VisBOL2 - Improving Web-based Visualization

for Synthetic Biology Designs

Benjamin Hatch, Linhao Meng,i Jeanet Mante,¥ James A. McLaughIin,§ James

Scott-Brown,! and Chris J. Myers* 1

T University of Utah, Salt Lake City, 84112, UT, USA
T Eindhoven University of Technology, 5612 AZ FEindhoven, Netherlands
§ University of Colorado Boulder, Boulder, 80309, CO, USA
§EMBL-EBI, Cambridge CB10 15D, United Kingdom
|| University of Ozford, Ozford OX1 2JD, United Kingdom

E-mail: chris.myers@colorado.edu

Abstract

VisBOL is a web-based visualization tool used to depict genetic circuit designs. This
tool depicts simple DNA circuits adequately, but it has become increasingly outdated
as new versions of SBOL Visual were released. This paper introduces VisBOL2, a
heavily redesigned version of VisBOL that makes a number of improvements to the
original VisBOL, including proper functional interaction rendering, dynamic viewing,
a more maintainable code base, and modularity that facilitates compatibility with
other software tools. This modularity is demonstrated by incorporating VisBOL2 into

a sequence visualization plugin for SynBioHub.

Keywords

synthetic biology, visualization, sequence visualization, SBOL, SBOL Visual

Visual depiction is an essential tool for the development of engineered designs. Standard-
ization of visual depictions enables them to be shared and universally understood. In the
synthetic biology field, the Synthetic Biology Open Language Visual (SBOLv)Y? provides a
standardized graphical notation for visualization of genetic circuits. SBOLv is a comple-
mentary standard to the Synthetic Biology Open Language (SBOL),? which provides a data
format that stores both functional and structural information for a given synthetic biology
design.

Several software tools have been developed that support both the SBOL and SBOLv
standards. DNAplotlib* enables highly customizable visualization of individual genetic con-
structs and libraries of design variants. SBOLDesigner® is a genetic circuit editor that
supports the construction of DNA-level designs encoded in SBOL using SBOLv symbols.
GenoCADS is a rule-based DNA design tool that allows users to define domain specific lan-
guages to design expression systems for particular applications. SBOLCanvas’ is a visual
‘drag-and-drop’ tool for the creation of genetic constructs and related figures.

VisBOL® was one of the first visualization tools to directly support both SBOLv and
SBOL. Implemented in JavaScript, VisBOL differs from the tools previously mentioned in
that it provides automated visualization of SBOL files on the Web, and is designed to inte-
grate into web-based applications such as SynBioHub.? Although VisBOL has undoubtedly
been useful for visualizing simple DNA circuits, it has become increasingly outdated as
new versions of SBOLv were released, such as SBOLv 2, which introduced a standardized
format for depicting the functional interactions of a genetic design. This paper presents
VisBOL2, a heavily redesigned version that makes a number of improvements to the orig-
inal VisBOL software. These improvements include extending support to genetic circuits
with functional interactions, a dynamic user interface, a more maintainable code base, and
improved modularity, which further facilitates incorporation into other web-based software

tools.

Results

Here we describe VisBOL2, a re-architected version of VisBOL which resolves many of the
issues identified since its publication and introduces a number of new features requested by
the synthetic biology community.

Functional Interaction Rendering: The main issue that prompted a redesign of Vis-
BOL was inadequate functional interaction visualization. SBOL 2 introduced the capability
to represent functional interactions between different parts of a design. However, the original
VisBOL was built to render only simple DNA circuits. Its rendering pipeline did not keep
track of the location of glyphs (genetic parts in the design) once they were rendered, mak-
ing it difficult to correctly position arrows representing functional interactions between the
glyphs. In an effort to work around this problem, functional interactions were represented
in separate sub-diagrams, alongside the diagram representing the physical structure of the
circuit. Figure la shows an example of VisBOL attempting to render a genetic design with
functional interactions.

VisBOL2 overcomes this issue by redesigning the rendering process and utilizing a dif-
ferent backing data structure that keeps track of the locations of all parts in the design
relative to each other. This backing data structure is a directed graph, where individual
parts (glyphs) are regarded as nodes and functional interactions are regarded as edges. For
the purposes of determining the layout, all edges incident to a glyph on the nucleic acid
backbone are considered to be directed away from that glyph, regardless of the physical
direction of the functional interaction. Each glyph is assigned its own unique identifier, en-
abling seamless mapping of functional interaction participants to glyphs in the rendering.
The back-end then identifies the “root glyphs,” which are glyphs that have no incoming
edges, and assigns a position to each. A recursive process is then called on each root glyph.
In this process, the position of each glyph that is connected to the root glyph through an
edge is determined relative to the root glyph’s position. By the end of this process, all glyphs

and their functional interactions are positioned in such a way that there is minimal to no

overlapping in the visualization. Figure 1b demonstrates a VisBOL2 rendering of the same
genetic design that the original VisBOL attempts to render in Figure 1a. Figure 2 illustrates

the VisBOL2 rendering process.

(a) (b)

Example VisBOL

Zoon () Truncate Labels

' N
PAMR L352P21 te...

AmtR_protein
QacR_protein

PAMIR interactions _w
AmIR_prote. —w

L3S2P21_terminator
—

83 QacR

4 -
QacR interactions

QacR_prote.

Q—»e
T

QacR

D

Figure 1: This figure shows the original VisBOL and VisBOL2’s rendering of the same
genetic design. (a) A screenshot of the original VisBOL rendering of a simple genetic design
with functional interactions on SynBioHub. Note that functional interactions are rendered as
separate sub-diagrams with large gaps between them. The promoter and coding sequence in
the rendered functional interaction sections correspond to the promoter and coding sequence
in the main circuit. (b) A VisBOL2 rendering of the same genetic design seen in Figure 1a.
Note that functional interactions are rendered in the correct locations on a single diagram
rather than being rendered separately. Also note that VisBOL2 allows the zoom level and
part label truncation of the visualization to be dynamically adjusted.

Dynamic Viewing: Another important issue with the original VisBOL tool was its lack
of visual customization. VisBOL did not support resizing or scaling of its depictions. This
limitation became a problem when rendering complex genetic designs containing hundreds
of glyphs, as their size made viewing the entire design at once impossible. An inability to
zoom and scroll the diagram made it frustratingly difficult for users to track what section
of the design they were viewing, thereby compounding the negative side effects of not being

able to resize large renderings. VisBOL also did not support user control over the truncation

Parse SBOL | COMPONENTS \
| * resacrions

Create backing data structure
(directed graph)

Root Node

Use backing data structure to
recursively render each glyph until
all glyphs are rendered (starting at
root node)

AMIR_pr... QacR_pr...

O-—o O-—»o
|

pAMIR
a3 L3S2P21...

[.__EQ

Figure 2: The VisBOL2 rendering process for an SBOL file. VisBOL2 creates a graph data
structure, regarding part glyphs as nodes and interactions as edges. Edges are limited to four
compass directions (as shown). The edge direction is determined by the roles of functional
interaction participants and functional interaction types (e.g., a production interaction would
have a “Northern” edge direction). The glyphs are rendered recursively, starting at the root
node. In this example, the root node is pAmtR. It has two connected edges: an edge
representing an inhibition interaction to the north, and an edge indicating that the S3 RBS
resides east of pAmtR along the circuit’s backbone. After the root node (pAmtR) is rendered,
the nodes connected to the root node (S3 and the AmtR protein) are regarded as root nodes.
This recursive process continues until all nodes have been rendered.

of part labels in its visualizations. This caused confusion when parts had similar names.

VisBOL2 supports dynamic scaling of its depictions by utilizing parametric SVG!! in
the display during rendering. Parametric SVG enables VisBOL2 to resize glyphs without
restarting the entire rendering process, making resizing of the display efficient and seamless.
To further reduce confusion when viewing the diagram, VisBOL2 allows users to dynamically
toggle part label truncation. This allows users to distinguish between parts that have similar
names. By enabling users to zoom in and out on the visualization and toggle part label
truncation, VisBOL2 makes it easier for users to keep track of what section of the design is
being viewed.

Maintainability: As the original VisBOL adapted to add capabilities of new SBOLv
versions, the open-source codebase became increasingly difficult to maintain. Implementing
significant changes or adding new features such as functional interaction rendering became
challenging as there was not a strict separation between different concerns.

VisBOL2 implements a separation of concerns, strictly dividing the tasks of parsing design
information, creating the backing data structure, and rendering the display. This abstraction
barrier allows significant changes and new features to be implemented seamlessly, and should
enable VisBOL2 to quickly add support for all future SBOLv versions.

Modularity: The strict separation between the VisBOL2 front-end and back-end en-
ables other software tools to integrate with VisBOL2 for improved visualization. This is
illustrated by VisBOL2 integration into the SynBioHub sequence view plugin'? (SeqViz).
In order to achieve this integration, the plugin first uses the VisBOL2 back-end to create a
backing data structure. SeqViz traverses this data structure, mapping DNA sequences to
specific parts (glyphs) in the genetic design. After passing the data structure to the Vis-
BOL2 front-end, SeqViz then uses the VisBOL2 front-end API (see VisBOL2 documentation
in supporting information) to highlight corresponding sequences when parts in the VisBOL2
rendering are selected. SeqViz also uses the front-end API to highlight corresponding parts

in the VisBOL2 rendering when DNA sequences are hovered over. Figure 3 illustrates the

integration of SeqViz with VisBOL2 to create a sequence visualization plugin for SynBioHub.

Sequence Visualization v

1 R
BBa_Bf‘\E H ;
T

pltetr)

BBa_BA#34 Luxr

T
Luxr
Bga El@ 828 83a B4R

pltetR) gctagtgtagatcactactagagjccaggcatcaaataaaacgaaagg
B8a_Baag4 cgatcacatctagtgatgatctclggtccgtagtttattttgetttece

lux pR,

BBa_BBB15
858 868 878 880 B98

ctcagtcgaaagactgggcctttecgttttatctgttgtttgtecggtyg
gagtcagctttctgacccggaaagcaaaatagacaacaaacagccac

BBa_B@a@15
S2a 918 928 93a

BBa_F2620 aacgctctctactagagtcacactggetcaccttegggtgggecttt
1861 bp ttgcgagagatgatctcagtgtgaccgagtggaagcccacccggaaa
: BBa_B@A15 3

4@ 958 968 370 9@

ctgcgtttatatactagagacctgtaggatcgtacaggtttacgecaa
gacgcaaatatjatgatctctggacatcctagecatgtccaaatgegtt
BBa_B@@15 lux pR

998 1689 1e1a 1a2a 1238

gasaatgatttattataagtcgaataaa

Figure 3: This figure shows the SynBioHub sequence visualization plugin rendering a genetic
design. Note that along with rendering the sequence and plasmid view, the plugin also uses
the VisBOL2 front-end to render the VisBOL2 view of the sequence. This view can be found
in the top left corner of the visualization. The terminator in the VisBOL2 rendering has been
clicked, causing its corresponding sequence to be highlighted in the plasmid and sequence
views.

Methods

The VisBOL2 architecture adheres to a strict separation of concerns between the front-end
and back-end. The web-based front-end utilizes the data produced by the back-end to create
an interactive visualization. The back-end produces the data the front-end needs to render
the display for a specific SBOL file, such as the position, color, and corresponding SVG for
each glyph.

The front-end was built using React,® a JavaScript framework developed by Facebook.

React was chosen as the framework for the VisBOL2 front-end for two main reasons. First,

React simplified the challenge of making the VisBOL2 visualization interactive. To enable
interactive resizing of glyphs in the VisBOL2 display, react-parametric-svg, * an open-source
react component specifically designed for rendering and resizing parametric SVGs, was used.
React’s use of a “virtual” document object model enabled these parametric SVGs to resize
in response to user interaction without requiring that the entire web page to refresh. Second,
building the front-end in React facilitated easier integration between the VisBOL2 render-
ing software and other web-based tools. The integration of VisBOL2 with the SynBioHub
sequence view plugin was aided by the fact that the sequence view plugin, along with many
modern web applications, is also built using React. However, it is important to note that
integration with the VisBOL2 front-end is not only available for other React applications,
since the React framework allows React components to easily be injected into websites that
do not use React. The fact that VisBOL2 is now integrated with SynBioHub, a non-React
based web application, illustrates this principle.
The back-end was built primarily using Node.js,'® an open-source, cross-platform JavaScript

run-time environment. Like the original VisBOL, VisBOL2 uses sboljs'® to parse SBOL files

and extract relevant data, such as components and interactions in the design.

Discussion

The strict separation of concerns in VisBOL2 enables new features to be implemented rel-
atively quickly. The tool is under active development: there are improvements planned for
the future to improve the longevity and usability of the tool.

Like the original VisBOL, VisBOL2 must manually update the glyphs it uses for depic-
tion as SBOLv changes. This forces web applications that utilize VisBOL2 to ensure that
VisBOL2 is updated to its latest version if consistency with the SBOL Visual standard is
desired. To overcome this issue, future plans for VisBOL2 include subscribing to a standard-

ized library of parametric SVG representations of SBOLv glyphs. This will allow updates to

the SBOL Visual standard, such as the addition of new glyphs, to be implemented by the
VisBOL front-end without having to update the tool to a newer version.

Another planned feature is the ability to save layout information in a standard format.
This will allow VisBOL2 to exchange relevant layout information with other tools. Adding
this feature will enable synthetic biologists to have greater control over how their SBOL
designs are depicted. Currently, users of SBOLCanvas are able to export the designs they
create to SynBioHub, which will represent them using a SBOLv diagram, but this dia-
gram typically has a different layout than the initial diagram created in SBOLCanvas. By
supporting a standard layout format, VisBOL2 would be able to depict designs exported
to SynBioHub from SBOLCanvas exactly as they were constructed. This standard layout
format could also ensure depiction consistency for designs that SBOLCanvas imports from
SynBioHub. Thus, SynBioHub users could import their SBOL designs in SBOLCanvas, edit
the designs’ layouts to their liking, and then upload them back to SynBioHub in order to
ensure their SBOL designs are depicted on the website exactly as intended.

In rare cases, interaction arrows in VisBOL2’s rendering may overlap as a result of com-
plex functional interactions and overlapping components in genetic designs. To address this,
two changes will be made to VisBOL2. First, (as discussed previously) VisBOL2 will sup-
port the saving and loading of layout information in a standard format. This will allow
users to manually adjust positions of glyphs and interaction arrows, thereby enabling users
to reduce overlap in their depictions. Second, VisBOL2 will reduce overlapping by using a
more advanced graph layout algorithm and relaxing the constraint that glyphs be positioned

in a grid.

Data Availability Statement

VisBOL2 is available under the BSD open-source license. Its code and issue tracker can be

found on GitHub at

https://github.com/VisBOL/VisBOL2.

Documentation for VisBOL2 can be found at
https://github.com/VisBOL/visbol2/wiki.

To render SBOL files using VisBOL2, visit the VisBOL website at
https://visbol.org/.

The SeqViz source code and issue tracker can be found on Github at

https://github.com/SynBioHub/Plugin-Visual-Seqviz.

Acknowledgement

The authors of this work are supported by DARPA FA8750-17-C-0229, National Science
Foundation Grant No. 1939892, and a Dean’s Graduate Fellowship at the University of
Colorado Boulder. The SeqViz plugin is hosted on an Azure server provided by Microsoft
Research. Any opinions, findings, conclusions, or recommendations expressed in this material

are those of the author(s) and do not necessarily reflect the views of the funding agencies.

Author Contributions

Linhao Meng and Jeanet Mante developed the sequence visualization plugin on SynBioHub
and facilitated VisBOL2’s integration with the plugin. James A. McLaughlin developed the
original VisBOL and provided guidance on the development of VisBOL2. James Scott-Brown
developed react-parametric-svg and provided guidance on VisBOL2’s usage of parametric
SVG. Chris Myers managed the VisBOL2 project. Benjamin Hatch is the primary developer
of VisBOL2 and the primary author of this paper. All authors contributed to the writing of

this manuscript.

Conflicts of Interest

The authors declare no conflicts of interest.

10

References

(1)

Beal, J.; Nguyen, T.; Gorochowski, T. E.; Goni-Moreno, A.; Scott-Brown, J.; McLaugh-
lin, J. A.; Madsen, C.; Aleritsch, B.; Bartley, B.; Bhakta, S. et al. Communicating
Structure and Function in Synthetic Biology Diagrams. ACS Synth. Biol. 2019, 8,
1818-1825, PMID: 31348656.

Quinn, J. Y.; Iii, R. S. C.; Adler, A.; Beal, J.; Bhatia, S.; Cai, Y.; Chen, J.; Clancy, K.;
Galdzicki, M.; Hillson, N. J. et al. SBOL Visual: A Graphical Language for Genetic
Designs. PLoS Biol. 2015, 13, €¢1002310.

Roehner, N.; Beal, J.; Clancy, K.; Bartley, B.; Misirli, G.; Griinberg, R.; Oberortner, E.;
Pocock, M.; Bissell, M.; Madsen, C. et al. Sharing Structure and Function in Biological
Design with SBOL 2.0. ACS Synth. Biol. 2016, 5, 498-506, PMID: 27111421.

Der, B. S.; Glassey, E.; Bartley, B. A.; Enghuus, C.; Goodman, D. B.; Gordon, D. B.;
Voigt, C. A.; Gorochowski, T. E. DNAplotlib: Programmable Visualization of Genetic

Designs and Associated Data. ACS Synth. Biol. 2017, 6, 1115-1119.

Zhang, M.; McLaughlin, J. A.; Wipat, A.; Myers, C. J. SBOLDesigner 2: an intuitive

tool for structural genetic design. ACS synthetic biology 2017, 6, 1150-1160.

Czar, M. J.; Cai, Y.; Peccoud, J. Writing DNA with genoCAD™. Nucleic acids research
2009, 37, W40-W47.

Terry, L.; Earl, J.; Thayer, S.; Bridge, S.; Myers, C. J. SBOLCanvas: A Visual Editor

for Genetic Designs. forthcoming paper.

McLaughlin, J. A.; Pocock, M.; Misirli, G.; Madsen, C.; Wipat, A. VisBOL: Web-Based
Tools for Synthetic Biology Design Visualization. ACS Synth. Biol. 2016, 5, 874-876,
PMID: 26808703.

11

(9) McLaughlin, J. A.; Myers, C. J.; Zundel, Z.; Misirh, G.; Zhang, M.; Ofiteru, I. D.;
Goni-Moreno, A.; Wipat, A. SynBioHub: A Standards-Enabled Design Repository for
Synthetic Biology. ACS Synth. Biol. 2018, 7, 682—688, PMID: 29316788.

(10) Sidney Cox, R.; Madsen, C.; McLaughlin, J.; Nguyen, T.; Roehner, N.; Bartley, B.;
Bhatia, S.; Bissell, M.; Clancy, K.; Gorochowski, T. et al. Synthetic Biology Open Lan-
guage Visual (SBOL Visual) Version 2.0. Journal of Integrative Bioinformatics 2018,
15.

(11) parametric.svg — SVG on rocket fuel. https://parametric-svg. js.org/.

(12) Mante, J.; Zundel, Z.; Myers, C. Extending SynBioHub’s Functionality with Plugins.
ACS Synth. Biol. 2020, 9, 1216-1220.

(13) React — A JavaScript library for building user interfaces. https://reactjs.org/.
(14) react-parametric-svg. https://www.npmjs.com/package/react-parametric-svg.
(15) About Node.js. https://nodejs.org/en/about/.

(16) McLaughlin, J.; Myers, C.; Zundel, Z.; Wilkinson, N.; Atallah, C.; Wipat, A. sboljs:
Bringing the Synthetic Biology Open Language to the Web Browser. ACS Synth. Biol.
2019, 8, 191-193.

12

Graphical TOC Entry

Root Node

3
T

S
=z

pAMIR

West East
-— —
Backbone

ynog

|

pAMIR

=5 s I Laszrl..

. QacR

13

