
NOTIONS OF NUMERICAL IITAKA DIMENSION DO NOT COINCIDE

JOHN LESIEUTRE

Abstract. Let X be a smooth projective variety. The Iitaka dimension of a divisor D is an
important invariant, but it does not only depend on the numerical class of D. However, there
are several definitions of “numerical Iitaka dimension”, depending only on the numerical class.
In this note, we show that there exists a pseuodoeffective R-divisor for which these invariants
take different values. The key is the construction of an example of a pseudoeffective R-divisor
D+ for which h0(X, ⌊mD+⌋+A) is bounded above and below by multiples of m3/2 for any
sufficiently ample A.

1. Introduction

Given a divisor D on a projective variety X, the Iitaka dimension of D is a fundamental
invariant measuring the asymptotic growth of spaces of sections of mD.

Theorem-Definition (e.g. [10, Corollary 2.1.38]). Suppose that X is a smooth projective
variety and D is a divisor on X. There exists an integer κ(D), the Iitaka dimension of D, as
well as constants C1, C2 > 0 such that for sufficiently large and divisible m,

C1m
κ(D) < h0(X,mD) < C2m

κ(D).

The most important case is when D = KX is the canonical class, in which case κ(KX) is
simply the Kodaira dimension of X.

The Iitaka dimension has the inconvenient property that it is not a numerical invariant of
D. It is possible, for example, that there exist two divisors D1 and D2 which have the same
numerical class, but such that any multiple of D1 is rigid, while D2 moves in a pencil. In this
case, κ(D1) = 0 while κ(D2) ≥ 1 [11, Example 6.1].

One approach to constructing a numerical analog of the Iitaka dimension is to perturb each
mD by a fixed ample divisor A, considering the dimensions h0(X,mD + A) as m increases.
This growth of these sections does indeed yield an important numerical invariant, Nakayama’s
κσ(D). There are a number of other possible definitions of numerical dimension, some of
which we recall in the next section.

The main result of this paper is that, at least when D is an R-divisor, the spaces of sections
h0(X, ⌊mD⌋+ A) need not even grow polynomially in m.

Theorem 1. There exists a smooth projective threefold X and a pseudoeffective R-divisor D
on X such that for any sufficiently ample class A, there exist constants C1, C2 > 0 so that

C1m
3/2 < h0(X, ⌊mD⌋+ A) < C2m

3/2.

As a consequence of this calculation, we conclude that various notions of numerical
dimension do not coincide in general, contrary to general expectation. The example is a
pseudoeffective R-divisor on a Calabi–Yau threefold X which has previously appeared in the
work of Oguiso [15].

1



2 JOHN LESIEUTRE

2. Preliminaries

We begin with some preliminary definitions. We work throughout over an algebraically
closed field K of characteristic 0. Write ≡ for the relation of numerical equivalence and
N1(X) for the finite-dimensional R-vector space of numerical classes of divisors on X. If D
is a Cartier divisor, we will write h0(X,D) for h0(X,OX(D)).

Definition 1 ([13, Ch. V]). The numerical dimension κσ(D) is the largest integer k such
that for some ample divisor A, one has

lim sup
m→∞

h0(X, ⌊mD⌋+ A)

mk
> 0.

If no such k exists, we take κσ(D) = −∞. We will also consider a closely related invariant:
κR
σ (D) is the supremum of the real numbers for which such an inequality holds. It will follow

from our example that these two quantities may be distinct.

Remark 1. There are several variations on this definition. For example, one might replace
the lim sup by a lim inf; this is the definition of κσ used in [4] and some older versions of [13].
Nakayama denotes this invariant by κ−

σ . It remains unclear whether these values can be
distinct.

It is also possible to ask for the smallest integer k for which

lim sup
m→∞

h0(X, ⌊mD⌋+ A)

mk
< ∞.

Nakayama denotes the resulting invariant by κ+
σ (D). This is the version of numerical

dimension used in, for example, [9]. Our main example shows that this invariant is not equal
to κσ(D) in general.

An important result of Nakayama [13, Theorem V.1.12] states that if D is a pseudoeffective
R-divisor on X for which h0(X, ⌊mD⌋+A) is not bounded in m (i.e. for which D ̸= Nσ(D)),
then for any sufficiently ample divisor A there is a constant C for which

h0(X,OX(⌊mD⌋+ A)) > Cm

for all m. The same result has been recovered in positive characteristic [4]. It follows that if
h0(X,OX(⌊mD⌋+ A)) is not bounded, then κR

σ (D) ≥ 1.
A second definition of numerical dimension, Nakayama’s κν(D), is based on the notion of

numerical domination.

Definition 2 ([13, Ch. V, §2], cf. [6]). Suppose that D is a pseudoeffective R-divisor on X
and W ⊂ X is a subvariety. We say that D numerically dominates W (written D ⪰ W ) if
there exists a birational morphism π : X̃ → X such that π−1IW · OX̃ = OX̃(E) and for every

positive b and every ample divisor A on X̃, there exist x > b and y > b such that the class
x · π∗D − y · EW + A is pseudoeffective.

For discussion of this condition and some illuminating illustrations, we refer to the works
of Nakayama [13] and Eckl [6].

Definition 3 ([13]). The numerical dimension κν(D) is the minimum dimension of a subvariety
W ⊂ X for which D does not numerically dominate W .
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A third definition is provided in terms of the positive intersection product. While we refer
to [2] and [3] for the details of the construction, to a set of pseudoeffective divisors D1, . . . , Dk

on X one associates a class in Nk(X) which roughly measures the class of the intersection
among the Di which takes place away from their base loci. This positive intersection product
is continuous on the big cone, but unlike the usual intersection form, is not linear.

Definition 4 ([2]). The numerical dimension νBDPP(D) is the largest integer k for which the
positive intersection product

⟨︁
Dk
⟩︁
is nonzero.

Remark 2. In the case that D is nef, the positive intersection product coincides with the
usual intersection form, and Definition 4 coincides with the original definition of Kawamata [8].
In this case, it is proved by Nakayama that κσ(D) = κν(D) = νBDPP(D).

3. Main example

Example 1 ([15, §6]). Let X be a smooth threefold in P3 × P3 given as the intersection
of general divisors of bidegrees (1, 1), (1, 1), and (2, 2). It follows from adjunction and the
Lefschetz hyperplane theorem that X is a smooth, Calabi-Yau threefold of Picard rank 2. Let
πi : X → P3 (i = 1, 2) be the two projections. A basis for N1(X) is given by the numerical
classes of the two divisors Hi = π∗

iOP3(1).
The maps π1 and π2 are both generically 2 to 1, and so there are two associated bi-

rational covering involutions τi : X ‧‧➡ X. The maps τi are not biregular, since the πi

have some positive-dimensional fibers. However, since KX is trivial, these maps extend to
pseudoautomorphisms of X, i.e. birational maps which are an isomorphism in codimension 1.

Oguiso checks that with respect to the basis above, we have:

τ ∗1 =

(︃
1 6
0 −1

)︃
, τ ∗2 =

(︃
−1 0
6 1

)︃
.

The composite map ϕ = τ1 ◦ τ2 acts on N1(X) by

ϕ∗ = τ ∗2 τ
∗
1 =

(︃
−1 −6
6 35

)︃
.

Recall that for 0 ≤ k ≤ N = dimX, the kth dynamical degree of ϕ is the number

λk(ϕ) = lim
n→∞

(︁
(ϕn)∗(Hk) ·HN−k

)︁1/n
,

where H is a fixed ample divisor; in fact this limit exists and is independent of H [5]. In our
case, the first dynamical degree is the spectral radius of ϕ∗, which is given by

λ = λ1(ϕ) = 17 + 12
√
2 ≈ 33.97 . . . .

It is also useful to compute the nef and pseudoeffective cones, as well as certain subcones.
The nef cone is spanned by the classes of the two divisors H1 and H2.

Lemma 2. The pseudoeffective cone coincides with the movable cone and is spanned by the
two eigenvectors of ϕ∗, which up to a choice of normalization are given by:

∆+ ≡ (1−
√
2)H1 + (1 +

√
2)H2,

∆− ≡ (1 +
√
2)H1 + (1−

√
2)H2.

These satisfy ϕ∗∆+ = λ∆+ and ϕ∗∆− = λ−1∆−.
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Proof. Since ϕ∗(Mov(X)) = Mov(X) and ϕ∗(Eff(X)) = Eff(X), this follows from a form of
the Perron–Frobenius theorem [1]. Indeed, suppose that ∆ is a pseudoeffective divisor with
nonzero components of each eigenvector. Then for each n > 0, the class 1

λn (ϕ
∗)n(∆) also lies in

the cone. Since the cone is closed, so too does the limit of these classes, which is a multiple of
the eigenvector ∆+. To see that it is on the boundary, notice that if ∆ is non-pseudoeffective
class, the analogous sequence of pullbacks yields a sequence of non-pseudoeffective divisors
which also converge to ∆+. The same argument applies to the movable cone, or to ∆− after
replacing ϕ by ϕ−1. □

Let D+ and D− be the two R-divisors in the span of H1 and H2 which represent the
numerical classes ∆+ and ∆−. It is necessary to choose explicit R-divisors rather than
numerical classes in order to make sense of the round-downs ⌊mD+⌋, but the resulting κσ(∆+)
is ultimately independent of the choice.
It will also be convenient for us to work with the cone C ⊂ N1(X) spanned by H2 and

τ ∗1H2 = 6H1 −H2. This cone has the property that if D is any divisor class lying in C, then
either D or τ ∗1D is big and nef.

Theorem 3. The pseudoeffective R-divisor D+ satisfies:

(1) νBDPP(D+) = κσ(D+) = 1;
(2) κR

σ (D+) = 3/2;
(3) κ+

σ (D+) = κν(D+) = 2.

The bulk of the work is dedicated to computing h0(X, ⌊mD+⌋ + A) and hence κR
σ (D+);

in fact, the computations of νBDPP(D+) and κν(D+) follow from this and the inequalities
of [11] and [6]. Since these can also be computed directly, we include a derivation for the sake
of completeness. The main complication is that the definition of κσ and κR

σ for R-divisors
requires working with round-downs, while the other notions do not; this makes it somewhat
tedious to compute.

Heuristic. Before giving a proof, we briefly explain the calculation of h0(X, ⌊mD+⌋+A). The
variety X has the property that given any big divisor class D, there is a pseudoautomorphism
(either ϕm or τ1 ◦ ϕm), such that the pullback of D under this map is big and nef. Since
h0(X,D) is invariant under pulling back by a pseudoautomorphism, and h0(X,A) can be
computed using the Riemann–Roch theorem if A is big and nef, it is possible to compute
h0(X,D) for any big divisor D, even those such as ⌊mD+⌋+A which have complicated base
loci and lie very close to the pseudoeffective boundary.

For simplicity, we work in the basis for N1(X) given by ∆+ and ∆−, the two extremal rays
on Eff(X). The pullback ϕ∗ is given in this basis by

(︁
λ 0
0 λ−1

)︁
, and so it preserves a quadratic

form, the product of the two coordinates of a class written with respect to this basis. Choosing
a suitable scaling of ∆+, we may assume that A = ∆+ +∆− is ample. With respect to this
basis, the class m∆+ + A has coordinates (m + 1, 1). The ample cone consists of divisors
for which the two coordinates are approximately equal (more precisely, for which their ratio
is contained in some bounded interval). Since pullback by ϕ∗ preserves the product of the
coordinates, the pullback ϕkm(m∆+ + A) which is ample must be roughly

√
m∆+ +

√
m∆−,
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which is the case when km ≈ −1
2
logλm. We are then in position to compute

h0(X, ⌊mD+⌋+ A) = h0(X,ϕ∗km(⌊mD+⌋+ A)) = χ(ϕ∗km(⌊mD+⌋+ A))

≈ (ϕ∗km(⌊mD+⌋+ A))3/6 ≈ (ϕ∗km(m∆+ + A))3/6

≈
(︁√

m∆+ +
√
m∆−

)︁3
/6 = Cm3/2.

The next few lemmas establish the bounds required to make this precise. For simplicity,
we focus our computations on the particular variety X, but similar results can be obtained
for more general contexts; see Lemma ??. The proofs involve many constants whose precise
values are not important; we will denote these constants by Ci, C1,j and C2,k as they appear.

It is convenient to introduce a new set of coordinates on Big(X). Given a big class
D = a1∆+ + a2∆− (which must have a1, a2 > 0), we set

L1(D) = a1a2, L2(D) =
a1
a2

.

For an R-divisor D, we write Li(D) for the corresponding value for the numerical class. These
coordinates owe their convenience to the facts that

L1(ϕ
∗D) = L1(D), L2(ϕ

∗D) = λ2L2(D).

Lemma 4. Suppose that D is a big class on X. Then there exists an integer k so that
(ϕ∗)k(D) lies in the cone C.

Proof. The cone C is bounded by the two divisors

H2 =

(︄
2 +

√
2

8

)︄
∆+ +

(︄
2−

√
2

8

)︄
∆−,

τ ∗1H2 =

(︄
10− 7

√
2

8

)︄
∆+ +

(︄
10 + 7

√
2

8

)︄
∆−,

and so

L2(H2) =
2 +

√
2

2−
√
2
= 3 + 2

√
2

L2(τ
∗
1H2) =

10− 7
√
2

10 + 7
√
2
= 99− 70

√
2.

Then
L2(H2)

L2(τ ∗1H2)
=

3 + 2
√
2

99− 70
√
2
= 577 + 408

√
2 = λ2.

We have seen that L2(ϕ
∗D) = λ2L2(D), and the claim follows: explicitly, we may take

k = −
⌊︃
1

2
(logλ L2(D)− logλ L2(τ

∗
1H2))

⌋︃
. □

The next observation is that on this variety X, it is straightforward to compute h0(X,D)
for any big and nef D.

Lemma 5. There exist constants C1,1, C2,1 > 0 such that if D = a1H1 + a2H2 is any big and
nef Cartier divisor,

C1,1D
3 < h0(X,D) < C2,1D

3.
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Proof. The intersection form on divisors on X is given by H3
1 = H3

2 = 2 and H2
1H2 = H1H

2
2 =

6. Since X is a Calabi–Yau threefold, it follows from the Hirzebruch–Riemann–Roch theorem
and Kawamata–Viehweg vanishing that for any big and nef class D,

h0(X,D) = χ(X,D) =
D3

6
+

c2(X) ·D
12

h0(X,D)

D3
=

1

6
+

1

12

c2(X) ·D
D3

.

We have c2(X) = H2
1 + 6H1H2 +H2

2 , and so explicitly,

h0(X,D)

D3
=

1

6
+

1

12

(H2
1 + 6H1H2 +H2

2 ) · (a1H1 + a2H2)

(a1H1 + a2H2)3

=
1

6
+

1

12

44(a1 + a2)

2a31 + 18a21a2 + 18a1a22 + 2a32
=

1

6
+

11

6

1

(a1 + a2)2 + 6a1a2
.

Since a1 and a2 are non-negative integers, not both 0, the claim holds with C1,1 = 1/6 and
C2,1 = 2. □

Lemma 6. There exist constants C1,2, C2,2 > 0 such that if D is any Cartier divisor contained
in the cone C,

C1,2L1(D)3/2 < h0(X,D) < C2,2L1(D)3/2.

Proof. Suppose first that D is actually big and nef. We may write D = a1∆+ + a2∆− where
a1 = (L1(D)L2(D))1/2 and a2 = (L1(D)/L2(D))1/2. Using the intersection form given in the
proof of Lemma 5, we have

∆3
+ = ∆3

− = −8,

∆2
+ ·∆− = ∆+ ·∆2

− = 56.

This yields

D3 = L1(D)3/2
(︁
−8L2(D)3/2 + 168L2(D)1/2 + 168L2(D)−1/2 − 8L2(D)−3/2

)︁
.

The factor in parentheses is easily checked to be non-negative if

11− 2
√
30 ≤ L2(D) ≤ 11 + 2

√
30,

and is zero only at the endpoints. On the other hand, any big and nef divisor A satisfies

L2(H1) = 3− 2
√
2 ≤ L2(A) ≤ 3 + 2

√
2 = L2(H2).

This interval is strictly contained in the one for which D3 > 0, which proves that there exist
C1,2 and C2,2 which give the required bound for any big and nef classes by Lemma 5. If D
lies in C but it is not big and nef, then τ ∗1D is big and nef. Since h0(X, τ ∗1D) = h0(X,D) and
L1(τ

∗
1D) is bounded above and below by constant multiples of L1(D), the claim follows. □

The next lemma checks that rounding down does not have a large impact on L1(⌊D⌋+A).

Lemma 7. There exist constants C1, C1,3, C2,3 > 1 such that for any pseudoeffective R-divisor
D = a1D+ + a2D− and any ample divisor A = b1D+ + b2D− with bi > C1, we have

C1,3L1(D + A) ≤ L1(⌊D⌋+ A) ≤ C2,3L1(D + A).
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Proof. Suppose that D = a1D+ + a2D−, and that ⌊D⌋ = ã1D+ + ã2D−. It is clear that there
is a constant c1 > 0 so that |ai − ãi| < c1: to compute the ãi, one expresses the divisor in
terms of the basis H1 and H2, rounds down the coefficients, and then changes the basis back.

Since D+ and D− bound the pseudoeffective cone, the fact that D is pseudoeffective means
that ai ≥ 0. The rounded coefficients ãi may be negative, but the above shows that ãi ≥ −c1.

Then D +A = (a1 + b1)D+ + (a2 + b2)D− and ⌊D⌋+A = (ã1 + b1)D+ + (ã2 + b2)D−, and
we find that

L1(⌊D⌋+ A)

L1(D + A)
=

(ã1 + b1)(ã2 + b2)

(a1 + b1)(a2 + b2)
=

ã1 + b1
a1 + b1

· ã2 + b2
a2 + b2

.

Take C1 = 1 + c1 > 1, and suppose that bi > C1. Then

ai + bi ≥ 0 + bi > C1 > 1,

ãi + bi > −c1 + bi > C1 − c1 = 1.

Since both ai + bi and ãi + bi are greater than 1,⃓⃓⃓⃓
log

(︃
ãi + bi
ai + bi

)︃⃓⃓⃓⃓
= |log (ãi + bi)− log (ai + bi)| < |ãi − ai| < C1,

which implies that each of the factors on the right hand side of the preceding equation are
bounded by multiplicative factors of e−C1 and eC1 . The result follows with C1,3 = e−2C1 and
C2,3 = e2C1 . □

Theorem 8 (⇒ Theorem 3, (2)). Suppose that A = b1D++ b2D− is an ample Cartier divisor
with b1, b2 ≥ C1. There exist constants C1,4 and C2,4 such that for all sufficiently large m,

C1,4m
3/2 < h0(X, ⌊mD+⌋+ A) < C2,4m

3/2.

Proof. We have

L1(mD+ + A) = L1((m+ b1)D+ + b2D−) = (m+ b1)b2.

It follows from Lemma 7 that

C1,3(m+ b1)b2 ≤ L1(⌊mD+⌋+ A) ≤ C2,3(m+ b1)b2.

According to Lemma 4, for every value ofm, there exists a constant km for which (ϕkm)∗(⌊mD+⌋+
A) lies in the cone C, and since L1(−) is invariant under ϕ, this shows

C1,3(m+ b1)b2 ≤ L1(ϕ
km∗(⌊mD+⌋+ A)) ≤ C2,3(m+ b1)b2.

Since h0(X, ⌊mD+⌋+ A) = h0(X,ϕkm∗(⌊mD+⌋+ A)), Lemma 6 yields

C1,2 (C1,3(m+ b1)b2)
3/2 ≤ h0(X, ⌊mD+⌋+ A) ≤ C2,2 (C2,3(m+ b1)b2)

3/2 ,

and the theorem follows. □

Remark 3. For any given value of m, it is straightforward to use a computer algebra system
and the Riemann–Roch theorem for a Calabi-Yau threefold to determine the exact value of
h0(X, ⌊mD+⌋+ A). For the ample divisor A = H1 +H2, taking m = 2k for 10 ≤ k ≤ 50, we
find that

24 ·m3/2 < h0(X, ⌊m∆+⌋+ A) < 54 ·m3/2.

The computations κσ(D+) = 1, κ−
σ (D+) = 1, κR

σ (D+) = 3/2, and κ+
σ (D+) = 2 are immediate.

It remains to compute νBDPP(D+) and κν(D+).
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Proof of Theorem 3, (1). If ϕ : X ‧‧➡ X is an isomorphism in codimension 1, then ⟨ϕ∗D1 · ϕ∗D2⟩ =
ϕ∗
1(⟨D1 ·D2⟩), where ϕ∗

1 : N1(X) → N1(X) is the pullback map on curve classes. Then for
any value of n, we have⟨︁

(ϕn∗(D+) + ϕn∗(D−))
2
⟩︁
= ϕn∗

1 (⟨D+ +D−⟩2)⟨︁
(λnD+ + λ−nD−)

2
⟩︁
= ϕn∗

1 (⟨D+ +D−⟩2)⟨︁
(D+ + λ−2nD−)

2
⟩︁
= λ−2nϕn∗

1 (⟨D+ +D−⟩2).
Since ϕ∗

1 has spectral radius λ < λ2, the quantity on the right approaches 0. On the other
hand, the classes of the divisors D+ + λ−2nD− approach D+ from an ample direction in
N1(X). It follows from the definition of the positive intersection product for pseudoeffective
classes [3, Definition 2.10] that the limit of the left side is

⟨︁
D2

+

⟩︁
. Consequently

⟨︁
D2

+

⟩︁
= 0,

and so νBDPP(D+) = 1. □

Proof of Theorem 3, (3). It is a result of Nakayama that κσ(D) ≤ κν(D) for any pseudoeffec-
tive R-divisor D [13, Proposition V.2.22(1)]. In fact, the proof loc. cit. applies equally well to
κR
σ (D), and so κν(D+) ≥ 3/2. Since this invariant is integer-valued, and κν(D) = dimX = 3

if and only if D is big, we conclude that κν(D+) = 2.
□

Remark 4. The question of whether κσ(D) = κν(D) in general originates with Nakayama.
The general equality νBDPP(D) = κσ(D) = κν(D) is asserted in the two papers [11] and [6].
These papers prove a number of remarkable inequalities between various notions of numerical
dimension, but unfortunately each contains a gap: [11, Proposition 5.3] does not hold in
general (see [6, §2.9] for some discussion), while the proof of [6, Proposition 3.4] fails because
the middle row of the commutative diagram is not necessarily exact. This requires some
additional corrections to the literature; see [7, Corrigendum].

Remark 5. Observe that Theorem 3 provides a counterexample to [11, Theorem 6.7, (7)];
it would be interesting to know whether for any pseudoeffective R-divisor D, there exist
constants C1 and C2 for which

C1m
κR
σ(D) < h0(X, ⌊mD⌋+ A) < C2m

κR
σ(D).

Remark 6. Although for simplicity we have preferred explicit computations on the variety X,
the same strategy should suffice to compute the numerical dimension in many other contexts.
According to the Kawamata–Morrison cone conjecture, if X is a Calabi–Yau threefold, then
for any big divisor class D there exists a pseudoautomorphism ϕ : X ‧‧➡ X such that ϕ∗D
lies in some fixed polyhedral subcone of Big(X), where the volume can likely be computed
explicitly.

We now give a general computation in this vein, for another notion of numerical dimension,
νVol. This invariant is similar to κσ, but has two simplifying advantages: (i) one need not
worry about the difference between χ(D) and h0(X,D) when X is not a Calabi–Yau, and (ii)
it is not necessary to take the round-down of an R-divisor, which in the case ρ(X) > 2 could
push the divisor out of the 2-dimensional eigenspace for ϕ∗ spanned by ∆+ and ∆−.

Definition 5 ([11]). Suppose that X is a projective variety and D is a pseudoeffective divisor
class on X. Fix an ample divisor A. The numerical dimension νvol(D) is the largest integer k
for which there exists a constant C satisfying

CtdimX−k < vol(L+ tA)
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for all t > 0. We also define νR
vol(D) to be th largest real number k with this property.

Lemma 9. Suppose that ϕ : X ‧‧➡ X is a pseudoautomorphism satisfying λ1(ϕ) > 1. Let
λ1 = λ1(ϕ) and µ1 = λ1(ϕ

−1); it follows from the log-concavity of dynamical degrees that
µ1 > 1 as well. Suppose that there exist a λ1-eigenvector ∆+ for ϕ∗ and a λ1-eigenvector ∆−
for ϕ−1∗ with the property that A = ∆+ +∆− is ample. Then

νR
vol(∆+) = (dimX)

(︃
1 +

log µ1

log λ1

)︃−1

Proof. Since ϕ∗ preserves the volume of a divisor,

vol(A) = vol(∆+ +∆−) = vol ((ϕ∗)n(∆+ +∆−)) = vol
(︁
λn
1∆+ + µ−n

1 ∆−
)︁

= vol

(︃
(λn

1 − µ−n
1 )

(︃
∆+ +

µ−n
1

λn
1 − µ−n

1

(∆+ +∆−)

)︃)︃
= (λn

1 − µ−n
1 )dimX vol

(︃
∆+ +

µ−n
1

λn
1 − µ−n

1

(∆+ +∆−)

)︃
.

Taking A = ∆+ +∆− and tn =
µ−n
1

λn
1−µ−n

1

, we find that

vol (∆+ + tnA) = (λn
1 − µ−n

1 )− dimX vol(A) = Cnt
ν
n,

where

ν = (dimX)

(︃
1 +

log µ1

log λ1

)︃−1

Cn =
(λn

1 − µ−n
1 )− dimX vol(A)(︂

µ−n
1

λn
1−µ−n

1

)︂(︃(dimX)
(︂
1+

log µ1
log λ1

)︂−1
)︃

One may check that Cn is a decreasing function as n increases and that limn→∞Cn = vol(A).
In particular, for sufficiently large n we have

vol(A)tνn < vol(∆+ + tnA) < 2 vol(A)tνn.

Since vol(∆+ + tA) is an increasing function in t, this implies that there exists a constant C
such that vol(∆+ + tA) < Ctν for all 0 < t < 1, and so

νR
vol(∆+) = ν = (dimX)

(︃
1 +

log µ1

log λ1

)︃−1

= (dimX)

(︃
1 +

log λ1(ϕ
−1)

log λ1(ϕ)

)︃−1

. □

In the example of this section, λ1(ϕ) = λ1(ϕ
−1) = λ and the formula yields νR

vol(∆+) = 3/2,
which coincides with κR

σ (∆+).

Remark 7. It is not at all clear that the quantity (dimX)
(︂
1 + log λ1(ϕ−1)

log λ1(ϕ)

)︂−1

should always

be rational when ∆++∆− is ample, although I am not aware of any relevant counterexamples.

Remark 8. N. McCleerey has showed that νvol(D) = νBDPP(D) in several cases, e.g. when
νBDPP(D) = 0 or νBDPP(D) = dimX − 1 [12] (when dimX = 3, this covers all cases except
that of νBDPP(D) which occurs for our main example). It would also be interesting to know
whether κσ(D) = νvol(D) in general.
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When ϕ is an automorphism with λ1(ϕ) > 1 (rather than just a pseudoautomorphism), it
is possible to give a more precise computation of the numerical dimension of the eigenvector
in terms of the dynamical degrees of ϕ. In this case, ∆+ is nef, and the different definitions
of numerical dimension coincide; in particular, the value is always an integer.
Let Jk(ϕ) denote the size of the largest Jordan block for ϕ∗ : Nk(X) → Nk(X), and take

J̃k(ϕ) = Jk(ϕ) − 1, so that for a general ample divisor H we have (ϕ∗)m(Hk) · HN−k ∼
λk(ϕ)

mmJ̃k(ϕ). Here by ∼ we mean that the left quantity is bounded above and below by
multiples of the right one.

Theorem 10. Suppose that ϕ : X → X is an automorphism with λ1(ϕ) > 1 and that ∆+

is a leading eigenvector for ϕ, equal to ∆+ = limn→∞
1

λ1(ϕ)nnJ̃1(ϕ)
(ϕ∗)nH for some ample H.

Then νBDPP(∆+) = κσ(∆+) = κν(∆+) with

κσ(∆+) = max
{︂
a : λa(ϕ) = λ1(ϕ)

a and J̃a(ϕ) = aJ̃1(ϕ)
}︂
.

Proof. Let H be an ample class and N = dimX. Then ∆a
+ ̸= 0 if and only if ∆a

+ ·HN−a > 0,
and we compute

∆a
+ ·HN−a = lim

n→∞

(︃
1

λ1(ϕ)nanaJ̃1(ϕ)
(ϕ∗)n(H)a

)︃
·HN−a

= lim
n→∞

1

λ1(ϕ)nanaJ̃1(ϕ)

(︁
(ϕ∗)n(H)a ·HN−a

)︁
= lim

n→∞

1

λ1(ϕ)nanaJ̃1(ϕ)

(︂
λa(ϕ)

nnJ̃a(ϕ)
)︂

= lim
n→∞

(︃
λa(ϕ)

λ1(ϕ)a

)︃(︂
nJ̃a(ϕ)−aJ̃1(ϕ)

)︂
.

Consequently ∆a
+ · HN−a > 0 if λa(ϕ) = λ1(ϕ)

a and J̃a(ϕ) = aJ̃1(ϕ). The claim follows.
(Note that the first equality always holds if = is changed to ≤, by log concavity of dynamical
degrees; the same is true of the second in the case that the first is an equality.) □

Example 2. Suppose that X is a hyper-Kähler manifold of dimension N = 2m and that
ϕ : X → X is an automorphism. It is shown by Oguiso [14] that λa(ϕ) = λ1(ϕ)

a for a ≤ m,
so that ν(∆+) = m in this case.
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