NOTIONS OF NUMERICAL IITAKA DIMENSION DO NOT COINCIDE
JOHN LESIEUTRE

ABSTRACT. Let X be a smooth projective variety. The Iitaka dimension of a divisor D is an
important invariant, but it does not only depend on the numerical class of D. However, there
are several definitions of “numerical litaka dimension”, depending only on the numerical class.
In this note, we show that there exists a pseuodoeffective R-divisor for which these invariants
take different values. The key is the construction of an example of a pseudoeffective R-divisor
D, for which h%(X,|mD, | + A) is bounded above and below by multiples of m3/2 for any
sufficiently ample A.

1. INTRODUCTION

Given a divisor D on a projective variety X, the litaka dimension of D is a fundamental
invariant measuring the asymptotic growth of spaces of sections of mD.

Theorem-Definition (e.g. [10, Corollary 2.1.38]). Suppose that X is a smooth projective
variety and D is a divisor on X. There exists an integer (D), the litaka dimension of D, as
well as constants C,Cy > 0 such that for sufficiently large and divisible m,

Cym™ P < B(X, mD) < Com”™P).

The most important case is when D = K is the canonical class, in which case k(Kx) is
simply the Kodaira dimension of X.

The litaka dimension has the inconvenient property that it is not a numerical invariant of
D. Tt is possible, for example, that there exist two divisors D; and D, which have the same
numerical class, but such that any multiple of D; is rigid, while Dy moves in a pencil. In this
case, k(Dp) = 0 while k(D,) > 1 [11, Example 6.1].

One approach to constructing a numerical analog of the Iitaka dimension is to perturb each
mD by a fixed ample divisor A, considering the dimensions h°(X,mD + A) as m increases.
This growth of these sections does indeed yield an important numerical invariant, Nakayama’s
Ko (D). There are a number of other possible definitions of numerical dimension, some of
which we recall in the next section.

The main result of this paper is that, at least when D is an R-divisor, the spaces of sections
h(X, |mD] + A) need not even grow polynomially in m.

Theorem 1. There exists a smooth projective threefold X and a pseudoeffective R-divisor D
on X such that for any sufficiently ample class A, there exist constants Cy,Cy > 0 so that

Cym®? < BO(X, |mD| + A) < Cym®/?

As a consequence of this calculation, we conclude that various notions of numerical
dimension do not coincide in general, contrary to general expectation. The example is a
pseudoeffective R-divisor on a Calabi—Yau threefold X which has previously appeared in the

work of Oguiso [15].
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2. PRELIMINARIES

We begin with some preliminary definitions. We work throughout over an algebraically
closed field K of characteristic 0. Write = for the relation of numerical equivalence and
N'(X) for the finite-dimensional R-vector space of numerical classes of divisors on X. If D

is a Cartier divisor, we will write h°(X, D) for h°(X, Ox(D)).

Definition 1 ([I3, Ch. V]). The numerical dimension x,(D) is the largest integer k such
that for some ample divisor A, one has

hO(X, |mD] + A)

lim sup k > 0.
m—oo m
If no such k exists, we take k,(D) = —oo. We will also consider a closely related invariant:

R

Ky (D) is the supremum of the real numbers for which such an inequality holds. It will follow

from our example that these two quantities may be distinct.

Remark 1. There are several variations on this definition. For example, one might replace
the lim sup by a lim inf; this is the definition of s, used in [4] and some older versions of [13].
Nakayama denotes this invariant by x_. It remains unclear whether these values can be
distinct.
It is also possible to ask for the smallest integer k for which
R (X, |mD] + A)

lim sup - < 00.
m—00 m

Nakayama denotes the resulting invariant by ) (D). This is the version of numerical
dimension used in, for example, [9]. Our main example shows that this invariant is not equal
to k(D) in general.

An important result of Nakayama [13, Theorem V.1.12] states that if D is a pseudoeffective
R-divisor on X for which h°(X, |[mD] + A) is not bounded in m (i.e. for which D # N, (D)),
then for any sufficiently ample divisor A there is a constant C' for which

R(X,Ox(|mD] + A)) > Cm

for all m. The same result has been recovered in positive characteristic [4]. It follows that if
h°(X,Ox(|mD]| + A)) is not bounded, then x¥(D) > 1.

A second definition of numerical dimension, Nakayama’s x, (D), is based on the notion of
numerical domination.

Definition 2 ([I3, Ch. V, §2], cf. [6]). Suppose that D is a pseudoeffective R-divisor on X
and W C X is a subvariety. We say that D numerically dominates W (written D > W) if
there exists a birational morphism 7 : X — X such that 7~ 'Zy - Og = Ox(E) and for every
positive b and every ample divisor A on X , there exist x > b and y > b such that the class
r-mD —y- By + A is pseudoeffective.

For discussion of this condition and some illuminating illustrations, we refer to the works
of Nakayama [I3] and Eckl [6].

Definition 3 ([I3]). The numerical dimension &, (D) is the minimum dimension of a subvariety
W C X for which D does not numerically dominate WW.
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A third definition is provided in terms of the positive intersection product. While we refer
to [2] and [3] for the details of the construction, to a set of pseudoeffective divisors Dy, ..., Dy
on X one associates a class in N*(X) which roughly measures the class of the intersection
among the D; which takes place away from their base loci. This positive intersection product
is continuous on the big cone, but unlike the usual intersection form, is not linear.

Definition 4 ([2]). The numerical dimension vgppp(D) is the largest integer k for which the
positive intersection product <Dk> is nonzero.

Remark 2. In the case that D is nef, the positive intersection product coincides with the
usual intersection form, and Definition 4| coincides with the original definition of Kawamata [§].
In this case, it is proved by Nakayama that k,(D) = k,(D) = vgppp(D).

3. MAIN EXAMPLE

Example 1 ([I5, §6]). Let X be a smooth threefold in P? x P? given as the intersection
of general divisors of bidegrees (1,1), (1,1), and (2,2). It follows from adjunction and the
Lefschetz hyperplane theorem that X is a smooth, Calabi-Yau threefold of Picard rank 2. Let
7 : X — P3 (i = 1,2) be the two projections. A basis for N!(X) is given by the numerical
classes of the two divisors H; = 77 Ops(1).

The maps 7 and my are both generically 2 to 1, and so there are two associated bi-
rational covering involutions 7; : X --+ X. The maps 7; are not biregular, since the m;
have some positive-dimensional fibers. However, since Kx is trivial, these maps extend to
pseudoautomorphisms of X, i.e. birational maps which are an isomorphism in codimension 1.

Oguiso checks that with respect to the basis above, we have:

. (1 6 . [(-10
T=\o —1)> ™7 \6 1)

The composite map ¢ = 71 o 75 acts on N*(X) by

¢ _7271_(6 35)'

Recall that for 0 < k < N = dim X, the & dynamical degree of ¢ is the number
1/n

M) = Tim ((67)(H¥) - HV 4"
where H is a fixed ample divisor; in fact this limit exists and is independent of H [5]. In our
case, the first dynamical degree is the spectral radius of ¢*, which is given by

A= \(6) =17+12v/2~33.97....

It is also useful to compute the nef and pseudoeffective cones, as well as certain subcones.
The nef cone is spanned by the classes of the two divisors H; and Hs.

Lemma 2. The pseudoeffective cone coincides with the movable cone and is spanned by the
two eigenvectors of ¢*, which up to a choice of normalization are given by:

A+ = (]_ — \/§>H1 —|— (1 —|— \/§)H2,
A_=(1+V2)H, +(1-V2)H,.
These satisfy ¢* Ay = ANA, and ¢*A_ = N\"TA_.
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Proof. Since ¢*(Mov (X)) = Mov(X) and ¢*(Eff(X)) = Eff(X), this follows from a form of
the Perron—Frobenius theorem [I]. Indeed, suppose that A is a pseudoeffective divisor with
nonzero components of each eigenvector. Then for each n > 0, the class 5= (¢*)"(A) also lies in
the cone. Since the cone is closed, so too does the limit of these classes, which is a multiple of
the eigenvector A, . To see that it is on the boundary, notice that if A is non-pseudoeffective
class, the analogous sequence of pullbacks yields a sequence of non-pseudoeffective divisors
which also converge to A,. The same argument applies to the movable cone, or to A_ after

replacing ¢ by ¢~ 1. 0]

Let D, and D_ be the two R-divisors in the span of H; and H; which represent the
numerical classes A, and A_. It is necessary to choose explicit R-divisors rather than
numerical classes in order to make sense of the round-downs |mD/ |, but the resulting k(A )
is ultimately independent of the choice.

It will also be convenient for us to work with the cone C € N'(X) spanned by H, and
7y Hy = 6Hy — H,. This cone has the property that if D is any divisor class lying in C, then
either D or 77D is big and nef.

Theorem 3. The pseudoeffective R-divisor Dy satisfies:

(1) vappp(Dy) = ko(Dy) = 1;
(2) Kg(D+) =32
(3) Ky (D+) = Kk (D+) = 2.

The bulk of the work is dedicated to computing h°(X, |[mD, | + A) and hence «X(D, );
in fact, the computations of vgppp(D,) and k, (D) follow from this and the inequalities
of [I1] and [6]. Since these can also be computed directly, we include a derivation for the sake
of completeness. The main complication is that the definition of k, and k¥ for R-divisors
requires working with round-downs, while the other notions do not; this makes it somewhat
tedious to compute.

Heuristic. Before giving a proof, we briefly explain the calculation of h°(X, [mD, |+ A). The
variety X has the property that given any big divisor class D, there is a pseudoautomorphism
(either ¢™ or 1 o ¢™), such that the pullback of D under this map is big and nef. Since
hY(X, D) is invariant under pulling back by a pseudoautomorphism, and h°(X, A) can be
computed using the Riemann—Roch theorem if A is big and nef, it is possible to compute
h°(X, D) for any big divisor D, even those such as [mD, | + A which have complicated base
loci and lie very close to the pseudoeffective boundary.

For simplicity, we work in the basis for N1(X) given by A, and A_, the two extremal rays
on W(X ). The pullback ¢* is given in this basis by ( é /\91 ), and so it preserves a quadratic
form, the product of the two coordinates of a class written with respect to this basis. Choosing
a suitable scaling of A, we may assume that A = A, + A_ is ample. With respect to this
basis, the class mA, + A has coordinates (m + 1,1). The ample cone consists of divisors
for which the two coordinates are approximately equal (more precisely, for which their ratio
is contained in some bounded interval). Since pullback by ¢* preserves the product of the
coordinates, the pullback ¢*m(mA, + A) which is ample must be roughly /mA, + /mA_,
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which is the case when k,, ~ —% log, m. We are then in position to compute
WX, [mDy | + A) = h*(X, 6™ (|mD.] + A)) = x(¢™"(lmD| + A))
~ (67 (lmD. | + A))P/6 = (6% (A + A))*/6
~ (VmA; +vmA_)® /6 = Cm?/2.

The next few lemmas establish the bounds required to make this precise. For simplicity,
we focus our computations on the particular variety X, but similar results can be obtained
for more general contexts; see Lemma ?7. The proofs involve many constants whose precise
values are not important; we will denote these constants by C;, C ; and Uy, as they appear.

It is convenient to introduce a new set of coordinates on Big(X). Given a big class
D = a1 Ay + asA_ (which must have a, as > 0), we set

a
Ll(D) = a10a9, LQ(D) = —1
a2

For an R-divisor D, we write L;(D) for the corresponding value for the numerical class. These
coordinates owe their convenience to the facts that

Li(¢"D) = Li(D),  Ly(¢"D) = )\2L2(D)-

Lemma 4. Suppose that D is a big class on X. Then there exists an integer k so that
(¢*)*(D) lies in the cone C.

Proof. The cone C is bounded by the two divisors

8 8
and so
21 /2
Lo(Hy) = _£=3+2\/§
10 — 7v/2
Lo(TiHy) = —— Y2 — 99 — 70V/2.
2(7i H) 10 + 72
Then

Ly(Hy) — 3+2V2
Ly(miHy) 99— 702
We have seen that Ly(¢*D) = A?Ly(D), and the claim follows: explicitly, we may take

— 577 +408v2 = \2.

k= = |5 o La(D) ~ oy La(ri 1) | n

The next observation is that on this variety X, it is straightforward to compute h°(X, D)
for any big and nef D.

Lemma 5. There exist constants Cy 1,Co1 > 0 such that if D = a1 Hy 4 asHs is any big and
nef Cartier divisor,
0171D3 < hO(X,D) < 0271D3.
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Proof. The intersection form on divisors on X is given by H} = H3 = 2 and H?Hy = H\H3 =
6. Since X is a Calabi—Yau threefold, it follows from the Hirzebruch—Riemann—Roch theorem
and Kawamata—Viehweg vanishing that for any big and nef class D,

D3 X)-D
R(X,D) 1 1c¢(X) D
D3 6 12 D3

We have co(X) = H? + 6H, Hy + HZ, and so explicitly,
hO(X,D) 1 1 (H12+6H1H2+H22)(6L1H1+6L2H2)

D3 6 12 (a1 Hy + agH,)3
11 44(ay + ap) 111 1

6 * 12243 + 18a2ay + 18a1a% + 243~ 6 * 6 (ay + az)? + 6ayay’

Since a; and ap are non-negative integers, not both 0, the claim holds with C;; = 1/6 and
0271 = 2. Ol

Lemma 6. There exist constants C1 2, Ca9 > 0 such that if D is any Cartier divisor contained
in the cone C,

Ci2L1(D)*? < B%(X, D) < Cy5L1(D)*2.

Proof. Suppose first that D is actually big and nef. We may write D = a1 A, + asA_ where
a; = (L1(D)Ly(D))*? and ay = (Ly(D)/Ly(D))"/?. Using the intersection form given in the
proof of Lemma 5], we have

Ai =A* = -8,
A2 A=A, A% =56
This yields
D? = L(D)*? (—8Ly(D)*? + 168Ly(D)"? + 168Ly(D)~"/* — 8Ly (D) */?)..
The factor in parentheses is easily checked to be non-negative if
11 — 2v/30 < Ly(D) < 11 4 2v/30,
and is zero only at the endpoints. On the other hand, any big and nef divisor A satisfies
Ly(Hy) =3 —2V2 < Ly(A) < 3+ 2V2 = Ly(Hy).

This interval is strictly contained in the one for which D3 > 0, which proves that there exist
(12 and Cy 9 which give the required bound for any big and nef classes by Lemma . If D
lies in C but it is not big and nef, then 77 D is big and nef. Since h°(X, D) = h°(X, D) and
Ly(7{ D) is bounded above and below by constant multiples of L; (D), the claim follows. O

The next lemma checks that rounding down does not have a large impact on Li(| D] + A).

Lemma 7. There exist constants Cy, Cy3,Cq3 > 1 such that for any pseudoeffective R-divisor
D =a,D, + asD_ and any ample divisor A = by D, + by D_ with b; > C}, we have

Cisli(D+A) < Li(|D| +A) < Cy3L1(D + A).
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Proof. Suppose that D = a; D, 4+ asD_, and that | D] = a; D, + a;D_. It is clear that there
is a constant ¢; > 0 so that |a; — @;| < ¢;: to compute the a;, one expresses the divisor in
terms of the basis H; and Hs, rounds down the coefficients, and then changes the basis back.
Since D, and D_ bound the pseudoeffective cone, the fact that D is pseudoeffective means
that a; > 0. The rounded coefficients a; may be negative, but the above shows that a; > —c;.
Then D + A = (CLl + bl)D+ + (ag + bg)D_ and |_DJ + A = (Ell + b])D+ + (&2 + bg)D_, and
we find that
Li([D]+A) (a1 +b)(a+by) ar+b ax+b

Ll(D+A) (a1+b1)(a2—|—b2) N CL1—|—bl (12—|—b2.
Take C7; =1+ ¢; > 1, and suppose that b; > C;. Then

a; +b; >0+b; >Cq > 1,
a; +b;, >—c1+b;>Cy —c; = 1.
Since both a; + b; and a; + b; are greater than 1,

a; + b; ~ 3
& (ai +bi>' - |10g (ai +bi> —log (ai +bi)| < |a2- - ai| < (f,

which implies that each of the factors on the right hand side of the preceding equation are

bounded by multiplicative factors of e=¢* and e“. The result follows with C} 3 = ¢72“* and
02’3 = 6201. 0]

Theorem 8 (= Theorem [3| (2)). Suppose that A = by D, +byD_ is an ample Cartier divisor
with by, by > Cy. There exist constants Cy 4 and Cy4 such that for all sufficiently large m,

Cram?®? < KX, |mD, | + A) < Cyum®?.
Proof. We have
Li(mDy + A) = Li((m+b1)Dy +byD_) = (m + by)bs.
It follows from Lemma [7 that
Cis(m+b1)by < Li(|mD4 | + A) < Caz(m + by)bs.

According to Lemmald] for every value of m, there exists a constant k,, for which (¢*=)*(|mD, |+
A) lies in the cone C, and since Li(—) is invariant under ¢, this shows

0173(m + bl)bg S L1 (gbkm*( LmD_;_J + A)) S 0273(771 + bl)bg.
Since h(X, |mD, | + A) = h%(X, ¢"*(|mD, | + A)), Lemma [§] yields
CLQ (0173(77?/ + b1>b2)3/2 S hO(X, LmDJrJ -+ A) S 0272 (0273(771 -+ bl)b2>3/2 ,
and the theorem follows. O

Remark 3. For any given value of m, it is straightforward to use a computer algebra system
and the Riemann-Roch theorem for a Calabi-Yau threefold to determine the exact value of
h(X, |mDy] + A). For the ample divisor A = H; + Hs, taking m = 2 for 10 < k < 50, we
find that

24 -m3? < WX, |mAL] + A) < 54 -m?2.

The computations k,(Dy) =1, k, (Dy) = 1, k¥(D,) = 3/2, and x} (D) = 2 are immediate.
[t remains to compute vgppp (D, ) and k, (D).
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Proof of Theorem[3, (1). If ¢ : X --» X is an isomorphism in codimension 1, then (¢* D, - ¢*Dy) =
¢5((Dy - D3)), where ¢% : Ni(X) — N1(X) is the pullback map on curve classes. Then for
any value of n, we have

{(¢"™(Dy) + ¢™(D-))*) = ¢1*((Dy + D_)?)
<()\nD+ + )\7an)2> = 91" ((Dy + D7>2)
((Dy+A7"D_)%) = X"} ((Dy + D_)*).

Since ¢} has spectral radius A < A\?, the quantity on the right approaches 0. On the other
hand, the classes of the divisors D, + A™2"D_ approach D, from an ample direction in
NY(X). It follows from the definition of the positive intersection product for pseudoeffective
classes [3, Definition 2.10] that the limit of the left side is <D3_> Consequently <Di> =0,
and so VBDPP(D—i-) =1. O

Proof of Theorem[3, (3). It is a result of Nakayama that x,(D) < k, (D) for any pseudoeffec-
tive R-divisor D [I3], Proposition V.2.22(1)]. In fact, the proof loc. cit. applies equally well to
k¥(D), and so £, (D, ) > 3/2. Since this invariant is integer-valued, and x, (D) = dim X = 3

if and only if D is big, we conclude that ,(Dy) = 2.
[

Remark 4. The question of whether k,(D) = k,(D) in general originates with Nakayama.
The general equality vgppp(D) = k(D) = £, (D) is asserted in the two papers [11] and [6].
These papers prove a number of remarkable inequalities between various notions of numerical
dimension, but unfortunately each contains a gap: [11, Proposition 5.3] does not hold in
general (see [0, §2.9] for some discussion), while the proof of [6l Proposition 3.4] fails because
the middle row of the commutative diagram is not necessarily exact. This requires some
additional corrections to the literature; see [7, Corrigendum].

Remark 5. Observe that Theorem |3| provides a counterexample to [I1, Theorem 6.7, (7)];
it would be interesting to know whether for any pseudoeffective R-divisor D, there exist
constants C; and Cy for which

Cym™ P < BO(X, |mD] + A) < Cym®P).

Remark 6. Although for simplicity we have preferred explicit computations on the variety X,
the same strategy should suffice to compute the numerical dimension in many other contexts.
According to the Kawamata—Morrison cone conjecture, if X is a Calabi—Yau threefold, then
for any big divisor class D there exists a pseudoautomorphism ¢ : X --+ X such that ¢*D
lies in some fixed polyhedral subcone of Big(X), where the volume can likely be computed
explicitly.

We now give a general computation in this vein, for another notion of numerical dimension,
ol This invariant is similar to s, but has two simplifying advantages: (i) one need not
worry about the difference between x(D) and h°(X, D) when X is not a Calabi-Yau, and (ii)
it is not necessary to take the round-down of an R-divisor, which in the case p(X) > 2 could
push the divisor out of the 2-dimensional eigenspace for ¢* spanned by A, and A_.

Definition 5 ([I1]). Suppose that X is a projective variety and D is a pseudoeffective divisor
class on X. Fix an ample divisor A. The numerical dimension v, (D) is the largest integer k
for which there exists a constant C' satisfying

CtimX—k < yol(L + tA)
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for all t > 0. We also define v®

vol

(D) to be th largest real number k with this property.

Lemma 9. Suppose that ¢ : X --+» X is a pseudoautomorphism satisfying A\ (¢) > 1. Let
A = M(9) and py = M (¢7Y); it follows from the log-concavity of dynamical degrees that
w1 > 1 as well. Suppose that there exist a Ai-eigenvector A, for ¢* and a A\ -eigenvector A_
for ¢~ with the property that A = Ay + A_ is ample. Then

1 —1
V(8 = (im x) (14 0

Proof. Since ¢* preserves the volume of a divisor,

vol(A) = vol(Ay + A_) = vol ((¢*)"(Ay + A_)) = vol (ATAL + py"AL)

::wﬂ(Q?—uﬂU(A++jﬁﬁ£;zﬁ¥f¥AJ)>

1 M
= (A} = ") X vol <A+ + (AL + A—)) :
AT — g
Taking A = A, + A_ and ¢, = —1

— [
AT —pi "7

vol (Ay + t,A) = (N7 — p;™) 9™ X yol(A) = C,tY,

we find that

where

_ log i\ !
v = (dim X) (1 + log)\1>

(AT — py ")~ ¥ vol(A)

(i) (om0 ) )

Xy

C, =

One may check that C,, is a decreasing function as n increases and that lim,, ., C,, = vol(A).
In particular, for sufficiently large n we have

vol(A)t! < vol(A; +t,A) < 2vol(A)t.

Since vol(Ay + tA) is an increasing function in ¢, this implies that there exists a constant C'
such that vol(A; +tA) < Ct¥ for all 0 < ¢t < 1, and so

A om0 (1 )= (1 AT o

In the example of this section, A\;(¢) = A\;(¢~') = X and the formula yields vX (A} ) = 3/2,
which coincides with x¥(A,).

iy -l
Remark 7. It is not at all clear that the quantity (dim X) (1 + %) should always

be rational when A, +A_ is ample, although I am not aware of any relevant counterexamples.

Remark 8. N. McCleerey has showed that vy, (D) = vgppp(D) in several cases, e.g. when
vpppp(D) = 0 or vgppp(D) = dim X — 1 [12] (when dim X = 3, this covers all cases except
that of vgppp(D) which occurs for our main example). It would also be interesting to know
whether k, (D) = vy (D) in general.
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When ¢ is an automorphism with A;(¢) > 1 (rather than just a pseudoautomorphism), it
is possible to give a more precise computation of the numerical dimension of the eigenvector
in terms of the dynamical degrees of ¢. In this case, A, is nef, and the different definitions
of numerical dimension coincide; in particular, the value is always an integer.

Let Ji(¢) denote the size of the largest Jordan block for ¢* : N¥(X) — N*(X), and take
Je(¢) = Ji(¢) — 1, so that for a general ample divisor H we have (¢*)™(H*) - HN=* ~
e (0)™m7%(®) . Here by ~ we mean that the left quantity is bounded above and below by
multiples of the right one.

Theorem 10. Suppose that ¢ : X — X is an automorphism with \i(¢) > 1 and that A,

is a leading eigenvector for ¢, equal to A, = lim,,_, W(qﬁ*)"H for some ample H.
1 n

Then VBDPP(A—i—) = HU(A+) = /{,,(A+) with

ko(Ay) = max {a () = M () and To(¢) = ajl(cﬁ)} .

Proof. Let H be an ample class and N = dim X. Then Af # 0 if and only if A% - HN-2 >0,
and we compute
1
A _HN—a — lim (—~ S\ (E a) .HN—a
. g ) )
1

=l s G ((¢")"(H)* - HN=%)

— lim ;) (Aa(¢)”n3a<¢>)

N300 )\1(¢)nana31(¢

o (2@ (0 Tu@)-adi)
_n]1_>n010 (A1(¢)G) (nJ ¢)—aJ ¢>>.

Consequently A% - HN7 > 0 if X\,(¢) = M\ (¢)* and Jo(¢) = aJi(¢). The claim follows.
(Note that the first equality always holds if = is changed to <, by log concavity of dynamical
degrees; the same is true of the second in the case that the first is an equality.) U

Example 2. Suppose that X is a hyper-Kahler manifold of dimension N = 2m and that
¢ : X — X is an automorphism. It is shown by Oguiso [14] that A.(¢) = A1 (¢)* for a < m,
so that v(A,) = m in this case.
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