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Matrix product states (MPS) and “dressed” ground states of quadratic mean fields (e.g., Gutzwiller projected
Slater determinants) are both important classes of variational wave functions. This latter class has played impor-
tant roles in understanding superconductivity and quantum spin liquids. We present a method to obtain both the
finite and infinite MPS (iMPS) representation of the ground state of an arbitrary fermionic quadratic mean-field
Hamiltonian (which in the simplest case is a Slater determinant and in the most general case is a Pfaffian). We
also show how to represent products of such states (e.g., determinants times Pfaffians). From this representation
one can project to single occupancy and evaluate the entanglement spectra after Gutzwiller projection. We then
obtain the MPS and iMPS representation of Gutzwiller projected mean-field states that arise from the variational
slave-fermion approach to the S = 1 bilinear-biquadratic quantum spin chain. To accomplish this, we develop an
approach to orthogonalize degenerate iMPS to find all the states in the degenerate ground-state manifold. We find
the energies of the MPS and iMPS states match the variational energies closely, indicating the method is accurate
and there is minimal loss due to truncation error. We then present an exploration of the entanglement spectra of
projected slave-fermion states, exploring their qualitative features and finding good qualitative agreement with

the respective exact ground-state spectra found from density matrix renormalization group.
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I. INTRODUCTION

Variational wave functions are frequently used to under-
stand quantum many-body systems. Two important classes
of variational wave functions are dressed Slater determinants
and tensor networks. Dressed Slater determinants introduce
a correlation on top of a mean-field ground state. On the
other hand, a tensor network is represented as a network of
connected tensors providing a natural framework in which
to understand and represent low-entangled quantum states
(see Fig. 1).

Slater determinants (SDs) [and other generalized quadratic
ground states such as Bogoliubov—de Gennes (BdG) [1] and
Pfaffian states [2]] have played a key role in the understanding
of physical systems ranging from their use as the Hartree-Fock
solution in quantum chemistry to being applied as a starting
mean-field Ansatz for strongly correlated systems. These latter
Ansatzé are then dressed in various ways: Slater-Jastrow wave
functions are the de facto standard for simulating material
systems in quantum Monte Carlo; many prototypical quantum
Hall states are represented as powers or products of Slater
determinants and Pfaffians; and projected mean-field states
are an important starting point for probing the physics of
high-temperature superconductivity as well as quantum spin
liquids.
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While dressed mean-field states are often easy to represent
in variational Monte Carlo (VMCO), it is also often difficult to
extract certain properties from VMC. Foremost among these
are the entanglement spectra which are an important metric
used for understanding topological phases of matter. Even
properties which can be extracted easily, such as the energy,
can be statistically noisy, making aspects such as optimization
difficult. Moreover, evaluating dressed mean-field states in
Monte Carlo scales cubically with the system size, making
the approach to the thermodynamic limit costly. Matrix prod-
uct states avoid many of these problems in one-dimensional
systems and ladders: They are ideally suited for extracting
entanglement spectra, computing observables exactly without
any statistical noise, and directly representing (gapped) phys-
ical systems in the thermodynamic limit.

Our main contribution in this paper is to describe a series of
efficient and highly parallel algorithms which take (projected)
mean-field (i.e., quadratic) eigenstates and generate both finite
(fMPS) and infinite (iMPS) matrix product states (MPS) from
them. We will also show how to generate fMPS and iMPS
for products of mean-field wave functions. We will then apply
our approach to compute the MPS and entanglement spectra
of a series of projected slave-fermion wave functions of the
bilinear-biquadratic model. This example will bring to light a
number of interesting aspects of generating multiple degen-
erate ground states from Gutzwiller projected slave-fermion
systems in iMPS.

Beyond this particular application, being able to generate a
MPS from a projected SD is generically useful. It allows for
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FIG. 1. (a) Graphical representation of the left-boundary, bulk,
and right-boundary A tensors forming an open-boundary matrix
product state. The «’s are the virtual indices; the o’s are the physical
indices. (b) Graphical representation of an eight-site matrix product
state.

more faithful comparisons between slave-fermion and density
matrix renormalization group (DMRG) results which often
disagree on the underlying phase of spin liquids. It could be
used to initialize DMRG with a good initial mean-field guess
for certain Hamiltonians. This can be useful both for calcula-
tions on discrete lattices as well as DMRG in the continuum.
Because there exist algorithms which build MPS on quantum
computers, it immediately gives an additional approach to
generate a dressed quadratic mean-field state on a quantum
device.

We are aware of two other algorithms which convert Slater
determinants to MPS [3-5]. Both of these are based on the
idea of applying quantum gates or matrix product operators to
a simpler quantum state to generate the MPS. Our approach
differs from these techniques in two key ways: (1) We can
generate the infinite MPS for a family of Slater determinants
and (2) we generate our (i)MPS by directly generating the
MPS coefficients without the application of any operators to
the system. We also note that Ref. [6] represents Slater de-
terminants in a MPS-like framework in a Gaussian fermionic
representation.

In Sec. I, we will describe our key algorithm for turning a
SD into an (i)MPS. In Sec. III, we will show a series of exam-
ples for how to use this basic procedure for generating more
complicated mean-field states (i.e., Pfaffians) as well as states
which are products of mean-field states. Finally, in Sec. IV
we focus on computing (i)MPS for the slave-fermion states
of the bilinear-biquadratic model showing their entanglement
spectra and energy.

II. SLATER DETERMINANTS TO MPS

In this section we are going to show how to generate either
a finite matrix product state (fMPStoSD) or an infinite matrix
product state (iMPStoSD) from a Slater determinant (SD).
This will not only be useful in its own right but will be the
key operation used in the rest of this work to produce MPS
for both more complicated quadratic mean-field states as well
as dressed versions of these states.

The fMPStoSD generates the matrix product state site by
site in an approach that is highly reminiscent of the site-

decimation canonical technique to convert a generic wave
function (i.e., a multisite tensor) into a matrix product state
[7]. The typical site-decimation procedure involves perform-
ing singular value decompositions (SVDs) over matrices
generated by collecting different subsets of indices into the
two matrix dimensions. This general approach will become ef-
ficient to use with Slater determinants because SVDs of Slater
determinants are efficient and generate sums of products of
Slater determinants.

In fMPStoSD we perform a series of Schmidt decom-
positions over all bipartitions of our system. Each Schmidt
decomposition generates a set of Schmidt vectors; each such
Schmidt vector is a Slater determinant. The MPS is then gen-
erated by taking overlaps of these Slater determinant Schmidt
vectors with each other in the correct way.

In iMPStoSD we can easily generate the bulk uniform
iMPS tensor from just two Schmidt decompositions: one for
each of two ground-state Slater determinants of the same
Hamiltonian defined on sufficiently large systems that differ
in size by one unit cell. Again, these Schmidt decompositions
will have Slater determinant Schmidt eigenvectors. After we
appropriately fix the gauge of the two Schmidt decomposi-
tions, the uniform bulk MPS tensor will be generated from
appropriate overlaps of these Schmidt eigenvectors.

A. Slater determinant— finite MPS

In this section, we show in detail how to convert a Slater
determinant into a finite matrix product state. The Schmidt
decomposition of a Slater determinant |SD) on N sites bipar-
titioned into two regions cut between sites i and i + 1 will be
notated as

ISD) = A5 [LEV) |REN) (1)

where |L,) and |R,) are the «th left and right Schmidt
vectors, respectively (with support in their respective subsys-
tem), and A, is the oth Schmidt eigenvalue. Note that, for
a Slater determinant, each of the individual left and right
Schmidt vectors are also Slater determinants and efficiently
computable [8—11] [see also Supplemental Material (SM) 3
[12] for more details regarding the Schmidt decomposition of
Slater determinants]. Slater determinants are specified by a
set of single-particle orbitals and all the Slater determinants
in the set of right Schmidt vectors {|R,)} are specified by
subsets of single-particle orbitals from a set of (at most) N
single-particle orbitals {¢F - - - ¢} defined on the (inclusive)
sites [(i + 1), ..., N]. There are, at most, 2V such subsets.
Analogous statements hold for the left Schmidt vectors.
A general matrix product state can be written as
IMPS) = 3} Al AR oy --oon) . ()

{o}.{a}

where A¥l is the kth three-tensor specified by the physical
index oy (e.g., occupancy or spin) and the virtual indices
(otx—1, ) [7]. To generate the MPS of a Slater determinant,
we compute each three-tensor A1 ag

A5 = (o @ (RSN IRGY) 3)

O O+ Oh+1
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giving a matrix which is in right canonical form, i.e.,
S Alitlo (Ali+1o )T — 1 Note that this procedure is very
similar to the one which transforms a vector into a MPS
[7] and works for the same reason: The sets {|R:V)} and
{lo:) ® |Rj;r1‘N )} span the same space and therefore there is a
transformation A which rotates between them. In practice, we
keep the bond dimension of A controlled by only computing
the Schmidt vectors whose Schmidt values are above a certain
threshold €. This can be done without computing any Schmidt
eigenvector with an eigenvalue less than €. Here, we have
focused on the bulk tensors and slight modifications need to
be made for the boundary tensors A1 and AIN¥ (see SM
1 [12] for the mathematical expression of the boundary ten-
sors). We now describe how to efficiently evaluate the matrix
elements of each A. We start by noting that |07, ;) ® |[R*TV) is
also a Slater determinant. It is specified by the single-particle
orbitals

{1041, [0¢], - . . , [0 1, 11, )

where [0¢,] is the single-particle orbital with coefficients
in the lattice basis [0, ¢p,(i + 2), ¢, (i + 3), ..., $p.(N)] and
¢t is the single-particle orbital in analogous notation,
[1,0,...,0]. Equation (3) then reduces to the overlap of two
Slater determinants of size (N — i) x (N — i) which can be
computed in O(N?) time.

While naively each element of A requires such a com-
putation, there is a significant overlap in these different
computations which reduces the naive computational com-
plexity of the tensor computation. There are two steps in
computing the overlap of two Slater determinants: evaluating
the overlap matrix between all pairs of single-particle orbitals
that make up the two determinants and computing the de-
terminant of this overlap matrix. All the Slater determinants
used in the ket (respectively bra) of Eq. (3) (over different
terms in A) come from a subset of single-particle orbitals of
the N-orbital set {¢F, ..., #X}. We can compute the overlap
matrix of all these respective single-particle orbitals once per
three-tensor A at a cost of O(N?). The entries of A are then
determinants of submatrices of this overlap matrix. While
naively each determinant also costs O(N?) to compute, the
submatrices differ only in the bottom log, D columns and
right log, D rows where D is the bond dimension of A; de-
terminant update formulas can then be used to accelerate this
computation, letting each determinant be computed in time
O(N?*log, D) after an initial O(N?) operation to evaluate the
inverse of the upper-left (N — log, D) x (N — log, D) block
of the overlap matrix. The whole evaluation of each tensor
A can be done in O(N?) + O(D*N? log, D) time. This can
be further attenuated somewhat by more aggressive use of
determinant update formulas [13].

Notice that there are significant parts of this algorithm that
can be run in parallel. Each three-tensor A can be computed
separately. Within each A, the Schmidt decomposition can be
partially parallelized; each element of the overlap matrix can
be computed in parallel; and, after the initial evaluation of
the inverse of the upper-left block of the overlap matrix, each
determinant can then be computed in parallel. See Fig. 2.
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FIG. 2. Top: Graphical representation of the Schmidt decom-
position of the wave function |W¥8) Zﬁ A8 |L48 |R48> over a
bipartition [1,...,4] x [5,...,8] of an elght site system. Middle
and bottom: Two additional ways of representing the quantum state
|Wg). The tensor A™ is constructed by having the overlap of the right
five sites of the bottom two figures equal one.

B. Gapped Slater determinant— infinite MPS

The above procedure generates a finite MPS approximation
(the accuracy of the representation is given as an input to
the algorithm) of any Slater determinant. In this section, we
describe how to generate an infinite MPS from the Slater
determinant ground state of a gapped mean-field Hamiltonian.
This infinite MPS can be described by left L and right R
boundary tensors which sandwich the bulk tensor A, giving
us an infinite matrix product state of the form

- Lot ..
2

X |O-L...

|1MPS) _Agn—lAUnAo-nJr] .. ,RUR

GR) ) (5)

with an arbitrary number of bulk tensors A. L and R are
tensors which span a fixed number k of sites. Note that any
thermodynamic observable can be computed directly in the
thermodynamic limit of the Slater determinant using only the
bulk tensor A. In addition, we can compute the amplitude for
the Slater determinant on any (large enough) system size, by
inserting the corresponding number of bulk tensors between
the boundary tensors L and R (i.e., to generate the MPS for an
N-site Slater determinant from the infinite MPS, we therefore
use N — 2k bulk tensors A); see Fig. 3.

To generate the iMPS, we start off by producing two Slater
determinants defined on 2N and 2N + 1 sites (see Fig. 4),
where N is sufficiently large such that the entanglement spec-
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FIG. 3. We obtain the finite MPS |y2¥*") by inserting n (in the
figure n = 3) A iMPS bulk tensors between the left [L¥/*V) and right
|RV/%NY Schmidt vectors obtained from |v2V).
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FIG. 4. Illustration of the algorithm for generating the infinite
MPS representation of a Slater determinant. Lines 1 and 2 correspond
to the standard Schmidt decomposition after site N of wave functions
defined on 2N and 2N + 1 sites. For line 3, we use our gauge freedom
to replace the left Schmidt eigenvalues AY?V+! and eigenvectors
|LN2N+1y with eigenvalues AV2Y and eigenvectors |LV:2N) rotated by
C where C is defined in Eq. (9). Finally, the tensor A is constructed
by having the overlap of the right N + 1 sites (including C) of the
bottom two lines equal one.

trum is constant over cuts in the “bulk” of the wave functions.
For gapped systems, we generically expect the entanglement
spectrum over the bulk to be constant; see Fig. S3 in SM 5
[12] for an example of this and for entanglement spectrum
data in the context of the Su-Schrieffer-Heeger (SSH) model.
We then generate the Schmidt decompositions

Z Ag];ZN |LL];¢V:2N>|R5;2N)» (6)
) — ZQAN;2N+1|LN;2N+1>‘RN;2N+1> (7)
o o o °

o

(w2) =

|\.IJ2N+1

Both [LY¥?N) and |LY2N*1) are going to be the same up to
a gauge freedom. We fix this gauge freedom by defining a
unitary

CN;2N+] =0

aﬂ if Ay # g

= (LY, ILVPNTh otherwise, (8)
which rotates between Schmidt eigenvectors with the same
Schmidt eigenvalue allowing the state on 2N + 1 sites to be

defined as
|‘IJ2N+1) — Z |LN;2N>a )\5;21\/+1C‘1)(V;2N+1 |RN;2N+1>)/ . (9)

Then the tensor A for the iMPS is
O'N+l chZNJrl] 0N+l| (RN;2N|ﬁ| |RN,2N+1>V . (10)

As in the finite MPS case, we have that the single-particle
orbitals of the Slater determinant |oy)|RY:?) are shifted to
the right with an initial zero as their first element. The overlap
of this tensor can be computed in exactly the same way as for

the finite MPS case. Here, though, we only need to evaluate
one tensor A instead of a tensor per site, with the assumption
that we are using an iMPS defined by a single tensor (i.e.,
single-site unit cell) A. This process can be generalized to
multisite unit cells as well (see SM 2 [12] for the mathematical
derivation). Note that by directly applying the finite MPS
algorithm to large systems to try to find the bulk tensor A will
fail because the gauge freedom available in the tensors will
prevent a single identical bulk tensor from being produced at
each step.

C. Numerical validation

We numerically validate our algorithms by applying
fMPStoSD and iMPStoSD on the ground state of the Su-
Schrieffer-Heeger (SSH) model [14],

Hssyg = v Z(C;]C‘n,z + H.c.)
n

+w Y () cnn +He). (1)

The model describes spinless fermions on a one-dimensional
(1D) lattice, with a two-site unit cell made up of A, B sites,
with different (real) parameters for intracell hopping (v)
and intercell hopping (w). It admits two different quantum
ground states, distinct in their topological properties: a triv-
ially gapped phase for v > w and a (symmetry-protected)
topological gapped ground state, characterized by the pres-
ence of two zero-energy edge modes inside the gap, for
v < w, separated by a quantum critical point at v = w.

We will discuss here the trivial ground state. A small sub-
tlety related to choosing the same gapless boundary mode in
the Slater determinant wave functions used for generating the
uniform tensor in the iMPS procedure is delegated to SM 4
[12] (where we show how we deal with gapless boundary
modes in the context of the iMPS procedure). For the finite
Slater determinant, we compare the MPS we generate using
two different truncation values against the exact Slater de-
terminant by comparing all of the amplitudes (see the first
column in Fig. 5). For the infinite case, we generate the
iMPS and then use the bulk tensor we have computed along
with the boundary tensors to compute amplitudes for a much
larger system and again compare amplitudes against the exact
solution for that much larger system (see the second column
in Fig. 5). In both cases, we find that the amplitudes are in
very good agreement for all amplitudes down to the Schmidt
eigenvalue cutoff.

III. GENERAL (DRESSED) QUADRATIC MEAN FIELDS

In Sec. I we showed how to generate a matrix product state
from a Slater determinant. In this section, we show that this
machinery gives us the means to generate the matrix product
state representations of ground states of arbitrary quadratic
mean-field Hamiltonians.

All quadratic Hamiltonians can be easily diagonalized
using a canonical transformation [15]. Without loss of gen-
erality, in our derivations, we will use translation invariant
systems for ease of presentation. We will first go through
two canonical examples. In Sec. [l A we will show how to
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FIG. 5. Comparison of amplitudes (normalized by the largest amplitude seen) between our fMPS/iMPS wave functions and the exact
SD. The largest (normalized) amplitude is at the “origin” of the graphs with smaller amplitudes toward both edges. Orange triangles are
values at which the fMPS/iMPS gives zero amplitude; for these the “y” coordinate is arbitrarily set to 1. The amplitudes for the top row
are less accurate as they are generated with larger MPS thresholds €. (a) and (c) compare all amplitudes for N = 8 on [v = 1.0; w = 0.6;
Eq. (11)] and [t = 1; u = 3; A = 1; Eq. (16)], respectively. (b) We compare 459 428 random configurations (top and bottom are different
configurations) between the N = 24 Slater determinant with (v = 1.0; w = 0.6) of Eq. (11) and a MPS generated from eight uniform iMPS
bulk tensors (generated from SD on N = 16, 17 sites) sandwiched between the eight left and eight right tensors from the 16-site Slater
determinant. (d) We compare 49 972 (top) and 34 933 (bottom) random configuration between the N = 32 Pfaffian ground state of the Kitaev
chain with (f =1.0; A = —1 u = —2.2) of Eq. (17) and a MPS generated from eight uniform iMPS bulk tensors (generated from SD on
N = 24, 25 sites) sandwiched between the 12 left and 12 right tensors from the 24-site Pfaffian.

produce the MPS representation of the ground states of BdG
Hamiltonians which are Slater determinants in disguise. In
Sec. IIIB, we show how to compute the MPS representa-
tion of the p-wave pairing ground state of the Kitaev chain
[16]. We then generalize this result to general Pfaffian wave
functions which are the most general quadratic mean-field
ground states. Finally, we show how to take products (or
powers) of quadratic mean-field Hamiltonians and turn them
into (i)MPS.

A. BAG—MPS

The key trick to convert a BdG wave function into a
MPS will be to (1) convert it to a Slater determinant through
a particle-hole transformation, (2) convert this Slater de-
terminant to a MPS, and (3) then undo the particle-hole
transformation in the MPS language.

Consider a BAG Hamiltonian,

Hyao = — Y tij(clcjo +He)

(ij).o

— D Aijefel, +He) = chwcm (12)

(i)

Under a canonical particle-hole transformation in the |, sector,

fii = ¢y
o (13)
fi = e
the BdG Hamiltonian becomes
H,§§G Ztij(f;,quj—l — fif; +He)
(ij)
— > Ay(fy_ i+ He)
(i)
(14)

— Y (B foict = f3h0),

and the new vacuum is |OP") = chc;l .- 'CITW |0), where |0) is
the vacuum of the original theory. The ground state of Hgqg 1
thus the Slater determinant ground state of H, dG on top of the
new vacuum |0P").

Using the results from Sec. II we convert the Slater
determinant ground state of H, dG into a MPS |Wyps) =
o) Atllor . ARNIow | o g} where o9 = {0, 1} (i €
[1, N]) indicates the absence/presence of a 1 particle and
o7; = {0, 1} indicates the absence/presence of a hole on top
of the filled | Fermi sea at site i.
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To “undo” the particle-hole transformation, we need to deal
with the fact that the f; act on the false vacuum |0 (and not
the real vacuum) by swapping, for all i, the matrices A*!! and
A0 Moreover, by ordering the fermionic operators by site,
and then spin, the matrices A~ AR will pick up factors

of (—1)"~!. We can now combine these transformations giv-
ing us our final MPS for the BdG ground state of the form
1PGs) = > 15=0.4.0.11) B ... BNIo¥ |5y . .. o) where
B0 — (—1)~! x Al2i-1040201
Bt = (—1)%~2 x Al2i-l140201
BV = (—1)0 x AR2i=110412010
BN = (1)~ x A1 41210 (15)

This approach works both for the finite and infinite MPS as
we just used our (i)MPS— Slater determinant approach as a
subroutine. For the infinite MPS it produces a unit cell of size
2 as every other B differs by a sign.

As a check of our algorithm, we consider the ground state
of the BdG Hamiltonian of the form

Z l,'j(C;LCj(7 + H.c.)

(ij).o

- ZAU(CtT €y

Hpyc = —

jTle +Hec)—pn chacim

(16)
and compare the amplitudes of the exact ground state with the

MPS generated (see the third column in Fig. 5).

B. Pfaffian—MPS

We will show how to generate a MPS representation of the
Pfaffian ground state of the Kitaev p-wave chain:

:—tZ(C cn+1+Hc)+AZ(cn ¢ +Hc)
i clen. (17)

We first consider H**' = H. @ H, whose ground state is given
by the tensor product of two identical Pfaffians,

GS) = Y PE(My,) loc) Q) Pf(My,) loa) . (18)

Oc,0d

where M is an N x N matrix built from parameters of the
model and M, is a submatrix of M obtained by selecting
indices as given by the o, configuration.

Using the local canonical transformation of fermions,

_ _F
t_ @4 +8y)

19)

converts H*' to

Hpag = —1 ) (&) ,Cn1.0 + He)

n,o

e -
+ A Z(CMCHN +Cop1, Cup T H.c.)
n
+u Y E o (20)
ho

The transformation leaves the vacuum unchanged. Given a
BdG Hamiltonian, we can obtain the ground state as a MPS
as done in Sec. IIT A,

GS) =) -+ AP AR g0y o), (21)

where A?~112i-1 i5 the tensor on site i for the 4 local physical
sector and A[?1°7 is the tensor on site i for the | local physical
sector.

Notice that the canonical transformation given in Eq. (19)
mixes the 1, | physical sectors on site i. Hence we can obtain
the MPS for the GS in the ¢, d space by choosing the on-site
tensor in the following way,

GS) = ) etV o105 - 0y), (22)

with o = {0, ¢, d, cd} where

C[n],O — A[anll,OA[ZnJ,O’
C[n] . A[Zn—l],lA[Zn],O + A[Zn—l],lA[Zn],()
V2 ’
A[Zn—l],lA[Zn],O _ A[2n—l],1A[2n],()
CH = ,
NG
Cln],cd — iA[anll,lAIZn],l. (23)

By projecting out the d particles in the |GS) wave func-
tion, we obtain a Pfaffian wave function in the c-particle
sector: |GS) = const x ZGC Pf(M,,) |o.). At the level of the
MPS this projection is realized by eliminating the sectors
o =1{d,cd},

|Pf) = Z ctocllor .Vl 15155 oy . (24)

C. Pfaffian— MPS generalization

While we focused in the previous section on a specific
example, here we consider a generic quadratic Hamiltonian
H = Zn_m C): hy.mCm with g species of fermions per unit cell
where the vector C; = (ci,] , Cnls Cl,z’ Cn2s ey cflg Cng)-

We form an extended Hamiltonian H®** which is a sum of
two copies of H,

H™ =) hf;jpj ﬂ(czac jp+didig+He)

pair
2

where o, B € (1, ..., g). As before, its ground state |GS
> 6.0, PIMo,) |0c) Q@ PE(M,,) |04) is a tensor product of two
identical Pfaffian wave functions. We then obtain the Pfaffian

cly jﬂ+df d', +Hc), (25

a”j.B

>eXt —
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ground state of H by projecting out all the d sectors. Under
the following linear canonical transformation

i i AT
CVL,Dt + ldn,ot

Tl gy =
n,o, ﬁ 4

¥ i AT (26)
_t Cn,ot - ldn,ot

Cn,a,L = —ﬁ s

H®*' becomes a BdG-like Hamiltonian when expressed in
terms of ¢4 and ¢ :

to__ hop 7 — 1 —
Hyio = Zhia,jﬂ(ci,a,rcf-ﬂ-T + ¢y Cipy T He)
pair =f =t ot
+ Y Rl 1 T, s HHe) 27)

We can then solve for the MPS representation of the ground
state of the above BdG-like Hamiltonian using the methods
described in Sec. IIT A.

We obtain the Slater determinant ground state |Wey) by
diagonalizing the particle-hole transformed HgY; and then
computing its MPS representation. Each unit cell M is de-
scribed by 2g tensors AMP1° with o = 0, 1 signifying the
absence/presence of a particle of type p € [0, 1, ...,2g — 1].
A particle of type p = 2k corresponds to the flavor k, 1; a
particle of type p = 2k + 1 corresponds to the flavor k, | .
From the above MPS (which is in ¢, ¢, local physical space)
we construct the MPS tensors in ¢, d space. In particular, the
matrices describing the absence/presence of a particle of type
c¢; on site M are given by

B[M,i]O — A[M,Qi*I][O]A[MQi][l]
(_l)g(Mfl)Jrl'fl
V2

x [A[M,ZiflllllAlM,Zillll +A[M,2i71]0AIM,2i][0]] (28)

pM.in _

where (—1)$™~D+~1 takes care of fermionic ordering. and
the MPS representation of |Wgs) defined on Ng sites is
given by
|"IJGS> = Z (Bll’llallBll’zlmz .. .Bll’glo-lg) .
{o}
x (BIN,IIGN1 BIN,ZIJN2 . _B[N,glaNg)

X |(011012"'G]g)"'(JN|GN2"'UNX))' (29)

By suitably contracting tensors we can obtain an N-tensor
MPS representation with a physical dimension 28: |Pf) =
> C'o1C?%2...CN% |g0, - - - o). For instance, the tensor
corresponding to the presence of particles of type t;, tp, - - - , £
on site M is

MG tt) — pIMIIO]
« BMAIII gIMA+110] | pIMAINT | gIM.gll0]

(30)

D. Power of Slater determinants

In this section we describe how to obtain the MPS repre-
sentation of a wave function

Wim)= D (rra ) ), G

15725000 I'n

where |1/) is a Slater determinant. We will use as an example
n = 3. Products of other mean-field wave functions can be
obtained similarly.

We extend our N-site system to a 3N-site system for
which we label the sites as {1;1,152,2,23---NiN,N3}. We
then write a single Slater determinant (by padding and inter-
lacing the orbitals to keep the above ordering) of the form
[v) @ 1Y) @ |¢) for which we then convert into a MPS
given by

[MPS) = Z(B[ll]illB[IZ]ilzB[lﬂil:; )oo-
ip
X (BlNIJiN, BlNz]iNzBlN3JiN3)
X iy, i1,01, - I N, NS ) - (32)

Projecting on the sector i, = i,, = iy, gives us the desired
results of

Y130 = ATPARIE A iy i) (33)
where we define

Allin — plmling plnaling plnsling (34)

IV. BILINEAR-BIQUADRATIC S = 1 MODEL

In this section, we use our approach to compute the MPS
representation and entanglement spectra of the Gutzwiller
projected slave-fermion mean-field states [17] of the bilinear-
biquadratic (BLBQ) S = 1 model,

H=\/J?+J3?) [cos6S;-S; +sin0(S; - S;)°.  (35)
(L.

The physics of the 1D quantum Heisenberg spin chain
is qualitatively different for different spin representations
[18]; half-integer spins have a gapless ground state and
power-law spin correlations; integer spins have a gapped
ground state with exponentially decaying correlations, the
Haldane/Affleck-Kennedy-Lieb-Tasaki (AKLT) phase [19].
This latter phase is robust due to a combination of symme-
tries which protect its topological properties [20,21]. This
symmetry protection can be understood in terms of “fraction-
alization”: A S =1 spin effectively splits into two S = 1/2
edge modes that transform under nontrivial projective repre-
sentations of the symmetries (the product of the symmetry
representations differs from the representation of the product).
These features are reflected by nontrivial degeneracies in the
entanglement spectrum [22,23], i.e., the eigenvalues of Hy
in ps = e M where py = Trg |) (Y] is the reduced density
matrix on an A subsystem [24-26]. The BLBQ model has four
phases as shown in Fig. 6. This includes the Haldane phase
(at the Heisenberg point), as well as a dimerized and critical
phase.

One can derive the relevant projected mean-field state from
the slave-fermion construction by fractionalizing the spin op-
erators S in terms of fermionic parton operators,

Si = fiL,Supfis: (36)

where ffa is the a-flavor fermionic parton creation operator
at site i and S, g are the matrix elements of the spin operators
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Critical (1,1
Phase

Ferromagnetic
Phase

Haldane
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Dimerized
Phase

('1!'2)
(0!'1)

(-1,3) (1,-3)

FIG. 6. Phase diagram of the bilinear-biquadratic S = 1 model.
Figure reproduced from Ref. [17].

in a given representation S [27]. Substituting these expressions
into the original Hamiltonian gives a quartic fermionic Hamil-
tonian Hy which can be decoupled through a mean field. The
resulting mean-field ground state must then be projected back
into the original Hilbert space, essentially “gluing” together
the fractionalized degrees of freedom.

The slave-fermion construction of the bilinear-biquadratic
model was studied in Ref. [17] where the authors used VMC
to optimize the (x,d, u) parameters of the projected wave
function and studied the energy of this slave-fermion state
compared to the exact energy achieved by the time-evolving
block decimation (TEBD) algorithm. In this section, we will
take the same points as studied in ref. [17,28], convert the
slave-fermion states to MPS, and compute the entanglement
spectra and the energies.

At the level of the Gutzwiller projected ground states, the
two gapped phases, the dimer phase and the AKLT phase, are
distinguished by their “fingerprint” in the low-lying structure
of the entanglement spectrum: The lowest level of the entan-
glement spectrum of the dimerized topologically trivial phase
is singly degenerate (for between dimer cuts); the lowest level
of the entanglement spectrum of the Haldane phase ground
state is doubly degenerate, corresponding to the presence of
two boundary S = 1/2 edge modes.

A. Generating the MPS

The relevant mean-field Hamiltonian that arises from the
parton construction of the bilinear-biquadratic S = 1 model
[27,28] is

Hye = —Jx Z [CIaCi,a + H.c.]
ia=—1,0,1

+( =KADY [ef el —chied; + il + Hel
iJ

+x Z ¢! Cias (37)

where the cil s cg, and clf are the on-site fermion parton flavors
corresponding to S; = —1, 0, 1.

This could be converted into a MPS by treating it as a
general Pfaffian and then applying the techniques in Sec. I1I B.
In models such as this, though, where the mean-field Hamilto-
nian in the parton basis has a tensor sum structure where one
or more of the Hilbert subspaces can be treated with a simpler
mean field (i.e., with a SD or BdG ground state) it makes
computational sense to obtain the MPS representation in each
sector and then “glue” the two MPS together; we exemplify
this approach here.

Introducing a Nambu spinor, in the k basis the Hamiltonian
is block-diagonal,

1, . .
Hye = E[C;{,l C—k,—1 C£,0 ko]
Xk Ay 0 0 Ck,1
Ap =Xk 0 0 € k-1
X J . (38
0 0 Xk —Ag Ck,0 (38)
0 0 —A: — Xk CLk,O

The one-body Hamiltonian is a tensor sum of BdG-like
Hamiltonian Hg4g and a p-wave Hamiltonian H,. The mean-
field ground state is (we consider antiperiodic boundary
conditions and an even number of sites)

|Wes) = Moakean (e + vic) ¢y )
X To<gern (g — vgc) oct )10}, (39)

where u; and vy are given in terms of the parameters of the
Hamiltonian.

By performing a particle-hole transformation in the S, =
{1, 1} sector (see Sec. III A) and the Pfaffian artificial exten-
sion in the §; = 0 sector (see Sec. III B),

.
_.F
Jie = s

f;k = C—k,—1>

R
_.F
Bk = o

fi = ko (40)
where {fia, f;,8) = 8updig» giving us
WEs) = M f, + vefy )

X Mozqen(ugf) 4 — vafy3) Ivac), — (41)

with |vac) = Ho<k<2,,ck¢ |0) H0<q<nck,0 |0). Since |q,gxst) is a
Slater determinant, we can obtain the MPS representation us-
ing the methods in Sec. II. We now “undo” the transformation
(see again Secs. III A and IIIB) and write the MPS in the
following form,

IMPS) = Z(C[111i1¢c[1¢]iwc[l,%]ilﬁ)
{i}
X e (C[NT]IMC[NdimC[N.,%]iNﬁ )

X @y dny i) - GivyingIn ) (42)

where i, , € {0, 1} indicates the absence/presence of a parti-
cle of type « on site n.

To obtain the MPS with on-site tensors A" o, € {4, |
, =, =, 1=, M, 1y —}, we “glue” together appropriate
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sectors. For example,
At — C[nT]IC[nl]OC[ne]O’ (43)

and the Gutzwiller projection is realized by summing only
over the one-particle per site physical indices o, € {1, |, = }:

PolWgs) = Y Al AV gy gy) o (44)

o, €{t,,~}

B. iMPS orthogonalization

In this section, we will discuss orthogonalizing our iMPS
states. This includes a brief overview of the standard iMPS
orthogonalization as well as a detailed description of how
we address the degeneracies that appear when Gutzwiller
projecting slave-fermion mean-field states onto degenerate
ground-state manifolds.

The orthogonalization procedure for a typical iMPS is stan-
dard (see Ref. [29] and SM 6 [12] for an intuitive derivation
and for more details). The method relies on obtaining the
leading right/left eigenvectors of the transfer matrix operator
E =) _A” @ A where o runs over the on-site physical
index. E admits the following decomposition,

E =3 XIR) (Ll (45)

where |L); and |R); are left/right eigenvectors of E and
(Li|R;) = 0 for A; nondegenerate. In the infinite limit only the
leading left/right eigenvectors of E survive. If the dominant
eigenvalue is nondegenerate, the transfer matrix is given by
lim EYN = |R) (L], (46)
N—o0
where |R(L)) are by definition the eigenvectors correspond-
ing to the dominant eigenvalue. Thus, the dominant left
and right eigenvectors correspond to a pure state. The im-
plicitly restarted Arnoldi method can be efficiently used
for this purpose by noting that () A7 ® A”*)vec(v) =
>, vec A°*vAT), where the vec(v) operation takes the square
matrix v and stacks the columns together. The entanglement
spectrum and observables are then easily obtained.

When the leading eigenvalues of the transfer matrix are
degenerate in magnitude,

lim EY = |R)) (Li| + Ra) (La| . (47)

N—oo
EV is in mixed form. In general the output of the Arnoldi
method gives (L;|R;) # 0. Thus, additional steps are required
to obtain the canonical form of the iMPS. The degeneracy
of the leading eigenvalues signals the presence of degenerate
states. This is indeed what happens for the twofold degenerate
dimer phase and the fourfold degenerate Haldane phase (in
the thermodynamic limit). In order to access all the states in
the ground-state manifold, we need to obtain the proper set
of pure iMPS states. The transfer matrix of a pure iMPS has
unique left/right leading eigenvectors.

Here, we consider the case of twofold degeneracy present
in the dimer phase states (other states and higher degeneracies
can be dealt with using a similar procedure). For a twofold
degenerate iMPS, we need to find two pure iMPS generated
by bulk tensors A; and A;. Any iMPS within the degenerate
manifold is then able to be written as a linear superposition

B B y

~
~—
~
Ny
~
~N—

~
==
~
gt
~
M

By By
S5
B B X Upiv/Ay
0 & ey
\'1’+ _ _
J ¢ oXN
By Bf X} Uhi VA,
, 1ot o~
Blh VA l IT{.IBI Uriv/A,

= NedeN-
Uéf \/T.’ ]("IT.'.sz Uny \/Tz

FIG. 7. Tllustration of decomposition of a mixed transfer matrix
into pure components. In step 1 (first line), we find the dominant
left eigenvector of the transfer matrix; In step 4 (second line), we
find U, and §; and S,. In step 5 (third, fourth, and fifth lines), we
form two new tensors B; and find their right leading eigenvectors.
In step 6 (other lines), we find the entanglement spectrum +/A; and
the right/left canonical matrices Bf and BY, corresponding to the two
pure states.

of these pure states, |Y¥g) = o1 [ (A1)) + a2 |Y¥(A2)), where
the notation |1(B)) indicates the iMPS generated by bulk
tensor B. Note that the entanglement spectrum of the reduced
density matrix pp = |a1|?pa, + |o2|* 4, is given by the com-
bined spectra of o1 p; and o, 5.

To generate these pure iMPS, we start from a noncanonical
bulk tensor A iMPS with a single-site unit cell (typically gen-
erated by projection). In the case of the dimer phase, this bulk
tensor has two leading right (respectively left) eigenvectors,
vy and v,, with equal magnitude eigenvalues |n;| = |1,|, but
different signs (i.e., n; = —n7).
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TABLE I. Comparison of energies per site between the exact ground state iTEBD/DMRG), variational Monte Carlo (VMC), and the
fMPS and iMPS generated from the projected slave-fermion states. fMPS are computed with N = 64 or N =96 and 10™* < e <3 x 107*.
The bulk tensors used in iMPS have bond dimension D ~ 1000. Column headings correspond to (/, K).

(1, Ducs (LDt (1, O)teisenberg (1, =)t 1,-2) (1,-3) ©0,-1) (=1,-3) (-1,-2)
iTEBD [17] 0.2971 -2 —1.4015 —4 —6.7531  —9.5330  —2.7969  —7.3518  —4.5939
DMRG 0.2978 -2 —1.4015 —3.9999  —6.7526  —9.5314  —2.7969  —7.3516  —4.5939
VMC [17] 0.2997 -2 —1.4001 —3.9917  —6.7372  —9.5103  —2.7953  —7.2901  —4.4946

+0.0004  £7 x 10715 +0.0004 +0.0012  £0.0023  £0.0034  £0.0005  +0.0038  =+0.0028
fMPS 0.2995 -2 —1.3999 —3.9895  —6.7369 —9.5073  —2.7948  —7.2877  —4.4935
iMPS -2 —1.3999 —6.7368  —9.5071  —2.7947  —7.2877 = —4.4934
X 1 1 1 1 1 1 0 0 0
A 0 2 0.98 1.11 1.15 1.79 1 1 1
A 1 0 1.78 2.00 2.07 222 0.14 0.21 0.12

According to Theorem 5 in Ref. [30] and Theorem 11 in
Ref. [31], there is a unitary that transforms each of the matri-
ces B°? = A°A°’ into block-diagonal form, with two blocks;
the two blocks are the two-site uniform tensors corresponding
to the two pure states.

Based on the mathematical theorems in Refs. [30,31], we
use the following procedure to compute the pure states (see
Fig. 7):

(1) Start with the D x D (D is the bond dimension of
the bulk tensors A) left leading eigenvectors (with the same
eigenvalue), VI and VL, of the completely positive map E2,
ie. Y, B VLB =VE

2) Vi" are transformed into Hermitian matrices: ViL =
1/2[VE + (VE)T]; this is possible because if V is an eigen-
vector of E2, then (V/) is also an eigenvector and so their
sum is Hermitian. If VF = U[D,'Uf, then we can write V/ =
Y'Y with ¥; = /D;U;.

(3) Diagonalize V/* and V;- together; this can be done since
[VE,VE] =0 so that UTVIU = S;, with S; being a diagonal
matrix. .

(4) Form two linear combinations VF =V} — V)
where «; is one of the two nonzero values obtained
by ~the elementwise division of Sy and S;. Then

T

U/'VLU, will be a diagonal matrix S with entries
dh, dz, ..., J{’, 0,0,...,0) and UZVZLUL a diagonal matrix
S, with entries (0,0,...,0,d>7*,d>~*' ... dP,) and
D —k > p; in fact, it will almost always be the case that
D — k > p, since the bond dimension of the canonical bulk
tensor decreases after projection; this decomposition is
guaranteed by Theorem 5 in Ref. [30].

(5) Form two new two-site bulk B, =
\/STUZBUL\/ST : and obtain their transfer matrix
right-leading eigenvectors; they will each have a unique
leading Hermitian semipositive definite diagonal eigenvector,
VR = UgiAi(Ug)'; we can writt VF=XX' with
X; = Ugiv/A; then /A; is the entanglement spectrum of
the corresponding pure state.

(6) BR = \/E_I(UR,,-)TB,-UR’,-\/E are the right canoni-
cal tensors and BF = (Ug;)'B;Ug; are the left canonical
tensors; since B*/A; = «/A;BX the uniform two-site trans-

tensors

lationally invariant bulk tensors can be written as A; =

VABN VA = VA B-/VA.

C. Energy of BLBQ slave-fermion wave functions

We compute both the MPS and iMPS (except at the critical
points) for the variational Gutzwiller projected wave functions
corresponding (as found in Ref. [17] by minimizing the vari-
ational energy) to the points in Fig. 6. We directly compare
the energy for all of these points (see Table I) and find that
the energies are all within the error bars reported for the VMC
calculation [17].

D. Entanglement spectra of BLBQ slave-fermion wave functions
1. Dimer phase

In this section, we will consider entanglement spectra of
the dimerized phase of the BLBQ model. The ground state
of the dimerized phase is twofold degenerate depending on
whether the dimer covering spans even or odd bonds; the en-
tanglement spectra also depends on whether the entanglement
cut is made through or between dimers. For the fMPS, we can
obtain both the even and odd cut entanglement spectra of the
dimerized states by choosing two consecutive cuts whereas
for the iMPS we use the procedure described in Sec. IV B to
find the two pure states which correspond respectively to the
even and odd cuts.

We start by considering a generic slave-fermion point in
the BLBQ model; see Fig. 8 for the entanglement spectrum
(ES). The iMPS and fMPS slave-fermion point agrees well
both with each other and the exact ES from DMRG.

The low-lying level of the entanglement spectrum cycles
between a singlet and a triplet as we move the location
of the entanglement cut within the chain. This is indicative
of translation invariance breaking and the dimerized structure
of the ground state: Namely the low-level singlet is associated
with a cut between dimers, whereas the low-level triplet is
associated with a cut inside dimers.

We can also further understand the higher states in the
entanglement spectra. A generic point in the dimer phase of
the BLBQ model is SU(2) symmetric. Consequently, the en-
tanglement levels transform under SU(2) representation and
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FIG. 8. Entanglement spectra of the projected mean-field state
from iMPS and fMPS at (J, K) = (1, —2) showing (a) the compar-
ison with DMRG between dimers, and the fMPS spin-resolved ES
(b) between dimers and (c) within dimers. Note that the single and
triple degeneracies seen in (b) and (c) are the expected low-level
structures seen in a pure VBS state. The lowest three entanglement
levels of (b) are representations of SU(2): singlet, triplet, and quintet.

therefore we expect that degeneracies should go as the dimen-
sion of SU(2) representations (i.e., 2n + 1 for non-negative
integer n); this can be seen in the multiplet structure of both
the entanglement spectra in Fig. 8 (bottom left), where the
lowest three degeneracies between dimers form the singlet
(§ = 0), triplet (S = 1), and quintuplet (S = 2).

Beyond considering a generic point within the dimer
phase, we now consider the exactly solvable point where
(J,K)=(0,—1) [the so-called Kliimper-Barber-Batchelor
(KBB) point [32,33]], which is invariant under a larger
symmetry group, SU(3) [as opposed to SU(2)]. This larger
symmetry group forces the triplet and quintet to form an
octet [the adjoint representation of SU(3)]. Variationally, the
vanishing of the hopping parameter in the slave-fermion
mean-field Hamiltonian forces this larger symmetry group at
the level of the variational Gutzwiller projected wave function.
See Fig. 9.

The points (J,K)=(—1,-2) and (J,K)=(—1,-3)
which are found at a variational minima with ¢ = 0 in the
parent Hamiltonian by Ref. [17] also have SU(3) symmetry.
This symmetry is not present in the true DMRG ground state
which transforms only under SU(2) symmetry; therefore, a
better agreement is obtained by perturbing slightly away from
this point (see SM 7 [12] for entanglement spectrum data of
the slightly perturbed points).

2. Haldane phase

In this section we compute the entanglement spectra of
the AKLT and Heisenberg points belonging to the Haldane

12 vy \A A A7 v
€10
g v v v v
2 8
n
S 6
€
<9 4 \ 4 \ A 4 \ A 4 \ 4
[@)]
[
(0]
c 2
L
0 v
-2 -1 0 1 2
Spin

FIG. 9. Spin-resolved entanglement spectrum (between dimers)
for the (J, K) = (0, —1) variational point generated from fMPS. The
SU(3) symmetry forces the S = 1 and S = 2 into a degenerate octet.

phase of BLBQ. The slave-fermion mean field for this model
has a fourfold degeneracy at the Fermi level that allows for
choosing six orthogonal preprojected mean-field states (at half
filling). Projecting each of these states generates (postpro-
jection) a space of MPS which span four degenerate ground
states which correspond to the representations of the sum of
the two fractionalized S = 1/2 edge modes of the Haldane
phase.

Here, we start by considering the AKLT point which has
an exact analytic solution. The AKLT point (J, K) = (1, 1/3)
is exactly mapped under the above slave-fermion projective
construction to (x, 8, «) = (1, 3/2, 0). To find the AKLT state
which (for example) has the edge modes 1| we can either
search in the fourfold projected degenerate space or choose
the correct orbitals at the Fermi-level preprojection. We find
the entanglement spectra for each of the four fMPS which
correspond to ||, |1, 1, 11 edge spin configurations is
equal to In(2).

For the iMPS, unlike the dimer phase, where there was
twofold degeneracy in the leading eigenvalues of the trans-
fer matrix operator for points in the Haldane phase, we find
fourfold degeneracy. We obtain two-negative and two-positive
(equal in magnitude) leading eigenvalues. Taking the space
spanned by the two eigenvectors with positive eigenvalues, we
apply the iMPS orthogonalization procedure from Sec. IV B.
From this process, for the AKLT slave-fermion point we find
after orthonormalization the iMPS

o (-1 0
A—(o 1)’

m:ﬁ@‘fﬂ, 48)
0 0
Al = ﬁ(eig 0>,

associated with two pure states (i.e., [1] ) and || 1) of the edge
modes). In SM 8 [12], we also obtain the iMPS representation
of the S = 1/2 VBS ground state of the Majumdar-Ghosh
(MG) chain [34,35].
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FIG. 10. Top: Comparison of entanglement spectrum obtained
from fMPS, iMPS, and DMRG at the (J, K) = (1, 0) Heisenberg
point. Bottom: Spin-resolved entanglement spectrum from fMPS at
the (J, K) = (1, 0) Heisenberg point in the (S = 1, S, = 1) sector.

In Fig. 10 we also present the entanglement spectrum of the
Heisenberg point (J, K) = (1, 0) obtained using both fMPS
and iMPS. We see that the lower levels match well the en-
tanglement spectrum levels obtained from DMRG of the true
Heisenberg ground state. Discrepancies occur naturally higher
up in the spectrum as the variational wave function is not the
exact ground state. However, the entanglement spectrum of
the variational ground state (qualitatively) captures the sym-
metries and degeneracies of the frue entanglement spectrum.
Note the fact that every level has even degeneracy comes from
the topological nature of the phase. Moreover, notice that the
lowest parts of the entanglement spectra match the AKLT state
in the same sector.

3. Critical points

We compute the two critical points at (J, K) = (1, —1) [the
Takhtajan-Babujian (TB) point [36,37]] and at (J, K) = (1, 1)
[the Uimin-Lai-Sutherland (ULS) [38—40]]; they are gapless
and hence we analyze them only in the framework of our
fMPS method. The TB ground state is unique; the associated
effective conformal field theory is SU(2)|z=>.

The ULS ground state is also unique. However, it has
an enlarged SU(3) symmetry group; the associated effec-
tive conformal field theory is SU(3)|x=;. In particular it
can be mapped to the SU(3) nearest-neighbor Heisenberg
model [41]. This enforces an equal number of “quark”
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FIG. 11. (a) Comparison of entanglement spectra at the ULS
point for fMPS and DMRG. (b) Comparison of entanglement spectra
at the TB point for fMPS and DMRG. (c¢) Spin-resolved entangle-
ment spectrum for the (left) TB point and (right) ULS point.

particle constraints (and hence a global equal number of
spins 1, —1, 0). At the mean-field level, the pairing parameter
vanishes since J — K = 0. The Hamiltonian is then a tensor
sum of 3 identical hopping Hamiltonians acting indepen-
dently on the fermions of flavor “up,” “down,” and “zero.”
The particle number constraint of ¢, c_1, ¢y is naturally en-
forced at the mean-field level if the number of sites N is a
multiple of 3.

The SU(3) symmetry of the ULS point is reflected in the
degeneracies of the entanglement spectrum where the S = 1
and S = 2 levels combine together to form SU(3) octets as
can be seen in Fig. 11. For the TB point the S = 1 and § = 2
entanglement levels remain separated.

The central charge of SU(N)|; conformal field theories
(CFTs) is given by ¢ = k(N? —1)/(N + k). Hence, ana-
lytically ¢ = 1.5 for the TB point and ¢ =2 for ULS.
Calabrese and Cardy [42] obtained the following expression
for the entanglement entropy scaling for a 1D critical gap-
less point of finite size L with open-boundary conditions and
partition size x,

c. 2L . /mx
SGr.L) = 2 1n —sin (T) tlng+si/2, (49)
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FIG. 12. The von Neumann entanglement entropy scaling of the
slave-fermion wave functions describing the ULS critical point (top)
for a system of size L = 120 and the TB (bottom) critical point for
a system of size L = 300 computed with fMPS. Shown also is the
central charge obtained from least squares fitting.

where In g is a boundary entropy term and S(x, L) is the von
Neumann entanglement entropy.

It was found in Ref. [43] that there is an additional
alternating term in S(x,L) which decays away from the
boundaries. In Fig. 12 we plot the entanglement entropy
against ¢ In ij—L sin (%) for both TB and ULS models. We
work on a system of size L = 300 and plot the region x €
[75, 110] for TB and a system of size L = 120 and plot the re-
gion x € [21, 44] for ULS. We picked the lower bounds to be
far enough from the boundary and the upper bounds to work
in the region of the sine curve with x away from L/2 where
the curve becomes very flat. For the SU(3) ULS point, when
x is a multiple of 3, the highest eigenvalue Schmidt vector
contains equal numbers of “quarks” and hence is dominant.
For cuts at x = 3k + 1, 3k + 2 (for integer k), the Schmidt
vectors cannot satisfy the particle conservation constraint and
hence the highest eigenvalue Schmidt vectors are degenerate.
A similar situation occurs at the SU(2) TB point where the
2-periodicity is easily explained in the dimer picture: For even
cuts we cut between dimers, whereas for odd cuts we break
dimers and hence split the singlet apart. The alternating term
is still significant for the parameters we chose. Hence, it is
difficult to reliably extract the central charge. However, we
manage to obtain results for central charges at both points
which are remarkably close to their theoretical values: 2.013
as compared to 2.0 for the ULS point and 1.505 as compared
to 1.5 for the TB point. We overlay the lines obtained from
least-squares fitting for both models.

V. DISCUSSION AND FUTURE WORK

We have developed a series of efficient and highly parallel
algorithms to obtain the finite and infinite (for gapped states)
MPS representation of fermionic mean-field states. Gutzwiller
projection is easily implemented by eliminating the doubly
occupied and unoccupied physical sectors of the mean-field
slave-fermion MPS tensors. We have used these methods
to obtain the (i)MPS representation of Gutzwiller projected
mean-field states that arise from the variational slave-fermion
approach to the § = 1 bilinear-biquadratic (BLBQ) quantum
spin chain introduced in Ref. [17]. We first verify that the
energies we obtain via both finite MPS and infinite MPS (not
applicable to the critical points) for the points considered are
within the error bars of their VMC calculations [17].

Additionally, we obtain the entanglement spectra at two
critical points (ULS and TB) and several generic points in the
dimer and Haldane phases of the BLBQ model. We find good
qualitative (and quantitative) agreement with results obtained
directly from DMRG. We briefly discuss the salient structural
features of the entanglement spectrum in all the phases (but
see Ref. [41] for a more detailed analysis). Extracting the
central charges of the conformal field theories describing the
two gapless critical points from a numerical computation of
the entanglement spectrum on finite open-boundary systems
is made difficult by a slowly decaying oscillatory term in
the entanglement entropy. However, we do obtain very good
agreement for the central charge at both the ULS and TB
point: 2.013 as compared to the exact analytical value of
2.0 for the ULS point and 1.505 as compared to the exact
analytical value of 1.5 for TB.

We also introduce an algorithmic procedure that orthogo-
nalizes an iMPS by breaking it down into its pure states. This
is essential when dealing with degenerate ground states that
appear upon Gutzwiller projection as is the case with points
in the dimer phase of the BLBQ model. Having obtained
the pure states, we can compute the entanglement spectrum
for any state in the ground-state manifold. We check that
the entanglement spectrum obtained from iMPS matches the
one we obtain from the finite MPS procedure. Discrepancies
naturally appear as we approach values close to the thresholds
used to generate the finite MPS and infinite MPS.

The methods can be easily adapted to the study of systems
on 2D ladders (infinite in length but with finite width). The
iMPS unit cell is now formed by the tensors sitting on the
width of the cylinder. We will explore the applications of
Gutzwiller projected variational wave functions to the study of
2D quantum spin liquids in future publications. This method
may also be applicable to topological states such as quantum
Hall and fractional Chern insulators that are represented as
products of mean-field wave functions.
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