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Abstract
Mathematical equations are often used to model biological processes. However, for
many systems, determining analytically the underlying equations is highly challenging
due to the complexity and unknown factors involved in the biological processes. In this
work, we present a numerical procedure to discover dynamical physical laws behind
biological data. The method utilizes deep learning methods based on neural networks,
particularly residual networks. It is also based on recently developed mathematical
tools of flow-map learning for dynamical systems. We demonstrate that with the pro-
posed method, one can accurately construct numerical biological models for unknown
governing equations behindmeasurement data.Moreover, the deep learningmodel can
also incorporate unknown parameters in the biological process. A successfully trained
deep neural network model can then be used as a predictive tool to produce system
predictions of different settings and allows one to conduct detailed analysis of the
underlying biological process. In this paper, we use three biological models—SEIR
model, Morris–Lecar model and the Hodgkin–Huxley model—to show the capability
of our proposed method.
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1 Introduction

One of the main goals in modeling biological systems is to reveal the mechanisms
underlying complex behaviors of various biological processes. For example, one can
often describe intracellular or intercellular networks using mathematical equations. In
particular, ordinary differential equation (ODE) models have been used to describe
such systems. However, finding the correct governing equations is often challenging
for several reasons: The complete picture of biological network is only partly known,
that is, some information of the network is missing; the parameters such as kinetic
rates are not available or experimentally measurable; the parameters are often time
dependent but assumed to be constant (for ease of modeling), which leads to biased
models and questionable conclusion (Ye et al. 2015). Moreover, in biological systems,
many interactions are highly nonlinear and complex. It is difficult to determine the
correct nonlinear terms in the model (DeAngelis and Yurek 2015), and nonlinearity-
induced sensitivity to parameters can greatly lower the predictive power of the model
(Wood and Thomas 1999; Yodzis 1988; Goodfellow et al. 2016). Those factors make
determination of high fidelity governing equations and models extremely difficult in
many cases. And misspecified and low-fidelity mechanistic models often have poor
performance on explanatory or predictive power (Wood and Thomas 1999; Perretti
et al. 2013). Therefore, one may question whether it is possible to use only observa-
tional data to numerically determine the underlying mechanisms without resorting to
explicit analytical derivation of equation-based models.

Recently, there has been a growing amount of research in numerical modeling of
unknown governing equations using observational data. Some notable efforts include
symbolic regression (Bongard and Lipson 2007; Schmidt and Lipson 2009), equation-
free modeling (Kevrekidis et al. 2003), heterogeneous multiscale method (HMM)
(Weinan et al. 2003), artificial neural networks (Gonzalez-Garcia et al. 1998), nonlin-
ear regression (Voss et al. 1999), empirical dynamic modeling (Sugihara et al. 2012),
nonlinear Laplacian spectral analysis (Giannakis and Majda 2012) and automated
inference of dynamics (Daniels and Nemenman 2015a, b). Among those, artificial
neural network (ANN), and particularly deep neural network (DNN), has seen tremen-
dous successes in many different disciplines, particularly in recent few years. The
number of publications is too large to mention. Here, we cite only a few relatively
more recent review/summary-type publications (Montufar et al. 2014; Bianchini and
Scarselli 2014; Eldan and Shamir 2016; Poggio et al. 2017; Du and Swamy 2014;
Goodfellow et al. 2016; Schmidhuber 2015). Efforts have been devoted to the use of
DNN for various aspects of scientific computing, including construction of reduced
order model (Hesthaven and Ubbiali 2018), aiding solution of conservation laws (Ray
and Hesthaven 2018), multiscale problems (Chan and Elsheikh 2018; Wang et al.
2018), solving and learning systems involving ODEs and PDEs (Mardt et al. 2018;
Chen et al. 2018; Long et al. 2018; Khoo et al. 2018), uncertainty quantification (Tri-
pathy and Bilionis 2018; Zhu and Zabaras 2018), and more.

Some efforts also have been made in biology areas to find governing equations
by data-driven approaches, such as equation-free method through empirical dynamic
modeling formarine ecosystem (Ye et al. 2015), automated inference of dynamicswith
symbolic regression for metabolic network (Schmidt et al. 2011), sparse identification
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of nonlinear dynamic for a biological structure (Mangan et al. 2016), and Genmodel
learning system for unknown qualitative simulation (QSIM) in physiological study
(Hau and Coiera 1995). The use of DNN for model discovery has not, however, been
investigated systematically in biological modeling.

The focus of this paper is on how to use DNN to learn underlying dynamical system
of biological processes. First, we extend the method of Qin et al. (2019) to incorporate
additional variables into the DNN model. Some of the variables can be controlled
during experimentation such as temperature or electronic current. Their incorporation
results in a more flexible neural network model for the underlying process and allows
us to investigate the influence of the controlled variables on the dynamics. We then
employ three classical biological models to demonstrate the deep learning model
discovery procedure and examine its effectiveness. The first example is the SEIR
model (Hethcote 2000), one of the common models in the epidemiology. It is used for
modeling the dynamics of infectious disease such as chickenpox, rubella, mumps and
malaria. The second example is the Morris–Lecar model (Morris and Lecar 1981),
one of the simplest ion channel models. This model was developed to understand the
relation between the applied current, which is a controlled variable, and the neuronal
excitability in barnacle muscle fibers. This model is particularly interesting because
it is known to have rich dynamical behaviors such as bifurcations. The last example
is Hodgkin–Huxley model (Hodgkin and Huxley 1952), another ion channel model.
The dynamical system features a spike structure, which makes numerical modeling
particularly difficult. We use these three examples to demonstrate the capability of our
numerical approach. In all examples, our method produces a neural network model for
the underlying system using only measurement data. The constructed neural network
model is then used to conduct system analysis and simulations, and its results are
compared against the reference results generated by the known true models.

The structure of this paper is as follows: In Sect. 2, we set up the general framework
and notations, along with an overview of data requirement and the basics of neural
networks. In Sect. 3, we discuss the technical details of DNN learning for governing
equations. Then in Sect. 4, we apply the learningmethod to the three biological models
to examine the performance and properties of our method. Summary and discussions
are in Sect. 5.

2 Setup

We assume that the biological process under consideration can be modeled by an
autonomous dynamical system in the following general form:

d

dt
x(t;α) = f(x,α), x(0) = x0, (1)

where x = (x1, . . . , xd), d ≥ 1, represents the time-dependent state variables and
α = (α1, . . . , α�) are a set of parameters associated with the model. We assume that
the model, namely the governing Eq. (1), is unknown. However, we assume that we
have access tomeasurement data of the state variables at various time instants. Our goal
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is to construct a numerical model to approximate the unknown governing equations.
We will then use the numerical model to conduct system analysis. Note that the model
(1) may also contain certain algebraic constraints. Here we use a general description
of ODEs to emphasize that the model is a dynamical system.

2.1 Data

We assume measurement data of the state variables x are available. Since different
initial conditions and parameters lead to different trajectories in the phase space, we
assume that these data are measured along various trajectories with various lengths in
time. The information about the corresponding initial conditions is not available, as is
the case in practice, and is not needed for our learning method.

Let NT be the total number of trajectories on which data are measured. Consider
the i th trajectory, where i = 1, . . . , NT . Let (K (i) + 1) be the number of temporal
data entries on the i th trajectory. We collect the data into the following set:

X(i) =
{
x

(
t (i)k ;α(i), x(i)

0

)}
, k = 0, . . . , K (i).

Here, {t (i)k , k = 0, . . . , K (i)} are the time instants of the data entries, α(i) are system

parameter values associated with this trajectory, and x(i)
0 is the initial condition of the

trajectory. We emphasize here that both α(i) and x(i)
0 are treated as unknowns. We then

reorganize the data into a set of pairs of adjacent time instants,

{
x

(
t (i)k ;α(i), x(i)

0

)
, x

(
t (i)k+1;α(i), x(i)

0

)}
, k = 0, . . . , K (i) − 1.

Each of these pairs can be considered as a trajectory of length two, with the first entry
serving as the “initial condition” and the second entry as the “end condition.” Since
we assume the true model (1) is autonomous, time variable can be arbitrarily shifted.
We rewrite the data entry pairing as

{
x

(
0;α(i)

)
, x

(
Δ

(i)
k ;α(i)

)}
, Δ

(i)
k = t (i)k+1 − t (i)k , k = 0, . . . , K (i) − 1, (2)

where Δ
(i)
k is the time difference between the two data entries. The dependence on the

initial condition is suppressed, as the first data entry serves as the initial condition for
this two-entry short trajectory.

Finally, we collect the data pairs from all trajectory measurements i = 1, . . . , NT ,
and re-label them using a single index to simplify notation. By also taking into account
the possible measurement noises in the data, the entire dataset can be written as

S =
{
z(1)
j , z(2)

j

}
, j = 1, . . . , J , (3)

123



Deep Learning of Biological Models from Data… Page 5 of 19 19

with the total number of the pairs J = K (1) + · · · + K (NT ) and

z(1)
j = x

(
0;α(i j )

)
+ ε

(1)
j , z(2)

j = x
(
Δ j ;α(i j )

)
+ ε

(2)
j , (4)

where ε
(1)
j and ε

(2)
j are noises/errors in the state variable data. That is, each j th pair,

j = 1, . . . , J , consists of data of the state variables x separated by the time difference
Δ j . Also, each j th pair corresponds uniquely to an underlying i j th trajectory in the
original data pairings (2). For notational convenience, throughout this paperwe assume
Δ j = Δ as a constant.

2.2 Deep Neural Networks

Following the recent work of Qin et al. (2019), we adopt deep neural network (DNN)
as the primary modeling method for recovering unknown governing equations. In
particular, we employ feedforward neural network (FNN) as the core building block.
A standard FNN defines a nonlinear map as follows.

Let N : Rm → R
n be the operator associated with a FNN with M hidden layers

(M ≥ 1). Let yin ∈ R
m be the input and yout ∈ R

n the corresponding output. The
DNN mapping can be written as

yout = N(yin;Θ) = WM+1 ◦ (σM ◦ WM ) ◦ · · · ◦ (σ1 ◦ W1)(yin), (5)

where Wm is the weight matrix between the mth and the (m + 1)th layers, σm :
R → R is the activation function of the neurons in the mth layer, and ◦ stands
for operator composition. Following the neural network nomenclature tradition, we
have incorporated the network biases into the weight matrices, and applied activation
functions in a component-wise manner. We shall use Θ to denote all the parameters
in the network.

When the input and output dimensions are identical, i.e.,m = n, “residual network”
(ResNet) He et al. (2016) can be readily defined as

yout = [Im + N(·;Θ)] (yin), (6)

where Im is the identity matrix of size m × m. In this form, the neural network in
fact models the difference between the input and output (thus the term “residual”).
Although mathematically equivalent to the standard DNN, ResNet has been shown to
be exceptionally useful in practice after its introduction in He et al. (2016). We will
adopt the ResNet idea and modify it to our modeling work in the following section.

3 Deep LearningMethod Description

In this section we describe the details of the deep learning method. The method is
based on ResNet learning of general dynamical system (Qin et al. 2019). Our current
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Fig. 1 (Color figure online) Structure of the neural network

approach extends the method fromQin et al. (2019) by incorporating unknown system
parameters in the deep learning model.

3.1 Neural Network Structure

Straightforward application of ResNet, as proposed in Qin et al. (2019), is only appli-
cable for learning equations with fixed parameters α. To model unknown system (1)
with unknown parameters, we employ a modified ResNet structure.

The network structure is illustrated in Fig. 1. The input consists of the state variable
xin, along with the system parameters α, i.e., yin = [xin;α]. Therefore, the input layer
consists of (d + �) neurons.

Multiple fully connected feedforward hidden layers follow the input layer. The
width and depth of the hidden layers determine the complexity andmodeling capability
of the network. The output layer consists of only the state variables x ∈ R

d , i.e.,
yout = xout. An operator Î is employed to re-introduce the input state variable xin

before the output layer. It is defined as a d × (d + �) matrix

Î = [
Id 0

]
, (7)

where Id is the identity matrix of size d × d and 0 is a zero matrix of size d × �.
Let N : Rd+� → R

d be the mapping operator defined by our network structure. The
introduction of the operator Î effectively produces the following mapping

yout = N(yin;Θ) = [̂
I + N̂

] (
yin

)

= xin + N̂(xin,α;Θ), (8)
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where N̂ : Rd+� → R
d is the mapping operator defined by the hidden layers, and Θ

is the parameter set associated with the network.

3.2 Network Training and Prediction

To train the network (8), we use the dataset (3), which contains pairs of state variables{
z(1), z(2)

}
at two adjacent time instants separated by time step Δ. For each pair, we

use the first data entry z(1) as xin in the network input yin. That is, yinj = [z(1)
j ;α j ]

is the j th input of the DNN model, for all j = 1, . . . , J . The second data entry z(2)
j

is used to compute the cost of the network output. Our loss function is defined as the
mean squared loss,

L(Θ) = 1

J

J∑
j=1

∥∥∥z(2)
j − N(yinj ;Θ)

∥∥∥
2

2
, (9)

where ‖·‖2 denotes vector-2 norm. Uponminimizing the loss function, we obtain a set
of trained parameter Θ∗. This in turn defines our trained network model N(yin;Θ∗).
Upon iterative use of the trained networkmodel (8), we can conduct system prediction.
For any given new initial condition x0 at t0 and system parameter α, we have

⎧⎨
⎩
x(t0) = x0,
x(tn+1) = x(tn) + N̂(x(tn),α;Θ∗), n = 0, 1, 2, . . .
tn+1 = tn + Δ.

(10)

This predictivemodel allows us to conduct systemprediction for a new initial condition
and with a new set of system parameters α.

4 Deep Learning of BiologyModels

In this sectionwepresent threemajor test cases to illustrate the effectiveness of our deep
learning method for biological models. Since the purpose is to validate the learning
method, we use synthetic data generated from the known biological models. We first
use the synthetic data to train neural network models. Once the models are trained
satisfactorily, the DNNmodels are then used as a predictive tool to conduct numerical
prediction of the underlying biological systems under new initial states and system
parameter values that are not in the training data. The DNN model predictions are
then compared against the reference solutions generated by the corresponding true
mathematical models. In another word, the knowledge of the true models (which is
not available in practical situation) is only used to generate the synthetic data for
the DNN model training and to validate the prediction results produced by the DNN
models.
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4.1 Data Preparation and Network Training

Our training dataset follows the form of (3) and (4). In order to produce the synthetic
training data, the following procedure is adopted:

• Choose domain-of-interest Ix and Iα for the state variable x and system parameter
α, respectively. These are the regions where we are interested in the dynamical
behavior of the underlying system. This choice is obviously problem dependent.
(Although ideally it is desirable to understand the system dynamics for all values
of x and α, in practice one often needs to confine the study to a more localized
region. This is common for numerical modeling and simulation.)

• Once the domain-of-interest Ix and Iα are determined, we randomly generate
samples in the domains. For bounded domain, we employ a uniform distribution;
and for unbounded domain we employ a Gaussian distribution. This sampling
procedure generates a set of samples (x( j),α( j)), j = 1, . . . , J , where total J the
number of samples. These samples serve as the “initial states” x(0;α( j)) of our
trajectory data.

• For each initial state x(0;α( j)), j = 1, . . . , J , we collect its trajectory data of the
underlying system. In this paper, the trajectory data are synthetic data generated
by solving the underlying true systems via the high-resolution solver, LSODE
Radhakrishnan and Hindmarsh (1993). The solver was executed by a short timeΔ

to generate the solution x(Δ;α( j)), which is the “end state” of the j th trajectory.
The initial state and end state solutions then form the j th data pair in our training
dataset (3), after performing the standard data normalization procedure. Note that
our training data are essentially a large number of short trajectory data. This follows
the mathematical analysis of Wu and Xiu (2019), where it was shown a large
number of short trajectories can greatly facilitate the discovery of the underlying
equations.

We remark that α represents not only the system parameters of (1), it can also
represent the external inputs or control variables. For example, in our ion channel
example below, α is the electric current which can be controlled by experimentalists.

In all the examples in this paper, our DNNmodels consist of 3 hidden layers, each of
which with 45 neurons. The number of neurons in the input layer equals the number of
the state variables x plus the number of system parameters and control variables α. The
number of neurons in the output layer is the same as the number of the state variables
x. Networks with different depth and width have been investigated. Our current choice
represents a good balance between model accuracy and computational cost. All neural
network models were trained in mini-batch by Adam’s algorithm (Kingma and Ba
2017) in the open-source Tensorflow (Abadi et al. 2015) and Keras (Chollet et al.
2015) library. Loss function values over the training datasets are monitored during
training. The network training is considered satisfactory when the loss saturates or
reaches a sufficiently small level (problem dependent).
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4.2 SEIR Model

The SEIR model is one of the most common epidemiology models for infectious
disease such as chickenpox, rubella, mumps, and malaria. The system describes the
dynamics of health among susceptible (S), exposed (E), infected (I ), and resistant
(R) populations. While there are variations such as SEI, SIR and SEIRS models, we
mainly focus on the SEIR model here. For more details about the model, see Hethcote
(2000).

The SEIR model describes the dynamical behavior of the amount of population in
the four states variables, S, E , I and R:

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

dS
dt = μ(N − S) − β SI

N − νS,
dE
dt = β SI

N − (μ + σ)E,
dI
dt = σ E − (μ + γ )I ,
dR
dt = γ I − μR + νS,

(11)

where N = S + E + I + R is the total population, and α = (β, γ, σ, μ, ν) are the
system parameters.

It is easy to observe that N is a constant. Therefore, we divide both sides of Eq.
(11) by N and subsequently consider all the state variables as fractions of the total
population. That is, x = (S, E, I , R) ∈ [0, 1]4 with S + E + I + R = 1.

To generate the synthetic data for our model learning, we chose, rather arbitrarily,
(β̄, γ̄ , σ̄ , μ̄, ν̄) = (0.9, 0.2, 0.5, 0.3, 0.2) as the mean value of the system parameters
and add ± 10% perturbations. Therefore, the parameter domain is a hypercube and
we use a uniform distribution to sample the domain of interest and utilize the true
model (11) to generate the training data. Different levels of noise following Gaussian
distribution were added to the data to simulate measurement noises. Two cases are
presented here: one with 1% noise level, where our training dataset consists of 10,000
data pairs, and the other with 5% noise level, where the training dataset consists of
30,000 data pairs. The data pairs in the dataset are separated by Δ = 0.2.

Once the neural network model is trained, we conduct system analysis using the
DNNmodel and compare its results against the reference solution from the true model
(11). In Fig. 2, we present time evolution of the state variables predicted by the neural
network model, using an initial condition x0 = (0.5, 0.5, 0, 0) and system parameter
(β, γ, σ, μ, ν) = (0.9, 0.2, 0.5, 0.3, 0.2). Very good agreement with the reference
solution from the true model can be observed, indicating sufficient accuracy in the
predictive capability of the DNNmodel. Results for other initial conditions and system
parameter values are of similar quality and thus not shown. In Fig. 3, we show the
training loss history during the network training, for both noisy data case and noiseless
data case.

4.3 Morris–Lecar Model

We now consider the Morris–Lecar model (Morris and Lecar 1981), which is one of
the simplest models for neuronal excitability. The conceptual idea of the model is that
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(a) data noise level = 1% (b) data noise level = 5%

Fig. 2 (Color figure online) SEIR modeling: predicted solution from the neural network (lines) versus
reference solutions (stars)

(a) Noiseless training data (b) Noisy training data with 5% noises.

Fig. 3 (Color figure online) SEIR modeling: the training loss history

cell membranes resemble electronic circuit. The phospholipid bilayer could be viewed
as a capacitor because the bilayer can maintain a separation of charge. Each ion flows
across the cell membrane via its own channel on the plasma membrane. This means
each ion channel can been seen as a resistor. The injection of current can be regarded
as a battery driving the ionic current. Because of the structure of the membrane and
the channels, the capacitor and all resistors are arranged in a parallel circuit. By using
Kirchhoff’s law, the capacitive current should be equal to the sum of the injected
current and the ionic current. That is, we can formulate the following equation:

CM
dV

dt
= Icap = Iion + Iapp, (12)

where Iapp is the injected current and CM is the capacitance of the membrane.
The Morris–Lecar model only involves three different channels, which are potas-

sium channels, calcium channels and a leak channel. Thus, Iion = IK + ICa + Ileak.
Furthermore, whether the channel is open depends on the voltage between the mem-
brane sides, which is the difference in the concentrations of ions on opposite sides of
the cellular membrane. In this model,Ca2+ is a fast electric current, which means that
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Table 1 Parameters in the Morris–Lecar model

CM gL VL gCa VCa gk Vk V1 V2 V3 V4 φ

Type I 20 2 −60 4 120 8 −84 −1.2 18 12 17.4 0.066

Type II 20 2 −60 4.4 120 8 −84 −1.2 18 2 30 0.04

(a) Type I (b) Type II

Fig. 4 (Color figure online) The log-loss plots for the Morris–Lecar model

the behavior of the calcium channel instantaneously depends on the voltage. There-
fore, we can assume the probability M of the calcium channel being open is M∞
without time dependence. The potassium channel is a delayed rectifier, which leads
to a nonconstant probability N (t) for the potassium channel being opened. The true
learning model is:

{
CM

dV
dt = −gL(V − VL) − gCa(V − VCa)M∞ − gk(V − VK )N + Iapp,

dN
dt = λN (N∞ − N ),

(13)

where

M∞ = 0.5

(
1 + tanh

V − V1
V2

)
, N∞ = 0.5

(
1 + tanh

V − V3
V4

)
, λN = φ cosh

V − V3
2V4

.

TheMorris–Lecarmodel has rich bifurcation behavior depending on the parameters
and the control variable Iapp. The model can exhibit two different types of excitability
under different parameters. The type I model has a continuous frequency–current
curve, which means it can produce arbitrarily low frequency. On the other hand,
the starting frequency of oscillation is different from zero. The generation of periodic
behavior in the type I model results from a saddle node bifurcation, and the oscillations
in the type II follow from the subcritical Holf bifurcation. More details can be found in
Tsumoto et al. (2006). We use two sets of parameters to represent type I and II models
(Rinzel and Ermentrout 1989), as listed in Table 1.

In this example, we let α be the control variable, which is the applied current Iapp
varying from 0 to 300. The training domains Ix and Iα are [− 75, 75] × [0, 1] and
[0, 300], respectively; 100,000 samples are found to be sufficient for the DNN model
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(a) V , Iapp = 0 (b) N , Iapp = 0 (c) phase plot, Iapp = 0

(d) V , Iapp = 60 (e) N , Iapp = 60 (f) phase plot, Iapp = 60

(g) V , Iapp = 150 (h) N , Iapp = 150 (i) phase plot, Iapp = 150

Fig. 5 (Color figure online) Time evolution and phase plots for the type I Morris–Lecar model with x0 =
(− 25, 0.07): a–c Iapp = 0; d–f Iapp = 60; g–i Iapp = 150

training. The network training were performed for up to 10,000 epochs. The training
loss history is shown in Fig. 4. Upon training the network satisfactorily, we conduct
system analysis for time up to t = 200. We remark that the trained DNN model is
valid for all system parameter Iapp. In the following prediction and analysis, it is the
same single DNN model executed at different values of Iapp. In Figs. 5 and 6, we
present system analysis using the network model for type I and type II, respectively.
The system evolution of V and N are shown for different values of Iapp. Also shown
are the phase portrait of N versus V , which clearly display the different dynamical
behaviors of the system under different conditions. In all these different scenarios, the
ResNet model is able to produce highly accurate system predictions, as compared to
the reference solutions. It is worth noting that these analyses represent rather long-time
prediction for time up to 200, using training data pairs of very short length ofΔ = 0.2.
The errors produced by the DNN network model are computed against the reference
solution generated by the true model. Figure 7 contains the time evolution of the errors
for the type II results from Fig. 6. The errors are �1 errors, which are combined errors
in both V and N , at different level of Iapp. We observe that the errors for steady state
solutions remain stable and very small—less than 1% of relative amplitude. In the
case of limit cycle solution, it is less than 2% during the t = 200 prediction. There is

123



Deep Learning of Biological Models from Data… Page 13 of 19 19

(a) V , Iapp = 60 (b) N , Iapp = 60 (c) phase plot, Iapp = 60

(d) V , Iapp = 150 (e) N , Iapp = 150 (f) phase plot, Iapp = 150

(g) V , Iapp = 300 (h) N , Iapp = 300 (i) phase plot, Iapp = 300

Fig. 6 (Color figure online) Time evolution and phase plots for the type II Morris–Lecar model with
x0 = (− 25, 0.07): a–c Iapp = 60; d–f Iapp = 150; g–i Iapp = 300

a slow growth of errors over time. This growth is common for all numerical methods
when predicting limit cycle solutions. Error behavior is very similar for all other cases
and thus not shown.

To further analyze the dynamical behavior of the system, we investigate the relation
between the applied current Iapp and the corresponding amplitude of voltage V . When
the system exhibit oscillations, the maximum and minimum of the oscillations are
recorded; when the system settles into a steady state, the maximum and minimum
of the response converge to a single value. The results are shown in Fig. 8, for both
type I and type II. We clearly observe the bifurcation behavior of the system, which
transits between steady states and oscillatory states depending on the value of Iapp.
A bifurcation marks the change of the qualitative behavior of the solution. The DNN
model analysis results are compared with the reference solutions from the true system.
Excellent agreement can be seen in the bifurcation plot, indicating high fidelity in
predictability of our trained network model.

To further examine the oscillatory behavior of the system, we employ Fourier
frequency analysis to the oscillatory solutions and record the dominant frequency
under different applied current Iapp. The results are shown in Fig. 9, where we again
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(a) Iapp = 60 (b) Iapp = 150 (c) Iapp = 300

Fig. 7 (Color figure online) Time evolution of the DNN model prediction error of the type II Morris–Lecar
model with x0 = (− 25, 0.07): a Iapp = 60; b Iapp = 150; c Iapp = 300

(a) Type I (b) Type II

Fig. 8 (Color figure online) Bifurcation plots for the Morris–Lecar model

(a) Type I (b) Type II

Fig. 9 (Color figure online) Frequency plots for the Morris–Lecar model

observe very good agreement between theDNNmodel results and the reference results
from the true model.

4.4 Hodgkin–Huxley Model

The Hodgkin–Huxley model describes how potential in neurons are initiated and
propagated (Hodgkin and Huxley 1952). The model was developed based on abundant
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Fig. 10 (Color figure online) Time evolution of each state variable by the neural network modeling of the
Hodgkin–Huxley model. Top: Iapp = 5; bottom: Iapp = 25

empirical data, a very much data-driven approach, and takes the following form:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

CM
dV
dt = −gL(V − VL) − gNam3h(V − VNa) − gK n4(V − VK ) + Iapp,

dm
dt = −(m − m∞)/τm,
dh
dt = −(h − h∞)/τh,
dn
dt = −(n − n∞)/τn,

(14)
where

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

m∞ = αm
αm+βm

, τm = 1
αm+βm

, αm = 0.1(25−V )

exp( 25−V
10 )−1

, βm = 4 exp(−V
18 ),

h∞ = αh
αh+βh

, τh = 1
αh+βh

, αh = 0.07 exp(−V
20 ), βh = 1

exp( 30−V
10 )+1

,

n∞ = αn
αn+βn

, τn = 1
αn+βn

, αn = 0.01(10−V )

exp( 10−V
10 )−1

, βn = 0.125 exp(−V
80 ).

(15)

Solutions of the Hodgkin–Huxley model exhibit continuous or periodical spiking
behavior under different applied current Iapp. This is one of the difficulties to approxi-
mate the solution, because this rapidly changing behavior is difficult to capture. Here,
the training domain is [− 10, 120] × [0.3, 0.8] × [0, 1] × [0, 0.6] for V , n,m, h. The
sampling domain of the parameter Iapp is [0, 50]. The length of all trajectory data is
fixed at Δ = 0.05.

The DNN model training was conducted with 100,000 data samples and 32,000
epochs. (Further increasing epochs and dataset size does not improve the performance
of the model.) The trained DNN model prediction by the neural network model is
presented in Fig. 10, along with the reference solution from the true model. Two cases
are considered: Iapp = 5 and Iapp = 25.Weobserve that the networkmodel predictions
match well with the reference solutions. Note also that the qualitative behaviors are
different: The system reaches steady state with Iapp = 5 and becomes oscillatory with
Iapp = 25, indicating bifurcation.

To examine the bifurcation behavior of the system, we again measure the maximum
and minimum of the solution evolution over time. These extrema are recorded for the
different input Iapp and plotted in Fig. 11. The excellent agreement between the DNN
model analysis and the true reference solution can be clearly seen.
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Fig. 11 (Color figure online) Bifurcation diagram for the Hodgkin–Huxley model

5 Discussion

In this paper, we have presented a method of using deep neural network (DNN) to
discover unknown governing equations for biology problems. Our method extends a
recent work on using residual network (ResNet) to learn dynamical system by incorpo-
rating system parameters as part of the DNNmodel. We applied the method to several
well-known biology models, including the SEIR model, the Morris–Lecar model and
the Hodgkin–Huxley model. Analysis of the learned models demonstrate that they
offer good accuracy and are able to produce accurate system analysis results. In par-
ticular, the DNN models are capable of capturing the fairly complicated bifurcation
behavior of the underlying dynamics.

One of the most notable features of the method lies in its use of training data.
As illustrated in the (3) and (4), the training data are collections of data pairs of the
state variables. Each pair consists of an initial state, which is generated randomly;
and an end state, which is the initial state evolved for a short time interval Δ. In other
words, the training data contain solution trajectories with only two entries. Therefore,
no physics is present in the training data—any two states separated by the short time
Δ are almost identical. However, the trained neural network models are able to learn
the mechanism behind these data pairs. During system prediction, the network models
execute the learnedmechanism to arbitrarily given initial conditions and produce long-
term system behaviors that contain physics, e.g., limit cycle, bifurcation, etc. In a way,
the neural network models do not need to “see” the physics in order to produce the
physics. This feature is different from most other existing learning methods, which
require data containing relevant physics in order to predict the similar physics. This
new feature of our method provides a more flexible way for data collection, as one
can use a large amount of easy-to-collect trajectory data of very short length to train
the models.

Although the proposed deep learningmethod holds much promise, there are several
important open issues to consider.
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• The current deep learning methods, not only our method but also other related
methods, are “data hungry” and require big data. In many biological problems,
access to large amount of data may not be feasible. Also, the quality of data
varies greatly in practical situations. Therefore, methods on how to deal with
insufficient and low-fidelity data are in need. Related to this issue, and perhaps
more importantly from a practical point of view, is the issue of missing variables.
That is, in many cases, one can only observe a subset of the state variables, and no
data are available for the rest of the state variables. Learning governing equations
for a subset of variables is therefore required. A very recent study addressed this
by using Mori–Zwanzig formulation and neural networks with memory (Eldan
and Shamir 2016). We will investigate the feasibility of this approach to biology
problems in a future work.

• TheDNNmodelingmethod discussed in this paper is applicable when the underly-
ing dynamical system is autonomous, that is, without explicit dependence on time.
This may not be true for many complex biology problems, whichmay be subject to
time-dependent controls or excitations. Deep learning of non-autonomous systems
represents a rather non-trivial extension of the current method. This has recently
been developed (Qin et al. 2020), and its applicability to biology problems needs
to be examined.

• Even though our method is able to identify and predict bifurcation behaviors
accurately, it is unclear how it will perform on more complex dynamical systems
with chaotic behavior. This direction requires further study.
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