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Abstract—Simulation of quantum systems is challenging due to
the exponential size of the state space. Tensor networks provide
a systematically improvable approximation for quantum states.
2D tensor networks such as Projected Entangled Pair States
(PEPS) are well-suited for key classes of physical systems and
quantum circuits. However, direct contraction of PEPS networks
has exponential cost, while approximate algorithms require com-
putations with large tensors. We propose new scalable algorithms
and software abstractions for PEPS-based methods, accelerating
the bottleneck operation of contraction and refactorization of a
tensor subnetwork. We employ randomized SVD with an implicit
matrix to reduce cost and memory footprint asymptotically.
Further, we develop a distributed-memory PEPS library and
study accuracy and efficiency of alternative algorithms for PEPS
contraction and evolution on the Stampede2 supercomputer.
We also simulate a popular near-term quantum algorithm,
the Variational Quantum Eigensolver (VQE), and benchmark
Imaginary Time Evolution (ITE), which compute ground states
of Hamiltonians.

Index Terms—Numerical simulation, Parallel algorithms,
Quantum mechanics, Quantum computing

I. INTRODUCTION

The degrees of freedom required to directly represent a
quantum state grow exponentially with respect to the size of
the system. However, for slightly entangled quantum states,
polynomial-size representations are possible by using tensor
networks [1], [2]. 1D tensor networks, also known as matrix
product states (MPS), have proven successful in modeling 1D
strongly correlated quantum systems [3], and various types of
tensor networks have been invented to generalize this method
to higher dimensions [4]–[7]. Among these variations, the 2D
tensor lattice networks, known as projected entangled pair
states (PEPS), enable effective representation of many physical
systems of interest due to their 2D structure and are therefore
widely used in condensed matter physics [4], [8], [9]. For
the same reason, PEPS are also suitable to model near-term
quantum computers with 2D architectures [10], [11]. In fact,
this method has been recently applied to a large-scale exact
simulation of 2D random quantum circuits [12].

Computations with PEPS involve high-order tensors and are
computationally demanding. For example, exact contraction
of PEPS to a scalar to calculate an expectation value is a
#P-complete problem [13]. Approximations must be taken
to avoid exponential cost, but the order of complexity is
still high. Given a PEPS network of bond dimension r, i.e.,
composed of tensors that are of dimension r × r × r × r,
and maintaining approximate intermediates that have bond

dimensions no larger than some m ∝ r2, state-of-the-art PEPS
contraction algorithms have a cost that scales as O(m3r2) via
an iterative optimization procedure.

In search for an efficient parallel implementation for
these PEPS algorithms, we propose an abstraction called
einsumsvd for operations that contract a set of tensors into
one and then refactorize it into two new tensors as described
in Section II. This abstraction encapsulates the most costly
operations in many tensor network applications, and it can be
implemented with a variety of algorithms. In Section IV, we
discuss an approach for performing einsumsvd that lever-
ages randomized singular value decomposition (SVD) with
implicit applications of the tensor operator. When applying this
idea to the contraction of PEPS, we obtain a new algorithm
that minimizes the cost relative to state-of-the-art approaches,
while requiring only a single pass over the tensors. In the same
section, we also present an intermediate caching strategy that
further lowers the cost of calculating expectation values by
trading space for time.

We implement these algorithms as part of a new Python
library called Koala for PEPS-based simulations of quantum
systems (Section V). This library supports various PEPS evolu-
tion and contraction algorithms, including our improvements,
in the sequential/threaded setting using NumPy [14], the GPU
setting using CuPy [15], and the distributed-memory setting
using Cyclops [16], [17]. To improve the performance with
Cyclops, we propose a parallel approach for tensor orthog-
onalization that avoids matricization of a high-order tensor,
reducing synchronization between processors. This approach
forms small Gram matrices in local memory so that matri-
cization can be done locally while large-tensor contractions
are kept distributed.

We evaluate the proposed algorithms and software in Sec-
tion VI via a performance study of the PEPS evolution
and contraction methods, using single-node and many-node
execution on the Stampede2 supercomputer. Our experimental
results demonstrate that the Gram matrix method improves the
parallel performance of PEPS evolution up to 3.6X, and the
randomized SVD approach improves the performance of PEPS
contraction up to 22.4X in the sequential/threaded setting and
up to 21.3X in the distributed-memory setting (combined with
the Gram matrix method). The performance improvement due
to the proposed caching optimization is also quantified in this
section. For parallel scaling, we perform strong and weak
scaling tests with up to 256 nodes with 64 cores per node
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and show good weak scaling performance with respect to the
tensor size (i.e. bond dimension).

As driver applications, we consider a common method for
ground state calculation using tensor networks, imaginary
time evolution (ITE), as well as a simulation of a prominent
candidate algorithm for near-term quantum computers, the
variational quantum eigensolver (VQE). These two applica-
tions, which are representative of many algorithms in the
domain, are both implemented by the PEPS evolution and
contraction primitives provided by our library. In Section
VI-D, we study the numerical accuracy achieved by PEPS
simulations with various bond dimensions for ITE and VQE.
Our results demonstrate that higher accuracy is achieved by the
use of larger tensors (i.e. larger bond dimension) with PEPS.

Overall, this paper makes the following contributions:

• a new approach for PEPS contraction that minimizes cost
and does not require successive rounds of optimization,

• an automatic mechanism to cache intermediate contrac-
tion results during PEPS contraction,

• novel distributed-memory implementations of multiple
PEPS contraction algorithms,

• a software library, Koala, providing sequential and par-
allel primitives for PEPS-based approximate simulations
of quantum systems as well as encapsulating above
algorithms via new software abstractions,

• to the best of our knowledge, the first study of accuracy
and scalability of massively-parallel approximate PEPS
algorithms with distributed-memory tensors.

A comparison between this work and related work is presented
in Section VII.

II. BACKGROUND

In this section, we provide a brief review on tensor networks
and their applications with a focus on the concepts used in this
paper. Broader surveys on these topics are available [1]. We
list notational conventions employed in the paper in Table I.

Notation Meaning

A (bold, calligraphic capital letters) Tensor network

A (bold capital letters) Matrix or high-order tensor

a (bold lowercase letters) Vector

aijk Element of the tensor A

a∗, A∗
Complex conjugate of a scalar
a or conjugate transpose of an
operator A

A ∈ Cd1×···×dn Complex tensor A of dimen-
sion d1 × · · · × dn

A : Cp1×···×ps 7→ Cq1×···×qt Complex tensor A treated as a
linear operator

|ψ〉 Quantum state labeled by ψ

〈ψ| Conjugate transpose of |ψ〉

Table I: Common notation used in this paper.

A. Quantum States as Tensors

The state |ψ〉 of a quantum computer with n qubits can be
described by a unit vector in C2n . By choosing 2n orthonormal
basis vectors/states to be denoted as |i〉 with i = i1 · · · in ∈
{0, 1}n, |ψ〉 can be written as

|ψ〉 =
∑

i∈{0,1}n
t
(ψ)
i |i〉 .

Here, the amplitudes t(ψ)i are elements of an order n tensor
T (ψ) ∈ C2×···×2. The inner product of two quantum states
|ψ〉 and |φ〉 is given by

〈φ|ψ〉 =
∑

i∈{0,1}n
(t

(φ)
i )∗t

(ψ)
i ,

and an operator H acting on a quantum state is a linear
transformation given by

|φ〉 =H |ψ〉 ⇒ t
(φ)
i =

∑
j∈{0,1}n

hijt
(ψ)
j .

The expectation value of the Hermitian operatorH for a quan-
tum state ψ is defined by 〈ψ|H|ψ〉, following the definitions
of operators and inner products.

A quantum gate is an operator that can act on a small subset
of qubits. For example, a single qubit gate G(k) acting on the
kth qubit gives

|φ〉 = G(k) |ψ〉 ⇒ t
(φ)
i =

1∑
jk=0

g
(k)
ikjk

t
(ψ)
i1···ik−1jkik+1···in , (1)

while a 2-qubit gate G(k,l) acting on qubits k, l with k < l
gives

|φ〉 = G(k,l) |ψ〉 ⇒ t
(φ)
i =

1∑
jk=0

1∑
jl=0

g
(k,l)
ikiljkjl

t
(ψ)
i1···jk···jl···in .

(2)

These operator applications are particular examples of tensor
contractions, which allow for different types of products
among tensors.

B. Tensor Networks for Quantum States

The contraction of a set of tensors defines a tensor network,
which could serve to provide a tensor decomposition [18], [19]
of a quantum state.

The matrix product state (MPS) [20], [21] is a 1D tensor
network that describes a quantum state ψ with n sites by n
tensors M (1), · · ·M (n), such that

t
(ψ)
i1···in =

∑
k1···kn−1

m
(1)
i1k1

m
(2)
i2k1k2

· · ·m(n−1)
in−1kn−2kn−1

m
(n)
inkn−1

.

By convention, i1, · · · , in are called physical indices and
k1, · · · , kn−1 are called bond indices, while their dimensions
are called physical dimensions and bond dimensions respec-
tively.



An operator H may also be described as a 1D tensor
network, which is known as the matrix product operator
(MPO) [1], [22], [23]:

hi1···inj1···jn =
∑

k1···kn−1

m
(1)
i1j1k1

m
(2)
i2j2k1k2

· · ·m(n)
injnkn−1

.

The projected entangled pair state (PEPS) [21] is a 2D
tensor network that represents a quantum state with n2 sites
on a square lattice by n2 tensors in a way analogous to MPS.
These n2 tensors are arranged on an n × n grid, so one can
denote the tensor at the p’th row and q’th column as M (p,q).
Then, each amplitude of a quantum state |ψ〉 is defined as

t
(ψ)
i1···in2

=
∑
k

∏
pq

m
(p,q)

ipn+qk(p,q) ,

where k denotes all the indices shared by tensors in the PEPS
and k(p,q) represents all the indices of the site tensor M (p,q)

that are shared with other site tensors. Similarly to MPS,
indices i1 · · · in2 are called physical indices and k(p,q) are
called bond indices.

A tensor network can be visualized by a graph (tensor
diagram), in which each vertex denotes a tensor and each edge
denotes an index. Tensor diagrams describing MPS, MPO, and
PEPS are displayed in Figure 1.

Figure 1: Tensor diagrams for (a) an MPS, (b) an MPO and
(c) a 3× 3 PEPS.

C. Basic Tensor Network Computations

We now describe common computational primitives to
transform tensor networks, focusing on PEPS.

1) One-Site and Two-Site Operators: To apply a one-site
operator G(1) on the site M (p,q) of a PEPS, it suffices to com-
pute the updated site M̃

(p,q)
by performing the contraction,

m̃
(p,q)
ik1k2k3k4

=
∑
j

g
(1)
ij m

(p,q)
jk1k2k3k4

. (3)

To apply a two-site operator G(2) on two neighboring sites
M (p,q) and M (p,q+1), we consider a variant of the simple
update algorithm [24]. Two site tensors are contracted with
the operator and then decomposed into two new site tensors
M̃

(p,q)
and M̃

(p,q+1)
,∑

k′4

m̃
(p,q)
i1k1k2k3k′4

m̃
(p,q+1)
i2k′4k5k6k7

≈
∑
j1j2k4

g
(2)
i1i2j1j2

m
(p,q)
j1k1k2k3k4

m
(p,q+1)
j2k4k5k6k7

. (4)

This contraction and refactorization procedure is described by
the first and last tensor diagrams in Figure 4. Applying a two-
site operator on non-neighboring sites is possible by applying
a chain of two-site operators (i.e. SWAP gates) on neighboring
sites.

The contraction and refactorization necessary to apply two-
site operators may be executed by contracting the tensors
(utilizing einsum in Python’s NumPy), followed by reshap-
ing the result into a matrix, computing a low-rank matrix
factorization such as the truncated SVD, and reshaping the
resulting factors into the appropriate tensors. We refer to
the combined refactorization operation as einsumsvd. This
primitive takes as input a tensor network and produces a two-
site tensor network with a single virtual leg connecting the
two sites. With the notion of einsumsvd, we can rewrite
Equation (4) as

M̃
(p,q)

,M̃
(p,q+1) ← einsumsvd(G,M (p,q),M (p,q+1)).

Figure 2 depicts other examples of einsumsvd.

Figure 2: einsumsvd examples: (a) a 5-site tensor network
is contracted and then refactorized into two sites. (b) PEPS
contraction step in which two tensors that share a neighbor

are merged and the combined dimension is truncated.

2) Amplitudes and Expectation Values: A given amplitude
of a state |ψ〉, such as t(ψ)i , may be obtained by computing
〈i|ψ〉. When represented by PEPS, the bond dimension of
|i〉 is 1 and each component of |i〉 can be applied to the
respective site of |ψ〉, resulting in a contraction of a PEPS
without physical dimensions, i.e., a one-layer contraction.

Consider a Hermitian operator H composed of local terms
H =

∑
iHi, where Hi are operators acting on local sites

of the PEPS. One way to calculate its expectation value is to
calculate it as a sum of the expectation values of Hi,

〈ψ|H|ψ〉 =
N∑
i=1

〈ψ|Hi|ψ〉 =
N∑
i=1

〈ψ|φi〉 . (5)

|φi〉 can be obtained by the algorithms of applying local opera-
tors on |ψ〉. The calculation of 〈ψ|φi〉 involves a contraction of
two PEPS, i.e. a two-layer contraction, as depicted in Figure 3.

Both one-layer and two-layer contractions require exponen-
tial cost in the number of sites if done in an exact way. A
variety of approximate schemes with polynomial cost exists,
which we survey in Section III.

D. Tensor Network Applications

Most tensor network computations are based on the oper-
ator application and contraction primitives introduced in the



Figure 3: Tensor diagram depicting the inner product of two
PEPS networks.

previous subsection. We provide a technical introduction to
two representative methods below.

1) Imaginary Time Evolution: Consider a Hamiltonian
H =

∑N
j=1Hj , where Hj are local operators. Imaginary

time evolution (ITE) evolves a quantum state toward its ground
state by repetitively applying the ITE operator, e−τH , in effect
computing power iteration on the matrix e−τH , which gener-
ally converges to the eigenvector with the smallest eigenvalue
of H . ITE performs this iteration via the time-evolution block
decimation (TEBD) algorithm, which enables the approximate
evolution of a tensor network state by decomposing e−τH

into a sequence of local operators using the Trotter-Suzuki
decomposition: e−τH =

∏N
j=1 e

−τHj + O(τ2). Since each
Hj is a one-site or two-site operator, so is e−τHj . Conse-
quently, a Hamiltonian with N local terms requires application
of N local operators for each ITE step. The Rayleigh quotient
〈ψ|H|ψ〉
〈ψ|ψ〉 of the final state is computed as an approximation to

the ground state energy.
2) Quantum Circuit Simulation: Following the prescription

for gate application described in Section II-A, any quantum
circuit can be expressed in terms of one-site and two-site oper-
ators acting on an initial state (e.g. a basis state). Simulation of
quantum circuits is useful for the development and verification
of quantum algorithms and software. Approximate simulation
additionally sheds insight on the propagation of error within
quantum algorithms, which is useful for understanding the
effect of noise on computations with near-term quantum de-
vices [25]. Among the quantum algorithms for near-term quan-
tum devices, the variational quantum eigensolver (VQE) [26]
is one of the most promising.

VQE is a quantum-classical hybrid algorithm that computes
the ground state of a Hamiltonian H by optimizing a quantum
state parameterized by a quantum circuit. The quantum part
of the algorithm evaluates the objective 〈ψ(θ)|H|ψ(θ)〉 for
given parameters θ, and the classical part of the algorithm
takes the measurement results from the quantum device and
runs classical optimization algorithms to tune the circuit pa-
rameters. A careful design of the circuit structure, depending
on the Hamiltonian of interest, is critical in improving the
optimization efficiency and achieving desirable accuracy. A
number of efforts have been made to design more efficient
circuits for different Hamiltonians [27] and to apply the
algorithm to quantum chemistry simulations [28]–[30].

III. PREVIOUS WORK ON PEPS ALGORITHMS

Our contributions build directly on existing algorithms for
evolution and contraction of PEPS.

A. PEPS Evolution Algorithms

Direct evaluation of Equation 4 reveals a time complexity
of O(d3r9) and space complexity of O(d2r6), where d is the
size of the physical dimension and r is the size of the bond
dimension. Assuming d � r, the time and space complexity
can be reduced to O(d2r5) and O(dr4) respectively by a QR
factorization of the two site tensors prior to the application of
the operator [25], as shown in Algorithm 1 and Figure 4.

Algorithm 1 Operator application by QR-SVD

Input: two site tensors M (p,q) and M (p,q+1),
a two-site operator G

Output: updated site tensors M̃
(p,q)

and M̃
(p,q+1)

1: Q(p,q),R(p,q) ← QR(M (p,q)) {step (1) → (2)}
2: Q(p,q+1),R(p,q+1) ← QR(M (p,q+1)) {step (1) → (2)}
3: R̃

(p,q)
, R̃

(p,q+1) ← einsumsvd(G,R(p,q),R(p,q+1))
{step (2) → (4)}

4: M̃
(p,q) ← Q(p,q)R̃

(p,q) {step (4) → (5)}
5: M̃

(p,q+1) ← Q(p,q+1)R̃
(p,q+1) {step (4) → (5)}

6: return M̃
(p,q)

, M̃
(p,q+1)

Figure 4: Tensor diagrams describing QR-SVD
(Algorithm 1).

B. PEPS Contraction Algorithms

Many approximate PEPS contraction algorithms have been
proposed in pursuit of reducing memory footprint while main-
taining high accuracy. These include the original Boundary
MPS (BMPS) [4] algorithm and its variants [31]–[33], Tensor
Renormalization Group (TRG) [34] and many TRG-inspired
renormalization group methods [35]–[42], Corner Transfer
Matrix (CTM) [43], [44], as well as contraction algorithms for
new 2D tensor network structures based on PEPS [45], [46].
We focus on a variant of BMPS for one-layer and two-layer
contractions as introduced below.

1) One-Layer BMPS: Let P be an n-by-n PEPS of bond
dimension r without physical indices and P(1), · · · ,P(n) be
the rows of P . Treating P(1) as an MPS and P(2), · · · ,P(n)

as MPOs, contracting P by BMPS can be considered as apply-
ing MPOs P(2), · · · ,P(n) on the MPS P(1) approximately.



The approximation is necessary for avoiding exponential cost
and it is done by truncating the bond dimension of result MPS
to a predefined m. This approach is described in Algorithm 2.

Algorithm 2 Boundary MPS

Input: n× n PEPS P consisting of rows {P(1), · · · ,P(n)},
algorithm ApproxApply, truncation bond dimension m

Output: scalar v
1: S ← P(1)

2: for i = 2, 3, . . . , n do
3: S ← ApproxApply(S,P(i),m)
4: end for
{S is an MPS without physical indices at this point}

5: v ← contracting S to a scalar
6: return v

The approximate application of an MPO on an MPS can
be performed in various ways. The original BMPS algorithm
[4] involves solving a linear equation ET = P for one site
T while fixing the other sites (the environment E) at a time
with respect to the target MPS P . This method, while having
a low cost of O(dm2r3) + O(m3r2) if the MPO has a two-
layer structure as discussed below [33], is typically done with
multiple rounds of alternating optimization of the sites of
the MPS. Our approach is most closely related to the zip-up
algorithm proposed in [47], where a series of einsumsvds
are conducted to truncate the bond dimension of P , as shown
in Figure 5 and described in Algorithm 3. We also note that
this method can incorporate canonicalization (orthogonaliza-
tion of the tensor network) to minimize amplification of SVD
truncation error. Specifically, canonicalization can be achieved
by absorbing singular values into V (i−1) or V (i) for different
rows of PEPS [47] in an alternating manner.

Figure 5: Apply MPO on MPS approximately (Algorithm 3).

2) Two-Layer BMPS: Given two n-by-n PEPS A and B
of bond dimension r1 and r2 respectively, their inner product
can be computed in two ways. The naive way is to contract
over all the physical indices between A and B to create a
new n-by-n PEPS P with bond dimensions r = r1r2 and
no physical dimensions, and then perform one-layer BMPS.
However, forming the combined P requires O(r41r

4
2) memory,

while storing A and B separately only needs O(r41 + r42). An
improvement is to maintain the two-layer structure and only
contract the corresponding sites from two layers to one layer
when needed, which is numerically equivalent to the naive
way but saves memory. This approach is often used in practice

Algorithm 3 Apply MPO on MPS approximately

Input: MPS S consisting of tensors {S(1), · · · ,S(n)},
MPO O consisting of tensors {O(1), · · · ,O(n)},
algorithm einsumsvd, truncation bond dimension m

Output: MPS S′

1: V (1) ← Contract S(1) and O(1) {v(1)jkl ←
∑
i s

(1)
ij o

(1)
ikl}

2: for i = 2, 3, . . . , n do
3: V (i−1),V (i) ← einsumsvd(V (i−1),S(i),O(i),m)
4: end for
5: S′ ← {V (1), · · · ,V (n)}
6: return S′

and referred to interchangeably with the naive approach in the
literature. In Section IV, we show that when einsumsvd is
equipped with implicit randomized SVD, the implicit structure
of the two-layer BMPS approach yields reduced computational
complexity.

IV. ALGORITHMIC IMPROVEMENTS TO PEPS SIMULATION

In this section, we describe our algorithmic improvements
to basic PEPS computations, specifically einsumsvd and the
expectation value calculation introduced in Section II-C.

A. Implicit Tensor Network Refactorization

Randomized SVD is an algorithm that approximates trun-
cated SVD of rank r of an m-by-n matrix with time com-
plexity O(mnr) [48] by the use of orthogonal iteration. This
algorithm has been directly applied to replace the full SVD
algorithm to apply operators on MPS [49], which reduces
the cost by one order of the physical dimension. Here we
apply this idea more generally to einsumsvd, resulting in
asymptotic reductions in cost for one-layer and two-layer
BMPS contraction.

Algorithm 4 Randomized SVD

Input: an operator A : Cn1×···×nt 7→ Cm1×···×ms , rank r,
number of iteration k

Output: an approximated truncated SVD of the input operator
tensor operator U ∈ Cm1×···×ms×r: Cr 7→ Cm1×···×ms ,
diagonal matrix Σ ∈ Cr×r,
tensor operator V ∈ Cr×n1×···×nt : Cr 7→ Cn1×···×nt

1: Q← draw a random tensor from [−1, 1]n1×···×nt×r

{Q : Cr 7→ Cn1×···×nt}
2: P ← orthogonalize(AQ) {P : Cr 7→ Cm1×···×ms}
3: for i = 1, 2, . . . , k do
4: Q← orthogonalize(A∗P ) {Q : Cr 7→ Cn1×···×nt}
5: P ← orthogonalize(AQ) {P : Cr 7→ Cm1×···×ms}
6: end for
7: Ũ ,Σ,V ← SVD(P ∗A) {P ∗A: Cn1×···×nt 7→ Cr}
8: U ← PŨ
9: return U ,Σ,V

As shown in Algorithm 4, randomized SVD does not require
an explicit form of the operator A but only needs to know



BMPS IBMPS Two-layer IBMPS

Time complexity O(n2m3r4) O(n2m2r4+n2m3r2) O(n2dm2r3 + n2dm3r2)

Space complexity O(max{m2r3, r4}) O(max{m2r2, r4}) O(max{m2r2, r4})

Table II: The asymptotic time and space complexity of computing 〈P |P〉 using BMPS, IBMPS and two-layer IBMPS for an
n-by-n PEPS P of bond dimension

√
r, physical dimension d, and truncation bond dimension m.

how to apply A and A∗. Thus, the operator A could be given
implicitly as an uncontracted tensor network. Depending on
the structure of the tensor network A, it is possible to perform
AQ and A∗P more efficiently and with less memory than by
explicitly forming A and applying it.

A similar implicit method has been specifically applied
to the TRG algorithm [50]. Here, we apply this method to
the einsumsvd step of the BMPS contraction algorithm
(Algorithm 3). With the best choice of contraction order,
the use of implicit methods in BMPS yields an asymptotic
reduction in cost and, in some cases, memory footprint, when
compared with a naive implementation of einsumsvd. We
refer to this approach as implicit BMPS (IBMPS) contraction.
Two-layer BMPS can achieve greater benefit with the use of
implicit randomized SVD, as it naturally maintains tensors in
implicit forms. We compare the asymptotic costs for BMPS,
IBMPS, and two-layer IBMPS in Table II.

B. Intermediate Caching for PEPS Expectation Values

To compute expectation values of PEPS efficiently, we de-
velop a caching strategy for consecutive executions of BMPS
(Algorithm 2) when evaluating Equation (5). We observe that
these contractions share common intermediates due to the
locality of Hi, and our approach reuses partial contractions
of rows (or columns) of PEPS to compute 〈ψ|Hi|ψ〉.

For example, consider a 4×4 PEPS and two local operators
H1 and H2 both acting on the third row of the PEPS, as
shown in Figure 6. We cache the two boundary MPS that
represent the partial contraction results of the first two rows
and last row to accelerate the calculation of 〈ψ|H1|ψ〉 and
〈ψ|H2|ψ〉.

Figure 6: Shared intermediates for expectation values of two
local operators on a 4× 4 PEPS.

When applied to an n × n PEPS, this caching strategy
requires two full two-layer PEPS contractions to generate
all the cached intermediates, and then each local-operator
expectation value is calculated with a 3×n PEPS contraction.
This strategy can be easily extended to compute a collection
of expectation values, e.g., to compute gradients of parameters

of local operators (as used in the Adapt-VQE method [29]).
In Section VI, we demonstrate the speed-up achieved by this
strategy (see Figure 9).

Besides evaluating Equation (5) with intermediate caching,
〈ψ|H|ψ〉 can be calculated in an alternative approach. Using
the Trotter-Suzuki decomposition, eτH =

∏N
j=1 e

τHj +

O(τ2), as in ITE, and the Taylor expansion, eτH = I+τH+
O(τ2), one can approximate

〈ψ|H|ψ〉 = 1

τ

〈ψ| N∏
j=1

eτHj |ψ〉 − 〈ψ|ψ〉

+O(τ). (6)

In comparison with the previous method, Equation (6) re-
quires one two-layer PEPS contraction as opposed to two, but
application of an additional ITE step would grow the bond
dimension of |φ〉 = ∏N

j=1 e
tHj |ψ〉 or require approximation.

V. KOALA: HIGH-PERFORMANCE PEPS SIMULATION

We implement the algorithms that are discussed above
within an open-source Python library called “Koala”, which
is available at https://github.com/cyclops-community/koala.

A. Interface and Features

Koala provides explicit primitives for constructing PEPS
networks, applying operators, and computing expectation val-
ues. Tensor library backends, as well as different algorithms
for applying operators and contracting PEPS, can be specified
as arguments to these primitive routines. An example code for
constructing a PEPS, applying operators, and computing an
expectation value is below.

from koala import peps, Observable
from koala.peps import QRUpdate, BMPS
from tensorbackends.interface import \
ImplicitRandomizedSVD

# Create a 2-by-3 PEPS in distributed memory
qstate = peps.computational_zeros(
nrow=2, ncol=3, backend=’ctf’

)

# Apply one-site and two-site operators with QR-SVD
Y = qstate.backend.astensor([...]).reshape(2,2)
CX = qstate.backend.astensor([...]).reshape(2,2,2,2)
qstate.apply_operator(Y, [1])
qstate.apply_operator(CX, [1,4], QRUpdate(rank=2))

# Calculate the expectation value with IBMPS
H = Observable.ZZ(3, 4) + 0.2 * Observable.X(1)
result = qstate.expectation(
H, use_cache=True,
contract_option=BMPS(ImplicitRandomizedSVD(rank=4))

)

https://github.com/cyclops-community/koala


B. Distributed Tensor Parallelization

Koala supports both sequential and parallel execution. This
portability is achieved by an abstraction layer of tensor data
types and operations that enables different tensor libraries to be
used with little change in the source code. Currently, the tensor
libraries we support are NumPy, CuPy, and Cyclops. Among
them, NumPy provides sequential and threaded routines for
tensor computations [14], CuPy implements such routines that
run on GPUs [15], and Cyclops allows similar operations in
distributed memory [16]. Cyclops distributes each tensor over
all processors and provides a Python interface for einsum
operations, which can specify the contraction of any tensor
network into a single tensor. Cyclops also provides a front-
end to routines in the ScaLAPACK library [51] for distributed
matrix factorization.

C. Avoiding Tensor Reshaping

The standard approach to einsumsvd involves performing
tensor contractions, matricizing (unfolding) the result, com-
puting a low-rank matrix factorization, and folding the factors
into tensors of appropriate shape. Folding and unfolding of
this type are logical transformations that need not modify the
data and often have negligible cost in sequential execution.
However, these two operations can be nontrivial if each tensor
is distributed on a processor grid (via any standard distribution,
including cyclic and blocked layouts). Since both the matrix
and the tensor unfoldings must be mapped to different proces-
sor grids for corresponding computations, folding/unfolding
requires expensive redistribution of data. Therefore, while
calls to NumPy’s reshape are practically free, Cyclops’
reshape can become a bottleneck.

We address this bottleneck within implicit einsumsvd
(Algorithm 4) and QR-SVD (Algorithm 1), by performing
orthogonalization via eigendecomposition of a Gram matrix
formed by tensor contraction. For the QR factorizations done
in QR-SVD, forming the Gram matrix requires a reshape
of a small tensor. For orthogonalization in einsumsvd, no
reshape of the Gram matrix is necessary. In both cases, this
matrix is small, so the latency overhead of using distributed
memory is alleviated by performing computations on the Gram
matrix sequentially. Algorithm 5 describes this general ap-
proach. When Algorithm 5 is applied to QR-SVD, we can also
perform einsumsvd for operator application sequentially by
leveraging the fact that the operator G and the R factors are
all small enough to fit into local memory.

VI. RESULTS

We benchmark our implementation of the PEPS algorithm
variants that are discussed above. The overall accuracy of
PEPS-based simulation for two example applications is also
studied to demonstrate how accuracy is affected by the bond
dimension. Parallel experiments are all done on the Stampede2
supercomputer using 64 cores per node for Cyclops and 32
MKL [52] threads on one node for NumPy. The number of
processes per node (PPN) for Cyclops is always chosen as 64
unless otherwise specified.

Algorithm 5 Reshape-avoiding orthogonalization

Input: a distributed tensor A ∈ Cm1×···×ms×n1×···×nt such
that

∏s
i=1mi �

∏t
i=1 ni

(A represents an operator Cn1×···×nt 7→ Cm1×···×ms )
Output:

distributed isometric tensor operator Q ∈
Cm1×···×ms×n1×···×nt :

Cn1×···×nt 7→ Cm1×···×ms

distributed tensor operator R ∈ Cn1×···×nt×n1×···×nt :
Cn1×···×nt 7→ Cn1×···×nt

1: In parallel, Compute G← A∗A
{G : Cn1×···×nt 7→ Cn1×···×nt}

2: Gather G data among processors
3: Reshape G into a matrix G ∈ Cn1···nt×n1···nt

4: Compute eigendecomposition X , Λ of G such that
G =XΛX∗

5: Compute R←
√

ΛX∗ ∈ Cn1···nt×n1···nt

6: Compute P ← R−1 ∈ Cn1···nt×n1···nt

7: Reshape R into a tensor R ∈ Cn1×···×nt×n1×···×nt

{R : Cn1×···×nt 7→ Cn1×···×nt}
8: Reshape P into a tensor P ∈ Cn1×···×nt×n1×···×nt

{P : Cn1×···×nt 7→ Cn1×···×nt}
9: Distribute R and P among different processors

10: In parallel, compute Q← AP
11: return Q,R

A. PEPS Evolution Benchmark

Figure 7 studies the performance of applying one layer of
TEBD operators on all neighboring sites on PEPS of two
different sizes: 8 × 8 and 15 × 15. For the smaller system
size, which fits into memory on 1 node, we compare the
performance of NumPy and Cyclops, as shown in Figure 7a.
We observe that while NumPy outperforms Cyclops for small
bond dimensions, their performance becomes similar as bond
dimension grows. We also compare three different algorithms
for a 15× 15 PEPS on 16 nodes using Cyclops in Figure 7b,
which shows that reshape-avoiding orthogonalization (Algo-
rithm 5) can accelerate the parallel execution of QR-SVD
(Algorithm 1) by factors of up to 3.6X.

B. PEPS Contraction Benchmark

Figure 8a shows the performance of contracting an 8 × 8
PEPS on a single KNL node of Stampede2 using BMPS,
IBMPS, two-layer IBMPS, and an exact algorithm [12] with
NumPy and Cyclops as backends. Since contracting the inner
product between two identical PEPS limits the selection of
bond dimensions, we directly generate a PEPS without phys-
ical indices to obtain more data points. However, two-layer
IBMPS is only applicable for the inner product, so we include
fewer data points.

The contraction bond dimension is set equal to the initial
bond dimension, which varies from 2 to 64. The trade-off
between backends is similar to the PEPS evolution benchmark
in that Cyclops is more scalable despite NumPy being faster
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Figure 7: Running time versus bond dimension for applying

one-layer TEBD on PEPS using variants of QR-SVD.

“Reshape-avoiding QR” denotes the variant where

orthogonalization is done locally; “reshape-avoiding

QR-SVD” denotes the variant where both orthogonalization

and einsumsvd are done locally.

for small bond dimensions. Further, we show that IBMPS and

two-layer IBMPS not only have an advantage on asymptotic

computational complexity, but are also more memory-efficient

compared to BMPS. In practice, we observe that only IBMPS

and two-layer IBMPS are able to contract an 8 × 8 PEPS

with initial and contraction bond dimension both equal to 64

on a single node. Moreover, we test the highest achievable

bond dimension for contracting a 6 × 6 PEPS using various

algorithms on a single node. The exact algorithm and BMPS

can only contract such a PEPS with bond dimension less

than 30 and 40 respectively, while IBMPS can achieve a

bond dimension of 95 and two-layer IBMPS can perform

contraction with a bond dimension of more than 100.

We show the performance of contracting a 15×15 PEPS on

16 nodes using Cyclops in Figure 8b. As in the 8×8 case, we

observe that IBMPS has an asymptotic advantage over BMPS,

agreeing with our analysis in Table II.

Figure 9 studies the performance of intermediate caching for

the expectation value calculation introduced in Section IV-B.

The expectation operator is composed of one-site operators
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Figure 8: Running time for fully contracting a PEPS as the

bond dimension grows.

acting on all sites and two-site operators acting on all pairs

of neighboring sites. With more PEPS sites, the speed-up that

caching brings becomes greater. For 12× 12 PEPS with bond

dimension 4, the expectation value calculation is 4.7X faster.

We benchmark the accuracy of our contraction algorithms

with random quantum circuits (RQC) [53], [54], which are

designed to be difficult to simulate classically and have

been proven to satisfy both average-case hardness and anti-

concentration property [25], [55]–[57]. It is especially chal-

lenging to simulate RQCs using tensor networks, since the

states created by RQCs are strongly entangled and very

sensitive to approximations. By applying our algorithms to this

problem, we show that approximate contraction is effective

even for one of the hardest simulations.

Following the construction procedure proposed in [54], we

apply iSWAP gates for all pairs of neighboring sites every

four layers, increasing the bond dimension by a factor of 4.

For the RQC benchmarking, we use 4 × 4, 5 × 5, 6 × 6,

and 7 × 7 PEPS generated by 8 layers of RQC with exact

evolution, which has an initial bond dimension of 16. Then,

BMPS and IBMPS with varying contraction bond dimension

are used to compute one amplitude of the circuit. The result is
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compared to the exact contraction algorithm to determine the

relative error, as shown in Figure 10. We show that the use of

implicit randomized SVD in IBMPS does not incur additional

error as compared to the naive SVD. We also observe that

after increasing the contraction bond dimension above a certain

threshold, the relative error quickly drops to near machine

epsilon. This threshold is positively correlated to the PEPS size

and the initial bond dimension. For 6 × 6 and 7 × 7 PEPS,

we achieved one digit of accuracy with a contraction bond

dimension of 256 on only 64 nodes with 7808 gigabytes of

memory in total.

C. Parallel Scaling

We study the parallel scaling of applying one layer of TEBD

operators (PEPS evolution) and IBMPS (PEPS contraction)

in Figure 11 and Figure 12. In the strong scaling analysis

shown in Figure 11, we test a smaller problem that occupies

most of the memory on a single node and a larger problem

that occupies most of the memory on 16 nodes for both
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Figure 11: Strong scaling for PEPS evolution (applying one

layer of TEBD operators) and PEPS contraction (IBMPS for

PEPS with no physical indices); the dashed line separates

single-node and multiple-node execution.

PEPS evolution and contraction. For better performance with

Cyclops, we choose to use PPN=16 on 256 nodes (214 cores).

When executing on a single node with multiple cores (less than

26 cores), the running time roughly halves when number of

cores doubles, and good strong scaling efficiency is achieved

up until all cores of the node are utilized.

When the benchmarks are executed on the smaller PEPS

with multiple nodes, we obtain a speed-up of 4.5X on 32 nodes

(210 cores) for PEPS evolution and a speed-up of 13.5X on 64

nodes for PEPS contraction with respect to a single node (26

cores), after which the performance deteriorates. We observe

that the fraction time in local matrix multiplication (GEMM),

in the smaller PEPS contraction experiments, is 62% on 1

node, and 16% on 16 nodes. For the larger problem starting

from 16 nodes, we observe that initially the performance scales

well, but for PEPS evolution, the performance deteriorates

after 128 nodes, and for PEPS contraction, the performance

roughly decreases by one-half on 256 nodes. PEPS evolution

has a cost that is only slightly superlinear in the size of the

tensor sites, so this kernel tends to be communication-bound.

In the weak scaling analysis shown in Figure 12, we focus

on increasing the bond dimension of PEPS while keeping the

memory usage per node constant. This case better reflects the

practical usage of large PEPS simulations, where the major

bottleneck is memory and not execution time. As shown in the

figure, we observe sustained weak scaling for the full PEPS

evolution and contraction benchmark up to 64 nodes (212

cores). Similarly, the time spent in GEMM is always around

60-70% for PEPS contraction. For the experiments with 128

nodes (213 cores) and 256 nodes (214 cores), we instead

run microbenchmarks, where only the main computational

primitives are benchmarked. Overall, our approach shows good

weak scalability for dealing with large bond dimensions that

are prohibitive in cost or infeasible in memory footprint for

typical single-node architectures.
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D. Applications

We apply the PEPS algorithms to imaginary time evolution

and variational quantum eigensolver simulation to solve for

the ground states of quantum systems.

1) Imaginary Time Evolution: We simulate the spin- 12 J1-

J2 Heisenberg Model [58] with the Hamiltonian defined as the

operator,

H =
∑
〈i j〉

(Jx1XiXj + Jy1Y iY j + Jz1ZiZj)

+
∑

〈〈i j〉〉
(Jx2XiXj + Jy2Y iY j + Jz2ZiZj)

+
∑
i

(hxXi + hyY i + hzZi) , (7)

where X , Y , and Z are Pauli operators and the indices/-

subscripts appearing in each Pauli operator indicate the site

the operators act on. The notation
∑

〈i j〉 denotes a sum

over pairs of sites (i and j) that are adjacent on a 2D

lattice, while
∑

〈〈i j〉〉 is the same for pairs of sites that are

diagonally adjacent (e.g., sites at lattice points i = (k, l)
and j = (k + 1, l − 1)). Further, Jn defines the coupling

constants between neighbors, and h represents the strength

of a transverse magnetic field along a particular axis.

We perform ITE steps as described in Section II-D1 on

PEPS with evolution bond dimension r and contract the

resulting PEPS using IBMPS with contraction bond dimension

m. Figure 13 shows the iterations of PEPS ITE for small

bond dimensions and the result of PEPS ITE after 150 steps

as the bond dimension grows for a 4 × 4 J1-J2 model. The

energy of PEPS calculated by IBMPS converges to the ground

state calculated by the exact simulation (using the full state

vector) after 1000 ITE steps when we increase the bond

dimension. Also, we compare the choice of contraction bond

dimension m = r2 and m = r and observe that for this

model, their accuracy is similar while the latter requires much

less computation.

2) Variational Quantum Eigensolver Simulation: We

benchmark VQE with the spin-12 J1-J2 Heisenberg Model (see

Equation (7)). The parameters are set as Jx1 = Jy1 = Jz1 = 1.0,

Jx2 = Jy2 = Jz2 = 0.5 and hx = hy = hz = 0.2.

We utilize the constrained optimization by linear ap-
proximation (COBYLA) algorithm [59], provided via the

scipy.optimize.minimize function in Python. Our

variational ansatz, which is passed to the optimizer, applies

a parameterized quantum circuit composed of repeated layers

to construct the state prior to calculating the expectation value

of the energy. Each circuit layer consists of single rotation

gates Ry(θ) = e−iθY /2 applied to each qubit. The rotation

gates are followed by a set of CNOT gates, which are applied

to each nearest neighbor pair.

Each VQE iteration involves the evolution and contraction

of PEPS in order to calculate the expectation value, which

creates a substantial bottleneck in terms of running time. VQE

itself involves running hundreds or even thousands of objective

function evaluations prior to convergence. Consequently, we

focus our accuracy experiments on a small number of qubits

with bounded iterations.

As can be seen in Figure 14, for a 4 × 4 qubit system

increasing the evolution and contraction bond dimensions used

in the PEPS simulation improves the lowest energy per site

that each system reaches. The energy obtained is −0.55990,

−0.84822, and −1.46659 for a maximum evolution bond

dimension of 1, 2, and 4, and a maximum contraction bond

dimension of 4, 16, and 64, respectively. By comparison, the

state vector system reaches a value of −1.59796, while the

approximate ground state energy per site (computed from a

state vector ITE run) is −1.77688.

VII. RELATED WORK

While algorithms and parallel computations with PEPS are a

relatively new area, there exist several works that have taken

similar approaches to ours. The PEPS++ method has been

proposed by He et al. as a computational method that enables

parallel computation for quantum systems simulation [60].

To overcome the high order of complexity, i.e. O(r10), they

combine quantum Monte Carlo methods with PEPS algorithms

to avoid the two-layer PEPS contraction. Instead, they perform

one-layer PEPS contraction along with a sampling procedure,

which reduces the asymptotic cost to O(r6) for each sam-

pling step. In the implementation, they use processes-level

parallelism for sampling steps and thread-level parallelism

for tensor computations, which differs from the distributed-

memory tensor computation considered in this work.

Like our work, Guo et al. have carried out large-scale

parallel quantum circuit simulations utilizing PEPS [12]. They

simulate random quantum circuits exactly by applying gate

operators on PEPS without truncation, and they calculate am-

plitudes by projecting the resulting PEPS onto the correspond-
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ing basis states. The cost of this method is associated with the

entanglement generated by the quantum circuit instead of the

circuit size, but could still be exponential because it requires

exact PEPS contraction. They also use Cyclops for distributed-

memory tensor computations, and their results include an exact

contraction of a 7 × 7 PEPS with bond dimension 32 using

4096 nodes of the Tianhe-2 supercomputer. Our work differs

from theirs in that we focus on approximate PEPS algorithms

with polynomial time complexity, which allows for larger bond

dimensions with a controlled error and consequently serves

different application needs.

A related algorithm, the higher-order tensor renormaliza-
tion group (HOTRG) has also been studied in a distributed

parallel setting [61], where an optimal reordering procedure

for tensor contractions used in HOTRG is proposed. In com-

parison, our work provides a more general approach via the

use of Cyclops, which automates the performance optimization

within tensor contractions. We also consider a broad set of

PEPS primitives as opposed to a single component of a PEPS

contraction algorithm.

There are also a number of libraries available for quantum

system simulation using tensor networks, such as ITensor [62],

NCON [63], quimb [64], TeNPy [65], Uni10 [66], and

qTorch [67]. These libraries implement useful algorithms in

the field with good sequential, threaded, or GPU performance.

Our library, Koala, contributes to this community with the use

of distributed-memory parallelism.

VIII. CONCLUSION

As demonstrated by our application studies, tensor network

methods can systematically improve the accuracy for approx-

imate simulation of quantum systems and near-term quantum

devices by using larger bond dimensions (i.e. larger tensors).

The new algorithms and Koala library we introduced provide

an efficient approach for PEPS evolution and contraction and

enable the use of distributed-memory tensors. Performance

studies on the Stampede2 supercomputer indicate that our

approach provides scalable PEPS primitives and systematically

improvable accuracy.
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Appendix: Artifact Description/Artifact Evaluation

SUMMARY OF THE EXPERIMENTS REPORTED
We implemented the algorithms discussed in the paper as an open-
source Python library. We benchmarked our implementation and
compared the performance of different variants for PEPS evolu-
tion and PEPS contraction. We also ran experiments to study the
accuracy of approximated PEPS contraction and the overall accu-
racy of imaginary time evolution (ITE) and variational quantum
eigensolver (VQE) simulation usingPEPS. Parallel experiments are
all done on the Stampede2 supercomputer KNL nodes with 64 pro-
cesses per node for Cyclops Tensor Framework (CTF) and 32 MKL
threads on one node for NumPy.

ARTIFACT AVAILABILITY
Software Artifact Availability: All author-created software arti-

facts are maintained in a public repository under an OSI-approved
license.

Hardware Artifact Availability: There are no author-created hard-
ware artifacts.

Data Artifact Availability: There are no author-created data
artifacts.

Proprietary Artifacts: None of the associated artifacts, author-
created or otherwise, are proprietary.

Author-Created or Modified Artifacts:

Persistent ID: https://doi.org/10.5281/zenodo.4008217
Artifact name: Koala

Persistent ID: https://doi.org/10.5281/zenodo.4008214
Artifact name: TensorBackends

BASELINE EXPERIMENTAL SETUP, AND
MODIFICATIONS MADE FOR THE PAPER

Relevant hardware details: Stampede2 KNL nodes

Operating systems and versions: Linux

Compilers and versions: Python 3.7; icc v18.0.2

Libraries and versions: Intel MPI v18.0.2

Key algorithms: Randomized SVD, Tensor contraction, Time-
evolving block decimation for PEPS evolution and Boundary MPS
for PEPS contraction

ARTIFACT EVALUATION
Verification and validation studies: We developed unit tests for

each functionality of our library to ensure the correctness of each
step. Also, we compared our results for easy cases that can be solved
directly with widely used libraries like NumPy. When it’s possible,
we also validated the accuracy of our results by comparing them

with the results from analytical calculations. Moreover, we utilized
models that had been previously simulated in existing literature,
and we referred to several published works to verify our results.

Accuracy and precision of timings: We ran experiments multiple
times to get an average running time. When we recorded the run-
ning times that are not consistent, we would look into them and
study the cause.
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