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Here, we describe a protocol combining functional metrics with genomic data to elucidate
drivers of within-cell-type heterogeneity via the phenotype-to-genotype link. This technique
involves using fluorescence tagging to label and isolate cells grown in 3D culture, enabling high-
throughput enrichment of phenotypically defined cell subpopulations by fluorescence-activated
cell sorting. We then perform a validated phenotypically supervised single-cell analysis pipeline
to reveal unique functional cell states, including genes and pathways that contribute to cellular
heterogeneity and were undetectable by unsupervised analysis.

Kevin Chen, Kivilcim
Ozturk, Ted Liefeld,
Michael Reich, Jill P.
Mesirov, Hannah
Carter, Stephanie I.
Fraley

sifraley@ucsd.edu

Highlights

Sorting of cells by the
phenotype from 3D
culture is achieved
through
photoconversion

The photolabeling
technique is
adaptable to other
systems, cells, and
phenotypes

Phenotypically
supervised analysis
reveals novel insights
into cellular
heterogeneity

A GenePattern
notebook facilitates
phenotypically
supervised scRNAseq
analysis

Chen et al., STAR Protocols 2,
100561

June 18, 2021 © 2021 The
Author(s).
https://doi.org/10.1016/
j-xpro.2021.100561

Gheck for
Updates



mailto:sifraley@ucsd.edu
https://doi.org/10.1016/j.xpro.2021.100561
https://doi.org/10.1016/j.xpro.2021.100561
http://crossmark.crossref.org/dialog/?doi=10.1016/j.xpro.2021.100561&domain=pdf

STAR Protocols @ CelPress

OPEN ACCESS

A phenotypically supervised single-cell analysis
protocol to study within-cell-type heterogeneity of
cultured mammalian cells

Kevin Chen,'-> Kivilcim Ozturk,?>> Ted Liefeld,? Michael Reich,? Jill P. Mesirov,%>* Hannah Carter,%>*
and Stephanie I. Fraley'#¢./.*

'Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA

2Department of Medicine, Division of Medical Genetics, University of California San Diego, La Jolla, CA 92093, USA
3Bioinformatics and Systems Biology Program, University of California San Diego, La Jolla, CA 92093, USA

4Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA

5These authors contributed equally

éLead contact

’Technical contact

*Correspondence: sifraley@ucsd.edu
https://doi.org/10.1016/j.xpro.2021.100561

SUMMARY

Here, we describe a protocol combining functional metrics with genomic data to
elucidate drivers of within-cell-type heterogeneity via the phenotype-to-geno-
type link. This technique involves using fluorescence tagging to label and isolate
cells grown in 3D culture, enabling high-throughput enrichment of phenotypi-
cally defined cell subpopulations by fluorescence-activated cell sorting. We
then perform a validated phenotypically supervised single-cell analysis pipeline
to reveal unique functional cell states, including genes and pathways that
contribute to cellular heterogeneity and were undetectable by unsupervised
analysis.

For complete details on the use and execution of this protocol, please refer to
Chen et al. (2020).

BEFORE YOU BEGIN

Introduction

Single cell transcriptomic analysis has deepened and advanced our understanding of develop-
mental and disease biology in large part by revealing new cell types and new transcriptional states
within cell types (Plasschaert et al., 2018; Suo et al., 2018; Jang et al., 2018). Yet, cellular states in-
ferred from single cell RNA sequencing (scRNAseq) will not necessarily coincide with cellular behav-
iors, since these behaviors also depend heavily on environmental context (Chen et al., 2020). Since
sequencing requires sample destruction and prohibits subsequent functional characterization of the
cell states identified, it is not possible to subsequently verify whether inferred cell states accurately
represent functional cell states.

On the other hand, cell biologists have observed and characterized a vast array of functional cell
states within cell types, but the mechanisms underlying this heterogeneity often remain elusive.
To bridge this gap between transcriptome-defined cell state and cell function, recent advances
have integrated transcriptome measurements with cell electrophysiology (Cadwell et al., 2016), line-
age tracing (Kester and van Oudenaarden, 2018), spatial information (Lein et al., 2017), multiple
omics (Chappell et al., 2018), and genotype (Dixit et al., 2016; Jaitin et al., 2016). Others have
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focused on the challenge of isolating phenotypically distinct subpopulations for comparison using
physical (Beri et al., 2020) or image-guided techniques (Konen et al., 2017). Still, the separation of
cells by phenotype is non-trivial and is further complicated by the use of 3D culture models, which
better recapitulate native physiology. Extraction of cells embedded in 3D culture presents chal-
lenges associated with low yields that limit the statistical power of comparisons and speed of pro-
cessing that hinders the ability to capture transient cell states of interest in highly plastic cells. These
experimental challenges translate into hurdles for computational analyses of within-cell-type hetero-
geneity, causing them to be under-developed or not well validated.

Development of the protocol

To advance phenotype-based cell separation towards enabling statistically powered analyses, we
have developed a protocol that enables (1) higher throughput fluorescent tagging of cells within
3D culture, (2) rapid release of cells from 3D culture and subpopulation enrichment using fluores-
cence-activated cell sorting (FACS) prior to scRNAseq, and (3) a validated analysis pipeline that
distinguishes inferred cell states from phenotypically-supervised functional cell states. This method
relies on the fluorescent tagging of the subpopulation of interest through photoconversion. Den-
dra2 was chosen as the photoconvertible protein, which can be transduced into any cell line,
rendering them green-fluorescent. Upon exposure to 405 nm light, Dendra2 becomes red-fluores-
cent. Dendra2 was originally used to track intracellular protein movement, but we found that it could
also be used as a general fluorescent tag to mark cells within 3D culture.

Using this protocol, we isolated subpopulations of cells that exhibit invasive versus non-invasive
modes of collective migration. Subjecting these populations to transcriptomic sequencing followed
by analysis of active gene expression programs revealed genes and pathways unique to each mode
that were not detected by unsupervised analysis. Previously, we validated several of the differentially
expressed genes with immunostaining and functional perturbation (Chen et al., 2020). This
approach of using an agnostic fluorescent tag to perform phenogenomic sequencing is a powerful
way to link functional output to transcriptomic data without the need for prior knowledge of bio-
markers that define heterogeneous profiles.

The protocol presented here can be used for high-throughput separation of phenotypically hetero-
geneous cells in 3D culture based on any visual indicator, coupled with custom computational anal-
ysis to identify indicator-relevant genes and pathways. We describe a photoconversion-based plat-
form that enables fluorescent tagging of visual phenotypes based on morphological characteristics.
We include a streamlined 3D culture method, matrix digestion and FACS protocol, and an expanded
data analysis procedure post scRNAseq composed of both supervised and unsupervised clustering,
gene expression pattern detection and pseudotime trajectory analysis. The protocol thus provides
an end-to-end strategy to characterize functional heterogeneity associated with visual cues.

We also provide a user-friendly notebook interface to automate the computational analyses, making
them easy to apply to any scRNAseq data. Implementing multi-step bioinformatic pipelines for data
processing and analysis can represent a barrier for reproducing analyses or applying them to new
data sets. To address this, our computational workflows are encoded in GenePattern notebooks
that provide well-documented and easily modifiable code. Furthermore, these notebooks can be
run locally or online via the GenePattern server and are self-contained such that users do not
need to install dependencies or third party software. New users can ensure understanding and
reproducibility by running our dataset on the GenePattern notebooks as a test case.

Comparison with other methods

Current methods developed for phenogenomic sequencing often require more stringent and less
flexible methods of isolating the phenotype of interest (Cadwell et al., 2016; Jaitin et al., 2016; Dixit
etal., 2016), and are limited to situations where established biomarkers already define the subpop-
ulation to be isolated. Other agnostic labeling methods using confocal microscopy provide more
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Table 1. Thermocycling conditions

Steps Temperature Time Cycles
Initial Denaturation 98°C 30s 1 cycle
Denaturation 98°C 10s 30 cycles
Annealing 68°C 20s

Extension 72°C 20s

Final Extension 72°C 5 min 1 cycle

flexibility but are often limited in throughput and scale (Konen et al., 2017). While lower yields are
addressed by growth based amplification post-collection, this process may remove important reg-
ulatory signals originating from other cells or the extracellular matrix, and those that reset with cell
divisions, hampering the ability to fully identify the cell states underlying the observed heterogene-
ity. The method we present here enables the tagging of thousands of cells with each run, providing
roughly 10x more throughput and yield. Importantly, this provides enough sample material to
negate the need for post-collection amplification for downstream studies.

Multiple bioinformatic tools have been developed for the processing of scRNAseq data into gene
expression estimates and subsequent analysis to study within sample variation and infer distinct
cellular states. Rather than develop a new pipeline, our protocol leverages existing analyses to
extract additional information from scRNAseq by taking advantage of our phenotypic metadata.
Current bioinformatic tools apply analyses of cell cycle, pseudotime trajectory (Cao et al., 2019;
Trapnell et al., 2014; Kowalczyk et al., 2015), and gene pattern expression analysis (Fertig et al.,
2010) agnostically to the transcriptomes of heterogeneous populations of cells. However, with
our method, cells are sorted according to phenotype before scRNAseq, adding a new layer of
data that is then used to supervise downstream bioinformatic analyses and inform interpretations.
The addition of phenotype labels enables the refinement of results from computational analysis
and generates new knowledge that cannot be gained by computational analysis alone. The scRNA-
seq analysis on the basis of phenotype labels results in a more functionally relevant gene set that
discriminates between different phenotypes and accurately identifies key processes, as verified
by functional studies. Compared to unsupervised analysis, the use of phenotypic metadata detected
a more selective gene set (from 528 to 178), and importantly, detected 70 unique differentially ex-
pressed genes (DEGs) that were not detected by unsupervised clustering. Here, we also show that
supplementing cell cycle, pseudotime, and gene expression pattern analysis with phenotypic meta-
data enables new cell states and state transition trajectories to be identified. Our protocol illustrates
the power of a supervised, functionally informed computational analysis and enables a more direct
approach to investigating the mechanisms underlying cellular heterogeneity.

Cloning of Dendra2 into lentiviral vector
O® Timing: 1 week

1. Amplify the Dendra2-Lifeact vector using PCR with the custom primers. Thermocycling conditions are
listed in Table 1. The recipe for the PCR mixture is provided in Table 2. Phusion and the 5% HF buffer,
and dNTPs are all provided in the Phusion High-Fidelity PCR Kit. (https://www.thermofisher.com/
document-connect/document-connect.html?url=https%3A%2F%2Fassets.thermofisher.com%2FTFS-
Assets%2FLSG%2Fmanuals%2FMANO013363_Phusion_HiFi_PCR_Kit_UG.pdf&title=VXNIciBHdWIk
ZTogUGh1c2lvbiBlaWdolLUZpZGVsaXR5IFBDUiBLaXQ=)

2. Digest the pSin plasmid using EcoRI and Spel.

. Run the digested plasmid, along with an undigested control, on a 1.5 wt% agarose gel.

w

4. Check for successful digestion, and gel purify the digested backbone using QlAQuick gel extrac-
tion kit. (https://www.qgiagen.com/us/resources/resourcedetail?id=95f10677-aa29-453d-a222-
0e19f01ebe17&lang=en)
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Table 2. PCR recipe

Component Final concentration

5x HF buffer 1x

dNTPs 0.2 mM

Forward Primer 0.2 uM

Reverse Primer 0.2uM

Phusion 0.02 U/pL

Dendra2 vector 0.2 ng/plL

PCR Water Fill for remaining volume

5. Clone the Dendra2-Lifeact fragment into the pSin backbone using T4 Ligase at an insert:vector

ratio of 3:1.

. Transform the plasmid into competent DH5a for amplification.
. Harvest the lenti-Dendra2 vector using the Promega miniprep kit. (https://www.promega.com/

products/nucleic-acid-extraction/plasmid-purification/wizard-plus-sv-minipreps-dna-purification-
systems/?catNum=A1330#protocols)

. Verify the sequence through sequencing with the custom primers.

Production of lentiviruses

O® Timing: 3-4 days

9. Culture HEK293T cells in a 6-well plate until 70%-80% confluency.

10. Transfect the cells 16-24 h after plating with the lenti-Dendra2 plasmid along with lentiviral
packaging (psPAX2) and envelope (pMD2.G) vectors using the Lipofectamine 3000 Kkit.
(https://www.thermofisher.com/document-connect/document-connect.html?url=https%3A%
2F%2Fassets.thermofisher.com%2FTFS-Assets%2FLSG%2Fmanuals%2Flipofectamine3000_
protocol.pdf&title=TGlwb2ZIY3RhbWIuZSAzMDAwIFJIYWdlIbnQgUHJvdG9jb2wgKEVuZ2xpc
2gp) For the DNA component, add approximately 1 ng of each of the 3 plasmids, per well. Add
the transfection mix, which contains the plasmids, Lipofectamine, and P3000 drop-wise to the
cells cultured in complete medium | and gently swirl the plate to mix.

11. Twenty-four hours after transfection, replace the medium with fresh medium. Check the cells,
using a fluorescence microscope to determine transfection efficiency.

12. Harvest the virus-containing medium on the 3rd day after transfection. Check the cells again,
using a fluorescence microscope to determine virus production efficiency. Filter the medium us-
ing the 0.45 um filter to remove cell debris. Collect the virus in 1.5 mL microcentrifuge tubes and
store at -80°C for long term storage or use immediately for transduction.

KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Bacterial and virus strains

DH5a competent cells Thermo Fisher 18258012

Chemicals, peptides, and recombinant proteins

Gentamicin Life Technologies 15750060

Rat tail collagen | Fisher Scientific CB354249

Sodium hydroxide Fisher Scientific $318-500

(4-(2-Hydroxyethyl)-1-piperazineethanesulfonic acid) Millipore Sigma 5310-OP

HEPES, Free Acid

4
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REAGENT or RESOURCE SOURCE IDENTIFIER
Sodium bicarbonate MP Biomedicals 02119484783
Polyethylene glycol Sigma-Aldrich P5413-500G
Kanamycin sulfate Fisher Scientific 11-845-024
Ampicillin Fisher Scientific BP1760-5

ECORI NEB RO101S

SPEI NEB RO133S

T4 ligase NEB M0202S
Collagenase Sigma-Aldrich C0130

Bovine serum albumin (BSA) Fisher Scientific BP671-10

EDTA (500 mM) BioPioneer MB1010

DMEM Gibco 11995065

FBS Corning 35-010-CV

PBS Gibco 10010023

Critical commercial assays

Chromium Chip B Single Cell Kit 10x Genomics 1000154
Chromium i7 Multiplex Kit 10x Genomics 120262

Chromium Single Cell 3’ Library & Gel Bead Kit v3 10x Genomics 1000092
Chromium Single Cell 3’ Library Construction Kit v3 10x Genomics 1000078
Lipofectamine 3000 Kit Thermo Fisher 3000008
Promega Miniprep Kit Promega A1330

QIAQuick Gel Extraction Kit QIAGEN 28704

Phusion High-Fidelity PCR Kit Thermo Fisher F553S

Deposited data

scRNAseq data Gene Expression Omnibus GSE158844
Experimental models: cell lines

MDA-MB-231 ATCC HTB-26

Lenti-X 293T Takara Bio 632180
Oligonucleotides

Forward primer (5' TAAGCAACTAGTGGTTTAGTG IDT N/A
AACCGTCAGA 3')

Reverse primer (5" GGTGCTTAGAATTCGTAAAAC IDT N/A
CTCTACAAATGTGG 3)

Recombinant DNA

pSin-EF2-Nanog-Pur Addgene 16578
Dendra-2-Lifeact-7 Addgene 54694

psPAX2 Addgene 12260

pMD2.G Addgene 12259

Software and algorithms

Seurat v3.1.1 Satija Lab RRID: SCR_007322
Monocle3 v0.2.1 Trapnell Lab RRID: SCR_018685
PANTHER v15.0 pantherdb.org RRID: SCR_004869
CoGAPS v3.4.1 Bioconductor RRID: SCR_001479
Cell Ranger v3.0.2 10x Genomics RRID: SCR_017344
Nikon Elements AR v4.51.00 Nikon RRID: SCR_014329
DESeqg2 v1.24.0 Bioconductor RRID: SCR_015687
GenePattern notebook server http://notebook.genepattern.org RRID: SCR_015699
Other

0.45 um Sterile filter VWR 28137-938

6-Well plate Corning 353046

48-Well plate Corning 353078

BD Influx Sorter BD Bioscienes 646500

Nikon TiE Inverted Microscope Nikon N/A

LU-N4 Nikon N/A

Galvo Miniscanner Nikon N/A

¢? CellPress

OPEN ACCESS

STAR Protocols 2, 100561, June 18, 2021 5



http://pantherdb.org
http://notebook.genepattern.org

¢ CellPress STAR Protocols

OPEN ACCESS

MATERIALS AND EQUIPMENT

Reagent setup

Complete medium |

For cell line expansion, prepare complete medium | by supplementing Dulbecco’s Modified Eagle
Medium (DMEM) (450 mL) with Fetal Bovine Serum (FBS) (50 mL), and Gentamicin (500 pL). The de-
tails of the recipe can be found below. Sterile filter and store at 4°C until needed. Before use, warm
up in a water bath (37°C). Complete medium | can be stored at 4°C for up to 6 months.

Complete medium | recipe

Reagent Final concentration (vol %) Amount
DMEM ~90% (v/v) 450 mL
FBS ~10% (v/v) 50 mL
Gentamicin 10 pg/mL 500 pL

Fluorescence-activated cell sorting (FACS) buffer

Mix 0.2 g BSA, 20 uL of Ethylenediaminetetraacetic acid (EDTA), and 50 mL of PBS. The details of the
recipe can be found below. Sterile filter and store at 4°C until needed. FACS buffer can be stored at
4°C for 4 months.

FACS buffer recipe

Reagent Final concentration Amount
BSA 0.4% 02g
EDTA (500 mM) 0.2 mM 20 pL
PBS - 50 mL

Reconstitution buffer (RB)
Mix 110 mg NaHCOj3, 240 mg HEPES free acid, and 5 mL nanopure water to make a stock solution.
Sterile filter, aliquot, and store at —20°C until needed. RB can be stored at —20°C for 1 week.

Reagent Final concentration Amount
NaHCO3 0.26 M 110 mg
HEPES free acid 0.2M 240 mg
Nanopure water - 5mL

Polyethylene glycol (PEG)
Mix PEG with PBS to make a 100 mg/mL stock solution. Sterile filter, aliquot, and store at —20°C until
needed. PEG can be stored at —20°C for 3 weeks.

NaOH
Mix NaOH with nanopure water to make a 1N stock solution. Sterile filter and store at —20°C until
needed. NaOH can be stored at —20°C for 6 months.

Gel digestion buffer

Mix 10 mg of collagenase with 1 mL of PBS. Sterile filter and store at —20°C until needed. Gel diges-
tion buffer can be stored at 4°C for 6 months.

6 STAR Protocols 2, 100561, June 18, 2021
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Figure 1. Protocol flowchart

1 week Cell transduction with photoconvertible construct The major components of the protocol are:
transduction of cells with a photoconvertible

l construct, 3D culture of cells, photoconversion, gel

digestion and FACS, and downstream analyses. Time
needed to complete these steps is shown on the left.

1 week 3D embedment of cells

3 hours Photoconversion of targeted cell phenotype

1 hour Gel digestion and FACS

1day Analyses of sorted cells

Equipment setup

Photoconversion

Before you begin, make sure to calibrate the laser with your galvo scanner. You will need to deter-
mine the appropriate settings for some key simulation parameters, such as dwell time and laser po-
wer. Optimize these parameters to obtain high post-photoconversion fluorescence but minimize
exposure to avoid phototoxicity. Observe your cells post-photoconversion to confirm their behavior
is similar to non-photoconverted counterparts. As a general guideline, photoconverted cells should
display 3x higher red fluorescence intensity compared to the background noise when observed us-
ing microscopy for successful isolation using FACS. In our setup, each collective cell structure was
exposed to approximately 1 mJ of light.

FACS

Ensure that the 405 nm laser line on the machine can be turned off, as this can result in photocon-
version during flow sorting. Ensure that the equipment contains the appropriate lasers and filters
to capture both the native and photoconverted fluorescent states to ensure enrichment of the
desired population. A machine that can support chilled sorting is preferred to maintain viability of
the cells.

STEP-BY-STEP METHOD DETAILS

The protocol below describes the specific steps for interrogating heterogeneous collective migra-
tion phenotypes of MDA-MB-231 cells in a 3D collagen matrix. However, this protocol can be
used with other cell lines and other culture platforms and is easily adaptable to other biological con-
texts that can be visually defined.

The experimental workflow and timing of the procedures is shown in Figure 1, which depicts the
different stages of the Procedure. In broad terms, the Procedure consists of five main sections, which
are detailed below.

Note: It is important to verify that the biological heterogeneity being studied is not altered

through expression of the photoconvertible protein or the photoconversion process. Cells ex-
pressing the photoconvertible protein should be compared to wild-type cells to ensure the

STAR Protocols 2, 100561, June 18, 2021 7
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same modes of heterogeneity exist and at similar frequencies. In addition, to confirm that the
photoconversion process does not significantly alter gene expression, a non-labeled popula-
tion can be compared to the sorted populations through gene expression assays to demon-
strate minimal difference. In particular, genes associated with responses to light should not be
significantly differentially expressed between labeled and unlabeled populations.

Note: Proper controls must also be used to ensure collection of purified photoconverted pop-
ulations. A non-photoconverted sample exhibiting equivalent biological heterogeneity
should be used to gate the baseline fluorescence of the photoconverted channel. To ensure
purity of the sample, a strict gate should be applied where all cells collected express higher
fluorescence in the photoconverted channel compared to the negative control. Users can
adjust the strictness of this gate to their application based on the demands for the purity of
their enriched population.

Viral transduction of Dendra2 into MDA-MB-231
O® Timing: 4-5 days

A CRITICAL: Choice of cell line- Successful transduction of a photoconvertible protein into
the experimental cell line is a foundation of this technique. Thus, selection of a cell line
amenable to transduction is critical. While we present a method of lentiviral transduction
to induce expression of Dendra2 in our protocol, other methods of induced gene expres-
sion and other photoconvertible proteins may be used as well.

1. Culture MDA-MB-231 cells in a 6-well plate until 70%—80% confluency. We recommend working
with cells below 20 passages.

2. Aspirate the media, wash the cells once with PBS, and replace with new growth media.

3. Add 75 pl of collected lenti-Dendra2 dropwise to the well. Gently swirl to mix.

4. Monitor transduction efficiency through fluorescent microscopy. It may take 2-3 days before cells
start to fluoresce.

See troubleshooting problem 1

5. Passage cells into larger flasks to prepare for purification through FACS. Using a wild-type con-
trol, gate for the cells expressing above background levels of green fluorescence. You may
choose to collect only the cells that have the highest fluorescence for ease of identification for
downstream experiments.

3D culture of MDA-MB-231 Dendra2 (MDA-Dendra)
O Timing: 1 week

Culturing platform: This protocol separates cells undergoing distinct collective migration behaviors
within 3D culture, specifically in 3D type | collagen (COLI). For the end user, the biophysical proper-
ties of the environment, including choice of material, should be adapted according to the type of
heterogeneity being studied. Tissue specific studies, for instance, may need to be matched with
particular extracellular matrix proteins at specific densities and stiffnesses to ensure biological rele-
vance. Separation of the photoconverted cell population in our system requires the use of collage-
nase and trypsin, which may destroy surface markers. If surface proteins need to be preserved for
downstream applications, enzymes with less disruptive mechanisms can be used. An alternative
approach would be the use of culture systems that enable non-enzymatic cell retrieval strategies,
such as Matrigel or engineered synthetic hydrogels.

8 STAR Protocols 2, 100561, June 18, 2021
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Table 3. Collagen gel synthesis calculations

Stocks Desired concentration or volume Final volume

Collagen: 9.00 mg/mL 2.5 mg/mL 2.5*0.25/9.00 = 69.4 uL

PEG: 100 mg/mL 10 mg/mL 10*0.25/100 = 25 pL

NaOH 6.25% * volume Collagen 0.0625*69.4 = 4.34 uL

RB Remaining Volume / 2 (250-69.4-25-4.34)/2 = 75.6 uL

Cells (200,000 cells/mL) 50,000 cells/mL 50*0.25/150 = 62.5 uL

Media Top off until gel volume is reached 250-69.4-25-4.34-75.6-62.5 =
13.2 ul

Total desired volume of gel: 200 pL. Make 250 uL to account for reagent loss during pipetting.

. Thaw out RB, NaOH on ice.

. Place a 48-well plate in the incubator to preheat to 37°C .

. Passage MDA-Dendra and count the cells using a hemocytometer. Keep cells on ice.

. Calculate the amount of reagents required to make the 3D collagen hydrogel. Table 3 displays
sample calculations for making a 2.5 mg/mL collagen + 10 mg/mL PEG hydrogel, with 50,000
cells/mL embedded. Adjust calculations as necessary.

O 00 N O

A CRITICAL: The following steps must be performed quickly and carefully. Carefully mix the
solutions at every step and do not introduce bubbles into the solution. If bubbles form,
start over as the architecture of the hydrogel will not be homogenous. Steps must be per-
formed quickly, and reagents kept as cold as possible to prevent polymerization before
the gel solution is incubated at 37°C .

10. Place the collagen, media, and an empty 1.5 mL microcentrifuge tube on ice.

11. Add the reagents in the empty microcentrifuge tube in the following order: cells, media, PEG,
RB, Collagen, NaOH. In between each addition, pipette mix the components at least 10x.

12. Immediately pipet the gel solution into the preheated well plate and incubate at 37°C for
30 min.

13. After 30 min, perform 3 washes of 1x PBS for 5 min each. The amount of PBS to pipette on top of
the gel is the same as the gel volume.

14. After the last wash, aspirate the PBS and add growth media on top of the gel. The amount of
growth media to pipette on top of the gel is the same as the gel volume.

15. Incubate the 3D culture for a week, changing media every 2-3 days to keep the cells viable
(Figure 2).

Tagging of collective cell phenotypes by photoconversion
O Timing: 2-3 h

The choice of imaging strategy is not limited to the specific microscopes and settings presented in
this protocol. However, the imaging setup presented is specifically designed to achieve high
throughput photoconversion, and as such consists of a widefield microscope. The imaging system
must be equipped with a laser line of wavelength suitable for photoconversion, a galvanometric
scanner, and climate control (temperature, humidity, and CO,). The choice of lenses should be opti-
mized to focus the laser light as much as possible to minimize off-target photoconversion, while also
taking into consideration the physical size of the attributes used to determine the modes of hetero-
geneity being studied and maximizing throughput (subpopulation photoconversion).

16. Transfer the collagen gel to a glass-bottom dish. Add enough media to keep the gel hydrated,

but not so much that the gel will float in solution or move around in the dish.
17. Transfer the glass-bottom dish to a fluorescent microscope stage.

STAR Protocols 2, 100561, June 18, 2021 9
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Figure 2. MDA-MB-231 after 1 week of culture in 3D
collagen

Representative bright field image (15%) of MDA-MB-
231 cells grown in 3D collagen for 7 days to illustrate
appropriate cellular density and morphologies. Scale
bar, 100 um.

18. In the Bruker miniscanner panel, set the dwell time to 300 us and the 405 nm laser power to 25%.

19. Calibrate the galvanometric scanner.

20. Using a 20x lens, identify the cells you would like to photoconvert.

21. Verify that other cells are not within 10 pm in x-y and not within 200 pm in z.

22. Draw an ROl around the cells you would like to photoconvert. Right-click and select to use ROl as
a Stimulation ROI.

23. In the Bruker miniscanner panel, click Stimulate.

24. Repeat steps 20-23 until all cells of interest within the hydrogel have been photoconverted
(Figure 3).

See troubleshooting problem 2

Gel extraction and FACS sorting of photoconverted cells
O Timing: 1-2 h

Proper digestion and preparation of cells into a single cell suspension is crucial for the efficient
collection of the fluorescently tagged population. We have minimized the processing time to pre-
serve the transcriptional signature as much as possible. In our case, since we culture our cells in a
COLI hydrogel, we chose to use collagenase as our matrix digestion enzyme. 3D cultures using other
materials should use their respective appropriate depolymerization strategy and be optimized for a
short processing time while minimizing adverse effects on the cells. Since we study collective phe-
notypes, we also had an incubation phase with trypsin followed by straining to further dissociate the
cells. This may not be necessary in other cases where cells are less adherent to each other after gel
digestion. We describe a standard buffer for FACS that was amenable to the survival of our cells.
Cells that cannot survive in this basic flow sorting buffer may require other supplements or growth
media while sorting.

The flow cytometer to be used must have the proper lasers and filters to detect the emission spec-
trum of the photoconvertible protein, in its native and photoconverted state. The equipment we use
allows for stringent gating to ensure the collection of a phenotypically pure population. Users can
adjust the gate depending on the stringency of their experiment. The flow sorter we use comes
equipped with liquid chilling to help preserve our sample, although this may not be necessary in
all cases.
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Figure 3. MDA-MB-231 before and after photoconversion
Representative fluorescent images of MDA-MB-231 cells grown in 3D collagen to illustrate appropriate fluorescence

Before Photoconversion

After Photoconversion

levels to indicate successful photoconversion. After photoconversion, red fluorescence should be abundant in the
photoconverted cells (bottom). Scale bar, 50 um.

25. Transfer the collagen gel to a 1.5 mL microcentrifuge tube.

26. Add 50 pL of 10 mg/mL collagenase to the gel.

27. Use a P1000 pipette tip to gently mash and mechanically disrupt the gel.

28. Incubate the gel in the water bath at 37°C for 5 min.

29. Mix the solution further with the P1000 pipet tip. The entire solution should be pipetted up and
down within the pipette tip. Minimize the introduction of bubbles as much as possible.

30. Incubate the gel in the water bath at 37°C for 5 min.

31. Mix the solution with a P200 pipette tip. The entire solution should be pipetted up and down
within the pipette tip. Minimize the introduction of bubbles as much as possible.

32. Incubate the gel in the water bath at 37°C for 5 min.

33. Centrifuge the solution at 400 x g for 4 min.

34. Discard the supernatant, add 50 plL of 0.25% trypsin, and resuspend the pellet.

35. Incubate in the water bath at 37°C for 5 min.

36. Mix the solution with a P200 pipette tip.

37. Incubate in the water bath at 37°C for 5 min.

38. Centrifuge the solution at 400 X g for 4 min.

39. Remove the supernatant and resuspend the pellet with an ice-cold FACS buffer.

40. Strain the cells prior to FACS.

41. Use forward and side scatter density plots to exclude debiris.

42. Use un-photoconverted controls to set gates for red-fluorescence.

43. Collect cells expressing red-fluorescence higher than gate (Chen et al., 2020).

See troubleshooting problem 3

Transcriptomic sequencing

O® Timing: 2 days - 1 week

STAR Protocols 2, 100561, June 18, 2021 1"
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We use the 10x 3’ v3 Gene Expression kit to prepare our samples for scRNAseq. However, users can
choose to use other platforms depending on sample size and specific needs for sequencing
coverage. Sequencing was performed on a Hiseq4000 to achieve a depth of at least 25,000
reads/cell. However, sequencing depth can be adjusted depending on the user’s needs and budget.

44. Prepare cell samples for scRNAseq using the 10x 3’ v3 Gene Expression kit.

45. Perform quality control on libraries using TapeStation.

46. Sequence the libraries using an Illumina Hiseq 4000.

47. Use the 10x genomics Cell Ranger pipeline to align reads to the appropriate reference
genome. Here we use GRCh38.

48. Check the outputs to ensure that the sequencing depth was at least 20,000 reads per cell.
Sequence the libraries more if needed.

scRNAseq processing

O Timing: varies depending on computational resources and dataset sizes, ~1-2 h on the
GenePattern server

We perform differential expression analysis using Seurat v3.1.1 using standard pre-processing pro-
tocols as listed on their documentation. Depending on the type of biological heterogeneity being
studied, gene expression data may need to be further filtered or normalized.

49. Import dataset into Seurat (Stuart et al., 2019).
See troubleshooting problem 4

50. Filter the counts matrix to remove genes expressed in fewer than 3 cells. This parameter can be
increased if desired.

51. Discard cells expressing too few or too many genes. Too few genes may indicate that the cell
membrane has been breached and contents leaked. Too many may indicate cell doublets or
other artifacts. These parameters must be adjusted to the specific dataset. Here we remove cells
expressing fewer than 2000 genes or more than 6000 genes.

52. Discard cells that have over 20% of reads aligned to mitochondrial genes. This parameter can be
decreased for more stringent filtering.

53. Normalize the counts matrix. We normalized to the default scale factor of 10,000.

54. Identify the top variable genes to be used for downstream analysis. Here we selected the default
of 2000 genes.

55. Apply a linear transformation on the count matrix to scale and center expression of each gene.

56. Assign cell cycle scores to each cell based on its expression of G2/M and S phase markers and
apply a linear model to regress out effects of cell cycle heterogeneity. The same approach could
also be used for batch effect removal if simultaneously analyzing multiple datasets.

57. Perform linear dimensionality reduction (PCA) on the scaled data using the most variable genes.

58. Perform a graph-based clustering approach by first determining the nearest neighbors of each
cell in the PCA space. Use the top principal components that explain the most variance in the
dataset. We used the first 20 principal components.

59. Then cluster cells by applying a modularity optimization algorithm that iteratively groups cells
together. A resolution parameter determines the number of clusters obtained. We specified a
resolution of 0.05 to obtain 2 clusters based on our expectation that two phenotypes exist within
our isogenic photolabeled cells. A higher resolution can be set up to achieve more clusters.

60. Use UMAP, a non-linear dimensionality reduction technique, to visualize the clusters where
similar cells are placed together in low-dimensional space (Becht et al., 2018).
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61. Apply Fisher's Exact test to evaluate the enrichment or depletion of cell cycle phases in each
cluster or phenotype. An odds ratio (OR)>1 indicates enrichment while an OR<1 indicates
depletion.

Differential expression analysis
O® Timing: ~1 h on the GenePattern server

62. ldentify positive and negative markers of each cluster or phenotype by applying the DESeq2 al-
gorithm, which uses a negative binomial distribution (Love et al., 2014).

63. Perform multiple testing corrections using the Benjamini & Hochberg method to control the
false discovery rate. Select differentially expressed genes for each cluster with adjusted p-value
lower than 0.05.

64. Generate an expression heatmap to visualize the differential expression of these genes across
clusters.

Gene Ontology (GO) term over-representation analysis
® Timing: ~30 min

65. Determine GO terms that are over-represented in the positive markers for each cluster by input-
ting the list of genes to the PANTHER classification system (http://www.pantherdb.org) (Mi
et al., 2019), and choosing Homo sapiens as reference organism and GO biological process
complete annotation data set.

66. Choose Fisher's Exact test as the statistical test and allow for multiple testing correction via the
Benjamini & Hochberg method to control for False Discovery Rate (FDR). Only select significant
terms with FDR<0.05.

67. Gene set statistics (p-values, gene set sizes and overlapping gene counts) can be exported from
PANTHER and imported into Python to investigate processes of interest and generate visual
summaries such as a bar plot where gene sets are ranked based on p-values.

Pseudotime trajectory analysis
O® Timing: ~1 h on the GenePattern server

68. Convert the processed Seurat object to a Monocle3 (Cao et al., 2019) object.

69. Learn the trajectory graph by fitting a principal graph within each partition.

70. Choose the roots of the trajectory representing the beginning of the biological process to order
the cells according to their progress along the trajectory.

71. Plot the progress through pseudotime trajectory on UMAP plots colored by cell cycle phase,
pseudotime, clusters, or expression of marker genes.

Gene expression pattern analysis
O® Timing: ~3-4 h on the GenePattern server
72. Extract the expression data for the top variable genes from the processed Seurat object as a ma-
trix.
73. Apply Coordinated Gene Association in Pattern Sets (CoGAPS) (Fertig et al., 2010), a Nonneg-

ative Matrix Factorization algorithm, on the matrix dataset with default parameters.

See troubleshooting problem 5
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74. Extract the matrix of sample weights for each pattern learned by CoGAPS.

75. Visualize the patterns on UMAP plots using sample weights to evaluate associations with a
particular cluster or phenotype.

76. Analyze the significance of the association using a Kruskal-Wallis rank-sum test.

77. Generate a sample weights by cells heatmap to visualize the patterns to further evaluate asso-
ciations with a particular cluster or phenotype.

EXPECTED OUTCOMES

As outlined in the protocol above, our approach comprises four major components: transduction of
cells with Dendra 2, photoconverting the specified phenotypes of interest in a 3D culture platform,
isolation of that phenotype by flow sorting, and downstream bioinformatic analysis. By implement-
ing the procedures described in our protocol, one can readily use the approach of photoconversion
to functionally isolate any phenotype that can be described by visual characteristics. While the end
user will have to adapt analysis strategies to their specific contexts, we anticipate that the use of our
downstream bioinformatic pipeline should enable the identification of potential biomarkers that
regulate their system and inform further validation experiments.

Cells undergoing collective migration as invasive networks or spheroids were labeled, sorted, and
subjected to scRNAseq analysis. After preprocessing, the first step of the analytic pipeline provides
UMAP plots with cells annotated according to unsupervised clustering (Figure 4A), phenotypic cate-
gory (Figure 4B) and cell cycle state inferred from canonical markers (Figure 4C). Because correlation
between clusters may not be visually apparent, the analysis includes a statistical test for enrichment
of cell cycle states. In this case, we found a statistically significant difference in cell cycle phase dis-
tribution between cells in cluster O vs. 1 (Chi-squared test p-value=3.43e-13), and between pheno-
typically labeled cells (Chi-squared test p-value=5.64e-17). Plotting the odds ratios associated with
each cell cycle phase shows the relative enrichment of one cell cycle phase versus all others within a
particular category of cells (ORs obtained by Fisher's Exact test; Figures 4D and 4E). Cells of cluster
0 on average are significantly more prevalent in S (OR=1.68, p-value=2.57e-05) and G2M phases
(OR=1.43, p-value=0.0017), and less prevalent in G1 phase (OR=0.43, p-value=2.08e-13) compared
to cells in cluster 1 (Figure 4D). Network cells are significantly more enriched in S (OR=1.80, p-val-
ue=2.76e-09) and G2M phases (OR=1.22, p-value=0.038), but are depleted in G1 phase
(OR=0.40, p-value=4.19e-17) compared to spheroid cells, suggesting that network cells are more
proliferative compared to spheroid cells (Figure 4E).

In order to study gene regulation that is not associated with the proportion of cells in each group at
different phases of the cell cycle, the pipeline next regresses out cell cycle effects. New UMAP visu-
alizations are generated after this step. Here we note that the lack of correlation between the unsu-
pervised clusters (Figure 4F) and the phenotypic labels (Figure 4G) remains, but there is now clearer
separation between network and spheroid labeled cells that are clustered together in cluster 0. Cells
in cluster 1 remain primarily composed of spheroid labeled cells (Figures 4F and 4G, Table 4). Cell
cycle labels are now more evenly distributed, confirming removal of cell cycle effects through this
procedure (Figure 4H).

For this dataset, the split of cells labeled as spheroid between unsupervised clusters (Table 4) sug-
gested two states within the spheroid population. In our previous study, we evaluated plasticity of
spheroid and network states by sorting and reseeding (Chen et al., 2020). Approximately 75% of re-
seeded spheroid cells transitioned into network cells, compared to the clustering based prediction
of 67%, whereas only about 1% of reseeded network cells formed spheroids after 1 week of culture
(Figure 5A). This is consistent with ~%3 of spheroid cells clustering with network cells in the single cell
data and supports that these may occupy an intermediate state capable of transitioning to the
network phenotype. At this point in the analysis, the user must define the number of cell states impli-
cated by combining unsupervised clustering with phenotypic labels. Evidence from scRNAseq and
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Figure 4. Comparative analysis of unsupervised clusters versus phenotypic labels (steps 49-61)

(A-C) UMAP plots colored by (A) unsupervised clusters, (B) phenotypic labels, and (C) cell cycle phases.

(D and E) Cell cycle phase distribution in (D) network vs. spheroid phenotypically labeled cells, or in (E) unsupervised clusters. Odds ratios (OR) and 95%
confidence intervals of each cell cycle phase (G1, S and G2M) to be prevalent in (D) network vs. spheroid labeled cells or in (E) unsupervised clusters O vs.
1 using Fisher’s exact test are shown (*p<0.05, **p<0.01, ***p<0.0001). For (D) OR>1 means network cells are more prevalent in the indicated cell cycle
phase compared to spheroid cells, and for (E) OR>1 means cells in cluster O are more prevalent in the indicated cell cycle phase compared to cells in
cluster 1.

(F-H) UMAP plots colored by (F) unsupervised clusters, (G) phenotypic labels, and (H) cell cycle phases, after regression of cell cycle phase effects.

reseeding experiments suggested 3 states: network, spheroid and intermediate (Figure 5B). This
was further supported by reanalysis of cell cycle enrichment across the 3 newly defined clusters,
which showed that the intermediate spheroid cells had proliferative characteristics that were in be-
tween the purely network and spheroid clusters (Figure 5C).

Once a set of cell states is defined, the bioinformatic pipeline implicates biological/functional differ-
ences between states using pairwise differential expression analysis between groups. Differentially
expressed (DE) genes are identified using DESeq2 (Love et al., 2014) which can be called directly
from within Seurat (Stuart et al., 2019), and are annotated with log fold-change, p-value and adjusted
p-value (Tables ST, S2, and S3). We identified 650, 410 and 11 DE genes comparing network (in clus-
ter 0) vs. spheroid cells, spheroid vs. intermediate cells, and network (in cluster 0) vs. intermediate
cells, respectively. DE genes are further analyzed for gene set enrichment using over-representation
analysis (e.g., by Fisher's Exact Test) using various tools. The pipeline provides instructions for ob-
taining enriched gene sets using the PANTHER webtool (Mi et al., 2019). Gene set statistics
(p-values, gene set sizes and overlapping gene counts) were exported from PANTHER and imported
into Python to investigate processes associated with differentiation and proliferation in different cell
states (Figures 5D-5F). Network cells were enriched for gene sets associated with proliferation rela-
tive to spheroid cells (Figure 5D, Table S4). Although phenotypically similar (i.e., visually spheroid),
intermediate cells were distinguished from spheroids by genes involved in differentiation processes
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Table 4. Distribution of supervised phenotypic labeled cells across unsupervised clusters

Unsupervised cluster label Supervised phenotype label Number of cells
0 Spheroid 848

1 Spheroid 416

0&1 Spheroid 1264

0 Network 693

1 Network 25

0&1 Network & Spheroid 1957

such as positive regulation of cell morphogenesis involved in differentiation and positive regulation
of epithelial to mesenchymal transition (Figure 5E, Table S5). In contrast, intermediate cells were
distinguished from network cells by processes relating to cell cycle (Figure 5F, Table Sé). This sup-
ports that intermediate cells may be poised to transition out of their spheroid state and raises the
possibility that certain genes relating to cell cycle processes may trigger the intermediate pheno-
type to switch into the more proliferative network phenotype. Table 5 describes the cell differenti-
ation and cell cycle associated genes that distinguish the intermediate cell state from network and
spheroid states and could serve as experimental targets for studies related to this hypothesis.

The pipeline provides two additional single cell analyses to aid interpretation of cell states obtained
from integrating unsupervised clustering with phenotypic labels. First, pseudotime analysis is used
to assess the progressive relationship between cell states. In order to track changes of the cells over
time, pseudotime progresses along the trajectory of gene expression changes present in the under-
lying data starting from a root representing the beginning of a biological process such as differen-
tiation or cell cycle (Cao et al., 2019). The root must be manually selected by the user. As we
previously discovered cell cycle association between our phenotypes which could be relevant to
cellular transitions (Figures 4E and 5C), we allowed cell cycle effects to be present in the data for
pseudotime analysis and selected the midpoint of cells in the G1 cell cycle phase as the root (Fig-
ure 6A\) to generate pseudotime trajectories (Figure 6B). In this case, the learned trajectories connect
spheroid cells to network cells through the intermediate cells (Figure 6C) following cell cycle pro-
gression (Figure 6A). DE genes can be visualized along the pseudotime trajectory to obtain higher
resolution information about the timing of their expression during transitions (Cao et al., 2019). As a
demonstration, we plot DE genes associated with each state: SPANXB1 which is more expressed in
spheroid cells (Figure 6D), ST00A4 which is more expressed in intermediate cells (Figure 6E), and
HISTTH1E which is more expressed in network cells (Figure 6F), specifically compared to the inter-
mediate cells (Table 5).

As a final step, the pipeline annotates gene expression programs active in single cells using non-
negative matrix factorization (NMF) as implemented by CoGAPS (Fertig et al., 2010). In contrast
to performing overrepresentation analysis of DE genes with pre-defined genesets, this approach in-
fers active processes based on latent substructure in the data. The resulting weighted lists of genes
associated with each program can be used to gain insight into functional differences across groups
of cells. We applied CoGAPS to infer 7 active gene expression patterns in our dataset. Among these,
three patterns best explained the expression profiles of spheroid vs. intermediate vs. network phe-
notypes (Table S7). Pattern 4 detected spheroid cells (Kruskal-Wallis rank-sum test p-value=9.35e-
203) (Figure 7A), pattern 7 detected network cells (Kruskal-Wallis rank-sum test p-value=1.96e-141)
(Figure 7B), and pattern 3 detected intermediate cells (Kruskal-Wallis rank-sum test p-value=2.43e-
115) (Figure 7C), among all 7 patterns (Figure 8). A heatmap of pattern weights further demonstrated
the enrichment of pattern 4 for spheroid cells, pattern 7 for network cells and pattern 3 for interme-
diate cells (Figures 7D and 9). Notably, increasing the number of clusters inferred by Seurat does not
detect these patterns (Figure 10), supporting application of both approaches to gain biological
insight.
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Figure 5. Comparative analysis of phenotypically supervised cell groups to unsupervised cell clusters (steps 62-67)
(A) Quantification of spheroid vs. network phenotypes that arise after reseeding from sorted populations.

(B) UMAP plot colored by phenotypically supervised cell groups.
(C) Cell cycle phase distribution in phenotypically supervised cell groups. Odds ratios (OR) and 95% confidence intervals of G1, S, and G2M cell cycle
phases to be prevalent in phenotypically supervised cell groups (spheroid, intermediate or network) using Fisher's exact test are shown (*p<0.05,
**p<0.01, ***p<0.0001). OR>1 indicates an enrichment of the specified cell cycle phase in the mentioned phenotype, while OR<1 indicates a depletion.
(D-F) Barplots showing GO biological processes enriched in genes that are differentially expressed (D) in network cells of cluster 0 compared to
spheroid cells; or (E) between spheroid vs. intermediate cells; or (F) in network cells of cluster 0 compared to intermediate cells. Only processes that are
associated with differentiation and proliferation are shown. P-values are corrected for multiple testing using the Benjamini & Hochberg method. N
represents the number of differentially expressed genes that map to each GO term.

STAR Protocols 2, 100561, June 18, 2021 17



¢ CellPress STAR Protocols

OPEN ACCESS

Table 5. Selective marker genes distinguishing the intermediate group

Spheroid cells Intermediate cells Network cells

DE genes between Intermediate vs.

DE genes between Spheroid vs. Intermediate Network

annotated for cell differentiation regulation enriched for cell cycle regulation
CCL2 MYADM AC020916 DSTN CLTC
CDCA42EP3 MYO10 CFL1 RPL22 EXOC5
CTNNB1 NRP1 DNM2 GSTP1
CUX1 PDZD8 PSMB2 HISTTH1E
DAB2 PSMA4 PSMD2 HNRNPU
DHX36 PSMD6 RHOC HSP90AA1
FMNL1 PSME2 S100A10 LBR

FN1 RDX SDCBP NPM1
KMT2A SOX9 PRKDC
LRP10 TGFBR2

MAP1B WWTR1

MAP3K13 YAP1

MDK ZMPSTE24

METRN

Genes are listed under the cell group in which they are upregulated.

Applications of the method

Here and in our prior study (Chen et al., 2020), we applied this technique to probe heterogeneity in
the collective migration behaviors of MDA-MB-231 breast epithelial cells. Nonetheless, any other
aspect of biological heterogeneity can also be investigated using the same approach, provided
the heterogeneity manifests in a visual manner. For instance, this system can be used to tackle spatial
heterogeneity through the isolation of cells in distinct locations. Time dynamics can also be incorpo-
rated by tracking cells and isolating those moving faster from those moving slower. Other extracel-
lular matrices may also be used as part of the culture platform as long as cell recovery strategies are
adapted appropriately. Because our fluorescent tagging method is based on transduction of
Dendra2, any cell amenable to viral transduction can be used with our method. In addition, the
development of Dendra2 mice and intravital microscopy make it potentially possible for our
approach to be extended to in vivo biology as well.

Combined with downstream FACS and transcriptome sequencing, our photolabeling approach
generates insight into the mechanisms of the heterogeneous property in question. This can then
inform functional perturbations at the protein level to confirm the inferences made from sequencing
outputs. Importantly, in our previous study, gene sets derived using phenotypic metadata differed
significantly from those derived from unsupervised analyses alone and enabled the design of more
relevant validation experiments. Such phenotype-supervised gene sets can also reduce the number
of perturbations required for a full screen of hits compared to unsupervised analysis (near 3-fold
reduction from 528 to 178) and uncover unique biomarkers of the phenotypes being studied
(Chen et al., 2020).

LIMITATIONS

To increase throughput, our platform uses a wide-field fluorescent microscope outfitted with a laser
and galvanometer scanner to photoconvert cells. While the use of a laser maintains x-y spatial res-
olution, wide-field fluorescence results in a loss in z-spatial resolution compared to confocal scan-
ning and could potentially lead to unintended photoconversion of nearby cells above and below
the plane where the targeted cells lie. However, this limitation is overcome by avoiding photocon-
version of cells that contain nearby neighbors, and by more sparsely seeding cells in 3D culture to
minimize overlap of cells in the vertical axis. With our system, we calculated that objects farther
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Figure 6. Pseudotime trajectory analysis (steps 68-71)

Black lines on the UMAP plots represent the trajectory graph. Root of the pseudotime trajectory is marked as a circle labeled 1.

(A-C) UMAP plots with pseudotime trajectories of cells colored by (A) cell cycle phase, (B) pseudotime, and (C) phenotypically supervised cell groups.
(D-F) UMAP plots with pseudotime trajectories of cells and the expression of genes (D) SPANXB1, (E) S100A4, and (F) HISTIH1E. Expression is log10
based.

than 10 pm in x-y and farther than 200 um in z do not receive sufficient exposure to 405 nm light to be
photoconverted. We also validated this experimentally.

In our experience, the photoconverted Dendra2 signal is only retained for a maximum of 8 h. For
optimal cell recovery, photoconversion and cell isolation should be completed within that time

A B C
Pattern 4 Pattern 7 Pattern 3
Weight
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Figure 7. Unsupervised detection of gene expression patterns (steps 72-77)

(A-C) UMAP plots overlaid with pattern weights for each cell for the top 3 significant patterns among 7 that best explains the 3 underlying phenotypes
(spheroid, intermediate, and network): (A) pattern 4, (B) pattern 7, and (C) pattern 3. Cell cycle phase effects are regressed out.

(D) Heatmap of pattern weights by cells for the top 3 significant patterns. Hierarchical clustering is performed on both rows and columns. Clustering on
columns is done first between cells within each phenotype, and then between phenotypes. Phenotype annotation is displayed as a bar on top of the

heatmap.
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Figure 8. UMAP plots overlaid with pattern weights for each cell for each gene expression pattern (steps 72-75)

frame. If more time is needed to harvest enough cells, we suggest pooling multiple samples instead
of holding a single, long photoconversion session.

TROUBLESHOOTING
Problem 1
Low transduction efficiency (step 4), possibly caused by low viral titer.

Potential solution
Increase viral load, or sort cells for expression by flow cytometry and perform growth-based
amplification.

Problem 2

Low fluorescence of photoconverted cells (step 24), possibly caused by low expression of Dendra2
or low photoconversion efficiency.

20 STAR Protocols 2, 100561, June 18, 2021



STAR Protocols ¢? CellP’ress

OPEN ACCESS

Phenotype

Pattern 1 [ network
M intermediate
Pattern 3 [ spheroid

Weight
08

patterns

cells

i Phenotype

Pattern 7 Phenotype

‘ H‘ H‘ ‘ ‘ “I ’IH H Pattern 1 [ network
M intermediate

IIIIII I ‘ Pattern 3 [ spheroid
I

\
|ﬁ il |
|| |||’ i w wu 1 ‘Hll \ -
I

Pattern 2 06
\III | | I Il

patterns

HII" Pattern 6 04
‘ Pattern 4 i 8'2

Figure 9. Heatmap of pattern weights by cells for all 7 gene expression patterns (step 77)
Hierarchical clustering is performed on both rows and columns. Clustering on columns is done (A) first between cells within each phenotype, and then
between phenotypes; or (B) between all cells. Phenotype annotation is displayed as a bar on top of the heatmap.

Potential solution
Flow sort for the highest Dendra2 expressing cells prior to photoconversion or increase the dwell
time/power of the laser.

Problem 3
Low cell viability post sorting (step 43), possibly caused by high shear stress during cell sorting.

Potential solution
Reduce the sorting rate on the flow sorter during cell sorting.

Problem 4
Computational steps cannot be implemented, fail to run, or are time-consuming (steps 49-77),
possibly caused by limited computational resources, missing dependencies, or failed software
installation.

UMAP 2

UMAP 1

Figure 10. UMAP plot colored by unsupervised clustering into 3 groups
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Parsing within-cell type heterogeneity using phenotypically supervised single cell
analysis

Single cell RNA-seq processing

Step 49-50. Import dataset into Seurat and pre-filter the counts matrix

For this notebook, the user can either load their own datasets, or the datasets analyzed in our paper.
Each dataset consists of three files:

* matrix.mtx: Triples of feature ID index, cell barcode index, and UMI count.
* barcodes.tsv: The barcodes referenced by the indices in the matrix.mtx file.
« features.tsv: All the annotated feature, one per row. Referenced by the indices in the matrix.mtx file. Sometimes named genes.tsv

The data analyzed in our paper consists of 2 datasets, one containing the network cells, and one containing the spheroid cells. Each dataset contains the three files described
above (matrix.mtx, barcodes.tsv, and features.tsv). The following cell creates a Seurat object for each dataset and then combines them into one Seurat object with provided
labels for each separate dataset. The user can choose to merge more than two datasets if needed.

Instructions @

Click Run to open the interactive widget. When opened, enter the Num Files to be merged.

For each dataset, provide the label (e.g. network) and the filename describing the location of the 10X data directory (e.g. *data/mda/network/filtered_feature_bc_matrix/")
Set num cells to filter the count matrix to remove genes expressed in fewer than the provided number of cells.

Click Merge to load the 10X input files into the notebook, merge the datasets and pre-filter the merged count matrix.

« Differential expression analysis
Steps 62-64. Identify DE genes between groups anc
~ Pseudotime trajectory analysis (Monocle3)
***Optional - Finding the root

To use the provided dataset:
Steps 68-71

~ Gene expression pattern analysis (COGAPS) ® Setnumfilesto 2. )

oSt e T wanE i e Set label 1 to network’, and filename 1 to “data/mda/network/filtered feature_bc_matrix/:

Step 72. Extract the expression data from the proce ® Set label 2 to “spheroid", and filename 2 to *data/mda/spheroid/filtered_feature_bc_matrix/"

Step 73. Apply Coordinated Gene Association in Pat e Setnum cells to 3.

Step 74, Extract the matrix of sample weights for e:

Step 75. Visualize gene expression patterns on UM/

~ Step 76. Analyze the significance of the association

Visualize top patterns —

Step 77. Generate heatmap to visualize patterns % GenePatte oad 10X data

Discussion & Conclusions
Input 10X data files to load and merge.

num files:
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Figure 11. Preview of the GenePattern notebook implementation (steps 49-77)

Computational analyses described in the Expected Outcomes section are implemented in a GenePattern notebook (http://notebook.genepattern.org)

which can be run on any scRNAseq data by the user or on the dataset analyzed in this paper provided at GEO Series accession number (GSE158844).

Potential solution
Use the provided notebook that runs remotely on the GenePattern webserver.

Problem 5

Gene expression pattern analysis takes a long time to complete (step 73), possibly caused by the

dataset being too large.

Potential solution

Run the analysis only on a subset of the count matrix using top variable genes, and/or decrease the

number of iterations.

RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources and reagents should be directed to and will be ful-

filled by the lead contact, Stephanie Fraley (sifraley@ucsd.edu).
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Materials availability
This study did not generate new unique reagents.

Data and code availability

Computational analyses described between steps 49-64 and 68-77 in the step-by-step method details
section are implemented in a GenePattern notebook (Reich et al., 2017). This notebook can be run on
any scRNAseq data by the user or on the dataset analyzed in this paper. The analyzed dataset is provided
at the National Center for Biotechnology Information Gene Expression Omnibus (GEO) as a supplemen-
tary file named “GSE158844_MDA_10X_output.tar.gz,” and the accession number for this dataset is
GEO: GSE158844 (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE158844). In order to use
the notebook, log in to the GenePattern notebook server, http://notebook.genepattern.org. In the Note-
book Library, select the "Pheno-seq analysis” notebook and choose Run. In the notebook, procedure
steps are grouped according to task and can be run sequentially as is, or parameters and code can be
modified to accommodate variants of the workflow (Figure 11).

SUPPLEMENTAL INFORMATION
Supplemental information can be found online at https://doi.org/10.1016/j.xpro.2021.100561.
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