IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, VOL. 8, NO. 3, JULY-SEPTEMBER 2021

2223

Fully-Echoed Q-Routing With Simulated Annealing
Inference for Flying Adhoc Networks

Arnau Rovira-Sugranes =, Fatemeh Afghah™, Junsuo Qu

Abstract—Current networking protocols deem inefficient in
accommodating the two key challenges of Unmanned Aerial
Vehicle (UAV) networks, namely the network connectivity loss
and energy limitations. One approach to solve these issues is
using learning-based routing protocols to make close-to-optimal
local decisions by the network nodes, and Q-routing is a bold
example of such protocols. However, the performance of the
current implementations of Q-routing algorithms is not yet
satisfactory, mainly due to the lack of adaptability to continued
topology changes. In this paper, we propose a full-echo Q-routing
algorithm with a self-adaptive learning rate that utilizes
Simulated Annealing (SA) optimization to control the exploration
rate of the algorithm through the temperature decline rate,
which in turn is regulated by the experienced variation rate of
the Q-values. Qur results show that our method adapts to the
network dynamicity without the need for manual re-initialization
at transition points (abrupt network topology changes). Our
method exhibits a reduction in the energy consumption ranging
from 7% up to 82%, as well as a 2.6 fold gain in successful packet
delivery rate, compared to the state of the art Q-routing
protocols.

Index Terms—UAYV networks, learning-based routing, Q-rout-
ing, adaptive networking, energy efficiency.

I. INTRODUCTION

LYING Adhoc Networks (FANETS), especially those

composed of Unmanned Aerial Vehicles (UAVs), are
becoming increasingly popular in many sensing, monitoring,
and actuation applications due to their key features such as
free mobility, faster speeds, less human hazards in harsh and
risky environments, autonomous operation, larger coverage
areas, lower costs, and flexible imaging capabilities. The range
of applications is countless and includes but not limited to
transportation [1], traffic control [2], fire monitoring [3], [4],
human action recognition [5], surveillance [6], border patrol-
ling [7], search and rescue [8], disaster management [9],
wireless network connectivity [10], smart agriculture, and
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forestry [11]. However, many communication and control pro-
tocols, which are primarily developed for ground networks
with somewhat stationary infrastructures deem inefficient for
UAYV networks. Even the communication protocols designed
for vehicular networks do not accommodate the key issues of
UAYV networks like their limited communication range, lim-
ited energy, limited processing power, faster speed, and struc-
ture-free mobility. In [12], distributed UAV networks are
thoroughly studied with reviewing FANET structures and uti-
lized networking protocols to highlight the current networking
challenges and issues. They conclude that optimal routing and
maintaining connectivity remain as two key challenging
issues [13], which have been studied in several subsequent
papers.

Machine Leaming (ML) algorithms support efficient
parameter estimation and interactive decision-making in wire-
less networks by learning from data and past experience. A
review of using ML methods for different aspects of wireless
networking is provided in [14]. Also, ML algorithms facilitate
the abstraction of different networking tasks from network
topology prediction and channel status estimation by enabling
embedded learnability features. For instance, Reinforcement
Learning (RL)-based routing involves finding the most conve-
nient path for any source-destination pair through the network
based on different optimization criteria without directly moni-
toring and incorporating the network topology. Typically, the
nodes’ local information is used to take optimal communica-
tion decisions to minimize the overall energy consumption
and enhance network connectivity [15]. Reinforcement learn-
ing has also been used for other aspects of UAV networks,
including spectrum management [16] and intelligent jamming
defense [17].

A. Contributions

In this paper, we introduce a promising Q-learning-based
routing protocol that is suitable for highly dynamic UAV net-
works. Low complexity, low overhead requirements, local for-
warding decision, and no need for initial route setup are some
of the key characteristics of the proposed method to improve
the probability of successful packet delivery in UAV net-
works. The major contributions of this paper are summarized
as follows:

e First, we introduce a trajectory creation approach,
which uses a piece-wise linear mobility model to pro-
duce node trajectories. It consists of a hierarchical gen-
erative model that defines random parameters for each
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UAV class, representing each node’s motion profile.
This model is suitable for UAV networks with heteroge-
neous mobility levels (e.g., networks of quadcopters,
mini-drones, and fixed-wing UAVs) since it is easy to
infer the motion profile of each node by sampling its
motion trajectory.

e Secondly, we propose a full-echo Q-routing with an
adaptive learning rate controlled by Simulated Anneal-
ing (SA) optimization, where the temperature parame-
ter captures the influence of the nodes’ mobility on the
update rates of Q-value. The soft variation of the explo-
ration rate with the re-initiation feature not only opti-
mizes the exploration rate, but also accommodates
abrupt changes in the network dynamicity. The criteria
we used for path selection minimizes the packet trans-
mission energy.

e Lastly, we performed extensive simulations to assess
the performance and the complexity of the proposed
algorithms, compared with previous Q-routing algo-
rithms and Q-routing with other heuristic optimization
methods using different network scenarios. The quanti-
tative results confirm a considerable reduction in energy
consumption and an increase in the packet delivery rate
for the proposed algorithm.

The rest of this paper is organized as follows. In Section II,
we provide a comprehensive review of related work, espe-
cially the recently developed Q-Learning-based routing proto-
cols. In Section III, we introduce the system and the utilized
mobility model. In Section IV, we describe the proposed
fully-echoed Q-routing algorithm equipped with Simulated
Annealing inference. Section V investigates the properties of
the proposed method in comparison with similar methods. In
Section VI, we present the simulation results with quantitative
analysis. Finally, the main findings of this work are reviewed
in Section VIL

II. RELATED WORK

RL-based routing was first introduced in [18], where Q-
routing is utilized as an application of packet routing based
on Q-learning. This method demonstrated superior perfor-
mance, compared to a non-adaptive algorithm based on pre-
computed shortest paths [19]. The essence of Q-routing is
gauging the impact of routing strategies on a desired perfor-
mance metric by investigating different paths in the explo-
ration phase and using the discovered best paths in the
exploitation phase. Exploration imposes an overhead to the
system but is critical for finding newly emerged optimal
paths, especially when the network topology undergoes sub-
stantial changes. An essential challenge is to solve the
trade-off between the exploration and exploitation rate con-
stantly to accommodate the level of dynamicity of the net-
work topology. An extension of the conventional Q-routing,
known as Predictive Q-routing (PQ-routing) [20], attempted
to address this issue and fine-tunes the routing policies
under low network loads. Their approach was based on
learning and storing new optimal policies under decreasing
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load conditions and reusing the best learned experiences by
predicting the traffic trend.

Their idea was to re-investigate the paths that remain
unused for a while due to the congestion-related delays. They
considered probing frequency as an adjustable parameter that
should be tuned based on the path recovery rate estimate.
Results showed that PQ-routing outperformed the Q-routing
in terms of both learning speed and adaptability. However,
PQ-routing requires large memory for the recovery rate esti-
mation. Also, it was not accurate in estimating the recovery
rate under varying topology change rates (e.g., when nodes
start moving faster or slower). Furthermore, this method only
works when delays arise from the queuing congestion, and not
from the network topology change.

Another modification of the conventional Q-routing is Dual
Reinforcement Q-routing (DRQ-routing) [21]. Their idea was
to use forward and backward explorations by the sender and
receiver of each communication hop by appending informa-
tion to the data packets they receive from their neighbors.
Simulation results prove that this method learns the optimal
policy more than twice faster than the standard Q-routing. A
comparative analysis of learning-based routing algorithms is
provided in [22], where the performance of the self-adaptive
Q-routing and dual reinforcement Q-routing algorithms is
compared against the conventional shortest path algorithms.
Their results showed that the Q-Learning approach outper-
forms the traditional non-adaptive approaches when increas-
ing traffic causes more frequent node and link failures.
However, Q-routing does not always guarantee finding the
shortest path and does not explore multiple forwarding options
in parallel.

Two improved versions of Q-routing, namely Credence-
based Q-routing (CrQ-routing) and Probabilistic Credence-
based Q-routing (PCrQ-routing), are proposed in [23] to cap-
ture the traffic congestion dynamically and to improve the
learning process to select less congested paths. CrQ-routing
uses variable learning rates based on the inferred confidence
to make the Q-value updates more efficient. Q-value updates
are monitored to assess the freshness and accuracy of the
measurements. A higher learning rate is used for the old
updates, and a lower learning rate is used for the newer
updates. Probabilistic Credence-based Q-routing (PCrQ-rout-
ing) takes a random selection approach to select a less con-
gested path. This algorithm reverts back to the optimal
selection policy when the utilized confidence approach does
not learn the traffic load accurately and takes decision merely
based on the information freshness. Both methods adapt to the
current network conditions much faster than the conventional
Q-routing.

Another technique to accelerate the learning speed of con-
ventional Q-routing is the full-echo approach introduced
in [18]. In conventional Q-routing, each node only updates the
Q-values for the selected next-node (i.e., the best neighbor),
whereas in the filll-echo routing, a node gets each neighbor’s
estimate of the total time to the destination to update the Q-
values accordingly for each of the neighbors. A more recent
work added adaptive learning rates to the full-echo Q-routing
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TABLEI
Q-ROUTING-BASED ROUTING PROTOCOLS COMPARISON: PROVIDED FEATURES AND TARGET APPLICATIONS
" Routing protocol | Connectivity Predictive | Exploration Energy efficiency  Fastly adapts to abrupt changes Network application
ECaD [32] v v v v X FANETSs
PARRoT [33] X v v X X UAV-aided networks
ARdeep [34] v v v v X Mobile robot networks
QMR [35] X v v v ' FANETs
FLRLER [36] v v v v X FANETs
QAGR [37] X v v X X UAV-assisted VANETs
[ Proposed | v | v ] v | v v [ FANETs |

to improve the exploration performance [24]. The adaptive
fill-echo Q-routing uses two types of learning rates, one fixed
(basic) rate for the neighbor to whom the packet is sent and
another one (additional) for the rest of the neighbors. The
additional learning rate changes dynamically according to the
estimated average delivery time and allows to explore other
possible routes. Their results show that this technique reduces
the oscillations of the fill-echo Q-routing for high-load sce-
narios. An extension of this work, Adaptive Q-routing with
Random Echo and Route Memory (AQRERM) is introduced
in [25], which improves the performance of the baseline
method in terms of the overshoot and settling time of the
learning process, as well as the learning stability.

Recently, more advanced routing algorithms are proposed
to extend the baseline Q-routing into more complex scenarios
with enhanced performance. Three successful algorithms
include Poisson’s probability-based Q-routing (PBQ-rout-
ing) [26], Delayed Q-routing (DQ-routing) [27] and Qos-
aware Q-routing (QQ-Rouling) [28]. PBQ-routing uses for-
warding probability and Poisson’s probability for decision
making and controlling transmission energy for intermittently
connected networks. The results of this work show that the
delivery probability of this method is almost twice bigger than
that of the standard Q-routing while reducing the overhead
ratio to half. DQ-routing updates Q-values with random delays
to reduce their overestimation and improve leaming rate. Q%-
Routing includes a variable learning rate based on the amount
of variation in Q-values while meeting the Quality of Service
(QoS) requirements for the offered traffic.

Unfortunately, all of these Q-routing methods suffer from
one or more weaknesses, which negatively affect their per-
formance in extremely dynamic UAV networks. First, the
methods that require large memories to store the history of
the Q-values or the history of experienced delay (or other
performance metrics) for each decision become prohibi-
tively restrictive when using for memory-constrained
drones. The second issue is the Q-routing protocols’ incapa-
bility in adapting their learning rate to varying network
dynamicity rates.

Other types of routing protocols for UAV networks have
been proposed in recent years, with many surveys exploring
the characteristic of each method. In [29], the authors pro-
vide a complete analysis of the major routing protocols for
FANETSs, with a comparison based on a set of key perfor-
mance indicators. Also, a recently published paper [30]
offers a comprehensive discussion of routing protocols in

Software-Defined Network (SDN) and Network Function
Virtualization (NFV) for UAV-assisted networks, which
can lead to research directions in the future. Lastly, a simu-
lation-based comparison of various routing protocols for
FANET: is presented in [31] to identify the best methods in
real-time dynamic operations.

Another class of routing protocols is position-based algo-
rithms, which use different tracking systems to exploit and
monitor other nodes’ positions. These algorithms select their
path based on their inferred location information, i.e., by
directly incorporating nodes’ mobility into the path selection
mechanism to address connectivity issues, which includes
greedy distance-based methods [38]. A complete review of
position-based routing protocols when applied to 3D networks
is presented in [39]. However, these methods require sophisti-
cated tracking systems and large computation overhead for
timely estimation of the location of all surrounding nodes [40].
Also, these methods do not fully explore most of the con-
nected and durable paths. For this reason, some authors incor-
porated the movement information and the residual energy
level of each UAV to guarantee communication stability and
predict future link breakages. For example, the Energy-effi-
cient Connectivity-aware Data Delivery (ECaD) routing algo-
rithm [32] exploits new routes while predicting the link
failures prior to their occurrence to achieve a balanced energy
consumption among UAVs. Nevertheless, these methods do
not use the power of ML methods to indirectly learn the influ-
ence of the position information on performance metrics and
realize more intelligent and independent decision making for
routing protocols. The above-mentioned facts led the research-
ers to use RL-based routing methods. Some of the RL-based
routing algorithms include predictive ad-hoc routing fueled by
reinforcement learning and trajectory knowledge (PAR-
RoT) [33], adaptive and reliable routing protocol with deep
reinforcement learning (ARdeep) [34], traffic-aware Q-net-
work enhanced routing protocol based on GPSR
(TQNGPSR) [41] and Q-learning based multi-objective opti-
mization routing protocol (QMR) [35], as well as RL-based
routing protocols that use fuzzy logic for decision-mak-
ing [36], [37], [42]. In Table I, we present some of the most
recent learning-based routing protocols, and compared their
features to the proposed method. Although the proposed pro-
vide elegant solutions for routing, they do not seem to be prac-
tical with current drone technology due to their high
computational complexity. Also, they perform poorly in
adapting to abrupt network changes.
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Fig. 2. lustration of the RL-based routing.

III. SYSTEM MODEL

We consider a wireless mesh network composed of N nodes
N = {n1,na,...,ny} distributed uniformly in a rectangular
area of an arbitrary size L x L/2, as depicted in Fig. 1. The
communication range of each UAV is represented by a circu-
lar area of radius R. Therefore, the set of the neighbors for
node n; is defined as:

Si(t) = {n; € N : di(t) < R} 8))

where dyj(t) = \/ (zi() — 2;(0))* + (wi(t) — y;(1))° is the
Euclidean distance between nodes n; and n; at time ¢. This
realizes a dynamic contact graph where there exists a commu-
nication link between any pair of nodes within a given
distance.

Here, we use Q-learning, a variant of model-free reinforce-
ment learning that enables optimal decision making by evalu-
ating the rewards of actions in an uncertain or unknown
environment with no central supervisor [43]. Q-learning is a
variant of the reinforcement learning algorithm, which pro-
vides agents A; with the capability of directly learning the
consequences of their actions a; (which node to send the
packet to) when they are at specific states s; (e.g., location,
traffic load, etc.) in terms of the achieved reward r;. The
reward is defined as the reduction of a desired performance
metric, i.e., the transmission energy from the source to the des-
tination, achieved by the action. The concept of reinforcement
learning for optimized routing is shown in Fig. 2. In the initial
environment represented by state s;, node/agent A; has two
candidate neighbors A, and Az to send its packet. The spirit
of RL-based routing is selecting one of the actions a; or ap
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Fig. 3. A hierarchical generative model used to generate class-specific
motion trajectories.

based on the reward expected for each action a at state s,
defined as Q(s,a). Once we establish an optimal forwarding
decision policy (a; or as), the agent A; obtains an immediate
reward from the environment, 7 or 73, respectively. Then, it
transits to state ss, where new decisions are made based on the
new environmental conditions and the learned policy in terms
of actions-rewards relations. The end goal is to find an optimal
policy in which the cumulative reward over time is maximized
by assigning optimal actions to each state.

The idea behind the full-echo routing equipped with SA
optimization is to go one step beyond the conventional Q-rout-
ing paradigm and adapt the learning rate of the algorithm
based on the rate of topology change, implied by the node
velocities. The goal is to keep the overall energy consumption
of the network at the minimum level possible while minimiz-
ing the packet drop rate for selecting unstable links.

Our approach is to regulate the exploration rate of Q-routing
to identify potentially new optimal paths while not overusing
exploration time. Some prior works intend to directly incorpo-
rate the predicted network topology into the routing algo-
rithm [44], [45]. Despite their near-optimal performance,
these methods require accurate tracking systems that can be
restrictive in real scenarios. Here, we use simulating annealing
optimization to adjust the exploration rate by indirectly learn-
ing the impact of node mobility on the communication energy
consumption.

A. Piece-Wise Linear Mobility

To emulate networks with heterogeneous mobility parame-
ters, we use a parametric generative model to produce node
trajectories. The mobility model consists of piece-wise linear
motions over time intervals whose duration is exponentially
distributed as ¢; ~ Exp(1/t).! During each segment t;, we
use a constant velocity v; and direction 6; that vary for the
next segment.

A hierarchical generative model is used to produce the
parameters that ultimately define the motion trajectories
(Fig. 3). Consider each node moves with a random but fixed
velocity v; in a random direction 8;, at each interval ¢;. The
velocity v; is a Random Variable (RV) with Gaussian

! This model can be viewed as a waypoint model with linear motions
between the waypoints that has the flexibility of generating arbitrary trajecto-
ries when the interval between selected consecutive waypoints is small
enough.
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distribution v; ~ N'(i,;, 02;). The direction 6; follows a uni-
form distribution 6; ~ U(0,2m). These distributions are used
to simulate the worst-case scenario following prior works
in [46]. More specifically, Gaussian distribution maximizes
the entropy under limited energy, hence is appropriate for cre-
ating the most unpredictable node velocities. Likewise, the
uniform distribution is the most uninformative distribution
that maximizes entropy for RVs with limited range, like the
direction 6;, which is limited to the [0, 27] range. However,
for the sake of completeness and to ensure that the results are
generic, we examined our routing protocol using other widely
adopted mobility models for UAV networks, including ran-
dom waypoint [47], Gauss-Markov Mobility Model [48], and
Paparazzi mobility model [49].

Another advantage of using a segment-wise mobility model
with a symmetric distribution for 8, is to prevent the network
from falling apart, as occurs for networks with linear motions
at random directions.

The triplet (£;, 8;, v;) forms the model parameters. To accom-
modate nodes with different velocity profiles, the mean p,; and
variance o, of v; are considered RVs controlled by hyper-
parameters. In particular, we have u1,; ~ N (ug,03) and 0% ~
Inv — Gamma(a, B), an inverse Gamma distribution with
shape « and rate B. The hyper-parameters «, §, iy and Jg are
the same among all nodes, and are used to obtain node-specific
model parameters p; and o7 for nodes n; = (1,2,..., N). The
model parameters represent the motion profile of each node
based on its class, and remain constant throughout the operation
time. This hierarchical modeling with conjugate priors for the
model parameters facilitates deriving closed-form posterior
and predictive probabilities for the model parameters, to easily
infer the motion profile of each node by sampling its motion
trajectory. We use this model to generate the motion trajecto-
ries for all network nodes and to create the dynamic time-vary-
ing contact graph of the network using (1).

Another assumption that we considered is that the motion
intervals are long enough to let the learning algorithm con-
verge to an optimal solution with a reasonable learning rate.
This assumption is relevant since the employed learning algo-
rithm requires only around fifty transmission rounds for a full
convergence that remains in the millisecond range while the
motion changes for UAVs occur in the second range, if not
minutes. However, the algorithm is flexible enough to recog-
nize the change points and re-adapt to the new velocities with
no human intervention, noting the re-initiation process at the
beginning of each segment. The learning rate is determined by
the temperature parameter 7" for the utilized SA algorithm,
which quickly adapts to the network nodes’ average velocities
during each interval. This adaptation is realized without the
need for directly inferring the node velocities using sophisti-
cated tracking systems.

IV. ROUTING PROTOCOL

The proposed routing protocol enables the nodes to make
packet forwarding decisions based on their local experience
with the ultimate goal of minimizing the end-to-end
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transmission energy. No prior information is required about
the network nodes’ mobility and traffic load distribution
across the network.

We first review conventional Q-routing [18] and then indicate
the modifications we made to develop our proposed method,
namely the fully-echoed Q-routing with an adaptive learning
rate using the inferred SA parameters. The Q-value Q. (d,y) is
defined as the time-span it takes for node = to deliver a packet to
the destination node d through neighbor node y. Then, after
sending the packet from node x to node y, node y estimates the
remaining time for the trip ¢, _. 4, defined by:

Qy(d: 2.’)} (2)

t —d = min
Y ze8y(t)
where S, (t) is the set of the neighbors of y at current time ¢.
Next, from the information that node = receives, we can

update Q. (d, y) to:
er (d: y)new = Qt(d: y)old + H(q +s+i— QI (d: y)old)? (3)

where ¢ is the waiting time for node = and s is the transmis-
sion time from node x to node y. Also, 7 is an adjustable learn-
ing rate. To improve the learning speed, using the full echo Q-
routing with adaptive learning rates, we update Q-tables for
all neighbors by sending estimation packets to the neighbors.
We define two learning rates: basic () and additional (7).
Each node updates its Q-table using 7 if it refers to the neigh-
boring node to which we sent the packet, and using 7, other-
wise. The basic learning rate () is fixed; however, the
additional learning rate (1, ) is updated at each step using

:th

-k 4
T n 4)

N2 =
where T, is the estimate of the average delivery time and
Tnax 1s the estimate of the maximum average delivery time.
Also, k is a predefined parameter to be tuned by the experi-
ments for optimal performance.

The exploration rate is controlled by the SA algorithm [50],
as a natural optimization choice. The reason for selecting SA
as the optimization algorithm compared to other heuristic opti-
mization methods such as Gradient Descent (GD), Genetic
Algorithm (GA), and Particle Swarm Optimization (PSO) is
that SA’s naturally embedded property of starting from more
aggressive exploration rates (at higcth temperatures) and lean-
ing gradually toward more conservative decisions over time
by cooling down the temperature parameter T, makes it desir-
able for segment-wise routing decisions. This feature accom-
modates dynamic topology with abrupt changes. The
temperature T changes exponentially from T = (ky,q./k) to
T =1, where k is the iteration and k,,,, is the maximum
allowable number of iterations for exploration. Here, we con-
trol the temperature cooling based on the velocities of the net-
work nodes captured by the changes in the selected links’
performance. Once a velocity change is detected (at the begin-
ning of an interval), the temperature automatically is increased
to the highest value and cools down gradually during the
interval.
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Algorithm 1: Q-routing table update using SA

1:  Initialize Q-values (Q.(d, y)) for all neighbors y;
2:  Initialize f,n;
3: fork=1to k. do
4: while node d has not been reached do
5: T — kmaz/k
6: T—Txf
7: Select action a, uniformly among neighbors;
8: Select action a,, according to learned Q-values;
9: a — ap;

10: generate random variable r ~ U[0,1]

11: if (P(ap,ar, T) > ) then

12: a+— a,

13: end if

14: Execute action a

15: Update Q-value:

= for selected neighbor:
Qz(d:y)new = Qz‘.(d,’y)old + rl'(q—i_ 5 +t - QI

(d,9)o1d)

= for the rest of the neighbors:

Qz(d:y)new = Qz(d,y)old + rl"Z(q +s+ i— Q:E
(d,9)o1d)

(where gy =7=L-n- k)
16: end while
17: Evaluate f using (6)
18:  end for

The summary of the operation of one full cycle of the SA
optimization is provided in Algorithm 1, where we have:

P(ay,a,;,T) =1, ifa, < ay, &)
P(ay,a,,T) = 2 otherwise.

¥

Here, P(ay,a,,T) acts as the exploration probability. P =
1 means that the random action a, is better than the previously
identified best action ap,, and we select a,. Otherwise, we
select the next node based on this probability by taking a ran-
dom action a, with probability P(a,,a,,T) and following the
best action with probability 1 — P(a,, a,, T). Here, a random
action a, means the next node is selected uniformly among
the available neighbor nodes.

The dynamicity of the network is indirectly inferred by the
change of the consumed energy (or equivalently the variation
of Q-values) during the last H iterations. More specifically, we
define parameter f as:

1 H
f=vIAE|= E; [Eri1—i — Epil, (6)

where H is the length of history, to be selected based on the
velocity of the nodes and the length of each interval to identify
significant variations. Here, we choose H = 10. Parameter y
is a scaling parameter to map the energy variation into the
[0.5,10] range. The parameter f is used to regulate the temper-
ature cooling in the SA algorithm by scaling the temperature
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Fig. 4. Flowchart of the proposed Q-routing-based algorithm.

parameter 1" depending on how fast the chosen path’s energy
changes over time.

Lastly, we describe a full cycle of the proposed routing pro-
tocol in a visual manner in Fig. 4. We represent a source node
s that wants to send k., packets to the destination node d.
After each packet is sent, we evaluate the factor f to subse-
quently update the temperature parameter 1°, which impacts
the exploration rate.

V. ANALYSIS OF THE PROPOSED ROUTING PROTOCOL

In this section, we study some of the properties of the pro-
posed routing protocol, and compare it to related methods pre-
viously offered for UAV networks.

A. Loop-Free Property

As described in Section IV, a direct implication of the oper-
ation of the proposed algorithm is its loop-free property,
meaning that no intermediate node can be included in the end-
to-end path more than once (as presented in Fig. 5). A loop-
free property is crucial for dynamic networks to prevent data
packets from being continually routed through the same nodes
over and over. A routing loop can cause a packet never to
reach its intended destination, which can substantially disrupt
the operation of the network. This property is achieved based
on the fact that each node maintains an updated Q-table with
information regarding the visited nodes. For example, in
Fig. 5, when node 4 has to choose the next node between its
neighbors, it does not consider node 2 as a possible node. This
happens because node 2 has been previously visited in the
selected path. This way, we ensure that a loop-free path is
always selected.
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Fig. 5. Loop-free property of the proposed Q-leaming-based routing
protocol.
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B. Computation Complexity

Here, we include a comparative analysis of the computation
complexity of the proposed method, compared to other state-
of-art routing algorithms, including ad hoc on-demand dis-
tance vector (AODV) [51], optimized link state routing
(OLSR) [52], destination sequenced distance vector
(DSDV) [53], dynamic source routing (DSR) [54], greedy
perimeter stateless routing (GPSR) [55], as well as the conven-
tional Q-routing [18]. Computation complexity is defined as
the number of operations required to execute one round of an
algorithm. Results are shown in Table II, where NV represents
the number of nodes or network size. We can see that the pro-
active routing protocols (e.g., OLSR, DSDV) and reactive
routing protocols (e.g., AODV, DSR) have low and average
complexity, respectively. Position-based routing protocols
(e.g., GPSR) and learning-based routing protocol (e.g., Q-
routing and the proposed method) have a higher complexity.
Our complexity is quadratic in N, which is higher than proac-
tive and reactive methods, but still affordable for reasonable
network sizes. It has been shown that learning-based decen-
tralized methods that adapt to dynamic networks without the
need for global knowledge and long route setup are more suit-
able for UAV networks since they eliminate the need for
costly and sophisticated positioning methods. Our proposed
method constantly adapts to both minor or abrupt changes,
leading to a higher packet delivery ratio and energy efficiency,
as well as retaining maximal connectivity. For this reason, the
higher complexity, compared to proactive and reactive routing
protocols, is justified by the increase in routing performance.
Lastly, we can state that our method has lower complexity
with respect to popular topology-aware routing protocols
while providing better results.

C. Memory Requirements

In this section, we study the memory requirements and the
storage efficiency for the proposed routing protocol. The pro-
posed routing protocol needs Q-table resources for each node,
with a short history to consider the adaptability to the network
state at each step. In Section IV, we defined the exploration-
exploitation approach that considers the history of the last 10
packets to reevaluate the exploration rate. Consequently, if we
study computational complexity or memory requirements for
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TABLEII
COMPLEXITY FOR DIFFERENT ROUTING PROTOCOLS

AODV [51] O(2N)
OLSR [52] O(N)
DSDV [53] O(N)
DSR [54] O(2N)
GPSR [55] O(N3)
Q-routing [18] O(N?)
Proposed O(N?)

Q-routing-based routing protocols, they suffer from the curse
of dimensionality. The Q-table grows at O(N?) with the num-
ber of nodes.

However, compared to standard RL or deep-learning-based
algorithms such as [33], [34], [56], [57], the memory require-
ments for our method are relatively low. RL algorithms
require large memory for relatively large state spaces and
close-to-one reward discount rate. Deep learning algorithms
are also computationally extensive and require large memory
to store training samples and the history of reward-action
pairs. Therefore, their learning phase may take much longer
than for the proposed methods. Consequently, it is fair to state
that the computational complexity of our Fully-echoed Q-rout-
ing with SA inference method is doable with on-board mem-
ory capabilities in UAVs, in contrast to other more complex
and memory-needy solutions that provide similar outcomes.

D. Overhead Analysis

Overhead is defined as the number of additional routing
packets sent for route discovery, establishment, and mainte-
nance. An advantage of our method is that we do not use
exploration packets (like sending periodic hello packets in
proactive routing protocols such as OLSR algorithm [52]) to
find optimal paths; rather, it is learned by monitoring data
packets in the exploration phase. Our method addresses the
essential trade-off between exploration and exploitation based
on the network’s behavior. During the exploration phase, we
learn the network’s state by studying all neighbors’ behavior,
and these suboptimal transmissions can be considered explora-
tion overhead. In the exploitation phase, the overhead is con-
siderably low since only the best identified paths are utilized.
Since our method addresses this trade-off using the SA optimi-
zation module based on the network’s dynamicity level, the
incurred overhead is much lower than other routing protocols.

We analyze how overhead impacts our routing protocol by
investigating if the incurred overhead correlates with a better
learning state or not, and what is the rate of taking non-optimal
decisions. We expect to find a trade-off between the explora-
tion rate (that brings more overhead) and the knowledge of the
network. In Table III, we study the effect of exploration rate
with reaching the optimal solution by counting the number of
packets we send to reach the optimal solution. We can observe
that our proposed adaptive method gives the best result in
terms of optimality of the path selected and the number of
packets needed to reach that solution. If we fix the exploration
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TABLE III
EFFECT OF EXPLORATION RATE IN FINDING OPTIMAL SOLUTION
Exploration rate | Optimal selection | Packets until converged
Low No 2
Medium No 14
High Yes 41
Proposed
. Y 4
(adaptive) s

rate to realize a low or medium exploration rate, the algorithm
converges quickly to the final path, with 2 and 14 packets,
respectively. However, the algorithm may not converge to an
optimal solution since it may select some of the intermediate
nodes inaccurately. On the other hand, if a fixed high explora-
tion rate is selected, the optimal solution can be found faster,
but it takes an average of 41 packets to converge. The pro-
posed routing protocol finds the best path faster than fixed
exploration rates (with an average of 4 packets) and quickly
converges to the best solution. This means that the proposed
algorithm with an adaptive exploration policy outperforms the
fixed-rate algorithm both in terms of fast convergence and the
optimality of the solution.

Concluding, we observe how the adaptive protocol has a
lower overhead than high exploration methods, as it needs
fewer packets to learn the state of the network.

VI. SIMULATION RESULTS

To assess the performance of the proposed method, we
compare it against the state-of-the-art Q-routing algorithms
discussed in Section I, including (i) Random Exploration-
Exploitation Routing (REE-Routing), (ii) Probabilistic Explo-
ration Routing (PE-Routing), (iii)) Conventional Q-rout-
ing [18], (iv) Adaptive learning rates Full-Echo Q-routing
(AFEQ-routing) [24], and (v) Simulated Annealing based Q-
routing (SAHQ-routing) [58]. Methods (i) and (ii) are simu-
lated for the sake of comparison only. We compare only
against other Q-routing-based routing protocols, as previous
works have shown that the learning-based algorithms outper-
form AODV, OLSR, and GPSR, among other well-known
routing protocols [33], [59]. We simulate different network
scenarios using the piece-wise linear mobility (Fig. 3). This
model uses the entropy-maximizing Gaussian distribution for
the seed and the most uninformative uniform distribution for
the direction to simulate the worst-case scenario, although
other mobility models for UAV networks could be used. To
realize a fair comparison, we use the same set of trajectories
to test different algorithms.

The first set of comparative results is presented in Table IV,
in terms of the end-to-end transmission energy. We simulate
networks with different sizes (V = 10, N = 20) and three
velocity profiles of slow-speed (1, = 10,02 = 2.5), medium-
speed (ug = 25,03 = 5), and fast-speed (po = 50,07 = 10)
with @ = 5, 8 = 1 for all scenarios. The communication range
is R = 7500 meters. The proposed algorithm considerably
improves upon the performance of all algorithms consistently
by reducing the average energy consumption. The achieved
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TABLE IV
COMPARATIVE ANALYSIS: ENERGY CONSUMPTION OF DIFFERENT ROUTING
ALGORITHMS INCLUDING THE PROPOSED METHOD UNDER DIFFERENT NET-
WORK SIZES AND VELOCITY PROFILES

N =10 N =20

Slow Medium| Fast Slow Medium| Fast
REER 95.3 103.7 127.1 135.1 170.3 163.9
PER 146.3 146.5 149.5 269.0 289.0 246.6
QR 83.7 93.0 97.1 86.0 104.7 104.5
AFEQR 75.8 79.3 96.4 76.9 904 913
SAHQR 70.6 854 98.0 70.6 98.2 99.2
Proposed | 65.6 70.6 87.0 47.8 76.0 825
Gain 7 %= 11%- 10%- 32%- 16%- 10%-

55% 52% 42% 82% T4% 67%

TABLE V

PACKET DELIVERY RATE VERSUS COMMUNICATION RANGE
FOR DIFFERENT ALGORITHMS

R = 5000 R = 7500 R = 10000

N=10 | N=20 | N=10 | N=20 | N=10 | N=20
REER 245% | 509% | 82.0% | 833% | 942% | 96.6%
PER 18.6% | 41.1% | 70.1% | 73.2% | 86.5% | 91.8%
QR 89% | 389% | 772% | B54% | 99.9% | 99.9%
AFEQR 324% | 70.1% | 90.3% | 95.9% | 99.9% | 99.9%
SAHQR 289% | 61.4% | 90.3% 96% 99.1% | 99.9%
Proposed 324% | 70.6% | 90.3% | 96.3% | 100% | 99.9%

Gain (up to) | 264% 81% 29% 2% 16% 9%

gain ranges from 7% to 82% depending on the reference
method and the utilized network parameters. We observe that
our method offers higher gains for larger networks (N = 20),
and slower speeds (1o = 10,07 = 2.5).

The communication range R plays an essential role in the
performance of routing algorithms. It not only influences the
sparsity of the graph by affecting the node degrees but also
affects the connectivity of the network under the utilized rout-
ing algorithm. More specifically, a packet drop occurs when a
node has no neighbors within the communication range or the
selected nodes go beyond the communication range while
transmitting. The impact of the communication range on the
packet drop rate is presented in Table V for R =5 km, R =
7.5 km, and R = 10 km. It can be seen that our method has a
higher successful packet delivery rate compared to the base-
line conventional Q-routing (QR), and performs better or
almost equal to the rest of the methods. The gain in the packet
delivery ratio can go as high as 264% depending on the net-
work size (NN) and the communication range (K). For the
lower communication range (R = 5000 m), and smaller net-
works (/N = 10), the achieved gain (the reduction in packet
drop rate) is higher.

Next, we study the effect of the SA-based optimization on
the evolution of the Q-values that represent the expected
energy for a packet from the source node n; to the end destina-
tion ny through any of its seven neighbors (ns3,ng,...,n9).
The Q-value evolution of the seven neighbors is depicted in
Fig. 6 for three algorithms, including (i) SAHQ-routing with
no adaptability of T parameter, (ii) a Q-routing with high
exploration rate, and (iii) the proposed method. Each line rep-
resents the evolution of the Q-values when each of the
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Fig. 6. Q-table for an exemplary source node n; to send a packet to destina-
tion np through any of its seven neighbors (ng,n4,...,ng) under different
routing protocols including (top) SAHQ-routing with non-adaptive parameter
T [58], (middle) high-exploration Q-routing, and (bottom) the proposed
method with flexible exploration rate.

neighbors is selected as the next bode. It is shown how Q-val-
ues converge to the optimal solution over time when more
packets are sent. It can be seen that the SAHQ-routing does
identify the best next node (8) (after 125 rounds) but at a
much lower rate compared to our method (after 40 rounds).
Also, its recovered end-to-end path does not seem to be opti-
mal (despite finding the best second node) since the minimum
value in the Q-table is 63.5 Mega Joule (MJ) for SAHQ-rout-
ing, compared to the 52.2 MJ for our method. A similar gain
is achieved for our method, compared to the Q-routing with
high exploration. Nevertheless, our method converges to the
optimal solution faster than the Q-routing with high explora-
tion (40 rounds in contrast to 70 rounds, respectively). In
short, our solution converges to the optimal value at a faster
rate than the other two competitor methods. This gain comes
from the capability of our method in adapting to the dynamic-
ity of the network.

Fig. 7(a) (top row) illustrates the evolution of the temper-
ature parameter 1" over time. As described previously, T is
directly proportional to the exploration rate, and its natural
behavior is exponential declining (i.e., f(z) = e~%) iteration
by iteration over time, as shown in the top-right most figure
for the baseline method with non-adaptive 7. However, our
method adjusts the temperature cooling rate by examining
the changes in the experienced consecutive Q-values. We
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observe that for a low-speed network, there are fewer explo-
ration rate adjustment epochs compared to the fast-moving
network. Likewise, Fig. 7(b) presents the packet transmis-
sion energy for different networking scenarios in each
curve. Abrupt changes in the energy consumption are corre-
sponding to selecting a different optimal path by the algo-
rithm. We can see that for a network with slow-moving
nodes, we experience fewer sharp transitions, compared to
the network with faster nodes, as expected. This shows the
reasonable operation of the proposed method. It is notewor-
thy that we observe fewer fluctuations for the baseline
method with non-adaptive 7, compared to the proposed
method for high-speed networks. This is not necessarily a
desirable behavior since it can lead to selecting non-optimal
paths by missing the newly emerged optimal links when the
network topology changes drastically. Therefore, extremely
fast switching to choose the optimal path may go against
the reliability and stability of the communication. In Fig. 8,
we analyze the performance of the communication system
to show that stability and reliability are not a concern. We
use a slow network setup to see the effect of changing paths
at the lowest dynamic rate. As shown, we observe that the
proposed method with adaptive exploration rate selects the
optimal path. In contrast, the routing protocol which uses
SA with non-adaptive temperature misses the optimal links.
Also, if we study the impact of switching paths on the sta-
bility and reliability of the network, we observe that in this
case, the non-adaptive approach has more variability in
choosing paths than the proposed method. Therefore, for
our design, changing paths will depend on the variability of
the network to not miss optimal paths when the network
topology changes, and not compromising the stability of the
communication.

In Fig. 9, it is seen that the average temperature (1) value
for the SA algorithm increases for more dynamic networks
with faster mobile nodes. It implies that we explore more often
for faster networks to find newly emerged optimal paths since
T is proportional to the exploration rate. We observe that the
average temperature varies around 8.6% from low speed to
medium speed networks and around 10.6% from medium to
high-speed networks. Without the proposed method of con-
trolling 71" based on the measured Q-value change rates, we
have a T" parameter that always declines over time and hence
misses the opportunity of discovering new paths when the net-
work topology undergoes abrupt changes.

Finally, we compare the performance of the proposed
inferred SA method against other heuristic algorithms, such as
GD, GA, and PSO, under different average node speeds. The
results are presented in Table VI. All heuristic algorithms
offer a similar outcome in terms of the average transmission
energy. However, the proposed modified SA method, where
the exploration rate is controlled by an adaptive temperature
cooling process, achieves a much higher energy efficiency.
Particularly, the results show that the proposed method per-
forms around 20% better than the conventional optimization
algorithms in terms of energy consumption. The improvement
is slightly higher for bigger networks.
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Fig. 7. a) The evolution of the temperature parameter T for different network scenarios with (left) slow-speed, (center) fast-speed, and (right) protocol with no

temperature adaptability [58]; b) End-to-end energy consumption for different network scenarios.
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Fig. 8. End-to-end energy of the proposed method vs non-adaptive tem-
perature method to show the stability and reliability of the proposed
method.
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Fig. 9. The average of the temperature parameter T" over time for the pro-
posed method, as well as the baseline method with non-adaptive tempera-
ture [58] for networks with different average speeds.

TABLE VI
COMPARATIVE ANALYSIS FOR DIFFERENT HEURISTIC ALGORITHMS IN TERMS
OF THE AVERAGE TRANSMISSION ENERGY

N =10 N=2
Slow Medium | Fast Slow Medium| Fast
PSO/GA/GD | 8328 | 79.67 79.70 | 76.98 | 78.95 T72.64
Proposed 67.26 | 62.18 6426 | 5872 | 57.44 55.64
(adaptive SA)
Gain 19.23%| 21.95% | 19.37%| 23.72%| 27.25% | 23.40%

VII. CONCLUSION

In this work, we introduced a novel fully-echoed Q-routing
protocol with adaptive learning rates optimized by the Simu-
lated Annealing algorithm based on the inferred level of net-
work dynamicity. Our method improves upon different
implementations of Q-routing in terms of the convergence
rate, the optimality of the end solution, and the adaptability to
the network dynamicity. This gain is achieved by controlling
the exploration rate of the Q-routing by regulating the temper-
ature cooling rate of the utilized SA optimization based on the
variation rate of the Q-values. Simulation results suggest that
our algorithm achieves a reduction in the energy consumption
between 7% to 82% and an increase of up to 264% as for a
successful packet delivery ratio, compared to other Q-routing
algorithms. The choice of SA is essential since the proposed
SA-based method with adaptive temperature cooling process
outperforms the same routing algorithm with other heuristic
optimization methods, including GA, GD, and PSO. The pro-
posed algorithm can solve the two key issues of UAV
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networks, namely the limited energy consumption and the net-
work connectivity loss. As a future extension of this work, we
are working toward developing an aggressive reinforcement
learning predictor, as a low complexity and scalable method
capable of predicting non-linear changes in the link perfor-
mance metrics under extreme dynamicity. Also, developing a
more formal way of predicting per-node mobility and incorpo-
rating it into the optimization framework can be pursued as
another future direction. A potential approach would be infer-
ring the velocity of the nodes based on how fast the metrics
change using a Bayesian inference method and using it to
update Q-values in online Q-routing protocols.
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