
PHYSICAL REVIEW A 104, 012210 (2021)

Ruling out bipartite nonsignaling nonlocal models for tripartite correlations

Peter Bierhorst*

Department of Mathematics, University of New Orleans, New Orleans, Louisiana 70148, USA

(Received 21 December 2020; accepted 23 June 2021; published 15 July 2021)

Many three-party correlations, including some that are commonly described as genuinely tripartite nonlocal,
can be simulated by a network of underlying subsystems that display only bipartite nonsignaling nonlocal
behavior. Quantum mechanics predicts three-party correlations that admit no such simulation, suggesting there
are versions of nonlocality in nature transcending the phenomenon of bipartite nonsignaling nonlocality. This
paper introduces a rigorous framework for analyzing tripartite correlations that can be simulated by bipartite-only
networks. We confirm that expected properties of so-obtained correlations, such as no-signaling, indeed hold,
and show how to use the framework to derive Bell-inequality-type constraints on these correlations that can be
robustly violated by tripartite quantum systems. In particular, we use this framework to rederive a version of one
such constraint previously described in a paper of Chao and Reichardt, Test to separate quantum theory from
non-signaling theories [arXiv:1706.02008 (2017)].
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I. INTRODUCTION

Quantum nonlocality is a phenomenon in which spatially
separated observers make measurements the outcomes of
which cannot be fully explained by preexisting characteris-
tics of the measured systems. Quantum nonlocality has been
demonstrated in experiments [1–4] under careful conditions
to rule out any mundane alternative explanations for the ob-
served effects. These experiments are sometimes referred to
as “loophole free.” To date, all loophole-free experiments
have demonstrated the phenomenon of quantum nonlocality
with two spatially separated observing parties, and have thus
exhibited a form of bipartite nonlocality. Notably, this phe-
nomenon does not allow for the sending of signals between
the two parties, and so we call it “bipartite nonsignaling
nonlocality”.

Quantum mechanics also predicts the existence of systems
that that can be measured by three spatially separated ob-
serving parties and exhibit quantum nonlocality. This should
naturally entail something beyond trivial scenarios where, for
instance, two of the three parties observe bipartite nonsignal-
ing nonlocality while the third party’s measured statistics are
not correlated in any way with the observations of the first two
parties. Indeed, definitions of so-called genuine multipartite
nonlocality exist [5–8]. These definitions take the perspective
that the statistics of the three parties should be considered
genuinely tripartite nonlocal if they cannot be decomposed
into convex combinations of constituent probability distribu-
tions that each allow the exchange of signals between (only)
two parties. As described in Refs. [5–8], there are quantum
states and measurements that can demonstrate such versions
of genuine tripartite quantum nonlocality.
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Here we examine the question of tripartite nonlocality
from a slightly different perspective. Accepting that bi-
partite nonsignaling nonlocal systems exist as a physical
phenomenon, we argue that if the observed statistics of a
tripartite experiment can be explained by an underlying col-
lection of bipartite nonsignaling nonlocal subsystems then
these tripartite statistics should not be taken as evidence of
a categorically new phenomenon beyond the sort of bipar-
tite nonsignaling nonlocality observed in Refs. [1–4]. The
question is then whether there exist tripartite correlations that
cannot be explained by a collection of underlying systems
exhibiting (only) bipartite nonlocal nonsignaling behavior.
This approach differs from the definitions of Refs. [5–8] in
prohibiting components of the underlying unobserved sub-
systems from sending superluminal signals. Interestingly, the
resulting class of behaviors turns out to not be strictly smaller,
as the underlying subsystems are allowed to interact in a
cascaded manner that is not replicable within the frameworks
of Refs. [5–8]. The scenario of underlying systems of bipartite
nonlocal nonsignaling systems interacting sequentially has
been previously described as nonlocal “boxes” connected with
“wirings” [9,10].

To describe our perspective, illustrated in Fig. 1, consider
a scenario of three spatially separated observing parties, Al-
ice, Bob, and Charlie, each of whom make a measurement.
Suppose what Alice actually measures is an ensemble of
subsystems, each one of them a bipartite nonsignaling non-
local system, some shared with Bob and some with Charlie.
Alice’s macromeasurement induces these subsystems to be
measured in some sequential order, with the outcomes of
early submeasurements possibly affecting the progression of
later submeasurements, and her final observed output is a
function of the outcomes of the submeasurements. Bob’s and
Charlie’s observed outputs are obtained in a similar manner
from cascaded measurements of their respective halves of the
bipartite nonsignaling nonlocal subsystems shared between
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FIG. 1. A tripartite system of underlying bipartite nonsignaling nonlocal subsystems. (a) Bipartite scenario. Two parties, Alice and Bob,
measure particles emitted from a source. If the particles are entangled, the experiment can display the bipartite nonsignaling nonlocality
phenomenon. (b) Schematic depiction. A pair of particles displaying bipartite nonsignaling effects can be considered as a single system
represented as two boxes connected by a line. Input arrows represent measurement settings that Alice and Bob choose; output arrows represent
observed measurement outcomes. (c) Tripartite scenario. Here, three parties Alice, Bob, and Charlie each receive a particle from the source.
(d) Detail at Alice. Alice’s particle could be an ensemble of bipartite subsystems like those in (b), each shared with a single other party. In
the figure, Alice’s particle contains one bipartite system connected with Bob and two bipartite systems connected with Charlie. (e) Alice’s
measurement. When Alice performs a measurement and provides an input, the bipartite subsystems are measured in some order with inputs to
later submeasurements possibly depending on outcomes of earlier submeasurements. She does not directly observe the submeasurements, but
her final observed outcome is some function of the submeasurement outcomes.

pairs of parties. Now, if the statistics of the three-party ex-
periment can be explained by a model of this sort, then the
experiment can be said to be consistent with the existence
of (only) the phenomenon of bipartite nonsignaling nonlocal
systems. Conversely, if the measured statistics are inconsistent
with any such model, then a new form of tripartite nonlocal
behavior has been observed. Interestingly, some correlations
that display the forms of genuine tripartite nonlocality defined
in Refs. [5–8], such as the distributions numbered 44–46 in
Ref. [11], can be replicated by bipartite-ensemble systems, as
shown in Sec. III.C of Ref. [12].

The mathematical problem of ruling out bipartite ensem-
ble models for a given tripartite behavior was first examined
[13,14] in regards to the question of whether a certain canon-
ical bipartite nonsignaling nonlocal correlation, the so-called
PR box (named for Popescu and Rohrlich [15]), can be con-
sidered as a unit of nonlocality insofar as it is able to simulate
other nonlocal correlations. These initial results showed that
certain multiparty correlations cannot be reproduced exactly
by systems of PR boxes [13,14], but this did not rule out
the possibility of ε-close simulations. In contrast, a more
recent claim of Chao and Reichardt [16] describes a robust
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separation between a quantum-achievable probability distri-
bution and all bipartite-simulable correlations. Reference [16]
also studies n-party generalizations of this problem; other re-
cent relevant results, some of which are noise-robust, include
Refs. [17–19].

The argument of Ref. [16], applied to the three-party
case, introduces random variables that “parametrize the ran-
domness” of the underlying bipartite nonsignaling nonlocal
subsystems, then uses functional dependencies between the
introduced random variables and the outcomes of the bipartite
subsystems to derive a constraint—a Bell-like inequality—on
the joint probability distribution of observed outcomes. The
constraint can be robustly violated by an appropriate quantum
system. However, the mathematical setting for working with
the parametrizing random variables is imprecise, obscuring
the justification for some of the claimed functional dependen-
cies between the introduced random variables and the existing
ones.

The goal of this paper is to provide a rigorous mathematical
framework for proving the Chao and Reichardt constraint
in the tripartite case. Rather than introducing new random
variables, we work directly with the existing output variables
of the bipartite nonsignaling nonlocal subsystems and derive
functional relationships between them, leading to arguably a
conceptual simplification over the approach of Ref. [16]. Our
approach leverages a key result of Forster and Wolf [20]: PR
boxes can simulate general bipartite nonsignaling nonlocal
correlations to arbitrary accuracy. (This generalizes an earlier
result showing simulation is possible for bipartite correlations
with any number of measurement settings but restricted to bi-
nary outputs [21].) The result of Ref. [20] implies that one can
consider only networks where all the underlying subsystems
are PR boxes without any loss of generality.

We use this framework to clarify the natural conditions
that imply the existence of a unique global joint distribution
for the outputs of the ensembles of bipartite nonsignaling
nonlocal subsystems that is consistent with any temporal or-
dering in which the parties measure the subsystems. We also
show that this global distribution necessarily obeys desired
no-signaling conditions which are required to derive the the
main result. (That a network of bipartite nonsignaling correla-
tions is nonsignaling in the aggregate might be unsurprising,
but it is useful to illustrate precisely how this follows from
the assumptions.) Finally, we make a minor modification to
adapt the Chao and Reichardt constraint to a form more ap-
plicable to an experiment of three spacelike separated parties
that measure systems near simultaneously with randomized
settings choices. The modification allows us to avoid the “ex-
ternal verifier” paradigm of Ref. [16], where verifier-chosen
measurement settings lead to setting probabilities that are not
independent between the observing parties. We can instead
employ a uniform setting probability distribution that allows
an experimental scenario where each of the spacelike sepa-
rated parties chooses measurement settings locally based on
a random process, independently of the other parties, as is
standard in the experimental setups of Refs. [1–4].

In Sec. II, we develop properties of the joint distributions
of collections of bipartite nonsignaling nonlocal subsystems
shared among three parties, and show that the joint distri-
bution is determined uniquely by a few simple principles.

Using these results, we can follow the outline of the argument
in Ref. [16] to prove in Sec. III the constraint (a Bell-like
inequality) for the three-party scenario that must be satisfied
by any experimental behavior induced by an underlying en-
semble of bipartite nonsignaling nonlocal subsystems, which
can be violated by quantum mechanics. Section IV contains
concluding remarks. Appendices provide an example of how
a candidate joint distribution for a collection of bipartite sys-
tems can display unphysical characteristics if proper care is
not taken in its construction, and a proof for a bound on a sum
of probabilities used in the main text.

II. DETERMINING JOINT PROBABILITY
DISTRIBUTIONS FOR INTERCONNECTED

PR BOXES

Our experimental scenario is the (3,2,2) setting where three
parties named Alice, Bob, and Charlie each choose between
two measurement settings and observe one of two possible
outcomes. We denote the measurement choices of Alice, Bob,
and Charlie with random variables X , Y , and Z taking values
in the respective sets {a, a’}, {b, b’}, and {c, c’}, and we rep-
resent the observed outcomes with random variables A, B, and
C all taking values in the set {0,+}. All settings configurations
will be equiprobable, so P(X,Y, Z ) = 1/8. In each round,
each party always records an output, even if the output does
not always factor into the final statistical analysis.

We ask what sort of observable distributions
P (A, B,C|X,Y, Z ) are possible if the underlying system
being measured consists of unobserved ensembles of bipartite
nonsignaling nonlocal subsystems shared between pairs of
parties, possibly supplemented with shared local randomness,
and the observable outcomes A, B, and C are local functions
of the outputs of these subsystems and the local settings. To
address the question, we must first formalize the notion of
an underlying ensemble of bipartite nonsignaling nonlocal
subsystems.

A. Networks of PR boxes

We consider the possible characteristics of the joint dis-
tribution of a collection of subsystems obeying the PR box
behavior. The PR box is a specific bipartite nonsignaling non-
local behavior where each of the two parties sharing it has a
binary input and a binary output. Importantly, any bipartite
nonsignaling nonlocal distribution with a finite number of
inputs and outputs can be simulated to arbitrary precision
with collections of PR boxes and shared local randomness
[20], so results obtained for ensembles of PR boxes will

TABLE I. Table of P (a, b|x, y) values.

a, b

x, y 0,0 0,1 1,0 1,1

0,0 1/2 0 0 1/2
0,1 1/2 0 0 1/2
1,0 1/2 0 0 1/2
1,1 0 1/2 1/2 0
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FIG. 2. Schematic depiction of PR boxes. (a) A single PR box shared between Alice and Bob. The dashed line, indicating that Alice’s
and Bob’s outputs are coming from the same PR box, will usually be suppressed. We have slightly modified the representation of the outputs
compared to Fig. 1, now displaying them as being contained in squares, as opposed to being carried on arrows exiting the system. This is to
avoid potential ambiguity between inputs and outputs in future diagrams where multiple PR boxes are measured in sequence. (b) Multiple PR
boxes possessed by pairs of parties in a tripartite scenario. Alice and Bob share three PR boxes, as do Alice and Charlie, as do Bob and Charlie
with Charlie’s right column of output boxes connecting to Bob’s left column. The circles at the bottom represent the measurement settings that
Alice, Bob, and Charlie apply to their overall systems when the experiment is performed. The arrows at the bottom of the figure imply that the
choice of input to Bob’s half of a PR box subsystem shared with Alice can depend on his setting Y , and the choice of input to Alice’s half can
depend on X .

apply generally: any system involving non-PR box bipartite
subsystems can be approximated to any desired accuracy
by replacing each non-PR box subsystem with a collection
of PR boxes that approximates its behavior. While some of
these approximations require shared local randomness, for our
discussion we neglect the shared local randomness and only
consider collections of PR boxes. This is acceptable because
the Bell function we will upper bound for PR-box-network-
induced distributions is linear in the value of any shared local
randomness and so upper bounds on this function cannot be
circumvented by taking convex mixtures of distributions with
different values of shared local randomness.

We write the conditional probability distribution of an indi-
vidual PR box as P (a, b|x, y), where a and b are the respective
outputs for the two parties sharing the box and x and y are their
respective inputs. The conditional probabilities are shown in
Table I and the corresponding formula (1) below, where the
symbol ⊕ denotes addition modulo 2:

For all a, b, x, y ∈ {0, 1},

P (a, b|x, y) =
{

1/2 if a ⊕ b = xy
0 otherwise . (1)

From the above formula we have the following properties,
which also hold if a and b are switched:

The marginal of a, P (a|xy), is uniform on {0, 1} independent of inputs x, y; (2)

if a, x, and y are given, b is completely determined, P (b|axy) = δb=a⊕xy. (3)

It is useful to depict single PR boxes schematically as
in Fig. 2(a) with arrows representing the inputs and squares
containing the outputs. Figure 2(b) uses this scheme to il-
lustrate a complicated overall system where Alice, Bob, and

Charlie share multiple PR boxes pairwise. It is important to
remember that the network in Fig. 2(b) is not directly observed
by the parties when they measure the system. Alice, for ex-
ample, only sees a final output A ∈ {+, 0} after supplying her
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TABLE II. Random variables for Alice.

Outcome
Variable space Meaning

X {a, a’} Measurement setting
Ab {0, 1}n String of all PR box outputs from PR boxes

shared with Bob
Ac {0, 1}n String of all PR box outputs from PR boxes

shared with Charlie
Ai

b {0, 1} Output of the ith PR box shared with Bob
Ai

c {0, 1} Output of the ith PR box shared with Charlie
A {0, +} Final observed output: a function of X , Ac,

and Ab

measurement setting X . But in our model, we posit that the
macromeasurement process induces the PR box subsystems
to be queried according to a set pattern which can depend on
the setting X ; the final observed output A is then a function
of the PR box outputs and X . It is convenient to refer to the

set pattern for querying the PR boxes as Alice’s strategy, even
though she does not observe the PR boxes and does not know
how they are being used.

To analyze strategies for networks of PR boxes and how
they induce the final outputs A, B,C, we introduce random
vectors Pq to denote the string of outputs observed by party
P from the PR boxes shared with party q, with Pi

q denoting
the ith element of Pq. So for example when Alice shares n
PR boxes with Bob and n PR boxes with Charlie, her relevant
random variables are as in Table II.

We now proceed to formalize strategies for each party’s
usage of PR boxes. We want to allow for the possibility of
parties feeding the output from one PR box (or the opposite
of the output) as input into another PR box and possibly
changing the order in which they use later PR boxes based on
early PR box outputs. Such a strategy can be called a wiring
to evoke the connecting of multiple PR boxes together [9,10].
Following Refs. [12,20], a general strategy consists of a list of
step-by-step instructions for a party to follow that determines
the order in which they query their PR boxes and the inputs

FIG. 3. A decision tree. The following example is for a scenario where Alice shares three PR boxes with Bob and three PR boxes with
Charlie. Only the first three branch points of Alice’s decision tree are displayed; a full decision tree for this scenario would continue to the
right for four more columns. The bottom of the figure shows examples of a few possible paths Alice could take following this decision tree for
various choices of her setting and different observed outputs of the PR boxes.
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they provide them. This list of instructions can be handily
visualized as a decision tree that guides the party through their
collection of PR boxes; see Fig. 3 for an example. We assume
that a party always uses all of their PR boxes; if we want to
consider strategies where some remain unused, we model this
by having the party input zero to all unwanted PR boxes at
the end of the decision tree and not using those outputs to
determine the final output in {0,+}.

B. Principles for assigning a joint probability distribution

We want to develop some characteristics of the joint prob-
ability distribution P (Ab, Ac, Ba, Bc, Ca, Cb|X,Y, Z ) of PR
box outcomes in the scenario where each of the three parties
follows a Fig. 3 style decision tree. Naturally, the distribution
P (·) will depend on the particular decision trees employed
by the parties. The distribution can be constructed mathe-
matically by formalizing the natural condition that, as an
individual party works through the Fig. 3 style decision tree,
the marginal distribution of the outcome of the next PR box
must always be uniform, conditioned on the PR box outcomes
that the party has already observed as well as the original
measurement setting. We need to formalize such an assump-
tion to discount pathological joint distributions where, for
instance, all of the PR boxes of one party always yield the
same output; an example of this is given in Appendix A.
Once this assumption is made, the joint distribution can be
constructed if we pick an arbitrary ordering of parties—for
instance, Charlie, then Alice, then Bob—and imagine that

Charlie works through his entire tree first, then Alice works
through her entire tree, followed by Bob, and assign probabil-
ities according to the following rules.

(1) Every PR box output that the first party, Charlie, ob-
serves is uniformly distributed conditioned on PR boxes he
has already observed.

(2) As Alice works through her tree, outcomes of PR boxes
shared with Bob are uniform and those shared with Charlie are
determined by Charlie’s already-recorded output via Eq. (3).

(3) All of Bob’s PR box outputs are determined via Eq. (3)
by Alice’s and Charlie’s outputs as he works through his
decision tree.

This procedure induces a unique joint distribution for the
PR box outputs.

A natural question is whether this joint distribution is in-
dependent of the choice of the ordering of parties used to
construct it. Indeed, in a scenario where all parties are space-
like separated during the measurement process, there is no
preferred order in which the parties measure their systems.
Regarding this matter, Ref. [12] asserts that the no-signaling
property of PR boxes assures the possibility of assigning a
joint distribution consistent with any time ordering, and we
will confirm in Sec. II D that indeed any ordering of parties
leads to the same joint distribution.

Our rule for assigning probabilities for the first party is
expressed mathematically in the following manner: Supposing
Charlie is the party going first, consider some Ci

a. Then for any
sequence of PR boxes that can precede a querying of Ci

a on a
branch of the decision tree,

P (Ci
a = 1|X,Y, Z {outcomes of earlier PR boxes on the branch}) = 1/2. (4)

This holds for each Ci
b as well. The appearance of all

three settings in the conditioner, as opposed to just Char-
lie’s setting Z , is a necessary assumption in the task of
constructing a joint distribution of all the random variables
{X,Y, Z, Ca, Cb, Ab, Ac, Bc, Ba}. If we do not include settings
X and Y in the conditioner, we cannot rule out problematic
joint distributions where Charlie’s output probabilities de-
pend on Alice and/or Bob’s settings. Luckily, assuming the
independence of X and Y in the form specified by (4) is nat-
ural, and motivated by the no-signaling principle; if Charlie’s
output probabilities ever deviated from 1/2 dependent on X
and/or Y , this would permit signaling from Alice and/or Bob

to Charlie. It is also worth noting that the expressions in (4)
depend on Charlie’s strategy (dictating which are the “earlier
PR boxes on the branch”), but are independent of Alice’s and
Bob’s strategies, even as these other parties could be doing
any manner of things observing PR boxes from Charlie and
feeding these outputs to other PR boxes shared with Charlie
and/or each other.

Once the first party (Charlie) has moved through his deci-
sion tree and recorded all PR box outputs, we move on to the
decision tree of the second party (Alice). When boxes shared
with Bob are encountered, the outputs Ai

b are uniform in the
manner of (4):

P
(
Ai

b = 1|X,Y, Z {earlier outcomes of Alice and Charlie on their branches}) = 1/2. (5)

Conversely, when PR boxes shared with Charlie are observed, we have

P
(
Ai

c = 1|X,Y, Z {earlier outcomes of Alice and Charlie on their branches}) ∈ {0, 1} (6)

where the choice between 0 or 1 is determined by (3), as
the conditioner will specify what Charlie’s output was for the
corresponding box, as well as the relevant locations on Alice’s
and Charlie’s decision trees and thereby both inputs. Again,
no-signaling considerations motivate the inclusion of Bob’s
setting Y in the conditioner.

With the conditions we have imposed, any outputs Bi
a or

Bi
c of the third party, Bob, will be completely determined by

previously observed PR box outputs for all three parties, in the
manner of (6).
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FIG. 4. Developing properties of the joint distribution of PR box outcomes. (a) If we randomly assign zeros and ones to all PR box outputs
(left), then provided Charlie’s decision tree is well formed this will correspond to exactly one branch of Charlie’s tree. This specifies the order
in which the PR boxes are observed, indicated by arrows, as well as the inputs x that are provided at each querying of the PR boxes (right).
(b) Fix a choice in {0, 1}3 for each of the three strings ab, ca, and cb; these are shaded black. As Alice works through her decision tree, her path
through the PR boxes (dashed arrows) is completely determined: her black boxes are already fixed, and every time she encounters a white box,
only one output in {0, 1} is consistent with her input and Charlie’s corresponding input and output, by (3). So Alice is confined to one branch
of her tree and ac is fixed by the choice of ab, ca, and cb. (c) As discussed in part (b), a fixed choice for the three strings ab, ca, cb (shaded black)
determines the string ac (shaded gray). Hence the branches of Alice’s and Charlie’s decision trees are uniquely determined, as are all of their
PR box inputs and outputs. Then Bob’s decision tree will dictate a unique path through his PR box outputs with his outcomes determined by
(3), fixing ba and bc.

C. Properties of the joint distribution

We now develop some properties of the joint distri-
bution obtained by the above method with the ordering
Charlie-Alice-Bob. These properties will be used in the
proofs of the constraint of the next section. They will also
help demonstrate that there is only one joint distribution
P (Ab, Ac, Ba, Bc, Ca, Cb|X,Y, Z ) consistent with the condi-
tions we have set, and that it is independent of the choice of
party ordering used to construct it.

(1) The marginal distribution of all of Charlie’s PR box
outcomes is uniform. That is,

P (ca, cb|X,Y, Z ) = 1

22n
for all ca, cb ∈ {0, 1}n, (7)

where Charlie shares n PR boxes with Alice and n PR boxes
with Bob. Above, we are using lowercase letters to represent
values that can be taken by random variables represented by
the corresponding uppercase letters, as well as the shorthand

P (ca) for P (Ca = ca). We can see that (7) follows from
(4) so long as Charlie’s decision tree is well formed, in the
sense that branches never direct you to query a Ci

q location
that has been visited earlier on the branch, and always give
you an instruction for where to go if you get 0 or 1: if we
fix a possibility (Ca, Cb) = (ca, cb) ∈ {0, 1}2n and assign the
corresponding 0 or 1 value to all Ci

q locations [see Fig. 4(a)],
then given the value of Z one can work through the decision
tree corresponding to this assignment and end up at the end
of exactly one branch. The condition (4) then ensures that
the probability that this branch occurs is 2n iterates of 1/2
multiplied together.

(2) The joint distribution of Ab, Ca, and Cb is uniform:

P (ab, ca, cb|X,Y, Z ) = 1

23n
for all ab, ca, cb ∈ {0, 1}n. (8)

Note that Eq. (8) allows us to write P (ab|X,Y, Z ) =∑
ca,cb

P (ab, ca, cb|X,Y, Z ) = 2−n, which together with (7)
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implies

P (ab, ca, cb|X,Y, Z ) = P (ab|X,Y, Z )P (ca, cb|X,Y, Z ) for all ab, ca, cb ∈ {0, 1}n (9)

where P (ab|X,Y, Z ) = 2−n and P (ca, cb|X,Y, Z ) = 2−2n for
all choices of ab, ca, cb.

To see why (8) holds, fix any ab ∈ {0, 1}n and (ca, cb) ∈
{0, 1}2n. The choice of (ca, cb) corresponds to a unique branch
of Charlie’s decision tree as discussed in the previous point.
Then we work through Alice’s decision tree [see Fig. 4(b)],
with choices of Ai

b set by the ith value of ab and choices
of Ai

c fixed through (6) by Charlie’s output (the ith entry of
cb), Alice’s input (given by her location in her decision tree),
and Charlie’s input [given by the location of Ci

a in the unique
branch of Charlie’s tree corresponding to (ca, cb)]. If Alice’s
tree is well formed, this all uniquely determines a single
branch of her tree. The probability of Alice observing this
branch, conditioned on Charlie observing (Ca, Cb) = (ca, cb),
can be computed by multiplying n copies of 1/2 for the Ai

b
branch points [by (5)] and n copies of 1 for the Ai

c branch
points [by (6)]. Since by (7) the probability that Charlie ob-
serves (Ca, Cb) = (ca, cb) is 2−2n, the final probability is then
2−3n, yielding (8).

The above argument implies a useful result:

P (ab, ac, ca, cb|X,Y, Z )

= P (ab|X,Y, Z )P (ca, cb|X,Y, Z )�ac = Ac(ab, ca,cb,X,Z )�

= 1

2n

1

22n
�ac = Ac(ab, ca, cb, X, Z )�. (10)

Above we introduce two notations: First, the expression �· · ·�
represents the function that evaluates to 1 if the contained
statement is true and 0 if the contained statement is false.
Second, we define a new function Ac(·, ·, ·, ·, ·) as follows. As
described in the previous paragraph and Fig. 4(b), when given
a fixed value of ab, ca, cb, and a choice of settings X and Z ,
there is only one possible value for ac consistent with Alice’s
and Charlie’s decision trees. Ac(·, ·, ·, ·, ·) is the function that
returns this value when given the inputs ab, ca, cb, x, z.

Equation (9) is an interesting feature of the joint distribu-
tion of PR box outputs—no matter the strategy, Ab is free even
given Charlie’s outputs. This result and (10) are closely related
to the “parametrizing the randomness” arguments of Ref. [16],
and will be used in the upcoming proofs.

(3) Given fixed values of Ab = ab, Ca = ca, and Cb = cb,
Bob’s two strings Ba and Bc are completely determined:

P (ba, bc|ab, ca, cb, X,Y, Z ) ∈ {0, 1}. (11)

To see why this is so, recall that the choices Ab = ab, Ca =
ca, and Cb = cb fix Ac uniquely and determine both Charlie’s
and Alice’s branches of their respective decision trees. Then
we can see that as Bob works through his decision tree [see
Fig. 4(c)] his output to every PR box is fixed by a condition
similar to that of (6) because the other parties’ outputs and
inputs are set. This leaves Bob with one possible branch of his
tree corresponding to a single value of (ba, bc).

D. Consistency of the construction of the joint distribution

It is now clear that there is a unique joint distribu-
tion P (Ab, Ac, Ba, Bc, Ca, Cb|X,Y, Z ) consistent with our
stipulations: a collection of strings ab, ac, ba, bc, ca, cb has
probability 2−3n if the strings ac, ba, bc are precisely those that
are determined by the choice ab, ca, cb, and zero otherwise.
This distribution is derived based on an arbitrary ordering of
the parties—Charlie, then Alice, then Bob. We now show that
we obtain the same distribution if we choose any different
ordering of parties. It suffices to show the same distribution is
obtained if we either (1) swap the order of the first and second
parties (Charlie and Alice) or (2) swap the order of the second
and third parties (Alice and Bob), as iterations of these two
swapping operations can induce any ordering of parties.

First consider switching the order of Charlie and Alice.
The equivalent condition to (8) is then that Ab, Ac, Cb are
uniformly distributed, and then the remaining three strings
Ca, Ba, Bc can be obtained as a function of the first three.
Starting with an arbitrary choice of ab, ac, cb, the procedure
that determines the remaining strings is to first calculate ca

by working through Charlie’s decision tree. As illustrated in
Fig. 5(a), this process yields a ca with a particular property:
had we randomly selected this ca and combined it with our
earlier choice of ab and cb as a starting point for filling
the PR boxes with the original Charlie-Alice-Bob ordering,
then in determining ac in the manner of Fig. 4(b) we would
end up with the same choice for ac that we started with
earlier. This implies that the same 23n joint possibilities for
Ca, Cb, Ab, Ac are obtained whether we start with an arbitrary
choice of ab, ac, cb that then determines a unique ca (Alice-
Charlie-Bob ordering), or start with an arbitrary choice of
ab, ca, cb that then determines a unique ac (Charlie-Alice-Bob
ordering). Bob’s strings are then determined the same way
in either ordering of parties in the manner of Fig. 4(c), and
so the same distribution P (Ab, Ac, Ba, Bc, Ca, Cb|X,Y, Z ) is
obtained.

Now, consider instead switching the order of Alice and
Bob, so the new order is Charlie-Bob-Alice. As shown in
Fig. 5(b), this entails a situation where Ca, Cb, Ba are uni-
formly distributed with other strings obtained as functions of
these. While the situation is a little more complicated now,
the same general idea holds: a fixed value for ca, cb, ba de-
termines a choice for ab (along with the other two strings),
but if we start instead with this choice of ab along with ca, cb

and determine the remaining three strings according to the
Charlie-Alice-Bob order, we will get the same six strings
either way. This correspondence implies the same distribution
P (Ab, Ac, Ba, Bc, Ca, Cb|X,Y, Z ) is obtained.

E. No-signaling properties of the observed outcomes

We now demonstrate no-signaling-type properties of the
distribution P(A, B,C|X,Y, Z ) of observed outcomes. We can
freely apply the results (7)–(10) to different subsets of parties
without fearing inconsistency by invoking the independence
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FIG. 5. Switching the order of parties leads to the same joint distribution. (a) If the party ordering for constructing the distribution is
Alice-Charlie-Bob (right), the first step is to fix an arbitrary choice for ab, ac, cb, denoted by black shading. The choice of ab and ac completely
determines Alice’s path on her decision tree, which is represented by solid arrows. One then works through Charlie’s decision tree (dashed
arrows), filling in the ca entries along the way. Now suppose you take this collection of all four strings ab, ac, ca, cb and erase ac (left). First, the
strings ca, cb must induce the same path on Charlie’s decision tree as before, now represented by solid arrows, since there is only one branch
of a well-formed decision tree consistent with a fixed collection of PR box outputs [recall Fig. 4(a)]. The next step in the Charlie-Alice-Bob
ordering is to fill in Ac by working through Alice’s decision tree. With some thought, we see that we must remain on the same branch of the
tree and recover the original ac: as Alice encounters Ai

c locations, both Alice’s and Charlie’s PR box inputs will be the same as they were at the
corresponding location of the above-right diagram, and so the choice between the relationship Ai

c = Ci
a or Ai

c �= Ci
a governed by (3) will hold

as before. This one-to-one correspondence of the possibilities for filling ac as the fourth string, vs filling ca as the fourth string, implies that a
choice ab, ac, ca, cb is consistent with an Alice-Charlie-Bob party ordering for constructing the joint distribution if and only if it is consistent
with a Charlie-Alice-Bob party ordering for constructing the joint distribution. (b) If the order is Charlie-Bob-Alice, then ba, ca, cb (black) are
chosen from a uniform distribution. Once these three strings are fixed, then bc is determined first (gray), followed by Alice’s strings ab and ac

(white). Suppose now we take the so-obtained string ab with the original choices of ca and cb as a starting point for determining the remaining
strings according to the Charlie-Alice-Bob order. Then first ac will be recovered according to the scheme in Fig. 4(c), followed by the Bob
strings. With some thought one sees this will result in the same six strings as originally determined in the Charlie-Bob-Alice ordering.

of party ordering in the construction of the joint distribution
demonstrated in Sec. II D.

First we confirm that a single party’s output is independent
of the other two parties’ settings. Let A(·, ·, ·) represent the
function Alice applies to Ab, Ac, X to obtain her final ob-
served outcome A ∈ {0,+}. Then we can write

P (A = +|xyz) =
∑
ab,ac

P (ab, ac|xyz)�A(ab, ac, x) = +�. (12)

Applying (7) to Alice’s marginal distribution, P (ab, ac|xyz) =
2−2n for all choices of ab, ac regardless of y and z, and since
the predicate in brackets �· · ·� also does not depend on y or
z, the value of the sum in (12)—and thus P (A = +|xyz)—is

independent of these remote settings. Note that while the form
of the function A(·, ·, ·) depends on Alice’s particular strategy
it is independent of the other parties’ decision trees and final
output functions. Hence we can say that not only is Alice’s
outcome probability independent of Bob’s and Charlie’s set-
tings, but it is also independent of their strategies. This result
naturally holds for any other choice of parties.

We also can confirm that the joint outcome distribution of
two parties is independent of the settings and strategy of the
third, which is another flavor of no-signaling. Suppose we
have predicate Q involving only two parties—for instance,
Q could be “Alice’s and Charlie’s final outputs A and C are
equal.” Whether Q occurs on a given setting x and z is a
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TABLE III. A Bell function for the (3,2,2) scenario. Blank cells correspond to the value zero.

Outcomes ABC
Nonzero

Setting XY Z +++ ++0 +0+ +00 0++ 0+0 00+ 000 condition

abc 2 2 2 2 A �= C
abc’ 1 1 1 1 A �= B
ab’c 2 2 2 2 A �= C
ab’c’ 1 1 1 1 A �= B
a’bc
a’bc’ 1 1 1 1 Even no. of “+”
a’b’c
a’b’c’ 1 1 1 1 Odd no. of “+”

function of Alice’s and Charlie’s PR box outputs, and so

P (Q|xyz) =
∑

ab,ac,ca,cb: Q is true

P (ab, ac, ca, cb|xyz). (13)

Applying (10) to P (ab, ac, ca, cb|xyz) makes clear the inde-
pendence from Bob’s setting and strategy.

III. DERIVING AN INEQUALITY FOR
PR-BOX-SIMULABLE DISTRIBUTIONS

In our (3,2,2) Bell scenario, if the observed random vari-
ables A, B, and C are functions of an underlying system of
PR boxes as explored in the previous sections, it is possible
to derive a Bell-like inequality constraint on the probability
distribution P (A, B,C|X,Y, Z ). Inspired by the game of Chao
and Reichardt [16], we analyze a closely related experimental
scenario in which the settings X , Y , and Z are equiproba-
ble and a score is assigned to each possible outcome of the
experiment. Table III displays the scores for each of the 64
setting/outcome possibilities.

This assignment of scores to outcomes—a Bell function—
effectively replaces the biased settings probabilities of Chao
and Reichardt with a heavier weighting of 2 on some of the
outcomes. Let F be the random variable that outputs the ob-
served value of the Bell function, so F is a function of A, B,C
and X,Y, Z . For an experiment with equiprobable settings, we
can write the expected value of F as∑

abc,xyz

P (abc|xyz)P (xyz)F (abc, xyz)

= 1

8

∑
abc,xyz

P (abc|xyz)F (abc, xyz)

= 1

8
[P (A �= C|abc) × 2 + P (A �= B|abc’)

× 1 + P (A �= C|ab’c) × 2 + P (A �= B|ab’c’) × 1

+ P (A ⊕ B ⊕ C = 0|a’bc’) × 1 + P (A ⊕ B ⊕ C

= 1|a’b’c’) × 1]. (14)

For nonsignaling distributions, (14) can be written in the com-
pact form

E (F ) = 1

8

⎡
⎣4 × P (A �= C|ac) +

∑
y∈{b,b’}

[P (A �= B|ay) + P (A ⊕ B ⊕ C = y|a’yc’)]

⎤
⎦. (15)

If the probability distribution P (A, B,C|X,Y, Z ) is induced
by a system of PR boxes, the following inequality holds for
the expected value of F :

E (F ) � 1
8 . (16)

Note this inequality is tight: the trivial strategy that out-
puts A = B = C = + for all settings independently of PR
box outputs—which is just a local deterministic strategy—
achieves the bound. The inequality can be violated by a
quantum-achievable distribution described in Ref. [16]. We
spend the rest of this section showing that (16) holds for
distributions induced by underlying networks of PR boxes.

The method of proof, following the contours of the ar-
gument of Chao and Reichardt, is to show that any overall
strategy S—consisting of decision trees and outcome func-
tions for each of Alice, Bob, and Charlie—can be modified

into a simpler overall strategy S′ which differs only in Alice’s
behavior on setting X = a, for which the settings-conditional
probabilities of getting F = 0 scores in Table III are not too
far changed from those of S. Then S′ is further modified into
a strategy S′′ that has a deterministic output for A when the
setting X = a, where again the probabilities of F = 0 are not
too far changed. Then it is pointed out that a strategy like S′′
with a deterministic output on a given setting is constrained
in its ability to win a nonlocal game, so the probability of
F = 0 for S′′ can be bounded below, and then related to a
lower bound on the expectation of F for strategy S.

A. Modifying a general strategy S to a simpler strategy S′

For the first part of the argument, we show how, given a
strategy S, to obtain a new strategy S′ that performs better in
obtaining a smaller value, or at least an equal value, with the
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first and third terms in brackets in (14). The new strategy S′
will also have the property that Alice’s output A is independent
of the outputs of PR boxes shared with Bob.

To construct S′, consider the setting configuration where
XY Z = abc (the argument is the same for Y = b’), and

let us use the notation A(·, ·, ·) and C(·, ·, ·) to repre-
sent the functions that Alice and Charlie use to deter-
mine their final outputs A and C from PR box outputs
and the settings X and Z . Then we can use (10) to
write

PS (A = C|abc) =
∑

ab,ac,ca,cb

PS (ab, ac, ca, cb|abc)�A(ab, ac, a) = C(ca, cb, c)�

=
∑

ab,ac,ca,cb

PS (ab|abc)PS (ca, cb|abc)�ac = AS
c (ab, ca, cb, a, c)��A(ab, ac, a) = C(ca, cb, c)�

=
∑

ab

PS (ab|abc)
∑
ca,cb

PS (ca, cb|abc)
∑

ac

�ac = AS
c (ab, ca, cb, a, c)��A(ab, ac, a) = C(ca, cb, c)�

=
∑

ab

PS (ab|abc)
∑
ca,cb

PS (ca, cb|abc)�A
(
ab, AS

c (ab, ca, cb, a, c), a
) = C(ca, cb, c)�. (17)

The value of the inner sum
∑

ca,cb
will vary depending on the

particular ab fixed by the outer sum, and there will thus be an
optimal value a∗

b that maximizes the inner sum. This optimal
value is not necessarily unique; the inner sum could even be
the same value for all choices of ab, but this is consistent with
there being at least one optimal value.

Now we are ready to define a new strategy S′, which only
differs from S for Alice, and only when her setting choice
X is a. Effectively, Alice’s modification is to “pretend” to
observe a∗

b for Ab and work through her S decision in this
manner, where a∗

b is the chosen value maximizing the inner
sum in (17).1 Formally, we redefine Alice’s decision tree in
S′ as follows: starting at the left of Fig. 3 and working to
the right, all branches are the same as those of S except for
when a Ai

b location is encountered. At such a location, the
path according to S splits into two paths based on the value
of Ai

b; to obtain the tree for S′, redefine the remainder of both
paths moving rightward to be what S does when the ith value
of a∗

b is observed for Ai
b. Repeat this substitution for all Ai

b
locations on the decision tree, moving from left to right. When
this process is complete, define the S′ function for choosing
the final output as A(a∗

b, ac, a)—i.e., substitute the fixed string
a∗

b for whatever is Alice’s actually observed value of Ab into
the function A(·, ·, ·) of strategy S.

So, under S′, we have that for given values of Ab = ab,
Ca = ca, Cb = cb, and Z = z ∈ {c, c’}, if X = a, the deter-

1a∗
b is analogous to r∗

v appearing in Eq. (3) of Ref. [16]. Note
however that r∗

v is a value of an introduced random variable intended
to parametrize the randomness of bipartite nonsignaling nonlocal
subsystems whereas a∗

b is an output of the bipartite nonlocal signaling
subsystems proper.

mined string Ac in Fig. 4(b) will populate according to the
old function AS

c (a∗
b, ca, cb, a, z) with the fixed string a∗

b as
input instead of ab. Hence the following relationship holds
between AS′

c (·) and AS
c (·), which are we recall the functions

that determine Ac from Ab, Aa, Ab under strategies S′ and S,
respectively:

AS′
c (Ab, Ca, Cb, a, z) = AS

c (a∗
b, Ca, Cb, a, z). (18)

Thus, when Alice’s setting X is a, the output of the function
AS′

c (·) is independent of Ab. This enables us to express Alice’s
new final output function A′(·) under strategy S′ as a function
A′(Ab, Ac, X ) that does not depend on Ab when X = a, satis-
fying

A′(Ab, Ac, a) = A
(
a∗

b, AS
c (a∗

b, Ca, Cb, a, Z ), a
)
. (19)

A key implication of (19) is that when X = a Alice’s final
output A is a function of (only) Ca, Cb, and Z . Returning to
(17), we have, for every value of ab,

∑
ca,cb

PS (ca, cb|abc)�A
(
ab, AS

c (ab, ca, cb, a, c), a
)

= C(ca, cb, c)�

�
∑
ca,cb

PS (ca, cb|abc)�A
(
a∗

b, AS
c (a∗

b, ca, cb, a, c), a
)

= C(ca, cb, c)�,

which follows from the manner in which a∗
b was chosen.

Now, by (9), PS (ca, cb|abc) = PS′ (ca, cb|abc) = 2−2n and
PS (ab|abc) = PS′ (ab|abc) = 2−n, so we can write that (17)
is less than or equal to

∑
ab,ca,cb

PS′ (ab|abc)PS′ (ca, cb|abc)�A
(
a∗

b, AS
c (a∗

b, ca, cb, a, c), a
) = C(ca, cb, c)�

=
∑

ab,ac,ca,cb

PS′ (ab|abc)PS′ (ca, cb|abc)�ac = AS
c (a∗

b, ca, cb, a, c)��A′(ab, ac, a) = C(ca, cb, c)�
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=
∑

ab,ac,ca,cb

PS′ (ab|abc)PS′ (ca, cb|abc)�ac = AS′
c (ab, ca, cb, a, c)��A′(ab, ac, a) = C(ca, cb, c)�

=
∑

ab,ac,ca,cb

PS′ (ab, ac, ca, cb|abc)�A′(ab, ac, a) = C(ca, cb, c)�

= PS′ (A = C|abc),

where we used (18) in the third line and (10) in the fourth line. Hence

PS (A = C|abc) � PS′ (A = C|abc). (20)

This also holds if the conditioner is ab’c, as the argument above did not depend on the choice of Y .

B. Comparing the performance of S′ and S when Z = c’

The first part of the proof, up until now, showed that the newly defined strategy S′ has an at-least-as-good “win” probability
as S for the first and third bracketed terms in (14), corresponding to the setting X = a when Z = c. Strategy S′ involves Alice
changing her behavior on setting a, so the second part of the proof is to analyze how S′ performs compared to S for the other
configurations involving setting a: the second and fourth bracketed terms in (14) when Z = c’. The goal is to show that there is
a bound to how much “worse” S′ can do on these other settings. The argument is as follows, which we perform for setting abc’,
but which also works for setting ab’c’. The steps below are similar to the manipulations following Eq. (4) of Ref. [16]:

PS′ (A �= B|abc’) = PS′ (A �= B|abc) [by no-signaling; see (13)]

� PS′ ({A �= C} ∪ {C �= B}|abc)

� PS′ (A �= C|abc) + PS′ (C �= B|abc)

� PS (A �= C|abc) + PS′ (C �= B|abc), [by (20)]

where we used the event relationship {A �= B} ⊆ {A �= C} ∪ {C �= B} and the union bound in the second and third lines.
Continuing with the second term in the last line above, we have

PS′ (C �= B|abc) = PS (C �= B|abc) (S = S′ for B and C)

� PS ({C �= A} ∪ {A �= B}|abc)

� PS (C �= A|abc) + PS (A �= B|abc)

� PS (C �= A|abc) + PS (A �= B|abc’) (by no-signaling),

where the first equation follows from the independence of Charlie’s and Bob’s joint distribution from changes to Alice’s strategy;
see the discussion surrounding (13). Thus we obtain the final inequality:

PS′ (A �= B|abc’) � 2PS (A �= C|abc) + PS (A �= B|abc’). (21)

This complements (20) in constraining the possibilities for an increase of E (F ) when moving from S to S′, analogous to the
expressions at the bottom of page 12 of Ref. [16]. Since the above inequality also holds if we substitute b’ for b, we can apply
(21) to (14) to write

ES (F ) = 1
8 [2PS (A �= C|abc) + PS (A �= B|abc’) + 2PS (A �= C|ab’c)

+PS (A �= B|ab’c’) × 1 + PS (A ⊕ B ⊕ C = 0|a’bc’) + PS (A ⊕ B ⊕ C = 1|a’b’c’)]

� 1
8 [PS′ (A �= B|abc’) + PS′ (A �= B|ab’c’)

+PS′ (A ⊕ B ⊕ C = 0|a’bc’) + PS′ (A ⊕ B ⊕ C = 1|a’b’c’)]. (22)

Note that equality holds for the terms with X = a’ because
strategies S and S′ only differ on setting X = a. An inter-
pretation of (22) is that a shift of Alice’s X = a strategy that
improves the A �= C terms will worsen the A �= B terms, but
only to a certain degree such that the new strategy’s perfor-
mance on F for a restricted subset of setting configurations
lower bounds the original strategy’s expected F value. As we
will see in the next section, the particular manner in which S′
was obtained from S implies independence of Alice and Bob
such that P(A = a, B = b|ay) = P(A = a|a)P(B = b|y) for

y ∈ {b, b’}; this independence condition allows the derivation
of a nontrivial lower bound for (22).

C. Modifying the strategy S′ to an even simpler strategy S′′

To bound (22) from below, we show how to move from
the strategy S′ to a strategy S′′ for which Alice has a con-
stant outcome for A on setting X = a, and where PS′ (A =
B|ayc’) � PS′′ (A = B|ayc’) for both choices of y ∈ {b, b’}.
We will then see that it is impossible to simultaneously make
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all four probabilities in (22) arbitrarily close to zero with a
nonsignaling distribution where Alice has a constant outcome.
To construct S′′ recall that on strategy S′ Alice’s output func-

tion A′(Ab, Ac, X ) does not depend on Ab when X = a. To
emphasize this, we write Alice’s output function as A′(Ac, a)
and use a version of (9) to see that

PS′ (A = a, B = b|abc’) =
∑

ac,ba,bc

PS′ (ac, ba, bc|abc’)�A′(ac, a) = a��B(ba, bc, c’) = b�

=
∑

ac,ba,bc

PS′ (ac|abc’)PS′ (ba, bc|abc’)�A′(ac, a) = a��B(ba, bc, c’) = b�

=
∑

ac

PS′ (ac|abc’)�A′(ac, a) = a�
∑
ba,bc

PS′ (ba, bc|abc’)�B(ba, bc, c’) = b�

= PS′ (A = a|abc’)PS′ (B = b|abc’),

and so Alice’s and Bob’s distributions are independent for this setting configuration. This independence similarly holds for the
configuration ab’c’, so for the first two bracketed terms in (22) we can write∑

y∈{b,b’}
PS′ (A �= B|ayc’) =

∑
y∈{b,b’}

∑
k∈{0,+}

PS′ (A = k, B = ¬k|ayc’)

=
∑

k∈{0,+}

∑
y∈{b,b’}

PS′ (A = k|ayc’)PS′ (B = ¬k|ayc’)

=
∑

k∈{0,+}
PS′ (A = k|ayc’)

∑
y∈{b,b’}

PS′ (B = ¬k|ayc’).

From this, we see that Alice can always decrease this expression (or at least keep it the same) by moving to a strategy with a
fixed output for A on setting a: specifically, always choose the value of k ∈ {0,+} that induces the minimum of the two possible
values of

∑
y∈{b,b’} PS′ (B = ¬k|ayc’). (This choice is analogous to cz in the equation preceding Claim 8.3 of Ref. [16].) If we

define S′′ to be the strategy that does this for Alice on setting a, and is otherwise the same as S′ (and S), we can continue from
(22) to get

ES (F ) � 1
8 [PS′ (A �= B|abc’) + PS′ (A �= B|ab’c’) + PS′ (A ⊕ B ⊕ C = 0|a’bc’) + PS′ (A ⊕ B ⊕ C = 1|a’b’c’)]

� 1
8 [PS′′ (A �= B|abc’) + PS′′ (A �= B|ab’c’) + PS′′ (A ⊕ B ⊕ C = 0|a’bc’) + PS′′ (A ⊕ B ⊕ C = 1|a’b’c’)]. (23)

D. A bound for ES(F ), and quantum violation

The last step is to note that a strategy like S′′ with a fixed
output on a given setting is limited in its ability to win certain
nonlocal games, and use this fact to bound the overall win
probability of the original strategy S using (23). Indeed, the
bracketed quantity

PS′′ (A �= B|abc’) + PS′′ (A �= B|ab’c’)

+ PS′′ (A ⊕ B ⊕ C = 0|a’bc’)

+ PS′′ (A ⊕ B ⊕ C = 1|a’b’c’) (24)

is effectively a variant of the Clauser-Horne-Shimony-Holt
Bell quantity for Alice and Bob, with Charlie’s setting Z fixed
as c’. It can be determined with standard arguments that if
Alice has a fixed output on setting X = a, and the probability
distribution is nonsignaling, then the sum of these conditional
probabilities must be at least 1; see Appendix B for a proof.
This leads to

ES (F ) � 1
8 . � (25)

The bound can be violated by a quantum mechanics. Us-
ing the state and measurements defined in Proposition 5.1 of

Ref. [16], which here are

|ψ〉 = |000〉 + |111〉√
2

, a = c = σ z, a’ = c’ = σ x,

b = σ z + σ x

√
2

, b’ = σ z − σ x

√
2

, (26)

we obtain the settings-conditional probabilities in
Table IV.

TABLE IV. Quantum probabilities for the state and measure-
ments in (26). Here, C = (1/4) cos2(π/8) and S = (1/4) sin2(π/8).

Outcomes ABC

+++ ++0 +0+ +00 0++ 0+0 00+ 000

abc 2C 0 2S 0 0 2S 0 2C
abc’ C C S S S S C C
ab’c 2C 0 2S 0 0 2S 0 2C
ab’c’ C C S S S S C C
a’bc C S S C C S S C
a’bc’ C S S C S C C S
a’b’c C S S C C S S C
a’b’c’ S C C S C S S C
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Recalling that the setting probabilities are each 1/8, we can
compute the expectation for the above quantum strategy as
follows:

EQ(B) = 2S � 0.07322 < 1
8 .

IV. CONCLUSION

We have demonstrated the existence of a joint distribution
for the outputs of a network of PR boxes shared among
three parties, the uniqueness of which is guaranteed by a few
well-motivated principles. We have shown that the distribution
obeys various no-signaling properties and certain functional
dependencies between different sets of PR box outputs. We
used these attributes to rigorously prove that a version of the
inequality described in Ref. [16] must be obeyed by all tri-
partite behaviors that can be induced by underlying networks
of PR boxes; in turn, the results of Ref. [20] imply that the
inequality is obeyed more generally by tripartite behaviors
induced by underlying networks of arbitrary bipartite nonlocal
nonsignaling systems with access to shared local randomness.
The version of the inequality presented here applies readily
to an experimental setup enforcing spacelike separation of the
measuring parties, and the inequality can be violated robustly
by an appropriate quantum state and measurement.

An experimental violation of the inequality (25) can be in-
terpreted as a demonstration of a version of genuine tripartite
nonlocality that differs from previous definitions of the con-
cept [5–8]. Interestingly, a perspective on genuine tripartite
nonlocality similar to the one discussed in the Introduction
can be found in Definition 1 of a recent work of Schmid et al.
[22]. There, the shared bipartite subsystems are restricted to
be quantum states, which is different from the scenario studied
in this paper: bipartite nonsignaling nonlocal behaviors need
not be quantum achievable in general—indeed the PR box is
not—but quantum states also can be subject to entangled mea-
surements in a manner that PR boxes cannot [9,23], leading to
different types of joint probability distributions. Exploring the
possible modification of constraints like (25) under different
restrictions on the shared bipartite resources is a potential
avenue of future research. Indeed, recent works in network
nonlocality [24,25] have derived constraints for a similar
“triangle network” of bipartite-only nonlocal resources; the
scenario of these works differs from the present one however
in disallowing a source of local randomness shared among all
three parties.

Future work should also provide a fuller characterization of
the set of tripartite behaviors admitting an underlying PR-box-
network model. These models cannot properly accommodate
conflicting two-party correlation conditions like A = B versus
A = C along with three-party correlations like A ⊕ B ⊕ C = k
in differing measurement configurations. To discover new
noise-robust constraints, the approach of the arguments of
Sec. III can be explored in other scenarios with similar charac-
teristics, such as the scenario of Scarani [14]. A more general
question is whether the set of PR-box-network-simulable cor-
relations is a polytope, like the classical or local realist set
and the no-signaling set. If it is a polytope, the determination
of its facet inequalities would help analyze whether the in-
equality (25) can be improved upon. The techniques of this

paper can provide a foundation for proving results along these
lines; specifically, if the conditions beyond no-signaling that
are obeyed by PR-box networks can be precisely formulated,
arguments of the form of Sec. II can be used for rigorously
proving them.

Unfortunately, it is not clear whether the framework pre-
sented here can be extended in a straightforward manner to
n-party scenarios for n > 3 (such as, for instance, deriving
a constraint in the four-party setting obeyed by all distri-
butions that can be induced by networks of tripartite-only
nonsignaling nonlocal subsystems). This is because there is
no “n-partite PR box” known to simulate all other n-partite
nonsignaling nonlocal correlations for values of n greater
than 2. Notwithstanding, since the three-party scenario of
this paper is simpler than four- and five-party scenarios it is
thus likely to be the first multipartite scenario accessible to
experimental setups of increasing sophistication. Determining
the tightest inequalities and strongest quantum violations for
this setting will streamline the path to a potential future ex-
periment demonstrating a phenomenon transcending bipartite
nonsignaling nonlocal behavior.
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APPENDIX A: PROBLEMATIC JOINT
DISTRIBUTIONS OF BOXES

Consider a scenario where Alice and Bob share two binary
input, binary output boxes, in which Alice always sees the
same output from both boxes—i.e., with probability 1/2 she
sees a “1” from box 1 and 2, and with probability 1/2 she
sees a “0” from box 1 and 2. Alice’s marginal distribution of
each box conforms with (1). Of course, this does not comport
with what we would expect from two PR boxes which should
not be correlated with each other this way. Indeed, such a
joint distribution would generate signaling effects if Alice puts
inputs into her boxes sequentially: if Alice wanted to send the
digit 0 (1) to Bob, she could observe her first box and feed
that output (the opposite of that output) into the second box as
its input. Then, provided Bob inputs 1 to the second box, he
will observe Alice’s message bit. Indeed, if Alice’s marginal
distribution for the second box is anything other than uniform,
conditioned on the first box’s output, she will be able to send
information to Bob through the above strategy, if imperfectly.
The avoidance of such signaling pathologies clarifies the role
of (4) and (5).

APPENDIX B: LOWER BOUNDING
THE QUANTITY IN (24)

Here we show that for a nonsignaling distribution P the
quantity in (24) is lower bounded by 1 if Alice has the fixed
outcome “+” on setting a. The argument can be directly
modified to prove the scenario where Alice has the fixed
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outcome zero by performing the exchange 0 ↔ + for each
instance of Alice’s and Charlie’s outcome in the expressions
below.

If Alice has the fixed outcome + on setting a, then for
the setting configuration ab’c’ the sum of all the probabilities
where A is equal to “+” must equal 1:

P (+++|ab’c’) + P (++0|ab’c’) + P (+0+|ab’c’)L + P (+00|ab’c’)L = 1. (B1)

Here we have introduced a shorthand where, for instance, P (+0+|ab’c’) equals P (A = +, B = 0,C = +|ab’c’), and the last
two terms are marked with an L superscript to highlight that they contribute to the sum in (24). We show that the first two terms
are upper bounded by a sum of probabilities that all contribute to (24) in a nonoverlapping manner. First, we have

P (+++|ab’c’) = P (+++|ab’c’) + P (0++|ab’c’)

= P (+++|a’b’c’)L + P (0++|a’b’c’)

� P (+++|a’b’c’)L + P (0++|a’b’c’) + P (00+|a’b’c’)

= P (+++|a’b’c’)L + P (0++|a’bc’)L + P (00+|a’bc’)

� P (+++|a’b’c’)L + P (0++|a’bc’)L + P (00+|a’bc’) + P (+0+|a’bc’)

= P (+++|a’b’c’)L + P (0++|a’bc’)L + P (00+|abc’) + P (+0+|abc’)L

= P (+++|a’b’c’)L + P (0++|a’bc’)L + P (+0+|abc’)L (B2)

where the first equality holds because the inserted term is zero, the inequalities hold because probabilities are non-negative, the
last equality holds because the removed term is zero, and the other equalities hold due to no-signaling. We similarly upper bound
the second term of (B1) as follows:

P (++0|ab’c’) = P (++0|ab’c’) + P (0+0|ab’c’)

= P (++0|a’b’c’) + P (0+0|a’b’c’)L

� P (++0|a’b’c’) + P (+00|a’b’c’) + P (0+0|a’b’c’)L

= P (++0|a’bc’)L + P (+00|a’bc’) + P (0+0|a’b’c’)L

� P (++0|a’bc’)L + P (+00|a’bc’) + P (000|a’bc’) + P (0+0|a’b’c’)L

= P (++0|a’bc’)L + P (+00|abc’)L + P (000|abc’) + P (0+0|a’b’c’)L

= P (++0|a’bc’)L + P (+00|abc’)L + P (0+0|a’b’c’)L. (B3)

Combining (B1), (B2), and (B3), we have

1 � P (+++|a’b’c’) + P (0++|a’bc’) + P (+0+|abc’) + P (++0|a’bc’)

+P (+00|abc’) + P (0+0|a’b’c’) + P (+0+|ab’c’) + P (+00|ab’c’)

� P (A �= B|abc’) + P (A �= B|ab’c’) + P (A ⊕ B ⊕ C = 0|a’bc’) + P (A ⊕ B ⊕ C = 1|a’b’c’). �
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