HIGHER ARITHMETIC DEGREES OF DOMINANT RATIONAL SELF-MAPS
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ABSTRACT. Suppose that f: X --+ X is a dominant rational self-map of a smooth projective
variety defined over Q. Kawaguchi and Silverman conjectured that if P € X (Q) is a point with
well-defined forward orbit, then the growth rate of the height along the orbit exists, and coincides
with the first dynamical degree A\; (f) of f if the orbit of P is Zariski dense in X.

In this note, we extend the Kawaguchi—Silverman conjecture to the setting of orbits of higher-
dimensional subvarieties of X. We begin by defining a set of arithmetic degrees of f, independent
of the choice of cycles, and we then develop the theory of arithmetic degrees in parallel to existing
results for dynamical degrees. We formulate several conjectures governing these higher arithmetic

degrees, relating them to dynamical degrees.

1. INTRODUCTION

Suppose that f: X --» X is a dominant rational self-map of a d-dimensional smooth projective
variety defined over Q. Let X;(Q) denote the set of rational points for which the full forward
orbit is well-defined. Fix a Weil height function hx : X(Q) — R and set b}, = max{hy,1}.
Following Kawaguchi—Silverman [16], the arithmetic degree of a point P € X;(Q) is defined
to be the limit

as(P) = lim B (f"(P)'",
supposing that it exists. This is a measure of the “arithmetic complexity” of the orbit of P.

Another basic invariant of f is its set of dynamical degrees. For 0 < k& < d, we define
A(f) = Tim ((f") H" - HOF)m,
n—o0

where H is an ample divisor on X. The limit is known to exist (see [8, 26, 5]). Also, note that it
is independent of the choice of the ample divisor H. There is expected to be a close relationship
between the arithmetic and dynamical degrees: a conjecture of Kawaguchi and Silverman [16]
states that if P has Zariski dense f-orbit, then af(P) = A (f).

Although the theory of dynamical degrees is comparably well-developed, many basic ques-
tions remain open about the arithmetic degree o ¢(P) of a point P (see [15, 16, 19, 24, 20, 21, 18]
for various results). The dynamical degrees of f satisfy certain inequalities, and there is a well-
defined notion of relative dynamical degrees of a rational self-map preserving a fibration. We
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refer to [23, §3], [9, §4], and references therein for a comprehensive exposition on dynamical
degrees, topological and algebraic entropies.

Our aim in this note is to develop a theory of higher arithmetic degrees in parallel to the existing
theory for dynamical degrees, which was suggested in an unpublished note by Kawaguchi and
Silverman (see, e.g., Silverman’s talk [25] at a Simons Symposium in 2019). We introduce
the so-called k-th arithmetic degree oy (f) of a self-map f as a rough measure of the height
growth of (k — 1)-dimensional algebraic subvarieties of X, and show that a number of the
basic properties of dynamical degrees extend to the arithmetic setting. Although the arguments
are along familiar lines, considerable technical difficulties arise in dealing with the arithmetic
intersection. Our higher arithmetic degrees of self-maps are defined independently of the choice
of subvarieties (unlike the o f(P) of Kawaguchi—Silverman, which is defined for each point
P). On the other hand, we also formulate analogous invariants depending on cycles and a
higher-dimensional analog of the Kawaguchi—Silverman conjecture.

1.1. Examples. Before giving the formal definition, we consider some illuminating examples
in the first new case: the growth rate of heights of hypersurfaces under rational self-maps of
projective spaces. In this case, the computations are quite concrete. Let f: P4 ——» P? be a
dominant rational self-map of P? and let V be a hypersurface in P%, defined over Q. For the
time being, we adopt the naive height h(V') of V, i.e., the height of the defining homogeneous
polynomial of V' (see [12, §B.7]).

We then define the arithmetic degree of V' by the limit ay(f; V) = lim h((f"),V)"™; the
n—oo

more general and precise definition appears later as Definition 1.4.

The conjecture of Kawaguchi and Silverman predicts that if P is a point with Zariski dense
orbit, then we have a¢(P) = A (f). Considering some simple two-dimensional examples below
shows that the most obvious analog of this conjecture is too optimistic: it may not be true that if
a hypersurface V' of P¢ has Zariski dense orbit then ag(f; V) = A\g(f). In general, the (d — 1)-th
dynamical degree A\;_1(f) should also be taken into account.

Example 1.1. Let f: P? --» P? be a dominant rational self-map of P? defined in an affine chart
by f(z,y) = (2y,zy). The iterates are given by f"(z,y) = (21 (2y)"™, ™ (2y)F+1/2),
where (F,)nen = (0,1,1,2,3,5,...) is the Fibonacci sequence. It is easy to verify that the map
f is birational, its inverse is given by the formula f~!(z,y) = (2y/x, x/2), and the iterates of
the inverse are given by

fry) = ((E T (2T
’ y (zy)(*l)nFn ’ 2$(71)7LFn

Clearly, the dynamical degrees of f are given by

1++5

2 )

M(f) =1, M(f)= Ao(f) = 1.

Consider now the height growth of some subvarieties of IP2. If P is a point with Zariski dense
orbit, then it is not hard to see that ay(P) = %‘F’
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If V is a general curve on P2, its image under f™ can be computed by pulling back its defining
equations via the formula for f~". From the definition of the height of a hypersurface in P¢, we
then have that ao(f; V) = %5 =M (f) > Xa(f).

Example 1.2. Let f: P2 — P? be the ¢-th power morphism of P? for some integer ¢ > 2,
which is defined in coordinates via f(x,y) = (x9,49). Then f™(x,y) = (29" ,y7"). Clearly, this
f is a polarized endomorphism and has dynamical degrees

/\o(f) =1, /\1(f) = 4q, /\2(f) = q2.

If P is a point with Zariski dense orbit, then we again have a;(P) = ¢. Consider now a line
V := {z = 2} C P% Then the image of V under f™ is just the line {x = 27" } and the induced
morphism f"|y has degree ¢". One can check that the arithmetic degree ao(f; V') of V' is equal
to lim,, o h(qnfn<v))1/n = ¢ = Xa(f).

Observe that although in both examples we have a.¢(P) = A1 (f) predicted by the Kawaguchi—
Silverman conjecture, it is not true in general that s (f; V) = A\o(f). These examples, together
with a heuristic from the function field case (see, e.g., [21]), naturally lend themselves to the
speculation that oy (f; V) = max{A\x(f), \e—1(f)}. We note that in private communication,
Joe Silverman indicated to us that he has additional examples using monomial maps on P?
suggesting the above relation between oy (f; V'), Ap_1(f), and Ax(f).

Regarding the function field case, suppose now that X is defined over the function field Q(C'),
where C is a smooth projective curve over Q. Let 7: X — C be a smooth model of X such
that the generic fiber is isomorphic to X. Fix an ample divisor /y on X. Given an algebraic
k-cycle V' C X, take V to denote the closure of V' in X'. The height of V' is then defined to be
the intersection number V - H ffl, computed on X.

Now, suppose that f: X --+ X extends to a rational map fy: X --+ X and that the closure
V of V' is an ample cycle. Then we have

a1 (fiV) = lim hx((f).V)" = lim ((f3).V - Hyt)"
= lim ((f3) Hy™ V)" = A (fa).

n—oo

However, A\;11(fx) is related to the dynamical degrees of f itself by the product formula of
Dinh—Nguyen [7]. Since fx preserves a fibration 7 over the curve C', we have

a1 (V) = M (fw) = max{Aey1(f), Ae(f)}-

1.2. Definitions of higher arithmetic degrees. We turn at last to the general definitions. Let X
be a smooth projective variety of dimension d defined over Q. We choose an integral model
m: X — SpecZ of X, i.e., a projective scheme over Spec Z such that 7 is flat and the generic
fiber Xq is isomorphic to X. In particular, X is an arithmetic variety of relative dimension d
over Spec Z. As we do not require 7 to be regular, such an integral model always exists.
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We refer to Moriwaki’s book [22] for an introduction to the Arakelov geometry; in particular,
see [22, Chapter 5] for the arithmetic intersection theory and various arithmetic positivity
properties. See also [3, Section 2].

Fix an arithmetically ample line bundle 7 = (H, || - ||) on X. The corresponding ample line
bundle Hq on X will be simply denoted by H. For any k-cycle Z in X, the Faltings height
h3(Z) of Z with respect to H is defined by the Arakelov intersection

hy(Z) = deg(cy(H)" - Z) := deg(e1(H]|2)"),
where ¢ (H) € (Eﬁ;(%) is the first arithmetic Chern class of 7, and
deg: CH,, (X) — R
is the arithmetic degree map. Note that we adopt the same convention for the height as in [10,

Definition 2.5] without dividing by the algebraic degree of the cycle.

When k > 1, let degq(Z) denote the degree of Zq with respect to the ample line bundle
on X. Namely

degq(Z) = (Zq - H* ).

Let f: X --» X be a dominant rational self-map of X extending a given dominant rational
self-map f of X. Denote by I'; the generic resolution of the graph of § in X xz X; see [22,
Theorem 5.1]. In particular, I'; is an arithmetic variety. For i = 1 and 2, we let

T = T4 Ff — X

denote the projection from I'; onto the first and second component, respectively. We note that
from now on, for the sake of simplifying the notation, we will drop the dependence on § from
the index of these two projection maps and simply refer to them as 7, and 7, instead of 7, ; and
mo,5. We also denote the corresponding projection maps on the geometric fibers by 7; and 7,
when there is no risk of confusion.

Recall that given an integer 0 < k < d, the k-th (pure algebraic) degree of f with respect to
H is defined by

deg,(f) = (myH" - ] H*F).

Then the k-th dynamical degree of f is then interpreted as the growth rate of the k-th degree of
f™ with respect to any ample divisor, i.e.,

(1.1) Ae(f) = lim deg, (f™)'/.

The existence of the limit is non-trivial (see [8, 26, 5]). We can also consider analogous versions
of these two quantities measuring the degree growth of an algebraic subvariety V' of dimension
k. Namely, we define the k-th degree of f along V' as

deg,(f; V) = (myH" - m}V)
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and the k-th dynamical degree of f along V' by
(1.2) Me(f; V) = limsup deg,, (f™; V).

n—oo
Note that we are taking lim sup since in general it is not known whether the limit actually exists.
Similar phenomena also happen in the definition of arithmetic degrees below.

Definition 1.3. For any integer 0 < k£ < d + 1, let Ee\gk( f) denote the k-th degree of f with
respect to an arithmetically ample line bundle #, i.e.,

geTgk(f) = d/ch (@ (m5H)" - & (m H) ).
Then the k-th arithmetic degree of f is defined as

(1.3) a(f) = limsupd/(%k(f")l/”.

n—oo

Similarly, we define the arithmetic analog of the k-th degree of f along a subvariety.

Definition 1.4. Let V' be a subvariety of dimension k£ in X which intersects properly the
indeterminacy loci of f™ for all n. The strict transform 77V of V' by 7, has codimension d — &
on the graph I';(C) of f. Let
Zy = mo,my(V)
be the Zariski closure in X of the pushforward of the k-cycle 77 (V') by m,. We then similarly
denote
dogyy(f; V) = deg (&1(H]2,)"),

and define the (k + 1)-th arithmetic degree of f along V as
(14) e (f; V) 1= limsup degy (15 V)"

When f: X — X is a surjective morphism, it is not necessary to take a generic resolution of
the graph when defining deg; and geTgk 41- In this case, we have

degy,(f;V) = (mH" - miV) = (H" - f.V) = degy(f.V), and

degk+1(f% V) = deg (51 (ﬁ‘fTv)kH)?
where £,V denotes the Zariski closure of £,V in X. Thus \i(f; V) (resp., axy1(f; V') measures
the degree growth (resp., the height growth) of the iterates of an algebraic subvariety V.

1.3. Conjectures and main results. As we have mentioned before, it is known that the limit
(1.1) defining A\x(f) indeed exists; in the other three cases (1.2)—(1.4), this is unknown and it is
necessary to take the lim sup in the definition. We will show later that the limit defining o ( f)
actually exists and is equal to A;(f). We expect that the limits exist for the other a4 (f) as well.
It is a more subtle question whether the limits exist for the invariants a1 (f; V'), which depend
on the particular subvarieties V', not just the map f. In the case of a; (f; P), the existence of the
limit is one part of Kawaguchi—Silverman conjecture. Even in the case of \z(f; V') (a question
with no arithmetic content), this seems to be an open question.
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Conjecture 1.5. Let f: X --+ X be a dominant rational map, and let V' be a subvariety of
dimension k in X which intersects properly the indeterminacy loci of f™ and is not contracted by
f™ for all n. Then the limits defining A\i,(f; V'), cy(f), and cyy1(f; V') exist and are independent
of the choices of H and H as well as the integral model X.

We also expect that ay1(f) provides an upper bound on the growth rate of the heights of
algebraic subvarieties of dimension k.

Conjecture 1.6. Ler f: X --+ X be a dominant rational map, and let V' be a subvariety of
dimension k. Then oy 1(f;V) < apy1(f). Furthermore, if the orbit of V under f is Zariski
dense in X, then a1 (f; V) = a1 (f).

Remark 1.7. We note that in our definition for a1 (f; V'), we take into account the associated
multiplicities in case f™ is ramified along V' (see Remark 1.10 and also Example 1.11). Without
counting these multiplicities, we could not expect that a1 (f; V) = ax11(f) even when the
orbit of V' is Zariski dense in X. Indeed, Joe Silverman (whom we thank once again for his most
valuable insight) showed us an example of a plane curve whose arithmetic degree computed
using the strict transform f"(V') instead of the cycle-theoretic pushforward fI'(V') is strictly
less than a(f), even though the curve has Zariski dense orbit under f. See also his talk [25] at
the Simons Symposium.

Although we are not able to prove that the lim sup is actually a limit independent of any choice
when £ > 2, recent work due to Ikoma [13] based on the arithmetic Hodge index theorem of Yuan
and Zhang [28] shows that the arithmetic intersection shares many similarities with the algebraic
intersection. This allows us to extend a number of basic properties of dynamical degrees to the
arithmetic setting. For example, it is shown that the Khovanski—Teissier inequalities hold in
arithmetic intersection theory, and the log concavity of the arithmetic degrees follows. We list
some basic properties of the arithmetic degrees in the next theorem.

Theorem A. Let f be a dominant rational self-map of X. Let X be any fixed integral model of
X and H any fixed arithmetically ample line bundle on X. Suppose that all arithmetic degrees
ax(f) of [ are finite. Then the following assertions hold.

(1) The sequence k — ax(f) is log-concave.
(2) If f is birational, then ay(f) = agi11(f71).

We also formulate an analog of the Kawaguchi—Silverman conjecture, which predicts that the
height growth of cycles is controlled by dynamical degrees. In this case, the natural prediction
derives from the case of function fields (see Section 1.1), in which it reduces to the familiar
Dinh—Nguyen product formula for dynamical degrees (see [7]).

Conjecture 1.8. Let f be a dominant rational self-map of X. Then for any integer 1 < k < d,
one has

ag(f) = max{ A (f), A—1(f)}-
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The conjunction of Conjectures 1.6 and 1.8 should be understood as the higher-dimensional
formulation of the Kawaguchi—Silverman conjecture.

We prove this conjecture in the case that dim X = 2 and f is birational (see Theorem 2.2)
and in the case that f: X — X is a polarized endomorphism (see Theorem 2.3).

Our next main result provides an inequality of Conjecture 1.8.

Theorem B. Let [ be a dominant rational self-map of X. Then for any integral model X of X
and any arithmetically ample line bundle H on X, one has

ar(f) = max{Ar(f), \—1(f)},

for any integer 1 < k < d.

The proof of Theorem B relies on an arithmetic Bertini argument (see Lemma 2.1) which
allows us to relate the arithmetic degree with a height of a given particular cycle. Then one
applies an inequality due to Faltings [10] to bound below the height of the cycles by its algebraic
degree.

In the particular case when k& = 1, we show that the first degree sequence (gegq (f"))n>o of f
with respect to an arithmetically ample line bundle is submultiplicative.

Theorem C. Let X, Y, Z be smooth projective varieties defined over Q of dimension d. Choose
integral models X, Y, and Z of X, Y, and Z, respectively. Fix three arithmetically ample line
bundles Hx, Hy, and Hz on X, Y, and Z, respectively. Then there exists a constant C' > 0
such that for any dominant rational maps f: X --+ Y and g: Y --+ Z, one has

deg, (g0 f) < Cdeg, (f) deg, (g),

where the intersection numbers are taken with respect to the chosen arithmetically ample line
bundles on each integral model.

The above result relies heavily on Yuan’s work [27] on the properties of the arithmetic volume.
From his arithmetic volume estimates, one deduces an effective way to obtain an arithmetically
pseudo-effective line bundle. The above theorem yields the following consequence.

Corollary D. The first arithmetic degree o (f) of f is equal to the limit, i.e.,
ai(f) = lim deg, (f")"/".

Moreover, it is a finite number and independent of the choices of the integral model X of X, the
birational model of X, or the arithmetically ample line bundle H on X.

More precisely, Theorem A shows that the growth rate of the sequence (deg; (f"))n>0 is also
a birational invariant. In this particular case, the relationship between the arithmetic degree and
the dynamical degree is more constrained.
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Theorem E. Let f be a dominant rational self-map of X. Then for any integral model X of X
and any arithmetically ample line bundle H on X, one has

a1(f) = A(f)-

In particular, o (f) does not depend on the choice of the integral model X nor on the choice of
the arithmetically ample line bundle H.

Let us explain how one can understand the above theorem. Since Theorem B proves that
A (f) < aq(f), the proof of this last result amounts in proving the converse inequality o (f) <
A1(f)- Using an arithmetic Bertini argument (see Section 2.2) and the integration by parts, we
prove a more general statement (see Theorem 2.4), namely that for any positive integer n, there
exists an algebraic cycle Z of dimension £ — 1 on X such that

degy,(f™) < hy(f2Z) + C degy_1 (™)

for a positive constant C' > 0 which is independent of n and Z. In the case where k = 1, the
degree of f™ with respect to H is controlled by the height of a point and the algebraic degree of
f™. We finally conclude using the fact that the height of the images of a rational point by f” is
controlled by the first dynamical degree of f (see [16, 19]).

1.4. Remarks and further questions. The above discussion leads us to the following natural
question.

Question 1.9. Let V' be a subvariety of dimension £ in X which intersects properly the indeter-
minacy loci of f™ and is not contracted by f™ for all n. Then is it true that

lim sup (hﬁ(ff\/))l/n = ap+1(f)

n—oo

when V' is generic?

Remark 1.10. In our notation, .V denotes the cycle-theoretic pushforward of 1/, not just its
strict transform; so, if f is ramified along V/, then the class V' gets multiplied by the degree of the
ramification. Subtleties can arise when some iterates of f are ramified along V' (for example, we
refer the reader to [14, §7] for a construction of certain non-PCF endomorphisms f of projective
spaces such that the ramification divisor Ry is irreducible and f|, is birational to the image
f(Ry)), and when infinitely many different iterates are ramified along V' the ramification is
reflected in the arithmetic degree of the cycle: f'V is equal to the class of the strict transform
f™(V') with a multiple of the ramification degree. Consider for contrast the following example.

Example 1.11. Define f: P? --» P? by setting f(x,y) = (z?,y) (on the affine part), and let V/
be the curve defined by y = 0. Then V' is invariant under f and f|y is the squaring map on P!
As aresult, fV = 2"V, and we have as(f; V') = 2. In particular, note that (with our definition)
as(f; V) is not equal to 1 as one might think due to the fact that V' is f-periodic (actually, it is
even f-invariant). On the other hand, let 1V be the curve defined by x = y; this curve is linearly
equivalent to V' as an algebraic cycle and its iterates are also disjoint from the indeterminacy
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point [0 : 1: 0]. Then f™(W) is defined by the equation z = 3", so that h(f?W) = 2". Thus
we find that a(f; W) = 2 as well.

Remark 1.12. It is also possible that f is ramified along a curve only a finite number of times, in
which the extra factor corresponding to ramification disappears in the limit of A(f"V)'/" Ttis
also conceivable that f could ramify along V' infinitely many times, but with such infrequency
that the ramification is not reflected in the arithmetic degree. This is impossible, assuming the
following special case of a generalization of the Dynamical Mordell-Lang conjecture (see [11, 1]
for the original Dynamical Mordell-Lang Conjecture and also [2, 17] for a higher dimensional
version of it).

Question 1.13. Suppose that f: X --» X is a rational map and that V' C X is a subvariety
with a well-defined forward orbit. Is

R(f.V)={neN: f"(V) C Ry}

the union of a finite set and finitely many arithmetic progressions?

Acknowledgments. The authors thank Charles Favre, Thomas Gauthier, Mattias Jonsson,
Yohsuke Matsuzawa, Joe Silverman, and Xinyi Yuan for stimulating conversations and helpful
suggestions. Part of this work was done during the Simons Symposium: Algebraic, Complex and
Arithmetic Dynamics in May 2019 at Schloss Elmau. We are grateful to the Simons Foundation
for its generous support. We are also very grateful to the referee for reading our manuscript
thoroughly and for his/her helpful suggestions, comments, and corrections.

2. ON THE k-TH ARITHMETIC DEGREES

2.1. Proof of Theorem A. Fix an integral model X of X and an arithmetically ample line
bundle H on X. By abuse of notation, we also denote by f the dominant rational map on the
integral model X. Let 7, ,, and 79, be the projections from the generic resolution of the graph of
f™in X xz X to the first and second components, respectively. By [13, Theorem 2.9(1)] applied
to the arithmetic nef line bundles ﬂ’nﬁ and 71';7”?[, we have that

dogy (f")? = deg (21(m3, H)" - (w5, H)* )
> deg (& (3, 1) - @ (nf, ) deg (@ (w5, H)F - @ () H) ),
We thus obtain that
degy (f")? > degyy, (/") degy 1 (/7).
Taking the n-th root as n goes to infinity yields that
ar(f)? = e (fara (f)

and the sequence k — oy (f) is locally log-concave at each point. It is thus globally log-concave,
as required.
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The second assertion immediately follows from the definition of «y( f), with the roles of m;
and 7 reversed. O

2.2. A technical lemma. In this section, we prove a technical lemma which relates the two
different k-th degrees of a rational self-map f as well as the height of certain points on the
f-orbit. To do so, let us introduce a few notations.

We fix a dominant rational map f: X --» X defined over Q. Denote by 7 and 7, the
projections from a generically smooth birational model I'; of the graph of f in X x X onto the
first and the second factors, respectively. We fix an arithmetically ample line bundle 7 on X
and a positive integer k£ < d. Given d + 1 — k sections sy, ..., Sq11_k Of H, we shall set cycles
Z;, Z; as follows:

Z! =div(nys;) - ... - div(7] Say1—k),
Zi =div(s;) - ... - div(sgs1-k),
foralll <i:<d+1—-k.

By an arithmetic Bertini theorem [4, Theorem 1.1] applied to 7;: I'y — X, one can find
d+ 1 — k sections sy, . . ., S411_r of H satisfying the following conditions:

(i) For all 7, the cycles Z; are irreducible and generically smooth;
(i) For all 7, the horizontal parts of the cycles Z! are irreducible;
(iii) For all 7, one has ||s;|| < 1 uniformly.

We denote by wy the Kihler form on X (C) associated to . Observe that the supports of the
cycles Z/ form an increasing sequence of closed subvarieties of I';. In the next lemma, we shall
conventionally set Z,, , = I'y.

Lemma 2.1. With notation as above, one has
d+2—k

Th) = s+ Y [ (ol mied Aok
j=2 77

Proof. We first rewrite ge?gk( f) as follows (see Definition 1.3):
ae\gk(f) - ae\g (@ (msH)" - e (mH) " - ai;(ﬂiksd+1fk))'

By [3, Formula 2.3.8 of Proposition 2.3.1(vi)] applied to the arithmetic divisor d/i:f(sdﬂ_k), we
have that

deg,(f) = deg (@ (m3H)* - & (m7H)™ ™ - div(n}sassr)

4 [ (g sandlme At
I'y(C)

= deg (a1(myH)" - el (myH) ™" - Zipa )

[ loglntsan-allmiu A mutt
I'y(C)
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We then inductively apply [3, Formula 2.3.8 of Proposition 2.3.1(vi)] as follows:

dog (& (w0 - & (riB) ™ - Zy ) = dog (T - & (w1 - 2,)

T / (— log |t sa_pl)myly A mied 1,
Z 1 _x(O)

deg (&1 (msH)" - & (rH) 1 Z1,) = deg (61(msH)* - @ (mH) 2 2, )

[ (loglirtsai ek At
Zy_4,(C)

deg (@ (s H)* - (i H) - 7)) = deg (@(xsH)* - 7)) + /( )(—1og|y7r;31u)7r;w§(.
z}(C

From the above sequence of equalities, we deduce that

d+2—k
deg, (f) = deg (/C\l(W;H)k - Zy) + Z / ( )(—log |7}s; 1 ||)maws A mrwl 2.
j=2 7%(C

By the projection formula (cf. [3, Proposition 2.3.1(iv)]), the lemma follows. O

2.3. Proof of Theorem B. We shall use the following inequality due to Faltings [10, Proposi-
tion 2.16]:

There exists a constant C' > 0 depending only on the arithmetically ample line bundle H
on X (and also depending on the supremum of the norm of a section of the corresponding line
bundle at infinite places) such that

hz(Z) = C(H" - Z),

for any effective k-cycle Z on X. By Lemma 2.1, for any positive integer n, we have
d+2—k

) =220+ Y [ (o s Dok A mie

=2
where 7, Z j’-, and s; are defined in Section 2.2. Observe that Z; is a cycle on X, but the cycles

Z J’ are on I'¢». Since the supremum of the norm of the sections s; is bounded above by 1, all the
terms in the integral are non-positive. We thus have

deg,(f") = hy(fi' Z1).
Using the Faltings inequality, we thus deduce geTgk( f*) = C(H*'. frZ,). Taking the n-th
root as n goes to infinity finally yields that
ar(f) Z Me-1(f).

For the other inequality, we observe that the roles played by the line bundles 7:H and 73H are
symmetric and the technical lemma also proves that deg; (") = Chy(f,"Z) = Chy(m1.752)
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for an appropriate complete intersection cycle of dimension k£ in X and we conclude that
ar(f) = Me(f). We have thus proven that ax(f) = max{\¢(f), A\e—1(f)}, as required. O

We have conjectured in fact that the inequality of Theorem B is always an equality (i.e.,
Conjecture 1.8). There are two cases in which we can prove this conjecture.

Theorem 2.2. If f: X --» X is a birational self-map of a surface X defined over Q, then
a(f) = max{Ar(f), Ae-1(f)}
forall1 <k <2

Proof. Tt is always true that A\o(f) = 1, while a1(f) = Ai(f) for any map according to
Theorem E. Besides, we have

as(f) = ar(f7) = M(f7) = M(f).
Note that Ao(f) = 1 as f is birational. We thus have as(f) = max{A;(f), \2(f)}. O

Recall that a surjective self-morphism f: X — X is polarized, if there exists an ample line
bundle L on X such that f*L ~ L9 for some integer ¢ > 1.

Theorem 2.3. Let f: X — X be a polarized endomorphism with respect to the ample line
bundle H = Hq on X, which extends to a polarizable endomorphism of an integral model X,
then

a(f) = max{Ar(f), Ae-1(f)}
forall1 < k <d.

Proof. We fix an isomorphism ¢: H¢ ~ f*H on the integral model X of X, where H = (H, ||-||)
is a fixed arithmetically ample line bundle on X. By [29, Theorem 2.2], there exists a unique

metric || - ||o on H such that

I llo = (&* 1l - llo) 2.
This metric is obtained from the initial metric || - || on A using Tate’s limiting argument. As the
initial A is arithmetically ample, so is the new arithmetic line bundle Hy == (H, || - [|o).

Let us compute the k-th degree of f™ with respect to the choice of the arithmetically ample
line bundle H,:

degy (f") = deg (@ (/") Ho)* - @1 (Ho)"'*) = ¢*" deg (2 (Ho)"").
This proves that o, (f) = ¢*. On the other hand, \;,(f) = ¢* for any k. We hence conclude that

ax(f) = max{ A (f), Ae—1(f)},

as required. U
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2.4. Upper bound for the arithmetic degree. We now state our next result, which gives an
upper bound of the k-th degree of f™.

Theorem 2.4. Let f: X --+ X be a dominant rational map of a projective variety X defined
over Q. Then there exists a constant C' > 0 such that for any positive integer k < d + 1 and any
positive integer n, there exists a (k — 1)-cycle Z on X, whose support is not contained in the
indeterminacy locus of " such that

degy,(f") < hy(f2Z) + C degy,_, (™).

Moreover, Z is a cycle associated with an arithmetic cycle representing ¢,(H )™ =% in the

arithmetic Chow group of X.

Proof. We adopt the same notation of Section 2.2. Fix a positive integer n. We consider a
generically smooth birational model I' ¢~ of the graph of /™. By Lemma 2.1, we have
d+2—k

degy,(f") = hyg(f1Z1) + / ( )(—log||7rfsj1H)7r§w’§(/\7r>fw§<2.
— Jzj(c

We now find an upper bound for each integral in the above equality. To that end, we choose a
generic section oy, and use the Poincaré-Lelong formula

z&’@log ||O'kH = WwWx — [O’k = 0]
Using the above and the Chern—Levine—Nirenberg inequalities [6, Proposition 4.6(a)], we have

[ (Sloglirisalhme A
()

J

- /Z,(C)<_ log ||} sj—1)id0m; log [|ow|| A mywy "t A miwh
J

+f (—log [[ms1 [ g™ A i
Zi(C)n{r30,=0}

< Cdegy 1 (f") + / (— log |t sjoa ) msek™ Al
zZi(C)n{r305,=0}

Note that the last inequality has on the right hand side an integral term of the same form.
Applying the above argument inductively, we obtain that

o (o8 s D A i < sy (7),
J

where C” > 0 is a constant independent of 7. This yields that

degy,(f") < hyr(f221) + C'(d — k + 1) degy,_, (™). O
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3. ON THE FIRST ARITHMETIC DEGREE

3.1. Proof of Theorem C. Our proof follows closely an algebraic approach for the existence of
dynamical degrees for dominant rational self-maps or correspondences (cf. [26, 5]).

We shall use the following inequality on arithmetic line bundles due to Yuan [27].

Theorem 3.1 (cf. [27, Theorem B]). Let £ and M be two effective arithmetic line bundles over
an arithmetic variety X of relative dimension d. Then we have

\751(2%— M)+ > @(Z)l/(dﬂ) + @(m)u(dﬂ).

An important consequence of the above theorem (see [27, Remark, p. 1459]) is that the
difference £ — M is arithmetically big if

deg (&(L)™) > (d+ 1) deg (&(L)* - &1(M)).

This inequality is the key ingredient to prove the submultiplicativity of the first degree sequence
(degy(f™))n>0 of f with respect to an arithmetically ample line bundle.

Proof of Theorem C. We fix integral models X, ), and Z of X, Y, and Z, respectively; fix
three arithmetically ample line bundles Hx, Hy, and H z, respectively. Let f: X --» Y and
g:Y --» Z be two dominant rational maps. Take I', I, the generic resolution of the graphs of
f:X--+»Yandg: Y --» Z, respectively. Consider also the generic resolution I' of the graph
of the rational map I'y --» I'; induced by f. We also denote by 7, 5 the projection of I'; onto
the X and ), by u, v the projection of I' onto I'f and I, and by 73, 74 the projections of I'; onto
Y and Z, respectively. We thus obtain the following diagram:

r
ry------ =1
NN
x———;——>y———;——>z

By applying Yuan’s estimate to £ = u*m;Hy and M = v*7;H z, the following class

deg (& (u*m3Hy) - & (v*miHz))
deg (€1 (wmyHy)H1)

(d+1) w*tyHy — v Hz

is pseudo-effective. Thus the intersection with a suitable power of the arithmetically nef class
u*miHy yields that

deg (&(wmsHy) - & (v Hz)) —

3.1 deg,(go f) < (d+1 — — d .
(€RY) egi(gof) < (d+1) Toa (02 (w7l 1) eg1(f)
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Since uw*m3 = v*m3, we have
ge?g (G (wmsHy)t e (vimiHz)) _ ge?g (G(v'msHy)? -G (v Hz))
deg (1 (wrmsHy) 1) deg (¢ (v msHy)dH1)
Using the projection formula (cf. [3, Proposition 2.3.1(iv)]), we obtain that
deg (@1 (v m5Hy)" - Au(v'miHz)) _ deg (Bu(miHy)! - @(niHz)) _ degy(g)
deg (@1 (vrm3 Hy) o) deg (@ (w3 Hy)"+) deg (& (Hy)*)
The above equalities together with the inequality (3.1) yield that
deg;(g o f) < Cdeg;(f)deg;(9),

where C' = (d+ 1)/ deg (¢1(Hy)**"), and hence Theorem C follows. O

3.2. Proof of Theorem E. By Theorem B applied to £ = 1, we have
ai(f) = max{Ai(f), do(f)} = Au(f).

For the converse inequality, we apply Theorem 2.4. There is a constant C' > 0 such that for
any positive integer n, there exists a zero-cycle Z,, on X such that Z,, = Y, a, (] € Z4(X)
associated to an arithmetic cycle representing the class ¢ (H)? (see §2.2), and

dogy (") < Y an (") + C dego (7).

By Matsuzawa’s theorem (see [19, Theorem 1.4]), the growth rate of the height hz;( f"x,,;) of
any point z,, ; is bounded above by C’ (A1 (f) + €)"hg(x,;), so we obtain that

deg, (f") < C'((f) + €)"hg(Za) + C.
Since hy;(Z,) < (€1(H)4), we get
dog, (f") < C'u(h) + " @FH)™) + C.
Taking the n-th root and letting ¢ — 0, we finally conclude that o1 (f) = A1 (f). d
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