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ABSTRACT. Suppose that f : X ‧‧➡ X is a dominant rational self-map of a smooth projective
variety defined over Q. Kawaguchi and Silverman conjectured that if P ∈ X(Q) is a point with
well-defined forward orbit, then the growth rate of the height along the orbit exists, and coincides
with the first dynamical degree λ1(f) of f if the orbit of P is Zariski dense in X .

In this note, we extend the Kawaguchi–Silverman conjecture to the setting of orbits of higher-
dimensional subvarieties of X . We begin by defining a set of arithmetic degrees of f , independent
of the choice of cycles, and we then develop the theory of arithmetic degrees in parallel to existing
results for dynamical degrees. We formulate several conjectures governing these higher arithmetic
degrees, relating them to dynamical degrees.

1. INTRODUCTION

Suppose that f : X ‧‧➡ X is a dominant rational self-map of a d-dimensional smooth projective
variety defined over Q. Let Xf (Q) denote the set of rational points for which the full forward
orbit is well-defined. Fix a Weil height function hX : X(Q) −→ R and set h+

X := max{hX , 1}.
Following Kawaguchi–Silverman [16], the arithmetic degree of a point P ∈ Xf (Q) is defined
to be the limit

αf (P ) = lim
n→∞

h+
X(f

n(P ))1/n,

supposing that it exists. This is a measure of the “arithmetic complexity” of the orbit of P .

Another basic invariant of f is its set of dynamical degrees. For 0 ⩽ k ⩽ d, we define

λk(f) = lim
n→∞

((fn)∗Hk ·Hd−k)1/n,

where H is an ample divisor on X . The limit is known to exist (see [8, 26, 5]). Also, note that it
is independent of the choice of the ample divisor H . There is expected to be a close relationship
between the arithmetic and dynamical degrees: a conjecture of Kawaguchi and Silverman [16]
states that if P has Zariski dense f -orbit, then αf (P ) = λ1(f).

Although the theory of dynamical degrees is comparably well-developed, many basic ques-
tions remain open about the arithmetic degree αf (P ) of a point P (see [15, 16, 19, 24, 20, 21, 18]
for various results). The dynamical degrees of f satisfy certain inequalities, and there is a well-
defined notion of relative dynamical degrees of a rational self-map preserving a fibration. We
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refer to [23, §3], [9, §4], and references therein for a comprehensive exposition on dynamical
degrees, topological and algebraic entropies.

Our aim in this note is to develop a theory of higher arithmetic degrees in parallel to the existing
theory for dynamical degrees, which was suggested in an unpublished note by Kawaguchi and
Silverman (see, e.g., Silverman’s talk [25] at a Simons Symposium in 2019). We introduce
the so-called k-th arithmetic degree αk(f) of a self-map f as a rough measure of the height
growth of (k − 1)-dimensional algebraic subvarieties of X , and show that a number of the
basic properties of dynamical degrees extend to the arithmetic setting. Although the arguments
are along familiar lines, considerable technical difficulties arise in dealing with the arithmetic
intersection. Our higher arithmetic degrees of self-maps are defined independently of the choice
of subvarieties (unlike the αf (P ) of Kawaguchi–Silverman, which is defined for each point
P ). On the other hand, we also formulate analogous invariants depending on cycles and a
higher-dimensional analog of the Kawaguchi–Silverman conjecture.

1.1. Examples. Before giving the formal definition, we consider some illuminating examples
in the first new case: the growth rate of heights of hypersurfaces under rational self-maps of
projective spaces. In this case, the computations are quite concrete. Let f : Pd ‧‧➡ Pd be a
dominant rational self-map of Pd and let V be a hypersurface in Pd, defined over Q. For the
time being, we adopt the naive height h(V ) of V , i.e., the height of the defining homogeneous
polynomial of V (see [12, §B.7]).

We then define the arithmetic degree of V by the limit αd(f ;V ) = lim
n→∞

h((fn)∗V )1/n; the
more general and precise definition appears later as Definition 1.4.

The conjecture of Kawaguchi and Silverman predicts that if P is a point with Zariski dense
orbit, then we have αf (P ) = λ1(f). Considering some simple two-dimensional examples below
shows that the most obvious analog of this conjecture is too optimistic: it may not be true that if
a hypersurface V of Pd has Zariski dense orbit then αd(f ;V ) = λd(f). In general, the (d−1)-th
dynamical degree λd−1(f) should also be taken into account.

Example 1.1. Let f : P2 ‧‧➡ P2 be a dominant rational self-map of P2 defined in an affine chart
by f(x, y) = (2y, xy). The iterates are given by fn(x, y) =

(︁
xFn−1(2y)Fn , xFn(2y)Fn+1/2

)︁
,

where (Fn)n∈N = (0, 1, 1, 2, 3, 5, . . .) is the Fibonacci sequence. It is easy to verify that the map
f is birational, its inverse is given by the formula f−1(x, y) = (2y/x, x/2), and the iterates of
the inverse are given by

f−n(x, y) =

(︃
x(−1)nFn+1

(2y)(−1)nFn
,
(2y)(−1)nFn−1

2x(−1)nFn

)︃
.

Clearly, the dynamical degrees of f are given by

λ0(f) = 1, λ1(f) =
1 +

√
5

2
, λ2(f) = 1.

Consider now the height growth of some subvarieties of P2. If P is a point with Zariski dense
orbit, then it is not hard to see that αf (P ) = 1+

√
5

2
.
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If V is a general curve on P2, its image under fn can be computed by pulling back its defining
equations via the formula for f−n. From the definition of the height of a hypersurface in Pd, we
then have that α2(f ;V ) = 1+

√
5

2
= λ1(f) > λ2(f).

Example 1.2. Let f : P2 −→ P2 be the q-th power morphism of P2 for some integer q ≥ 2,
which is defined in coordinates via f(x, y) = (xq, yq). Then fn(x, y) = (xqn , yq

n
). Clearly, this

f is a polarized endomorphism and has dynamical degrees

λ0(f) = 1, λ1(f) = q, λ2(f) = q2.

If P is a point with Zariski dense orbit, then we again have αf (P ) = q. Consider now a line
V := {x = 2} ⊂ P2. Then the image of V under fn is just the line {x = 2q

n} and the induced
morphism fn|V has degree qn. One can check that the arithmetic degree α2(f ;V ) of V is equal
to limn→∞ h(qnfn(V ))1/n = q2 = λ2(f).

Observe that although in both examples we have αf (P ) = λ1(f) predicted by the Kawaguchi–
Silverman conjecture, it is not true in general that α2(f ;V ) = λ2(f). These examples, together
with a heuristic from the function field case (see, e.g., [21]), naturally lend themselves to the
speculation that αk(f ;V ) = max{λk(f), λk−1(f)}. We note that in private communication,
Joe Silverman indicated to us that he has additional examples using monomial maps on Pd

suggesting the above relation between αk(f ;V ), λk−1(f), and λk(f).

Regarding the function field case, suppose now that X is defined over the function field Q(C),
where C is a smooth projective curve over Q. Let π : X −→ C be a smooth model of X such
that the generic fiber is isomorphic to X . Fix an ample divisor HX on X . Given an algebraic
k-cycle V ⊂ X , take V to denote the closure of V in X . The height of V is then defined to be
the intersection number V ·Hk+1

X , computed on X .

Now, suppose that f : X ‧‧➡ X extends to a rational map fX : X ‧‧➡ X and that the closure
V of V is an ample cycle. Then we have

αk+1(f ;V ) = lim
n→∞

hX((f
n)∗V )1/n = lim

n→∞
((fn

X )∗V ·Hk+1
X )1/n

= lim
n→∞

((fn
X )

∗Hk+1
X · V)1/n = λk+1(fX ).

However, λk+1(fX ) is related to the dynamical degrees of f itself by the product formula of
Dinh–Nguyen [7]. Since fX preserves a fibration π over the curve C, we have

αk+1(f ;V ) = λk+1(fX ) = max{λk+1(f), λk(f)}.

1.2. Definitions of higher arithmetic degrees. We turn at last to the general definitions. Let X
be a smooth projective variety of dimension d defined over Q. We choose an integral model
π : X −→ SpecZ of X , i.e., a projective scheme over SpecZ such that π is flat and the generic
fiber XQ is isomorphic to X . In particular, X is an arithmetic variety of relative dimension d

over SpecZ. As we do not require π to be regular, such an integral model always exists.
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We refer to Moriwaki’s book [22] for an introduction to the Arakelov geometry; in particular,
see [22, Chapter 5] for the arithmetic intersection theory and various arithmetic positivity
properties. See also [3, Section 2].

Fix an arithmetically ample line bundle H = (H, ∥ · ∥) on X. The corresponding ample line
bundle HQ on X will be simply denoted by H . For any k-cycle Z in X, the Faltings height
hH(Z) of Z with respect to H is defined by the Arakelov intersection

hH(Z) :=
ˆ︃deg(ˆ︁c1(H)k · Z) := ˆ︃deg(ˆ︁c1(H|Z)k),

where ˆ︁c1(H) ∈ ˆ︂CH1

D(X) is the first arithmetic Chern class of H, and

ˆ︃deg : ˆ︂CHd+1

D (X) −→ R

is the arithmetic degree map. Note that we adopt the same convention for the height as in [10,
Definition 2.5] without dividing by the algebraic degree of the cycle.

When k ≥ 1, let degQ(Z) denote the degree of ZQ with respect to the ample line bundle H

on X . Namely

degQ(Z) := (ZQ ·Hk−1).

Let f : X ‧‧➡ X be a dominant rational self-map of X extending a given dominant rational
self-map f of X . Denote by Γf the generic resolution of the graph of f in X ×Z X; see [22,
Theorem 5.1]. In particular, Γf is an arithmetic variety. For i = 1 and 2, we let

πi := πi,f : Γf −→ X

denote the projection from Γf onto the first and second component, respectively. We note that
from now on, for the sake of simplifying the notation, we will drop the dependence on f from
the index of these two projection maps and simply refer to them as π1 and π2 instead of π1,f and
π2,f. We also denote the corresponding projection maps on the geometric fibers by π1 and π2

when there is no risk of confusion.

Recall that given an integer 0 ⩽ k ⩽ d, the k-th (pure algebraic) degree of f with respect to
H is defined by

degk(f) := (π∗
2H

k · π∗
1H

d−k).

Then the k-th dynamical degree of f is then interpreted as the growth rate of the k-th degree of
fn with respect to any ample divisor, i.e.,

(1.1) λk(f) = lim
n→∞

degk(f
n)1/n.

The existence of the limit is non-trivial (see [8, 26, 5]). We can also consider analogous versions
of these two quantities measuring the degree growth of an algebraic subvariety V of dimension
k. Namely, we define the k-th degree of f along V as

degk(f ;V ) := (π∗
2H

k · π∗
1V )
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and the k-th dynamical degree of f along V by

(1.2) λk(f ;V ) := lim sup
n→∞

degk(f
n;V )1/n.

Note that we are taking lim sup since in general it is not known whether the limit actually exists.
Similar phenomena also happen in the definition of arithmetic degrees below.

Definition 1.3. For any integer 0 ⩽ k ⩽ d + 1, let ˆ︃degk(f) denote the k-th degree of f with
respect to an arithmetically ample line bundle H, i.e.,ˆ︃degk(f) := ˆ︃deg (︁ˆ︁c1(π∗

2H)k · ˆ︁c1(π∗
1H)d+1−k

)︁
.

Then the k-th arithmetic degree of f is defined as

(1.3) αk(f) := lim sup
n→∞

ˆ︃degk(fn)1/n.

Similarly, we define the arithmetic analog of the k-th degree of f along a subvariety.

Definition 1.4. Let V be a subvariety of dimension k in X which intersects properly the
indeterminacy loci of fn for all n. The strict transform π◦

1V of V by π1 has codimension d− k

on the graph Γf(C) of f . Let
ZV := π2∗π◦

1(V )

be the Zariski closure in X of the pushforward of the k-cycle π◦
1(V ) by π2. We then similarly

denote ˆ︃degk+1(f ;V ) := ˆ︃deg (︁ˆ︁c1(H|ZV
)k+1

)︁
,

and define the (k + 1)-th arithmetic degree of f along V as

(1.4) αk+1(f ;V ) := lim sup
n→∞

ˆ︃degk+1(f
n;V )1/n.

When f : X −→ X is a surjective morphism, it is not necessary to take a generic resolution of
the graph when defining degk and ˆ︃degk+1. In this case, we have

degk(f ;V ) = (π∗
2H

k · π∗
1V ) = (Hk · f∗V ) = degk(f∗V ), andˆ︃degk+1(f ;V ) = ˆ︃deg (︁ˆ︁c1(H|f∗V )

k+1
)︁
,

where f∗V denotes the Zariski closure of f∗V in X. Thus λk(f ;V ) (resp., αk+1(f ;V )) measures
the degree growth (resp., the height growth) of the iterates of an algebraic subvariety V .

1.3. Conjectures and main results. As we have mentioned before, it is known that the limit
(1.1) defining λk(f) indeed exists; in the other three cases (1.2)–(1.4), this is unknown and it is
necessary to take the lim sup in the definition. We will show later that the limit defining α1(f)

actually exists and is equal to λ1(f). We expect that the limits exist for the other αk(f) as well.
It is a more subtle question whether the limits exist for the invariants αk+1(f ;V ), which depend
on the particular subvarieties V , not just the map f . In the case of α1(f ;P ), the existence of the
limit is one part of Kawaguchi–Silverman conjecture. Even in the case of λk(f ;V ) (a question
with no arithmetic content), this seems to be an open question.
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Conjecture 1.5. Let f : X ‧‧➡ X be a dominant rational map, and let V be a subvariety of
dimension k in X which intersects properly the indeterminacy loci of fn and is not contracted by
fn for all n. Then the limits defining λk(f ;V ), αk(f), and αk+1(f ;V ) exist and are independent
of the choices of H and H as well as the integral model X.

We also expect that αk+1(f) provides an upper bound on the growth rate of the heights of
algebraic subvarieties of dimension k.

Conjecture 1.6. Let f : X ‧‧➡ X be a dominant rational map, and let V be a subvariety of
dimension k. Then αk+1(f ;V ) ⩽ αk+1(f). Furthermore, if the orbit of V under f is Zariski
dense in X , then αk+1(f ;V ) = αk+1(f).

Remark 1.7. We note that in our definition for αk+1(f ;V ), we take into account the associated
multiplicities in case fn is ramified along V (see Remark 1.10 and also Example 1.11). Without
counting these multiplicities, we could not expect that αk+1(f ;V ) = αk+1(f) even when the
orbit of V is Zariski dense in X . Indeed, Joe Silverman (whom we thank once again for his most
valuable insight) showed us an example of a plane curve whose arithmetic degree computed
using the strict transform fn(V ) instead of the cycle-theoretic pushforward fn

∗ (V ) is strictly
less than α2(f), even though the curve has Zariski dense orbit under f . See also his talk [25] at
the Simons Symposium.

Although we are not able to prove that the lim sup is actually a limit independent of any choice
when k ⩾ 2, recent work due to Ikoma [13] based on the arithmetic Hodge index theorem of Yuan
and Zhang [28] shows that the arithmetic intersection shares many similarities with the algebraic
intersection. This allows us to extend a number of basic properties of dynamical degrees to the
arithmetic setting. For example, it is shown that the Khovanski–Teissier inequalities hold in
arithmetic intersection theory, and the log concavity of the arithmetic degrees follows. We list
some basic properties of the arithmetic degrees in the next theorem.

Theorem A. Let f be a dominant rational self-map of X . Let X be any fixed integral model of
X and H any fixed arithmetically ample line bundle on X. Suppose that all arithmetic degrees
αk(f) of f are finite. Then the following assertions hold.

(1) The sequence k ↦→ αk(f) is log-concave.
(2) If f is birational, then αk(f) = αd+1−k(f

−1).

We also formulate an analog of the Kawaguchi–Silverman conjecture, which predicts that the
height growth of cycles is controlled by dynamical degrees. In this case, the natural prediction
derives from the case of function fields (see Section 1.1), in which it reduces to the familiar
Dinh–Nguyen product formula for dynamical degrees (see [7]).

Conjecture 1.8. Let f be a dominant rational self-map of X . Then for any integer 1 ⩽ k ⩽ d,
one has

αk(f) = max{λk(f), λk−1(f)}.
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The conjunction of Conjectures 1.6 and 1.8 should be understood as the higher-dimensional
formulation of the Kawaguchi–Silverman conjecture.

We prove this conjecture in the case that dimX = 2 and f is birational (see Theorem 2.2)
and in the case that f : X −→ X is a polarized endomorphism (see Theorem 2.3).

Our next main result provides an inequality of Conjecture 1.8.

Theorem B. Let f be a dominant rational self-map of X . Then for any integral model X of X
and any arithmetically ample line bundle H on X, one has

αk(f) ⩾ max{λk(f), λk−1(f)},

for any integer 1 ⩽ k ⩽ d.

The proof of Theorem B relies on an arithmetic Bertini argument (see Lemma 2.1) which
allows us to relate the arithmetic degree with a height of a given particular cycle. Then one
applies an inequality due to Faltings [10] to bound below the height of the cycles by its algebraic
degree.

In the particular case when k = 1, we show that the first degree sequence (ˆ︃deg1(fn))n≥0 of f
with respect to an arithmetically ample line bundle is submultiplicative.

Theorem C. Let X , Y , Z be smooth projective varieties defined over Q of dimension d. Choose
integral models X, Y , and Z of X , Y , and Z, respectively. Fix three arithmetically ample line
bundles HX, HY , and HZ on X, Y , and Z , respectively. Then there exists a constant C > 0

such that for any dominant rational maps f : X ‧‧➡ Y and g : Y ‧‧➡ Z, one has

ˆ︃deg1(g ◦ f) ⩽ C ˆ︃deg1(f)ˆ︃deg1(g),
where the intersection numbers are taken with respect to the chosen arithmetically ample line
bundles on each integral model.

The above result relies heavily on Yuan’s work [27] on the properties of the arithmetic volume.
From his arithmetic volume estimates, one deduces an effective way to obtain an arithmetically
pseudo-effective line bundle. The above theorem yields the following consequence.

Corollary D. The first arithmetic degree α1(f) of f is equal to the limit, i.e.,

α1(f) = lim
n→∞

ˆ︃deg1(fn)1/n.

Moreover, it is a finite number and independent of the choices of the integral model X of X , the
birational model of X , or the arithmetically ample line bundle H on X.

More precisely, Theorem A shows that the growth rate of the sequence (ˆ︃deg1(fn))n≥0 is also
a birational invariant. In this particular case, the relationship between the arithmetic degree and
the dynamical degree is more constrained.
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Theorem E. Let f be a dominant rational self-map of X . Then for any integral model X of X
and any arithmetically ample line bundle H on X, one has

α1(f) = λ1(f).

In particular, α1(f) does not depend on the choice of the integral model X nor on the choice of
the arithmetically ample line bundle H.

Let us explain how one can understand the above theorem. Since Theorem B proves that
λ1(f) ⩽ α1(f), the proof of this last result amounts in proving the converse inequality α1(f) ⩽

λ1(f). Using an arithmetic Bertini argument (see Section 2.2) and the integration by parts, we
prove a more general statement (see Theorem 2.4), namely that for any positive integer n, there
exists an algebraic cycle Z of dimension k − 1 on X such thatˆ︃degk(fn) ⩽ hH(f

n
∗ Z) + C degk−1(f

n)

for a positive constant C > 0 which is independent of n and Z. In the case where k = 1, the
degree of fn with respect to H is controlled by the height of a point and the algebraic degree of
fn. We finally conclude using the fact that the height of the images of a rational point by fn is
controlled by the first dynamical degree of f (see [16, 19]).

1.4. Remarks and further questions. The above discussion leads us to the following natural
question.

Question 1.9. Let V be a subvariety of dimension k in X which intersects properly the indeter-
minacy loci of fn and is not contracted by fn for all n. Then is it true that

lim sup
n→∞

(hH(f
n
∗ V ))1/n = αk+1(f)

when V is generic?

Remark 1.10. In our notation, f∗V denotes the cycle-theoretic pushforward of V , not just its
strict transform; so, if f is ramified along V , then the class V gets multiplied by the degree of the
ramification. Subtleties can arise when some iterates of f are ramified along V (for example, we
refer the reader to [14, §7] for a construction of certain non-PCF endomorphisms f of projective
spaces such that the ramification divisor Rf is irreducible and f |Rf

is birational to the image
f(Rf )), and when infinitely many different iterates are ramified along V the ramification is
reflected in the arithmetic degree of the cycle: fn

∗ V is equal to the class of the strict transform
fn(V ) with a multiple of the ramification degree. Consider for contrast the following example.

Example 1.11. Define f : P2 ‧‧➡ P2 by setting f(x, y) = (x2, y) (on the affine part), and let V
be the curve defined by y = 0. Then V is invariant under f and f |V is the squaring map on P1.
As a result, fn

∗ V = 2nV , and we have α2(f ;V ) = 2. In particular, note that (with our definition)
α2(f ;V ) is not equal to 1 as one might think due to the fact that V is f -periodic (actually, it is
even f -invariant). On the other hand, let W be the curve defined by x = y; this curve is linearly
equivalent to V as an algebraic cycle and its iterates are also disjoint from the indeterminacy
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point [0 : 1 : 0]. Then fn(W ) is defined by the equation x = y2
n , so that h(fn

∗ W ) = 2n. Thus
we find that α2(f ;W ) = 2 as well.

Remark 1.12. It is also possible that f is ramified along a curve only a finite number of times, in
which the extra factor corresponding to ramification disappears in the limit of h(fn

∗ V )1/n. It is
also conceivable that f could ramify along V infinitely many times, but with such infrequency
that the ramification is not reflected in the arithmetic degree. This is impossible, assuming the
following special case of a generalization of the Dynamical Mordell–Lang conjecture (see [11, 1]
for the original Dynamical Mordell–Lang Conjecture and also [2, 17] for a higher dimensional
version of it).

Question 1.13. Suppose that f : X ‧‧➡ X is a rational map and that V ⊂ X is a subvariety
with a well-defined forward orbit. Is

R(f, V ) = {n ∈ N : fn(V ) ⊆ Rf}

the union of a finite set and finitely many arithmetic progressions?

Acknowledgments. The authors thank Charles Favre, Thomas Gauthier, Mattias Jonsson,
Yohsuke Matsuzawa, Joe Silverman, and Xinyi Yuan for stimulating conversations and helpful
suggestions. Part of this work was done during the Simons Symposium: Algebraic, Complex and
Arithmetic Dynamics in May 2019 at Schloss Elmau. We are grateful to the Simons Foundation
for its generous support. We are also very grateful to the referee for reading our manuscript
thoroughly and for his/her helpful suggestions, comments, and corrections.

2. ON THE k-TH ARITHMETIC DEGREES

2.1. Proof of Theorem A. Fix an integral model X of X and an arithmetically ample line
bundle H on X. By abuse of notation, we also denote by f the dominant rational map on the
integral model X. Let π1,n and π2,n be the projections from the generic resolution of the graph of
fn in X×Z X to the first and second components, respectively. By [13, Theorem 2.9(1)] applied
to the arithmetic nef line bundles π∗

1,nH and π∗
2,nH, we have that

ˆ︃degk(fn)2 = ˆ︃deg (︁ˆ︁c1(π∗
2,nH)k · ˆ︁c1(π∗

1,nH)d+1−k
)︁2

⩾ ˆ︃deg (︁ˆ︁c1(π∗
2,nH)k+1 · ˆ︁c1(π∗

1,nH)d−k
)︁ˆ︃deg (︁ˆ︁c1(π∗

2,nH)k−1 · ˆ︁c1(π∗
1,nH)d+2−k

)︁
.

We thus obtain that ˆ︃degk(fn)2 ⩾ ˆ︃degk+1(f
n)ˆ︃degk−1(f

n).

Taking the n-th root as n goes to infinity yields that

αk(f)
2 ⩾ αk−1(f)αk+1(f)

and the sequence k ↦→ αk(f) is locally log-concave at each point. It is thus globally log-concave,
as required.
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The second assertion immediately follows from the definition of αk(f), with the roles of π1

and π2 reversed. □

2.2. A technical lemma. In this section, we prove a technical lemma which relates the two
different k-th degrees of a rational self-map f as well as the height of certain points on the
f -orbit. To do so, let us introduce a few notations.

We fix a dominant rational map f : X ‧‧➡ X defined over Q. Denote by π1 and π2 the
projections from a generically smooth birational model Γf of the graph of f in X× X onto the
first and the second factors, respectively. We fix an arithmetically ample line bundle H on X

and a positive integer k ⩽ d. Given d+ 1− k sections s1, . . . , sd+1−k of H, we shall set cycles
Z ′

i, Zi as follows:
Z ′

i := div(π∗
1si) · . . . · div(π∗

1sd+1−k),

Zi := div(si) · . . . · div(sd+1−k),

for all 1 ⩽ i ⩽ d+ 1− k.

By an arithmetic Bertini theorem [4, Theorem 1.1] applied to π1 : Γf −→ X, one can find
d+ 1− k sections s1, . . . , sd+1−k of H satisfying the following conditions:

(i) For all i, the cycles Zi are irreducible and generically smooth;
(ii) For all i, the horizontal parts of the cycles Z ′

i are irreducible;
(iii) For all i, one has ∥si∥ < 1 uniformly.

We denote by ωX the Kähler form on X(C) associated to H. Observe that the supports of the
cycles Z ′

i form an increasing sequence of closed subvarieties of Γf . In the next lemma, we shall
conventionally set Z ′

d+2−k := Γf .

Lemma 2.1. With notation as above, one has

ˆ︃degk(f) = hH(f∗Z1) +
d+2−k∑︂
j=2

∫︂
Z′
j(C)

(− log ∥π∗
1sj−1∥)π∗

2ω
k
X ∧ π∗

1ω
j−2
X .

Proof. We first rewrite ˆ︃degk(f) as follows (see Definition 1.3):ˆ︃degk(f) = ˆ︃deg (︁ˆ︁c1(π∗
2H)k · ˆ︁c1(π∗

1H)d−k · ˆ︂div(π∗
1sd+1−k)

)︁
.

By [3, Formula 2.3.8 of Proposition 2.3.1(vi)] applied to the arithmetic divisor ˆ︂div(sd+1−k), we
have that ˆ︃degk(f) = ˆ︃deg (︁ˆ︁c1(π∗

2H)k · ˆ︁c1(π∗
1H)d−k · div(π∗

1sd+1−k)
)︁

+

∫︂
Γf (C)

(− log ∥π∗
1sd+1−k∥)π∗

2ω
k
X ∧ π∗

1ω
d−k
X

= ˆ︃deg (︁ˆ︁c1(π∗
2H)k · ˆ︁c1(π∗

1H)d−k · Z ′
d+1−k

)︁
+

∫︂
Γf (C)

(− log ∥π∗
1sd+1−k∥)π∗

2ω
k
X ∧ π∗

1ω
d−k
X .
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We then inductively apply [3, Formula 2.3.8 of Proposition 2.3.1(vi)] as follows:

ˆ︃deg (︁ˆ︁c1(π∗
2H)k · ˆ︁c1(π∗

1H)d−k · Z ′
d+1−k

)︁
= ˆ︃deg (︁ˆ︁c1(π∗

2H)k · ˆ︁c1(π∗
1H)d−k−1 · Z ′

d−k

)︁
+

∫︂
Z′
d+1−k(C)

(− log ∥π∗
1sd−k∥)π∗

2ω
k
X ∧ π∗

1ω
d−k−1
X ,

ˆ︃deg (︁ˆ︁c1(π∗
2H)k · ˆ︁c1(π∗

1H)d−k−1 · Z ′
d−k

)︁
= ˆ︃deg (︁ˆ︁c1(π∗

2H)k · ˆ︁c1(π∗
1H)d−k−2 · Z ′

d−k−1

)︁
+

∫︂
Z′
d−k(C)

(− log ∥π∗
1sd−k−1∥)π∗

2ω
k
X ∧ π∗

1ω
d−k−2
X ,

...

ˆ︃deg (︁ˆ︁c1(π∗
2H)k · ˆ︁c1(π∗

1H) · Z ′
2

)︁
= ˆ︃deg (︁ˆ︁c1(π∗

2H)k · Z ′
1

)︁
+

∫︂
Z′
2(C)

(− log ∥π∗
1s1∥)π∗

2ω
k
X .

From the above sequence of equalities, we deduce that

ˆ︃degk(f) = ˆ︃deg (︁ˆ︁c1(π∗
2H)k · Z ′

1

)︁
+

d+2−k∑︂
j=2

∫︂
Z′
j(C)

(− log ∥π∗
1sj−1∥)π∗

2ω
k
X ∧ π∗

1ω
j−2
X .

By the projection formula (cf. [3, Proposition 2.3.1(iv)]), the lemma follows. □

2.3. Proof of Theorem B. We shall use the following inequality due to Faltings [10, Proposi-
tion 2.16]:

There exists a constant C > 0 depending only on the arithmetically ample line bundle H
on X (and also depending on the supremum of the norm of a section of the corresponding line
bundle at infinite places) such that

hH(Z) ⩾ C(Hk · Z),

for any effective k-cycle Z on X . By Lemma 2.1, for any positive integer n, we have

ˆ︃degk(fn) = hH(f
n
∗ Z1) +

d+2−k∑︂
j=2

∫︂
Z′
j(C)

(− log ∥π∗
1sj−1∥)π∗

2ω
k
X ∧ π∗

1ω
j−2
X ,

where Z1, Z ′
j , and sj are defined in Section 2.2. Observe that Z1 is a cycle on X , but the cycles

Z ′
j are on Γfn . Since the supremum of the norm of the sections sj is bounded above by 1, all the

terms in the integral are non-positive. We thus haveˆ︃degk(fn) ⩾ hH(f
n
∗ Z1).

Using the Faltings inequality, we thus deduce ˆ︃degk(fn) ⩾ C(Hk−1 · fn
∗ Z1). Taking the n-th

root as n goes to infinity finally yields that

αk(f) ⩾ λk−1(f).

For the other inequality, we observe that the roles played by the line bundles π∗
1H and π∗

2H are
symmetric and the technical lemma also proves that ˆ︃degk(fn) ⩾ ChH(f

−n
∗ Z) = ChH(π1∗π

∗
2Z)
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for an appropriate complete intersection cycle of dimension k in X and we conclude that
αk(f) ⩾ λk(f). We have thus proven that αk(f) ⩾ max{λk(f), λk−1(f)}, as required. □

We have conjectured in fact that the inequality of Theorem B is always an equality (i.e.,
Conjecture 1.8). There are two cases in which we can prove this conjecture.

Theorem 2.2. If f : X ‧‧➡ X is a birational self-map of a surface X defined over Q, then

αk(f) = max{λk(f), λk−1(f)}

for all 1 ⩽ k ⩽ 2.

Proof. It is always true that λ0(f) = 1, while α1(f) = λ1(f) for any map according to
Theorem E. Besides, we have

α2(f) = α1(f
−1) = λ1(f

−1) = λ1(f).

Note that λ2(f) = 1 as f is birational. We thus have α2(f) = max{λ1(f), λ2(f)}. □

Recall that a surjective self-morphism f : X −→ X is polarized, if there exists an ample line
bundle L on X such that f ∗L ∼ Lq for some integer q > 1.

Theorem 2.3. Let f : X −→ X be a polarized endomorphism with respect to the ample line
bundle H = HQ on X , which extends to a polarizable endomorphism of an integral model X,
then

αk(f) = max{λk(f), λk−1(f)}

for all 1 ⩽ k ⩽ d.

Proof. We fix an isomorphism ϕ : Hq ≃ f ∗H on the integral model X of X , where H = (H, ∥·∥)
is a fixed arithmetically ample line bundle on X. By [29, Theorem 2.2], there exists a unique
metric ∥ · ∥0 on H such that

∥ · ∥0 = (ϕ∗f ∗∥ · ∥0)1/q.

This metric is obtained from the initial metric ∥ · ∥ on H using Tate’s limiting argument. As the
initial H is arithmetically ample, so is the new arithmetic line bundle H0 := (H, ∥ · ∥0).

Let us compute the k-th degree of fn with respect to the choice of the arithmetically ample
line bundle H0:

ˆ︃degk(fn) = ˆ︃deg (︁ˆ︁c1((fn)∗H0)
k · ˆ︁c1(H0)

d+1−k
)︁
= qkn ˆ︃deg (︁ˆ︁c1(H0)

d+1
)︁
.

This proves that αk(f) = qk. On the other hand, λk(f) = qk for any k. We hence conclude that

αk(f) = max{λk(f), λk−1(f)},

as required. □
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2.4. Upper bound for the arithmetic degree. We now state our next result, which gives an
upper bound of the k-th degree of fn.

Theorem 2.4. Let f : X ‧‧➡ X be a dominant rational map of a projective variety X defined
over Q. Then there exists a constant C > 0 such that for any positive integer k ⩽ d+1 and any
positive integer n, there exists a (k − 1)-cycle Z on X , whose support is not contained in the
indeterminacy locus of fn such that

ˆ︃degk(fn) ⩽ hH(f
n
∗ Z) + C degk−1(f

n).

Moreover, Z is a cycle associated with an arithmetic cycle representing ˆ︁c1(H)d+1−k in the
arithmetic Chow group of X.

Proof. We adopt the same notation of Section 2.2. Fix a positive integer n. We consider a
generically smooth birational model Γfn of the graph of fn. By Lemma 2.1, we have

ˆ︃degk(fn) = hH(f
n
∗ Z1) +

d+2−k∑︂
j=2

∫︂
Z′
j(C)

(− log ∥π∗
1sj−1∥)π∗

2ω
k
X ∧ π∗

1ω
j−2
X .

We now find an upper bound for each integral in the above equality. To that end, we choose a
generic section σk and use the Poincaré–Lelong formula

i∂∂̄ log ∥σk∥ = ωX − [σk = 0].

Using the above and the Chern–Levine–Nirenberg inequalities [6, Proposition 4.6(a)], we have∫︂
Z′
j(C)

(− log ∥π∗
1sj−1∥)π∗

2ω
k
X ∧ π∗

1ω
j−2
X

=

∫︂
Z′
j(C)

(− log ∥π∗
1sj−1∥)i∂∂̄π∗

2 log ∥σk∥ ∧ π∗
2ω

k−1
X ∧ π∗

1ω
j−2
X

+

∫︂
Z′
j(C)∩{π∗

2σk=0}
(− log ∥π∗

1sj−1∥)π∗
2ω

k−1
X ∧ π∗

1ω
j−2
X

⩽ C degk−1(f
n) +

∫︂
Z′
j(C)∩{π∗

2σk=0}
(− log ∥π∗

1sj−1∥)π∗
2ω

k−1
X ∧ π∗

1ω
j−2
X .

Note that the last inequality has on the right hand side an integral term of the same form.
Applying the above argument inductively, we obtain that∫︂

Z′
j(C)

(− log ∥π∗
1sj−1∥)π∗

2ω
k
X ∧ π∗

1ω
j−2
X ⩽ C ′ degk−1(f

n),

where C ′ > 0 is a constant independent of n. This yields that

ˆ︃degk(fn) ⩽ hH(f
n
∗ Z1) + C ′(d− k + 1) degk−1(f

n). □
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3. ON THE FIRST ARITHMETIC DEGREE

3.1. Proof of Theorem C. Our proof follows closely an algebraic approach for the existence of
dynamical degrees for dominant rational self-maps or correspondences (cf. [26, 5]).

We shall use the following inequality on arithmetic line bundles due to Yuan [27].

Theorem 3.1 (cf. [27, Theorem B]). Let L and M be two effective arithmetic line bundles over
an arithmetic variety X of relative dimension d. Then we have

ˆ︂vol(L+M)1/(d+1) ≥ ˆ︂vol(L)1/(d+1) + ˆ︂vol(M)1/(d+1).

An important consequence of the above theorem (see [27, Remark, p. 1459]) is that the
difference L −M is arithmetically big if

ˆ︃deg (︁ˆ︁c1(L)d+1
)︁
> (d+ 1)ˆ︃deg (︁ˆ︁c1(L)d · ˆ︁c1(M)

)︁
.

This inequality is the key ingredient to prove the submultiplicativity of the first degree sequence
(ˆ︃deg1(fn))n≥0 of f with respect to an arithmetically ample line bundle.

Proof of Theorem C. We fix integral models X, Y , and Z of X , Y , and Z, respectively; fix
three arithmetically ample line bundles HX, HY , and HZ , respectively. Let f : X ‧‧➡ Y and
g : Y ‧‧➡ Z be two dominant rational maps. Take Γf ,Γg the generic resolution of the graphs of
f : X ‧‧➡ Y and g : Y ‧‧➡ Z , respectively. Consider also the generic resolution Γ of the graph
of the rational map Γf ‧‧➡ Γg induced by f . We also denote by π1, π2 the projection of Γf onto
the X and Y , by u, v the projection of Γ onto Γf and Γg, and by π3, π4 the projections of Γg onto
Y and Z , respectively. We thus obtain the following diagram:

Γ
u

↙↙

v

↘↘
Γf

→→

π1

↙↙

π2

↘↘

Γg

π3

↙↙

π4

↘↘
X

f
→→ Y

g
→→ Z.

By applying Yuan’s estimate to L = u∗π∗
2HY and M = v∗π∗

4HZ , the following class

(d+ 1)
ˆ︃deg (︁ˆ︁c1(u∗π∗

2HY)
d · ˆ︁c1(v∗π∗

4HZ)
)︁

ˆ︃deg (︁ˆ︁c1(u∗π∗
2HY)d+1

)︁ u∗π∗
2HY − v∗π∗

4HZ

is pseudo-effective. Thus the intersection with a suitable power of the arithmetically nef class
u∗π∗

1HX yields that

(3.1) ˆ︃deg1(g ◦ f) ⩽ (d+ 1)
ˆ︃deg (︁ˆ︁c1(u∗π∗

2HY)
d · ˆ︁c1(v∗π∗

4HZ)
)︁

ˆ︃deg (︁ˆ︁c1(u∗π∗
2HY)d+1

)︁ ˆ︃deg1(f).
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Since u∗π∗
2 = v∗π∗

3 , we haveˆ︃deg (︁ˆ︁c1(u∗π∗
2HY)

d · ˆ︁c1(v∗π∗
4HZ)

)︁
ˆ︃deg (︁ˆ︁c1(u∗π∗

2HY)d+1
)︁ =

ˆ︃deg (︁ˆ︁c1(v∗π∗
3HY)

d · ˆ︁c1(v∗π∗
4HZ)

)︁
ˆ︃deg (︁ˆ︁c1(v∗π∗

3HY)d+1
)︁ .

Using the projection formula (cf. [3, Proposition 2.3.1(iv)]), we obtain thatˆ︃deg (︁ˆ︁c1(v∗π∗
3HY)

d · ˆ︁c1(v∗π∗
4HZ)

)︁
ˆ︃deg (︁ˆ︁c1(v∗π∗

3HY)d+1
)︁ =

ˆ︃deg (︁ˆ︁c1(π∗
3HY)

d · ˆ︁c1(π∗
4HZ)

)︁
ˆ︃deg (︁ˆ︁c1(π∗

3HY)d+1
)︁ =

ˆ︃deg1(g)ˆ︃deg (︁ˆ︁c1(HY)d+1
)︁ .

The above equalities together with the inequality (3.1) yield thatˆ︃deg1(g ◦ f) ⩽ C ˆ︃deg1(f)ˆ︃deg1(g),
where C = (d+ 1)/ˆ︃deg (︁ˆ︁c1(HY)

d+1
)︁
, and hence Theorem C follows. □

3.2. Proof of Theorem E. By Theorem B applied to k = 1, we have

α1(f) ⩾ max{λ1(f), λ0(f)} = λ1(f).

For the converse inequality, we apply Theorem 2.4. There is a constant C > 0 such that for
any positive integer n, there exists a zero-cycle Zn on X such that Zn =

∑︁
i an,i[xn,i] ∈ Zd(X)

associated to an arithmetic cycle representing the class ˆ︁c1(H)d (see §2.2), andˆ︃deg1(fn) ⩽
∑︂
i

an,ihH(f
nxn,i) + C deg0(f

n).

By Matsuzawa’s theorem (see [19, Theorem 1.4]), the growth rate of the height hH(f
nxn,i) of

any point xn,i is bounded above by C ′(λ1(f) + ϵ)nhH(xn,i), so we obtain thatˆ︃deg1(fn) ⩽ C ′(λ1(f) + ϵ)nhH(Zn) + C.

Since hH(Zn) ⩽ (ˆ︁c1(H)d+1), we getˆ︃deg1(fn) ⩽ C ′(λ1(f) + ϵ)n(ˆ︁c1(H)d+1) + C.

Taking the n-th root and letting ϵ → 0, we finally conclude that α1(f) = λ1(f). □
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