Keywords: speech synthesis, neural networks, Wavenet, electrocorticography, brain–computer 
interfaces, BCI
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1. Introduction

The ability to speak is crucial for our daily interaction. 
However, a number of diseases and disorders can result in 
a loss of this ability, for example brainstem stroke, cerebral 
palsy [1], amyotrophic lateral sclerosis [2, 3] and laryn-
geal cancer [4]. Various technologies have been proposed to 
restore the ability to speak or to provide a means of commu-
nication (see [5] for a review), including brain computer inter-
faces (BCIs, [6]). The most natural approach for BCIs would 
be to directly decode brain processes associated with speech 
[7]. Invasively-measured brain activity, such as ECoG is par-
ticularly well-suited for the decoding of speech processes [8–
11], as it balances a very high spatial and temporal resolution 
with broad coverage of the cortex.

In recent years, significant progress has been made in the 
decoding of speech processes from intracranial signals. The 
spatio-temporal dynamics of word retrieval during speech 
production was shown in [12]. Other approaches demon-
strated that speech can be decoded from invasively measured 
brain activity such as words [13], phonemes [14, 15], phonetic 
features [16, 17], articulatory gestures [18] and continuous 
sentences [19, 20].

These great advances would require a two-step approach 
to restore a natural conversation, where in the first step neural 
signals are transformed into a corresponding textual represen-
tations via a speech recognition system and in the second step 
this text is transformed into audible speech via text-to-speech 
synthesis.

However, using the textual representation as pivot has sev-
eral disadvantages [5]: (1) recognition/classification errors are 
propagated to the downstream processes, i.e. if the speech rec-
ognition system produces wrong results, the speech synthesis 
will be wrong as well, (2) since the recognition process needs 
to take place prior to resynthesis, the two-step approach is too 
time-consuming (>50 ms [21, 22]) for real-time scenarios 
where immediate audio feedback is needed, and (3) speech 
carries information about prosody, emphasis, emotion etc 
which are lost once transformed into text. For these reasons, it 
would be desirable for spoken communication to directly syn-
thesize an audible speech waveform from the neural record-
ings [23].

In [24], Santoro et  al reconstructed the spectro-temporal 
modulations of real-life sounds from fMRI response patterns. 
Kubanek et  al [25] were able to track the speech envelope 
from ECoG. Neural signatures of speech prosody in recep-
tive [26] and productive [27] speech cortices have been 
described. Studies were able to reconstruct perceived speech 
from ECoG signals [28] and to reconstruct spectral dynamics 
of speech from ECoG [29]. In a pilot study, we showed that 
it was possible to reconstruct an audio waveform from ECoG 
signals during speech production [30], but to the best of our 
knowledge, no study has reconstructed a high-quality audio 
waveform of produced speech from ECoG using deep neural 
networks.

Neural networks have shown great success in speech rec-
ognition [31] and speech synthesis [32]. However, so far 

they have been used only rarely for brain recordings. This is 
partially due to the very limited amount of speech data avail-
able for individual participants and the requirement to train 
speaker dependent models. In traditional speech processing, 
speaker dependent systems use dozens of hours of data for 
training while high performing speaker independent systems 
accumulate thousands of hours.

More recently, initial studies have successfully applied 
deep learning methods to brain data [33–36] and BCI applica-
tions [37–42]. Here, we show that densely-connected convolu-
tional neural networks can be trained on limited training data 
to map ECoG dynamics directly to a speech spectrogram. This 
densely connected network architecture is specifically tailored 
to cope with the small amount of data. We then use a Wavenet 
vocoder [43] conditioned on logMel features to transform the 
reconstructed logMel spectrogram to an audio waveform. In 
this study, we restrict the vocoder to the conversion from an 
encoded speech representation to an audible wavefile. The 
Wavenet vocoder uses a much larger training corpus to map 
the logMel spectrograms directly onto an acoustic speech 
signal.

Recent BCI studies [40, 44, 45] apply deep neural net-
works on raw signals to avoid their dependency on hand-
crafted features by learning low-level features in the front 
layers and high-level patterns at later stages. However, fea-
ture extraction on raw signals has to be trained by the net-
work and requires a sufficient amount of data to optimize the 
additional param eters. In order to keep the number of param-
eters inside the densely-connected convolutional neural net-
works small, we have used specific hand-crafted features 
to extract information in the high-gamma band. Previous 
studies have shown that these features are suitable for the 
transformation into a textual representation [19] and spectral 
coefficients [30].

The resulting audio is of high quality and reconstructed 
words are often intelligible. Thus, we present the first deep 
neural network reconstructing high-quality audio from neural 
signals during speech production.

2. Material and methods

2.1. Experiment and data recording

We recorded ECoG from six native English speaking par-
ticipants while they underwent awake craniotomies for brain 
tumor resection. All participants gave informed consent and 
the study was approved by the Institutional Review Board at 
Northwestern University. All subjects had normal speech and 
language function and normal hearing. ECoG was recorded 
with a medium-density, 64-channel, 8 × 8 electrode grid 
(Integra, 4 mm spacing) placed over the ventral motor cortex 
(M1v), premotor cortex (PMv) and inferior frontal gyrus pars 
opercularis (IFG). Grid locations were determined using ana-
tomical landmarks and direct cortical stimulation to confirm 
coverage of speech articulatory sites. ECoG recordings were 
sampled at 2 kHz with Neuroport data acquisition system 
(Blackrock Microsystems, Inc.).

J. Neural Eng.  ( ) 036019
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Participants were asked to read aloud single words shown 
to them on a screen while we recorded ECoG signals. These 
words were predominantly monosyllabic and consonant-
vowel-consonant, and mostly compiled from the Modified 
Rhyme Test [46]. Participants read between 244 and 372 
words resulting in recording length between 8.5 and 12.7 min. 
Note the extremely limited amount of subject dependent data 
compared to traditional speech synthesis. Acoustic speech was 
recorded using a unidirectional lapel microphone (Sennheiser) 
and sampled at 48 kHz. Figure 1 visualizes our experimental 
procedure. Stimulus presentation and simultaneous recording 
were facilitated using BCI2000 [47].

2.2. Data processing

We first applied linear detrending to the ECoG signals and 
attenuated the first harmonic of the 60 Hz line noise using 
elliptic IIR notch filter (118–122 Hz, filter order 13). To extract 
meaningful information from the ECoG signals, we calcu-
lated logarithmic power in the broadband-gamma frequency 
range (70–170 Hz, filter order 13 and 14, respectively), which 
is thought to largely reflect ensemble spiking [48] and con-
tains localized information about movement and speech pro-
cesses [49]. Broadband-gamma power was extracted in 50 ms 
windows with an overlap of 10 ms. This time interval was 
chosen short enough to capture the fast processes of speech 
production while simultaneously being long enough to esti-
mate broadband-gamma reliably. To estimate signal power, 
we calculated the mean of the squared signal in each window. 
We applied a logarithm transform to the extracted broadband-
gamma features to make their distribution more Gaussian.

We normalized broadband-gamma activity of each elec-
trode individually to zero mean and unit variance. To capture 
the long-range dependencies of the speech production pro-
cess [50, 51], we included neighboring broadband-gamma 
activity up to 200 ms into the past and future in our study, 
resulting in nine temporal contexts being stacked to form 
our final features. This results in a feature space of size 
64 electrodes × 9 temporal offsets. To represent the spatial 

topography of the electrode array, we arranged our features as 
a 8 × 8 × 9 matrix for decoding each time window.

For processing the acoustic data, we first downsampled the 
speech signal to 16 kHz. We transformed the waveform data 
into the spectral domain using 50 ms windows with an overlap 
of 10 ms to maintain alignment with the neural data. We dis-
carded the phase information and only used the magnitude 
of the spectrograms [28, 29, 52]. To compress the magnitude 
spectrograms, we used 40 logarithmic mel-scaled spectral 
bins which should better represent the acoustic information 
in the speech data [53]. The logarithmic mel-scaled spectro-
grams (logMels) are extracted by taking the magnitude spec-
trogram and mapping it onto the mel-scale using triangular 
filter banks. The compression is based on the usage of the mel-
scale which condenses frequency bands in accordance to the 
human perception [53]. From now on we refer to the logMel 
representation as the spectrogram.

2.3. Decoding approach

To transform the recorded neural signals into an audio wave-
form, we first trained densely connected convolutional neural 
networks (DenseNets) [54] to map the spatio-temporal broad-
band-gamma activity onto logarithmic mel-scaled spectro-
grams. This was done for each participant individually, as 
electrode grid placements and underlying brain topologies are 
vastly different between participants. The DenseNet regres-
sion model is described in section 2.4.

We then used a Wavenet vocoder conditioned on the same 
spectral features of speech to recreate an audio waveform 
from the reconstructions of our densely connected convo-
lutional neural network. For this Wavenet vocoder, a much 
larger data corpus could be used, as no user specific mapping 
had to be learned. Section 2.5 describes the Wavenet vocoder 
in more detail. Figure  2 highlights our decoding approach. 
The broadband-gamma activity over time (purple) is fed into 
the DenseNet regression model to reconstruct spectral fea-
tures of speech (yellow). These are then transformed into an 
audio waveform using the Wavenet vocoder.

Figure 1. Illustration of the experiment. Participants are asked to repeat words shown on a screen. During speech production, ECoG data 
and acoustic stream are recorded simultaneously.

J. Neural Eng.  ( ) 036019
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2.4. DenseNet regression model

The DenseNet architecture is a feed-forward multilayer net-
work which uses additional paths between earlier and later 
layers in a dense structure. Each layer receives all feature 
maps of previous layers as an input and propagates its own 
feature maps to all subsequent layers. By passing the feature 
maps to subsequent layers, shortcut connections are estab-
lished which improve the gradient and information flow in 
the training. This behavior is similar to the ResNet [55] archi-
tecture, where an identity function is used to circumvent the 
degradation problem. DenseNets were previously found to 
require fewer parameters to achieve a similar performance as 
ResNet [54]. ResNet’s solution relies on a residual mapping 
which combines the input and the output of a layer sequence 
by an addition operation. In contrast, DenseNet concatenates 
the feature maps of preceding layers. This way, each convolu-
tion adds its local information to the collective knowledge in 
the network and therewith forms an implicit global state. In 
a classification task, the final softmax layer can be seen as a 
classifier which takes the output of the previous layer and all 
preceding feature maps under consideration for its prediction.

A few adjustments needed to be done to adapt DenseNet 
for our regression task. On the one hand, it is intended for 
the convolution operations to apply on all three dimensions, 
namely the x and y  position within the electrode grid and time, 

to find pattern in the spatio-temporal space. We therefore used 
3D convolutions as well as 3D pooling layers throughout the 
network instead of their 2D counterparts used in traditional 
image processing. On the other hand, we changed the output 
layer to a fully connected layer with 40 neurons and a linear 
activation function to create a continuous output for the spec-
tral coefficients.

Figure 3 shows an overview of the network structure and its 
integration inside the synthesis pipeline. The architecture con-
sists of three dense blocks which group together a sequence 
of sublayers. Each sublayer is a composition of the following 
consecutive functions: batch normalization, rectified linear 
unit (ReLU) and a 3 × 3 × 3 convolution. The number of 
feature maps is set initially to 20 and increases according 
to a growth rate of k  =  10. Two sublayers were used in each 
dense block yielding a total amount of 80 feature maps. Dense 
blocks are connected through transition layers, which are 
used as a downsampling operation for the feature maps of 
preceding layers, to fit their dimensions for the input of the 
next block. The output layer is a regressor, which estimates 
the spectral coefficients based on the input data and the fea-
ture maps in the collective knowledge. Overall, our resulting 
network comprises around 83 000 trainable parameters. For 
the training procedure, we used Adam [56] to minimize the 
mean squared error loss and used a fixed number of 80 epochs.

Figure 2. Overview of the decoding approach illustrating the transformation of neural data into an audible waveform. ECoG features for 
each time window are fed into DenseNet regression model to reconstruct the logarithmic mel-scaled spectrogram. Wavenet is then used to 
reconstruct an audio waveform from the spectrogram.

Figure 3. Overview of the DenseNet network structure. Input samples are preprocessed features of the neural signal with the shape 
8 × 8 × 9. The first two dimensions are used for the spatial alignment of the electrodes, while the third dimension comprises the temporal 
dynamics. The network architecture consists of three Dense Blocks to map the neural features onto the speech spectrogram.

J. Neural Eng.  ( ) 036019
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2.5. Wavenet vocoder for the reconstruction of audible  
waveforms

In the transformation process of acoustic data into loga-
rithmic mel-scaled coefficients, we discard phase informa-
tion. Nevertheless, this information is crucial for the inversion 
from the frequency domain back into a temporal signal. 
Recent studies show that high quality speech waveforms can 
be synthesized by using Wavenet [57] conditioned on acoustic 
features estimated from a mel-cepstrum vocoder [58]. During 
network training, the model learns the link between speech 
signal and its acoustic features automatically without making 
any assumptions about prior knowledge of speech. The syn-
thesized acoustic waveform generated by Wavenet recovers 
the phase information previously lost.

In this paper, we conditioned Wavenet in the same way on 
logarithmic mel-scaled coefficients as described in Tacotron-2 
[43] for text-to-speech synthesis. The filterbank features tend 
to outperform cepstral coefficients for local conditioning [59]. 
We used a separate dataset for training our Wavenet model. 
The LJ-Speech corpus [60] contains utterances from a single 
speaker reading passages from seven non-fictional books. The 
length of an utterance varies between one and ten seconds 

and sums up to a total amount of around 24 h of speech data. 
Empirical tests based on the spectral coefficients of the refer-
ence data showed that this corpus is suitable to train Wavenet 
and reconstruct high quality acoustic waveforms containing 
intelligible speech and capturing the speaker characteristics 
of the participants.

The internal architecture is depicted in figure  4. The 
model expects two feature matrices with possibly differing 
dimensions as inputs: the acoustic speech waveform x and 
the spectral features c for the local conditioning. Due to 
the fact that the dimensions of both input data might not 
match, a transformation is needed as an adjustment. An 
initial 1 × 1 convolution is used to increase the number of 
channels, known as residual channels. The spectral features 
get upsampled by four consecutive transpose convolutions 
to match the dimensions with the convolved acoustic speech 
signal.

After adjusting both input sequences, a stack of residual 
blocks is used whose interior is illustrated inside figure  4. 
Each block contains a gated activation function which calcu-
lates a hidden state z given the following equations:

F( j) = W( j)
f ∗ x( j−1) + V( j)

f ∗ c (1)

Figure 4. Overview of the Wavenet vocoder architecture. The network comprises a stack of 30 residual blocks to find a mapping between 
the acoustic speech signal x to itself considering the extracted features c . Each block has a separate output which are summed in the 
calculation of the actual prediction. We use a ten-component mixture of logistic distributions (MoL) for the prediction of audio samples.

J. Neural Eng.  ( ) 036019
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G( j) = W( j)
g ∗ x( j−1) + V( j)

g ∗ c (2)

z( j) = tanh( F( j) ) � σ( G( j) ), (3)

where ∗ implies a dilated causal convolution, � denotes the 
hadamard product and σ(·) corresponds to the sigmoid func-
tion. The superscript j  indicates the current residual block. Wf , 
Wg, Vf  and Vg are trainable weights of the convolution. In the 
gated activation function, the equations F and G indicate the 
filter and gate, respectively. A residual block uses two outputs 
to speed up the training procedure of the network. Both out-
puts are based on the intermediate result of the hidden state z. 
The residual blocks are connected throughout their stack by 
using residual connections [55] which enable training of very 
deep neural networks. For the prediction of the next audio 
sample, the network uses skip connections. Both outputs are 
computed in the following way:

x( j) = R( j) ∗ z( j) + x( j−1) (4)

s( j) = S( j) ∗ z( j), (5)

where ∗ denotes a 1 × 1 convolution to adjust the dimension-
ality of the channels. R and S represent trainable weights of 
their convolution operation.

In the stack of residual blocks, the dilation rate of the 
dilated causal convolution increases exponentially and gets 
reset after a fixed amounts of layers to start a new cycle. 
Parameter choices have been made in accordance to the 
Tacotron-2 System [43] which results in a stack of 30 residual 
blocks and three dilation cycles.

Wavenet is an autoregressive model which predicts the 
next audio sample based on all previously seen samples inside 
its receptive field and its conditioning features:

P(y | c, xi−1, ..., xi−R). (6)

For the prediction of the next audio sample, the model con-
siders all skip connections from the residual blocks by summa-
tion and processes the results through a sequence of rectified 
linear units and 1 × 1 convolutions as shown in figure 4.

Recent improvements suggest to model the generated 
speech with a discretized mixture of logistic distributions 
[61, 62]. We follow the proposed approach from Tacotron 2 
and use a linear projection layer to predict the parameters for 
each mixture component [43]. The Wavenet vocoder uses a 
ten-component mixture of logistic distributions to model the 
reconstructed speech signal.

In network training, we use Adam as our optimization 
method with an initial leaning rate of 0.001. We trained our 

Wavenet vocoder for a fixed amount of 600 000 update steps. 
All hyperparameter choices are summarized in table  1. We 
based our Wavenet vocoder on an open source implementa-
tion available on GitHub [63].

3. Results

For each participant, we partitioned the recorded data into 
disjoint sets for training and testing in a five-fold cross vali-
dation. This approach ensured that the complete spectrogram 
could be reconstructed without operating on data that has been 
seen before. Twenty percent of the training data are reserved 
as a separate validation set to analyze the optimization process 
of the network training. The reconstruction from DenseNet is 
frame based and yields a spectrogram of the same length as 
the original one.

We used the Pearson product-moment correlation for the 
evaluation of our synthesized speech. The correlations are 
computed for each frequency bin individually between the 
reconstructed spectrogram and its original counterpart. For 
comparison, we computed a chance level by splitting the data 
at a random point in time and swapping both partitions. This 
ensures that the structure of the neural signals is preserved 
but the alignment to the spectral representation of speech is 
shifted. To reconstruct a spectrogram based on broken align-
ment, we performed additional network training in a five-fold 
cross validation with the randomized dataset. For each partici-
pant, we repeated the estimation of a random chance level 60 
times by using unique splits along the temporal dimension to 
approximate chance level.

Figure 5(a) summarizes our results for all participants 
showing average correlations and their corresponding 
standard deviation. We achieve correlations significantly 
better than chance level (p   <  0.001) for all six participants 
with scores (mean ± standard deviation) of r1 = 0.19 ± 0.12,  
r2 = 0.29 ± 0.06, r3 = 0.56 ± 0.18, r4 = 0.34 ± 0.12, r5 =  
0.69 ± 0.10 and r6 = 0.41 ± 0.07, respectively. Participant 
five clearly outperforms the other participants. We hypoth-
esize that this might be due to having electrodes placed in 
a better position to capture articulator-related information. 
Across all participants, correlations of reconstructed spectro-
grams are considerably above chance level.

In figure 5(b) we investigate the distribution of Pearson cor-
relation coefficients for Participant 5 in more detail. For each 
spectral bin, the chance level is given by the mean correlation 
coefficient under consideration of all 60 spectrograms from 
the baseline approximation. Our decoding approach achieves 
consistently high correlations above chance level across all 
spectral bins.

In order to evaluate the intelligibility of our reconstructed 
speech waveform, we employed the short-time objective intel-
ligibilty measure (STOI) [64]. We used the original audio from 
the recording of the experiment as our reference. Figure 5(c) 
reports the STOI scores for each participant. For the chance 
level, we took the randomized spectrogram that was better 
than 95% of the randomization to estimate a waveform using 
the Wavenet vocoder.

Table 1. Overview of the hyperparameter choices made for our 
Wavenet vocoder.

Hyperparameter Choice

Residual channels 512
Skip connections 256
Receptive field ∼0.5 s
Residual blocks 30

J. Neural Eng.  ( ) 036019



M Angrick et al

7

An example reconstruction of an excerpt from the experi-
ment session of participant 5 is shown in figure 6(a) for visual 
inspection. The top row corresponds to the spectrogram of the 
reference data while the bottom row contains the time aligned 
spectral coefficients estimated by the DenseNet model. It is 
evident that the model has learned a distinguishable represen-
tation between silence and acoustic speech and captures many 
of the intricate dynamics of human speech. Furthermore, early 
characteristics of resonance frequencies are present in the 
spectral coefficients of the predicted word articulation.

Figure 6(b) shows the resynthesized acoustic waveforms 
of the same excerpt from the reconstruction example by using 
the described Wavenet vocoder. Additionally, some listening 
examples of original and reconstructed audio can be found in 
the supplementary material (stacks.iop.org/JNE/16/036019/
mmedia). To compensate for artifacts of this conversion, we 
applied the transformation on the original and reconstructed 

spectrograms to isolate the synthesis quality of the trained 
network.

4. Discussion

We have shown that speech audio can be decoded from ECoG 
signals recorded from brain areas associated with speech pro-
duction. We achieve this by combining two deep neural net-
work topologies specifically designed for very different goals. 
In the first step, we employ a densely connected convolu-
tional neural network which is well-suited to be trained on the 
extremely limited datasets. This network transforms the mea-
sured brain activity to spectral features of speech. Correlations 
of up to r  =  0.69 across all frequency bands were achieved 
by this network. Subsequently, a Wavenet vocoder is utilized 
to map these spectral features of speech back onto an audio 

Figure 5. Reconstruction performance of DenseNet compared to random chance. (a) Pearson correlation coefficients between original and 
reconstructed spectrograms for each participant. Bars indicate the mean over all logarithmic mel-scaled coefficients while whiskers denote 
the standard deviation. (b) Detailed performance across all spectral bins for participant 5. (c) STOI scores as an objective intelligibility 
measure in comparison to the chance level.

Figure 6. Reconstruction example for visual inspection. (a) compares a time-aligned excerpt in the spectral domain of participant 5 and 
emphasizes the quality of the reconstructed acoustic speech characteristics. (b) shows the generated waveform representation of the same 
excerpt as in the spectrogram comparison. Spoken words are given below.

J. Neural Eng.  ( ) 036019
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waveform. As this model does not have to be trained for each 
participant individually, it is trained on a much larger speech 
dataset and the topology is tailored to maximize speech 
output quality. Selected examples of reconstructed audio can 
be found in the supplementary material in which the original 
articulation of participant 5 and the corresponding reconstruc-
tion is presented in pairs.

To the best of our knowledge, this is the first time that 
high quality audio of speech has been reconstructed from 
neural recordings of speech production using deep neural 
networks. This is especially impressive considering the very 
small amount of training data available. In general, traditional 
speaker dependent speech processing models are trained with 
dozens of hours of data. This is an important step towards 
neural speech prostheses for speech impaired users. However, 
in its current state, the proposed method is based on an offline 
analysis. Due to its computational complexity, it is not yet 
suitable for a real-time application. The integration of our 
approach into a closed-loop system is limited by two draw-
backs. First, the optimization of the DenseNet regression 
model described in section 2.4 is time-consuming and exceeds 
the recording time of a typical experimental session. Second, 
the transformation from the logMel spectrogram into audible 
audio using the Wavenet vocoder is in its current implementa-
tion not able to generate an acoustic signal in real-time.

In the future, further investigation is needed to improve 
training and decoding time to make it feasable to implement 
in a real-time scenario. Such a real-time performance is nec-
essary for the embedding in a closed-loop system. Various 
strategies such as parallel training and model averaging have 
demonstrated reduced training time [65] and could be applied 
to DenseNet model training. Considering the decoding phase, 
recent studies using the Wavenet architecture have shown 
promising results that a parallel feed-forward network [62] or 
a recurrent neural network [66] can be trained for high-fidelity 
audio generation.

While our study uses overtly-produced speech in motor-
intact participants, there are recent advances in decoding 
motor function [67–70] in paralyzed patients that might be 
extended to the decoding of speech from motor areas in the 
future. Initial studies in the decoding of attempted [71] and 
imagined speech [72] emphasize this point.

Our approach is a first step towards communication for 
speech impaired users, but more research is needed to under-
stand speech representations in paralyzed patients. In sum-
mary, we show for the first time how two specialized deep 
learning approaches can be used to reconstruct high-quality 
speech from intracranial recordings during speech production.
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