PHYSICAL REVIEW RESEARCH 2, 033465 (2020)

Generation of quantum randomness by probability estimation with classical side information
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We develop the framework of probability estimation for certifying randomness with respect to classical side
information from a sequence of Bell-test or other randomness-generating trials. The framework is based on
directly estimating the probability of measurement outcomes conditional on settings choices and classical side
information with adaptive test supermartingales. Accordingly, the number of trials needs not to be predetermined,
and one can stop performing trials early, as soon as the desired amount of randomness is extractable. It can be
used with arbitrary, partially known and time-varying probabilities for the random settings choices. It can also
adapt to other time-varying experimental parameters. Furthermore, it is suitable for application to experiments
with low Bell violation per trial, such as current optical loophole-free Bell tests. Compared with our previous
work [Phys. Rev. A 98 040304(R) (2018)], here we formulate the framework for the general situation where the
randomness can be extracted from a sequence of private data determined in an arbitrary way by the measurement
outcomes of the trials. Trial-wise probability estimators can be adapted using all accessible, private information
in addition to the results of previous trials. We prove that probability estimation achieves the asymptotically
optimal rate for certified randomness generation and makes possible the exponential expansion of settings
entropy. We implement probability estimation numerically and apply it to a representative settings-conditional
distribution of the measurement outcomes from an atomic loophole-free Bell test [W. Rosenfeld et al., Phys.
Rev. Lett. 119, 010402 (2017)] to illustrate trade-offs between the amount of randomness, error, settings entropy,
adversarial settings bias, and number of trials. We then show that probability estimation yields more randomness
from the optical loophole-free Bell-test data analyzed in [P. Bierhorst et al., arXiv:1702.05178v1] and tolerates

adversarial settings biases.
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I. INTRODUCTION

Device-independent quantum randomness generation ex-
ploits the fact that there are quantum correlations with mea-
surement outcomes that are necessarily nondeterministic with
respect to prior side information. This nondeterminism is
ensured by nonsignaling constraints that can be enforced by
causal separation of the relevant events and certified by tests
based on freely chosen measurement settings. The certified
randomness can then be extracted by means of classical algo-
rithms. Device independence means that the physical devices
producing and measuring the quantum correlations can be
obtained from untrusted manufacturers, without affecting the
desired randomness properties. Device-independent quantum
randomness generation was introduced in Colbeck’s thesis
[1] and has since been studied by many researchers. See
Refs. [2,3] for reviews.
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The types of randomness generation protocols are diverse
and depend on the context and assumptions. In general, a ran-
domness generation protocol produces a string of ¢ bits certi-
fied to be uniformly random within a total variation distance €.
It requires devices whose behaviors are known to satisfy
restrictions based on physical principles such as speed-of-light
limits on communication. Device independence also requires
some random input bits, usually used for measurement set-
tings choices, where different assumptions can be made on
their quality and source. The certification is conditional on the
device-behavior restrictions as well as assumptions on outside
entities with respect to which the string of generated bits is
to be random. For example, it matters whether these entities
are classical or quantum and what type of access they had to
the protocol devices in the past. This work considers entities
holding classical side information. That outside entities have
only classical information can be justified if they are not
quantum-capable, if we built the devices and the entities never
had access to them, or if we verified the absence of long-term
quantum memory in the devices. See Sec. III C. We assume
that the source of input bits is random relative to outside enti-
ties at the time they last interacted with the protocol devices.

For device-independent quantum randomness generation,
we use experiments modelled on Bell tests [4]. These tests
are designed to show that there are quantum correlations
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that cannot be mixtures of locally determined probability
distributions referred to as “local realistic” (LR) distributions.
See Ref. [5] for a review. A Bell test consists of a sequence of
trials (sometimes called “rounds’) where two or more stations
make measurements on a shared physical state with randomly
chosen measurement settings. For full device independence,
each trial needs to satisfy that the different stations’ time
intervals between applying the settings to the devices and de-
termining the measurement outcomes are spacelike separated,
preventing any communication between them. Furthermore,
trials must be committed to in advance, so that it is not
possible to postselect them on a success criterion. Because
these conditions require large separation and/or fast devices
as well as high-efficiency measurements, only recently has
it become possible to perform successful Bell tests satis-
fying these criteria. Such Bell tests may be referred to as
“loophole-free” and the list of successful loophole-free Bell
tests includes ones based on heralded atom entanglement [6,7]
and ones utilizing entangled photon-pairs with high-efficiency
detectors [8,9].

Experimental certified device-independent quantum ran-
domness was first demonstrated in Ref. [10] (see also
Refs. [11,12]) with pairs of ions located in separate traps.
This demonstration claimed the presence of 42 bits of entropy
with an error of 0.01 in the string of measurement outcomes,
with respect to classical side information and restricting
correlations to quantum achievable ones. Extraction would
have reduced the number of bits produced and increased
the error by an amount that was not determined. Recently,
we and our collaborators demonstrated end-to-end device-
independent quantum randomness extraction [13], producing
256 bits within 0.001 of uniform from one of the data sets
from the loophole-free Bell test reported in Ref. [9]. These
bits are certified with respect to classical side information
and nonsignaling assumptions, which in principle allows for
super-quantum correlations. Extracting randomness from to-
day’s optical loophole-free Bell tests required the theoretical
advances in Ref. [13] to deal with the fact that each trial
demonstrates very little violation of Bell inequalities. Previ-
ous works were not sufficient for certifying entropy without
increasing the number of trials by orders of magnitude. A
specific comparison is in Ref. [13].

A Dbenefit of the theory developed in Ref. [13] is that
it allows for an adaptive protocol that can track changes
in the trial statistics during the protocol. This is helpful in
current experiments, where we find that measurable drifts
in parameters can wipe out a randomness certificate if not
accounted for. The fact that the protocol can adapt is inherited
from its use of the “probability-based ratio” protocol for
obtaining p-value bounds against local realism (LR) in Bell
tests [14,15]. Here we develop a different class of randomness
generation protocols based on “probability estimation.” Prob-
ability estimation involves obtaining high-confidence-level
upper bounds on the actual probability of the measurement
outcomes given the known constraints on the distributions.
We show that randomness generation can be reduced to prob-
ability estimation. Since probability estimation is a statistical
estimation problem, we then take advantage of the theory of
test supermartingales [16] to bypass the framework of Bell
inequalities and directly determine probability estimators ex-

pressed as products of probability estimation factors (PEFs).
PEFs are functions of a trial’s settings and outcomes and
provide a way of multiplicatively accumulating probability
estimates trial-by-trial. While relationships between device-
independent quantum randomness and Bell violations exist,
they are inequivalent quantities: a stronger violation of a fixed
Bell inequality does not necessarily certify a larger amount
of device-independent quantum randomness [17]. We develop
tools for obtaining PEFs. In particular, we show that when
the distributions of settings and outcomes are constrained to a
convex polytope, PEFs can be effectively optimized with con-
vex optimization over the polytope given one parameter, the
“power” (see definition 22). The optimization can explicitly
take into account the number of trials and the error goal. In the
limit where the power parameter goes to zero, an asymptotic
rate is obtained that can be interpreted as the optimal rate
for producing entropy for random bits. This generalizes and
improves on min-entropy estimators for Bell configurations
described in works such as Refs. [18-20], which are optimal
for single-trial min-entropy estimation.

In a large class of situations including the standard Bell-test
configurations, PEFs directly lead to exponential expansion of
input randomness, as expected from previous works [21-23],
which prove exponential expansion with more trials or worse
settings entropy than PEFs but secure against quantum side in-
formation. We prove that asymptotically, the settings entropy
can be logarithmic in the output entropy. This is the best result
so far for randomness expansion without using a cross-feeding
protocol, which can accomplish infinite expansion [24,25].
To accomplish exponential expansion, we use highly biased
settings distributions. We point out that it is not necessary to
have independent and identically distributed (i.i.d.) settings
choices. In particular, if the settings are obtained by choosing,
ahead of time, a random “test” trial among a block of 2K trials,
we can achieve good expansion while eliminating the need for
decompressing uniformly random input bits into a stream of
highly biased and independent ones.

As a demonstration of the power of probability estimation,
we show how it would perform on a representative example
for distributions achieved in loophole-free Bell experiments
with atoms based on heralded entanglement [7]. We then
apply it to the main data set from Ref. [9] analyzed in
Ref. [13], showing that we could improve the amount of
device-independent quantum randomness extracted substan-
tially, while ensuring that the certificates are valid even if
the input randomness is biased, a problem that was noticed
and accounted for in the report on the loophole-free Bell test
for this experiment [9]. Finally, we reanalyze the data from
the first demonstration of certified experimental randomness
in a Bell test free of the detection loophole but subject to
the locality loophole, which was based on ions [10]. We
demonstrate significantly more randomness than reported in
this reference. These examples demonstrate that probability
estimation is a practical way for implementing entropy pro-
duction in randomness generation.

Our framework is in the spirit of the entropy accumulation
framework of Ref. [26], but takes advantage of the simpli-
fications possible for randomness generation with respect to
classical side information. In particular, the outside entities
have no interaction with the protocol devices after the protocol
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starts, and the framework can be cast purely in terms of ran-
dom variables without invoking quantum states. This avoids
the complications of a full representation of the protocol in
terms of quantum processes. With these simplifications, our
framework applies to any situation with known constraints on
device behavior, not only device-independent situations. The
only requirement is that the constraints can be formulated as
constraints on past-conditional probability distributions and
are sufficiently strong to allow for randomness certification.
In this work, we choose to introduce our framework with a
focus on device-independent applications.

In the entropy accumulation framework, the relevant esti-
mators, called min-tradeoff functions, must be chosen before
the protocol, and the final certificate is based on the sum
of statistics derived from these functions. Finding suitable
min-tradeoff functions is in general difficult. In the probability
estimation framework, probability estimators can be adapted
and accumulate multiplicatively. For relevant situations, PEFs
are readily obtained and the tradeoff between randomness and
error can be effectively optimized.

The analog of min-tradeoff functions in the probability
estimation framework are entropy estimators. We show that
logarithms of PEFs are proportional to entropy estimators, and
essentially all entropy estimators are related to PEFs in this
way. In this sense, there is no difficulty in finding entropy esti-
mators. However, PEFs are more informative for applications,
so except for illuminating asymptotic behavior, there is little
to be gained by seeking entropy estimators directly.

A feature of entropy accumulation is optimality of asymp-
totic rates for min-tradeoff functions. Probability estimation
also achieves optimal asymptotic rates. In both cases, the
tradeoff between error and amount of randomness makes these
asymptotic rates less relevant, which we demonstrate for prob-
ability estimation on the Bell-test examples mentioned above.

The remainder of the paper is structured as follows. We
summarize the main results in Sec. II. We lay out our nota-
tion and define the basic concepts required for the probabil-
ity estimation framework in Sec. III. This section includes
introductions to less familiar material on classical smooth
min-entropies, test martingales and the construction of test
martingales from Bell inequalities. In Sec. IV, we define exact
and soft probability estimation and show how randomness
generation can be reduced to probability estimation. The mea-
surement outcomes can be fed into appropriate randomness
extractors, where the number of near-uniform random bits is
naturally related to the probability estimate. We give three
protocols that compose probability estimators with random-
ness extractors. The first is based on general relationships
between probability estimation and smooth min-entropy and
reprises techniques from Refs. [12,13,27]. The second relies
on banked randomness to avoid the possibility of protocol
failure. The third requires linear strong extractors to enable
a direct analysis of the composition. Although we do not
demonstrate an end-to-end randomness-generation protocol
including extraction here, our goal is to provide all the in-
formation needed for implementing such a protocol in future
work, with all relevant constants given explicitly. Sec. V
shows how to perform probability estimation for a sequence
of trials by means of implicit test supermartingales defined
adaptively. The main tool involves PEFs to successively

accumulate probability estimates. The main results involve
theorems showing how PEFs can be “chained” to form proba-
bility estimates. PEFs are readily constructed for distribution
constraints relevant in Bell-test configurations. We proceed
to an exploration of basic PEF properties in Sec. VI, where
we find that there is a close relationship between the rates
for PEFs and those for a class of functions called “entropy
estimators”, which are the analog of min-tradeoff functions
in our framework. We establish that for error that is e=",
the achievable asymptotic rates are optimal. Next, in Sec. VII,
we consider a family of PEFs constructed from Bell functions
whose expectations bound maximum conditional probabilities
in one trial. In Sec. VIII, we show that this family can be
used for exponential expansion by means of highly biased
settings choices. Given a constant error bound, the settings
distribution can be interpreted as a random choice of a con-
stant (on average) number of test trials with uniformly random
settings, where the remaining trials have fixed settings. We
note that this is a theoretical proof-of-principle of exponential
expansion. In practice, we prefer to numerically optimize
the PEFs with respect to the desired error and calibrated
experimental distribution. The final section Sec. IX explores
the three examples mentioned above.

We remark that the results for certifying randomness
with exact probability estimation were already presented in
Ref. [28]. Here, we formulate the results for the general case
with soft probability estimation. Recently, we also generalized
exact probability estimation for certifying randomness with
respect to quantum side information, see Refs. [29,30].

II. SUMMARY OF MAIN RESULTS

This work aims to establish the foundations of probabil-
ity estimation and contains a large number of mathematical
results based on mathematical concepts introduced here. In
this section, we summarize the main results without precise
definitions, in more familiar terms and with less generality
than the probability estimation framework established later.

The context for our work consists of experiments where
a sequence of trials is performed. In each trial, settings are
chosen according to a random variable (RV) Z and outcomes
are obtained according to an RV C. The sequences of out-
comes and settings obtained in the experiment are denoted
by C and Z, where for n trials, C = (C;)!_, and Z = (Z;)_,,
with C; and Z; the ith trial’s outcomes and settings. The
main example of such an experiment is the standard Bell
test, where there are two physically separated stations. In a
trial, the stations randomly select measurement settings X and
Y (respectively) and the stations’ devices produce outcomes
A and B (respectively). In this case, Z = XY and C = AB.
The physical separation of the stations and the physics of the
measurement devices constrain the distributions of ABXY to
be nonsignaling once loopholes are accounted for. Classical
devices are further constrained by LR, which can be vio-
lated by quantum devices. This violation is associated with
randomness that can be exploited for randomness generation
[1], see the introduction above. Here we consider randomness
generation where the generated bits are random relative to any
external entity holding classical side information E.

The traditional approach to randomness generation is to
first derive a bound on the smooth min-entropy of the out-
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comes conditional on settings and E from the statistics of the
observed value ¢z of CZ given constraints on the joint dis-
tribution of CZ and E. The smooth conditional min-entropy
HE M(C|ZE ) for the joint distribution p is given by the
negative natural logarithm of the maximum probability of C
given Z and E, averaged over Z and E, up to an error bound €,
which is the smoothness parameter. It can be formally defined
as the maximum A > O such that there exist «’ and v where
' is within total variation distance € of w and u'(cze) <
exp(—A)v(ze) for all cze. (A more involved but equiva-
lent definition based on maximum probabilities is given in
Sec. III D, definition 3.) The smooth conditional min-entropy
characterizes the number of near-uniform random bits that can
be extracted from the outcomes with a randomness extractor
applied after obtaining the min-entropy bound. The distance
from uniform of the random bits obtained is parametrized by
an error bound that, in the simplest case, is the sum of the error
bound of the smooth min-entropy and an error parameter of
the extractor used to obtain the random bits. Here we reduce
the problem of obtaining a smooth conditional min-entropy
bound to that of estimating the conditional probability P(c|ze)
for the observed values ¢z, independent of the value e of E.

Constraints on the joint distribution of CZ and E are
determined by a statistical model H consisting of the allowed
joint probability distributions, which may enforce nonsignal-
ing conditional on E and other constraints such as that the
conditional distributions are quantum achievable by causally
separated devices sharing an initial state. Given H, a level-
€ (conditional) probability estimator for # and C|Z is a
function U : ¢z — U (cz) € [0, 1] such that for all © € H and
all values e of E, the probability that CZ takes a value cz
for whichU(cz) > P,(C=c¢|Z=12z,E =e)isatleast ] —e.
The probability estimate U(cz) differs from a smooth min-
entropy estimate in that the quantity being estimated depends
on the data cz, while the smooth conditional min-entropy is
a characteristic of the overall distribution . Our first result
is that one can obtain a smooth min-entropy estimate from a
probability estimate.

Lemma (Lemma 18). Consider a level-e probability esti-
mator U for H and C|Z, u € H and « = P, (U < p). Define
the probability distribution i’ by u'(cze) = u(cze|U < p) for
all cze. Then Hy (C|ZE) > —In(p/x).

We establish this lemma for the larger class of soft proba-
bility estimators, which provide extensions that may be useful
in some applications. In particular, softness enhances adapt-
ability and enables use of trial information not determined
by CZ. For simplicity, we do not consider softening in this
section.

Here is a sketch of one way to generate randomness from C
using the lemma above. First determine a level-€? probability
estimator U, then run an experiment to obtain an instance
cz of CZ. If U(cz) > p, the protocol failed. If not, apply
a classical-proof extractor £ to ¢ with input min-entropy
—log,(p/e€) to produce random bits. The number of random
bits produced can be close to that determined by the input
min-entropy. The definition and properties of extractors are
summarized in Sec. III D. The parameters chosen ensure that
if the probability of success is at least €, then conditional on
success, the random bits produced are uniform within TV dis-
tance € + €,, where ¢, is the extractor error. In Sec. IV C, we

provide details for three protocols for randomness generation
from probability estimators that take advantage of features of
probability estimation to improve on the sketch just given.

We previously developed a powerful method for construct-
ing “probability-based ratios” such that the resulting p-value
bounds for testing LR are asympototically tight [14,15]. The
method can be seen as an application of the theory of test
supermartingales [16]. The definitions and basic properties
of test supermartingales are given in Sec. IIIF. Here we
show that this theory can be applied to the problem of con-
structing probability estimators. The basic tool is to construct
probability estimation factors (PEFs) that are computed for
each trial of an experiment. Let C be the trial model. A
PEF with power 8 > 0 for C and C|Z is a non-negative
function F : cz +— F(cz) such that for all © € C we have
E, (F(CZ)u(C|Z Y#) < 1. The fundamental theorem of PEFs
is that they can be “chained” over trials to construct probabil-
ity estimators. When chaining trials, the experimental model
‘H is constructed from individual trial models C by requiring
that each trial’s probability distribution conditional on the past
is in C. The trial models and PEFs may depend on past settings
and outcomes. Conditioning on settings requires an additional
conditional independence property as specified in Sec. V A.
A simplified version of the fundamental theorem for the case
where all trial models and PEFs are the same is the following:

Theorem (Theorem 23). Let F be a PEF with power
B for C and C|Z and define T(CZ) = [[._, F(CiZ;). Then
1/(eT(CZ))"? is a level-e probability estimator for H and
C|Z.

The proof is enabled by martingale theory and requires
constructing a test supermartingale.

From the fundamental theorem for PEFs, we can see that
up to adjustments for probability of success and the error
bound, the min-entropy per trial witnessed by a PEF F' with
power g at distribution u is expected to be the “log-prob rate”
E, (In(F(cz)))/B. In a sequence of trials with devices behav-
ing according to specifications, we can expect the trial distri-
butions to be approximately i.i.d. with known distribution .
In this case, the RVs In(F(C;Z;))/B are also approximately
ii.d., and their sum is typically close to nlE,(In(F(cz)))/B.
Since the sum determines the conditional min-entropy wit-
nessed by the probability estimator obtained from F', a goal of
PEF construction is to maximize the log-prob rate. We show
that PEF construction and optimization reduces to the problem
of maximizing a concave function over a convex domain. If
the trial model is a convex polytope, the convex domain is
defined by finitely many extreme points and PEF optimization
has an effective implementation (theorem 28). For the stan-
dard Bell-test configuration, convex polytopes that include the
model and that have a manageable number of extreme points
exist. We implement and apply PEF optimization in Sec. IX.

Given a trial model and a distribution p in the model,
the maximum number of near-uniform random bits that can
be produced per trial in an asymptotically long sequence of
trials is given by the minimum conditional entropy of the
outcomes given the settings and E. The minimum is over
all distributions v of CZE such that v(CZ|e) € C for all e
and v(CZ) = u(CZ). This is a consequence of the asymptotic
equipartition property [31]. We prove that PEFs can achieve
the maximum rate in the asymptotic limit.
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Theorem (Theorem 43). For any trial model C and dis-
tribution p € C with minimum conditional entropy g, the
supremum of the log-prob rates of PEFs for C is g.

To prove optimality we define entropy estimators for model
C as real-valued functions K(CZ) such that E,(K(CZ)) is a
lower bound on the conditional entropy for all © € C. We then
show that there are entropy estimators for which the entropy
estimate [E,(K(CZ)) approaches the minimum conditional
entropy, and that for every entropy estimator, there are PEFs
whose log-prob rates approach the entropy estimate.

It is desirable to minimize the settings entropy used
for randomness generation. For this, we consider maximum
probability estimators for a model C, which are defined as
functions G(CZ) such that E,(G(CZ)) > max,, ju(c|z) for
all u € C. Nontrivial maximum probability estimators exist.
For example, every Bell inequality for the standard two-
settings, two-outcomes Bell-test configuration for two par-
ties has associated maximum probability estimators G(CZ),
and a distribution that violates the Bell inequality satisfies
E,(G(CZ)) < 1. For every maximum probability estimator
G(CZ), we construct a family of PEFs for which the log-prob
rates at ;€ C approach —In(E,(G(CZ))). We analyze this
family of PEFs to determine how log-prob rates depend on
number of trials and power, and find that with this family
it is possible to achieve exponential expansion of settings
entropy. For this, we consider models Ccz of distributions of
C conditional on Z. An unconditonal model C is obtained by
specifying a probability distribution for the settings.

Theorem (Theorem 52). Let G(CZ) be a maximum proba-
bility estimator for C where C is determined by the conditional
model C¢|z with the uniform settings distribution. Suppose
that for a given u € C, E,(G(CZ)) < 1. Then for a con-
stant error bound, there exists a family of PEFs and settings
probability distributions determined by the number of trials
n such that the settings entropy is O(In(n)) and the smooth
conditional min-entropy of the outcomes is ().

The constants in the construction for exponential expan-
sion are not of excessive size, but we consider the construction
a proof of principle, not a practical proposal. Given that for
relevant configurations, we can optimize PEFs directly, for
finite experiments and the best expansion, it is preferable
to use directly optimized PEFs. We determine expansion
opportunities for the trial distribution observed in an atomic
Bell test in Sec. IX.

II1. BASIC CONCEPTS
A. Notation

Much of this work concerns stochastic sequences of ran-
dom variables (RVs). RVs are functions on an underlying
probability space. The range of an RV is called its value
space. Here, all RVs have finite value spaces. We truncate
sequences of RVs so that we only consider finitely many
RVs at a time. With this we may assume that the underlying
probability space is finite too. We use upper-case letters such
asA, B, ..., X,Y,...todenote RVs. The value space of an RV
such as X is denoted by Rng(X). The cardinality of the value
space of X is |[Rng(X)|. Values of RVs are denoted by the
corresponding lower-case letters. Thus x is a value of X, often
thought of as the particular value realized in an experiment. In

the same spirit, we use 2 to denote the universal RV defined
as the identity function on the set of the underlying probability
space. Values of 2 are denoted by w. When using symbols for
values of RVs, they are implicitly assumed to be members of
the range of the corresponding RV. In many cases, the value
space is a set of letters or a set of strings of a given length.
We use juxtaposition to denote concatenation of letters and
strings. For a string s, |s| denotes its length. Unless stated oth-
erwise, a string-valued RV § produces fixed length strings. |S|
denotes the length of the strings, S; is the ith letter of the string,
and Sg; is the length i prefix of the string. By default, strings
are binary, which implies, for example, |S| = log, (|[Rng(S)|).
Sequence RVs (stochastic sequences) are denoted by capital
bold-face letters, with the corresponding lower-case bold-face
letters for their values. For example, we write A = (A,<)§V= 1
and Ag,, = (A;)7L,. Our conventions for indices are that we
generically use N to denote a large upper bound on sequence
lengths, n to denote the available length and i, j, k, [, m as
running indices. By convention, A« is the empty sequence of
RVs. Its value is constant, independent of 2. When multiple
stochastic sequences are in play, we refer to the collection of
ith RVs in the sequences as the data from the ith trial. We
typically imagine the trials as happening in time and being
performed by an experimenter. We refer to the data from the
trials preceding the upcoming one as the past. The past can
also include initial conditions and any additional information
that may have been obtained. These are normally implicit
when referring to or conditioning on the past.

Probabilities are denoted by P(...). If there are multiple
probability distributions involved, we disambiguate with a
subscript such as in P,(...) or simply v(...), where v is
a probability distribution. We generally reserve the symbol
w for the global, implicit probability distribution, and may
write wu(...) instead of P(...). Expectations are similarly
denoted by E(...) or E,(...). If ¢ is a logical expression
involving RVs, then {¢} denotes the event where ¢ is true for
the values realized by the RVs. For example, {f(X) > 0} is
the event {w : f(X(w)) > 0} written in full set notation. The
brackets {. ..} are omitted for events inside P(...) or E(...).
As is conventional, commas separating logical expressions
are interpreted as conjunction. When the capital/lower-case
convention can be unambiguously interpreted, we abbreviate
“X = x” by “x”. For example, with this convention, P (x, y) =
P(X =x,Y =y). Furthermore, we omit commas in the ab-
breviated notation, so P(xy) = IP(x, y). RVs or functions of
RVs appearing outside an event but inside P(. . .) or after the
conditioner in E(...|...) result in an expression that is itself
an RV. We can define these without complications because
of our assumption that the event space is finite. Here are
two examples. P(f(X)|Y) is the RV whose value at w is
P(f(X) = f(X(@))|Y =Y (w)). This is a function of the RVs
X and Y and can be described as the RV whose value is
P(f(X) = f(x)|Y = y) whenever the values of X and Y are
x and y, respectively. Similarly E(X|Y) is the RV defined as a
function of Y, with value E(X|Y = y) whenever Y has value
y. Note that X plays a different role before the conditioners in
E(...)thanitdoesin P(...), as E(X|Y)is not a function of X,
but only of Y. We comment that conditional probabilities with
conditioners having probability zero are not well-defined, but
in most cases can be defined arbitrarily. Typically, they occur
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in a context where they are multiplied by the probability of
the conditioner and thereby contribute zero regardless. An
important context involves expectations, where we use the
convention that when expanding an expectation over a finite
set of values as a sum, zero-probability values are omitted.
We do so without explicitly adding the constraints to the sum-
mation variables. We generally use conditional probabilities
without explicitly checking for probability-zero conditioners,
but it is necessary to monitor for well-definedness of the
expressions obtained.

To denote general probability distributions, usually on the
joint value spaces of RVs, we use symbols such as w, v, p,
with modifiers as necessary. As mentioned, we reserve the
unmodified p for the distinguished global distribution un-
der consideration, if there is one. Other symbols typically
refer to probability distributions defined on the joint range
of some subset of the available RVs. The set of probability
distributions on Rng(X) is denoted by Sx. We usually just
say “distribution” instead of “probability distribution.” The
terms “distributions on Rng(X)” and “distributions of X’
are synonymous. The support of a distribution v on X is
denoted by Supp(v) = {x|v(x) > 0}. When multiple RVs are
involved we denote marginal and conditional distributions by
expressions such as u[X|Y = y] for the distribution of X on
its value space conditional on {Y = y}. The probability of x
for this distribution can be denoted by u[X|Y = y](x), which
is well-defined for P(Y = y) > 0 and therefore well-defined
with probability one because of our finiteness assumptions.
Note the use of square brackets to distinguish the distribution
specification from the argument determining the probability
at a point. If v is a joint distribution of RVs, then we extend
the conventions for arguments of P(...) to arguments of v,

J

as long as all the arguments are determined by the RVs for
which v is defined. For example, if v is a joint distribution of
X, Y, and Z, then v(x|y) has the expected meaning, as does
the RV v(X1Y) in contexts requiring no other RVs. We denote
the uniform distribution on Rng(X) by Unify, omitting the
subscript if the value space is clear from context. If R and
S are independent RVs with marginal distributions v = p[R]
and v' = u[S] on their ranges, then their joint distribution is
denoted by u[R, S]=v® V.

In our work, probability distributions are constrained by a
statistical model, which is defined as a set of distributions and
denoted by letters such as # or C. The models for trials to be
considered here are usually convex and closed. For a model
C, we write Extr(C) for the set of extreme points of C and
Cvx(C) for the convex closure of C defined as the smallest
closed convex set containing C.

The total variation (TV) distance between v and v’ is
defined as

TV, V) =Y (@) =V @) [v) > V@)
— 1 / 1
—Egjw(x)—v(xn, (1)

where [¢] for a logical expression ¢ denotes the {0, 1}-valued

function evaluating to 1 iff ¢ is true. True to its name, the TV
distance satisfies the triangle inequality. Here are three other
useful properties. First, if v and v are joint distributions of
X and Y and the marginals satisfy v[Y] = v'[Y], then the TV
distance between v and V' is the average of the TV distances
of the Y-conditional distributions:

TV, ) =Y 0, y) = v 06 ), ) =V (x, )]

y

=D Gy — Vel ON[pE)VE) = vy ()]

=Y &) =V EYON [ lyve) =V o)
y X

=Y v D&y = V&I [ly) = vy
y X

=Y v TVEIX [yl v X[yD. 2)
y

Second, if for all y, v[X|y] = V/[X]y], then the TV distance between v and v’ is given by the TV distance between the marginals

onY:

TV, ) =Y 0, y) = v ), ) =V (x, )]

y x

=) EyvE) — v EY)Y O EYYE) = v EY E)]

=D Gy — vy O EYVE) = vy ;)]

y

=Y v = Ve = V)]
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=Y v =V G) =

= TVO[Y],V[Y].

Third, the TV distance satisfies the data-processing inequality.
That is, for any stochastic process £ on Rng(X) and distribu-
tions v and v’ of X, TV(E(v), E(V)) < TV(v, v'). We use this
property only for functions &£, but for general forms of this
result, see Ref. [32].

When constructing distributions close to a given one in TV
distance, it is often convenient to work with subprobability
distributions. A subprobability distribution of X is a sub-
normalized non-negative measure on Rng(X), which in our
case is simply a non-negative function ¥ on Rng(X) with
weight w(P) =Y D(x) < 1. For expressions not involving
conditionals, we use the same conventions for subprobability
distributions as for probability distributions. When compar-
ing subprobability distributions, ¥ < ¥’ means that for all x,
P(x) < V'(x), and we say that U dominates .

Lemma 1. Let ¥ be a subprobability distribution of X of
weight w = 1 — €. Let v and v’ be distributions of X satisfy-
ing D <vand b < V. Then TV(y, V') < e.

Proof. Calculate

TV, v) = ) () —v' ) [v) > v' )]
<Y — 1) [vx) = 5]

=) (v(x) = B(x))

=1—w=e¢€. “4)

|

Lemma 2. Assume that p > 1/|Rng(X)|. Let v be a distri-
bution of X and ¥ < v a subprobability distribution of X with
weight w = 1 — € and ¥ < p. Then there exists a distribution
VvV of X withv' > 9,V < p,and TV(y,v') < €.

Proof. Because p > 1/[Rng(X)| and ) (p—¥(x)) =
IRng(X)|p — w > 1 — w, there exists a distribution v > ¥
with v' < p. Since v’ and v are distributions dominating ¥ and
by lemma 1, TV(v, V') < €. [ |

B. Bell-test configurations

The standard example of a Bell-test configuration involves
a pair of devices located at two stations, A and B. The stations
engage in a sequence of trials. In a trial, each station chooses
one of two settings and obtains a measurement outcome,
either O or 1, from their device. A Bell test with this configu-
ration is called a (2,2,2) Bell test, where the numbers indicate
the number of stations, the number of settings available to
each station and the number of outcomes at each setting. The
test produces two stochastic sequences from each station. The
sequence of settings choices is denoted by X for A and Y for
B, and the sequence of measurement outcomes is denoted by
A and B, respectively. In using this notation, we allow for
arbitrary numbers of settings and measurement outcomes. For

V()]

3)

(

a (2, k, ) Bell-test configuration, |Rng(X;)| = |[Rng(Y;)| = k
and |[Rng(A;)| = |Rng(B;)| = I. The main role of separating
the configuration by station is to justify the assumptions,
which can be generalized to more stations if desired. The
assumptions constrain the models consistent with the config-
uration. In this work, once the constraints are determined, the
separation into stations plays little role, but we continue to
identify settings and outcomes RVs. We use Z and C to denote
the corresponding stochastic sequences. For the case of two
stations, Z = (X;Y;)Y_, and C = (A;B))Y,.

We also refer to RVs D and R. For D, we assume that D;
is determined by (that is a function of) C;. We use D to study
protocols where the randomness is extracted from D instead
of C. For example, this includes protocols where only A’s
measurement outcomes are used, in which case we set D = A.
We assume that C; is determined by R;, and we use R to
contain additional information accumulated during the experi-
ment that can be used to adapt the protocol but is kept private.
We may write R; = C;R;, where C; and R; are the outcomes
observable and the additional information obtainable in the
ith trial, respectively. For example, if some calibration data is
obtained after the ith trial and before the (i + 1)th trial, we can
use this calibration data to adapt the PEF for the (i + 1)th trial,
and so R} will include the information about this calibration
data. We note that the special case where D; = C; = R; was
already studied in our previous work [28]. In general, we need
to differentiate the variables D;, C; and R; as D; is used for
extracting randomness, C; is for constraining the model for
the ith trial (see Sec. V A), and R; is for adapting the PEF
construction. The main purpose of the RV Z is to contain data
that may become public. This applies to the settings if the
source of the random settings choices is public or otherwise
not sufficiently trusted. In situations where there is only one
trial under consideration or we do not need the structure of the
stochastic sequences, we use the nonboldface variants of the
RVs, thatis D, C, R, and Z.

C. Assumptions for Bell tests

We are interested in limiting the information held by an
external entity. This work is concerned with external entities
holding classical side information, so the external entity E’s
state is characterized by an RV E. Physical entities and sys-
tems are denoted by capital sans-serif letters, a convention we
already used to refer to stations. All our results are proven for
finite event spaces. While this is reasonable with respect to the
RVs representing information explicitly used by the protocols,
it is an unverifiable restriction on E. For countable E, one
can use the observation that conditioning on large-probability
finite subsets of E gives distributions that are arbitrarily close
in TV distance to the unconditioned distribution.

Our theory is formulated in the untrusted device model [1]
where E may have had the devices in possession before the
trials of the protocol of interest start. Once the protocol starts,
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E cannot receive information from the devices. Note that this
does not preclude that E sends information to the devices via
one-way channels, see below. This simplification is possible
for local randomness-generation protocols where the partic-
ipating parties need no remote classical communication. In
many other applications such as quantum key distribution, the
protocols involve both quantum and classical communication,
in which case E can gain additional information at any time.

To ensure that E cannot receive information from the
devices after the start of the protocol requires physical security
to isolate the joint location of the devices and the stations. For-
malizing this context requires a physical framework for which
subsystems and interactions can be defined, with classical
subsystems playing a special role. In the case of applications
to Bell-test configurations, we motivate the constraints on
the models with physical arguments, but we do not prove
the constraints with respect to a formal physical framework.
Let D be the pair of devices with which A and B implement
the protocol. The absence of information passing from ABD
to E is ensured if there is no physical interactions between
the two sets of systems after the protocol starts. While Z is
private, we can time shift any one-way communication from
E to ABD, or noninteracting dynamics of E to before the
beginning of the protocol. A communication from E to ABD
can be described by adding the communication as a system
C to E, which interacts with E then becomes isolated from
E and later becomes part of the devices. This makes time
shifting possible, after which we can assume that any physical
processes relevant to the protocol act only on ABD. Of course,
we insist that after time-shifting, the state of E is classical.
This justifies the use of a single RV E to determine the state
of E. In this work, we make few assumptions on the physics
of D and formulate constraints on distributions purely in terms
of the RVs produced by the protocol, conditional on E.

The formal restriction that E holds only classical side
information allows for quantum E provided that there is an
additional quantum system H independent of E such that the
joint state at the start of the protocol of the systems ABD, H
and E forms a quantum Markov chain ABD < H < E [33].
This is a quantum generalization of stating that E and ABD
are independent conditionally on H. The system H needs to
have no interaction with E and ABD after the start of the
protocol. For example, H can be part of a generic decohering
environment. The Markov chain property implies that after
an extension of E, without loss of generality, the information
held by E can be assumed to be classical. Operationally, this
situation can be enforced if we trust or ensure that the devices
have no long-term quantum memory.

Two assumptions constraining the possible distributions
are required for randomness generation with Bell tests. The
settings constraints restrict the settings distributions, and the
nonsignaling constraints enforce the absence of communica-
tion between the stations during a trial. There are different
ways in which the settings distributions can be constrained.
The strongest constraint we use is that Z;;; is uniform, in-
dependent of Zg;, Cg; and E. In general, we can consider
weaker constraints on Z;;;. For example, Z;;; may have any
distribution that is independent of E but determined in a
known way by the past. Most generally, Z; ;| has a distribution
belonging to a specified set conditional on E and the past.

If we later allow Z to become public, or if Z is from a
public source of randomness, then Z; | must be conditionally
independent of Rg; given Zg; and E. This constraint can be
avoided if we trust that the data that normally contributes
to Z remains private, in which case we can exploit that our
framework is flexible in how the experimental data relates to
the random variables: If normally Z contains settings choices,
we can instead let Z be empty, add the settings choices into
the RV C and extract randomness from all or some of C.
With this assignment of RVs, conditional independence is not
required. However, for nontrivial randomness generation, it is
then desirable to extract strictly more random bits than were
required for the settings choices. Otherwise the randomness
obtained may just be due to the input randomness with no
other contribution.

To state the nonsignaling constraints requires explicitly
referencing each station’s RVs. The nonsignaling constraints
are assumed to be satisfied for trial i conditional on the past
and E. With conditioning on these RVs implicit and for two
stations, the nonsignaling constraints consist of the identities

P(A;1XiY)) = P(AilX), P(BilX;Y;) = P(BilY), (5)

which assert remote settings independence of measurement
outcomes. The nonsignaling constraints can be strengthened
using the semidefinite-programming hierarchy for quantum
distributions [34] when the devices are assumed to be
quantum.

In any given implementation of randomness generation,
the settings and nonsignaling constraints must be justified by
physical arguments. The settings constraints require a source
of random bits that are sufficiently independent of external
entities at the last point in time where they had interactions
with the devices and the stations. For protocols such as those
discussed here, where the output’s randomness is assured con-
ditionally on the settings, the settings randomness can become
known after the last interaction, so it is possible to use public
sources of randomness. However, if the same public string
is used by many randomness generators, a scattershot attack
may be possible. To justify the nonsignaling constraints, this
randomness must not leak to the stations’ devices before it is
used to apply the device settings. Thus we need to trust that
it is possible to generate bits that are, before the time of use,
unpredictable by the stations’ devices. For the nonsignaling
constraints, we also rely on physical isolation of the stations
during a trial, preferably enforced by relativistic causality. It
usually goes without saying that we trust the timing, recording
and computing devices that monitor and analyze the data
according to the protocol. However, given the complexity
of modern electronics and the prevalence of reliability and
security issues, caution is advised.

D. Min-entropy and randomness extraction

To be able to extract some amount of randomness from a
bit-string RV D, it suffices to establish a min-entropy bound
for the distribution of D. The min-entropy of D is Hyin (D) =
— In(pmax (D)), where pm.x (D) = max, P(d). By default, log-
arithms are base e, so entropy is expressed in nits (or e-bits),
which simplifies calculus with entropic quantities. We convert
to bits to determine string lengths as needed. We switch to
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logarithms base 2 in Sec. IX for quantitative comparisons.
Since we usually work with bounds on min-entropies rather
than exact values, we say that D has min-entropy — In(p) or
D has max-prob p if pn. < p and add the adjective “exact”
to refer to — In(pPmax) OF Pmax. If D has min-entropy o In(2),
then it is possible to extract close to o near-uniform bits
from D given some uniform seed bits. The actual number
of near-uniform bits that can be safely extracted depends on
|[D|, how many uniform seed bits are used, the maximum
acceptable TV distance from uniform of the near-uniform
output bits, and the extractor used. An extractor £ has as input
a bit string D, a string of uniform seed bits S independent of
all other relevant RVs, and the following parameters: a lower
bound o, In(2) on the min-entropy of D, the desired number
o of uniform bits, and the maximum acceptable TV distance
from uniform €, of the output. We write £(D, S; 0y, 0, €;)
for the length o bit string produced by the extractor. This
bit string is close to uniform provided the input satisfies
extractor constraints that depend on the specific extractor
used. Formally, a strong extractor has the property that if
the parameters n = |D|, [ = |S|, o, 0, €, satisfy its extractor
constraints, S is an independent and uniform bit string, and D
has min-entropy at least oy, In(2), then

TV(UIED, S;0n, 0, €)S], Unif) < €. (6)

Extractors used in this work are strong by default. The
statement that (n, oy, 0, €,) satisfies the extractor constraints
means that there exists [ so that the full list of parameters
(n, 1, oy, 0, €,) satisfies the extractor constraints. We always
include o, < n, 1 <o <o, and 0 < €, < 1 among the ex-
tractor constraints. Extractor constraints are partially deter-
mined by information theoretic bounds, but constraints for
practical extractors are typically stronger. See Ref. [35].

In previous work [13], we have used an implementation
of Trevisan’s strong extractor based on the framework of
Mauerer, Portmann, and Scholz [36] that we called the TMPS
extractor Ervps. The extractor constraints for Etyps are not
optimized. Simplified constraints are 0 < ¢, < 1, 2 < 0 <
o, <n,o €N, and

o +4log,(0) < o, —4log,(1/€e,) — 6,
1 > 36log,(0)(log, (4n0?/e))’.  (7)

See Ref. [13] for the smaller expression for / used by the
implementation. The TMPS extractor is designed to be se-
cure against quantum side information. In general, strong
extractors can be made classical-proof, that is, secure against
classical side information, with a modification of the extractor
constraints. Some strong extractors such as Trevisan’s can also
be made quantum-proof, that is, secure against quantum side
information, with a further modification of the constraints.
See Ref. [36] for explanations and references to the relevant
results, specifically lemma A.3, theorem B.4, lemma B.5,
and lemma B.8. All our protocols assume strong extractors
and are secure against classical side information. However,
they do not require that the strong extractor be classical- or
quantum-proof; in one case, the relevant constraint modifica-
tion is implicit in our proof, and in the other cases, we take
advantage of special properties of our techniques. The TMPS
extractor constraints given above include the modifications

required for being quantum-proof; we did not roll back these
modifications.

The TMPS extractor also satisfies that conditional on the
seed bits, the output is a linear hash of D. For bits, a linear
hash of D is a parity of D, computed as ), #;D; mod (2),
where the /; € {0, 1} form the parity vector. We call extractors
with this property linear extractors.

Given that the extracted bits are allowed a nonzero distance
from uniform, it is not necessary to satisfy a strict min-entropy
bound on the extractor input D. It suffices for the distribution
of D to have some acceptably small TV distance ¢, from
a distribution with min-entropy oy, In(2). We say that D has
€,-smooth min-entropy oy, In(2) if its distribution is within
TV distance €, of one with min-entropy oy 1n(2). For the
situation considered so far in this section, the error bound
(or smoothness) €, and the extractor error €, can be added
when applying the extractor to D. In this work, we generally
work directly with the maximum probability. We say that D
has €j,-smooth max-prob p if it has €;-smooth min-entropy
—In(p).

We generally want to generate bits that are near-uniform
conditional on E and often other variables such as Z. For our
analyses, E is not particularly an issue because our results
hold uniformly for all values of E, that is, conditionally on
{E = e} for each e. However this is not the case for Z.

Definition 3. The distribution u of DZE has e-smooth
ZE-conditional max-prob p if the following two conditions
hold. (1) For each ze there exists a subprobability distri-
bution fi,, of D such that fi,, < u[D]ze] and fi,, < p; and
(2) the weights of these subprobability distributions sat-
isfy D, w(fize)i(ze) > 1 — €. The minimum p for which
u has e-smooth ZE-conditional max-prob p is denoted by
Prax,(DIZE). (The superscript u alludes to the uniformity of
the bound with respect to ZE'.)

The distribution u of DZE has e-smooth average ZE-
conditional max-prob p if there exists a distribution v
of DZE with TV(v, u) < € and Zze max,(v(d|ze))v(ze) <
p. The minimum p for which pu has e-smooth average
ZE-conditional max-prob p is denoted by Py, , (DIZE).
The quantity H;in‘M(D|ZE) = —In(P;,, ,(DIZE)) is the e-
smooth ZE -conditional min-entropy.

We refer to the smoothness parameters as error bounds.
Observe that the definitions are monotonic in the error bound.
For example, if Py, , < pand € > ¢, then Prf‘]/ax, u S p- The
quantity Zze max,(v(d|ze))v(ze) in the definition of Py, u
can be recognized as the (average) maximum guessing proba-
bility of D given Z and E (with respect to v), whose negative
logarithm is the guessing entropy defined, for example, in
Ref. [27]. The relationships established below reprise results
from the references. We use them to prove soundness of the
first two protocols for composing probability estimation with
randomness extractors (theorems 19 and 20) but bypass them
for soundness of the third (theorem 21).

We focus on probabilities rather than entropies because in
this work, we achieve good performance for finite data by
direct estimates of probabilities of actual events, not entropies
of distributions. While entropy estimates may be considered
the ultimate goal for existing applications, they are not funda-
mental in our approach. The focus on probabilities helps us to
avoid introducing logarithms unnecessarily.

ax, it
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A summary of the relationships between conditional min-
entropies and randomness extraction is given in Ref. [37] for
the quantum case and can be specialized to the classical case.
When so specialized, the definition of smooth conditional
min-entropy in, for example, Ref. [37] differs from the one
above in that Ref. [37] uses one of the fidelity-related dis-
tances. One such distance reduces to the Hellinger distance A
for probability distributions for which #2 < TV < +/2h.

Uniform or average bounds on Z-conditional max-probs
with respect to E = e can be lifted to the ZE-conditional
max-probs, as formalized by the next lemma.

Lemmad4. If for all e, P;’;x,u[Dzw] (D|1Z) < p,
then Pf ipze)(PIZE) < p. Suppose that for all e,

PruinzigPIZ) < pe, and let &=} epu(e) and

p= Ze Peit(e). Then Priax,M[DZE](D|ZE) <P
Proof. For the first claim, for each e, let fi,, be sub-
probability distributions witnessing that P-* uipziePI1Z) <

p according to the definition. Then fi,, < u[D|zel, fi;e < p
and ) w(fi)u(zle) = 1 — €, from which we get

D w(idnze) =Y ule) Y wliiz)u(zle)

ze

> Zu(e)(l —e)=(1—¢€). (8

For the second claim, for each e, let v, witness
P;pax,u[l)zw](D'Z) < pe. Then TV(v,, u[DZle]) < €, and
Y. maxy(ve(d|z2))ve(z) < p.. Define v by v(dze)=

Ve(dz)(e). Then v[E] = n[E], so we can apply Eq. (2)
for

TV, u) = ZTV(ve, ulDZleDu(e) < Z €.pu(e) = €.
e e (9)

Furthermore,

;mdax@(due))v(ze) = Xeju@) ;m;x(ve(dm)vme)

<Y we@pe=p, (10)

as required for the conclusion. |
The main relationships between conditional and average

conditional max-probs are determined by the next lemma.
Lemma 5. Let p > 1/|Rng(D)|, € > 0 and p a distribution

of DZE. If Py (DIZE) < p, then Py, (DIZE) < p. If

Prax. . (DIZE) < pé, then there exists a distribution 1" of
DZE with TV(Y, ) < € + § such that P*° (D|ZE) < p.If

max, v
(D|ZE) < p8, then P¥2¢+3(D|ZE) < p.

P, riax, I max, /4

Proof. Suppose that Pyl (D|ZE) < p. Let fi;, be sub-
probability distributions witnessing this inequality as re-
quired by the definition. Since p > 1/|Rng(D)| and by
lemma 2, there exist distributions v,, with v, > fize, Ve < p

and TV (v, u[D]|ze]) < 1 — w(ji,). Define v by v(dze) =

Ve (d)(ze). Then v[ZE] = ul[ZE], and according to Eq. (2)

TV, ) = Y TV(v, ulDlze])pn(ze)

<= w(i)nie) <1 (1 -6 =e.
ze (11)

Since ), maxy(v.(d))v(ze) < ), pu(ze) = p, the first
part of the lemma follows.

For the second part of the lemma, suppose that
Prax  (DIZE) < p§ and let v be a distribution wit-
nessing this inequality. By definition, TV (v, u) < € and
> .. maxy(v(d|ze))v(ze) < pd. Let m(ze) = maxy(v(d|ze)).
By Markov’s inequality, v(m(ZE) > p) < 8. Let v'(dze) =
v(dze) if m(ze) < p and V'(dze) = v(ze)/|IRng(D)| other-
wise. Then TV(v', v) < § and for all ze, max,(v'(d|ze)) <
p. Note that v'[ZE] = v[ZE]. By the triangle inequality,
TV, n) < € + 6. By letting ¥/, = v'[D|ze] in the definition
for ZE-conditional max-prob, we see that P%’aox.v,(D|ZE )< p.

For the last part of the lemma, define v’(dze) =
V'(d|ze)u(ze). Then

TV, V") = TVW'[ZE], V'[ZE])
=TV([ZE], u[ZE]) < €, (12)

where we used the identities v'[D|ze] = v”[D|ze] and Eq. (3),
and applied the data-processing inequality. Let fi,.(d) =
min(v”(d|ze), u(d|ze)) = min(v'(d|ze), u(d|ze)). Then the
i, are subprobability distributions, fi,, < p, ft;. < w[D|ze]
and

> w(iiz)u(ze) = Y min(v'(d|ze). u(d|ze))p(ze)

ze zed

= Zmin(u”(dze), u(dze))

zed

=D uldze) = Y (u(dze) —V'(dze))

zed zed

x [u(dze) > v'(dze)]
=1-TVQO', n)
>1-TVQ",v)=TV(O ,v) —=TV(y, u)
>1—2—34, (13)

SO fi,. is as required by the definition. |
We remark for emphasis that as noted in the proof of the

lemma, the construction of v’ satisfies that V'[ZE] = v[ZE],

where v is the witness of the assumption in the second part.

The smoothness parameter for smooth conditional max-
prob composes well with strong extractors. See also Ref. [27],
proposition 1.

Lemma 6. Suppose that the distribution w of DZE
satisfies Pt (DIZE) <27, and § is a uniform and
independent seed string with respect to w. If (n=
|ID|,l =|S|, o, 0, €,) satisfies the extractor constraints, then
TV(u[ED, S; 04, 0, €)SZE], Unif ® u[ZE]) < €, + €.

Proof. Let fi,, be subprobability distributions witnessing
Pt ((DIZE) < 277" as required by the definition, and define

v as we did at the beginning of the proof of the first part
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of lemma 5, with p =27 and € = ¢;,. Then v[D|ZE] <
p, V[ZE] = u[ZE), and by Eq. (11), TV(v, n) < €. Ac-
cording to the extractor specification, for all ze, we have
TV(W[E(D, S)S|ze], Unif) < €,. Since V[ZE] = u[ZE], we
can apply Eq. (2) to get

TVO[ED, S)SZE], Unif ® u[ZE])
= > TVOIED, S)S|ze]. Unif )y (ze)

ze
< ane) = (14)

By the data-processing inequality, TV([E(D, S)SZE],
nlED, S)SZE]) < TV(v, u) < €,. The result now follows
by the triangle inequality. |
By means of the third part of lemma 5, we can also
compose smooth average conditional max-prob with a strong
extractor.
Lemma 7. Suppose that the distribution p of DZE

satisfies P (D|IZE) <27, and S is a uniform
and independent seed string with respect to p. If

(n=|D|,l = |S|, oy, 0, €,) satisfies the extractor constraints,
then TV(u[E(D, S;o0, 0,€)SZE], Unif @ u[ZE]) < €, +
e, + 6.

Proof. From the last part of lemma 5, we have

Py (DIZE) < 27", The result now follows from
lemma 6. n

E. Randomness generation protocols

A randomness generation protocol P is parameterized by
o, the requested number of uniform bits and €, the protocol
error bound, defined as the TV distance from uniform of
these bits. Minimally, the output consists of a string of o
bits. In addition, the output can contain an additional string
containing other random bits that may have been used inter-
nally for seeding the extractor or choosing settings, in case
these bits can be used elsewhere. Further, the protocol may
output a flag indicating success or failure. If the probability of
success can be less than 1, the protocol may require as input
a minimum acceptable probability of success k. We write
P = (Px, Ps, Pp), where Py is the principal o -bit output, Py
is the possibly empty but potentially reusable string of seed
and other random bits, and Pp is the success flag, which is 0
(“fail”) or 1 (“pass”). Here, we have suppressed the arguments
o and € (or o, € and k) of P, Px, Ps, and Pp, since they
are clear from context. The outputs of P are treated as RVs,
jointly distributed with £ and any other RVs relevant to the
situation. In this context, we constrain the joint distribution of
the RVs according to a model H. When Py is nonempty, we
assume that the marginal distribution p©[Ps] is known to the
user.

The property that a protocol output satisfies the request is
called soundness. We formulate soundness so that the TV dis-
tance is conditional on success and € absorbs the probability
of success criterion in a sense to be explained.

Definition 8. The randomness generation protocol P is
(0, €) sound with respect to E' and model H if for all u € H,

|Px| = o and there is a distribution vz, of E’ such that

TV(u[PxPsE'|Pp = 1], Unifp, @ u[Ps]
Qvp)P(Pp=1) <e. (15)

We normally use E’ = ZE, but E' = E is an option if
the settings choices are private. The definition ensures that
‘P is nearly indistinguishable, namely within TV distance €,
from an ideal protocol with the same probability of success,
namely, such a protocol for which Py is perfectly uniform and
independent of other variables conditional on success.

An alternative definition of soundness is to make the mini-
mum acceptable probability of success « explicit and require
that either P(Pp = 1) < « or the conditional TV distance in
Eq. (15) is bounded by €. We refer to a protocol satisfying this
property as (o, €, k) sound. The two definitions are closely
related:

Lemma 9. Fix E’ and H. Let « > 0 and € > 0. Suppose
that P is a (o, €x) sound randomness generation protocol,
then P is (o, €, k) sound. If P is (o, €, k) sound, then P is
(o, max(e, «)) sound.

Proof. Suppose that P is (o, ex) sound. Consider any u €
H and let vg: be the distribution of E’ in Eq. (15). If P(Pp =
1) > k, then the desired TV distance is at most ex/k = €.
Since u € H is arbitrary, P is (o, €, k) sound.

For the other direction, again consider any u € H. If
P(Pp = 1) < «, then the left-hand side of Eq. (15) is at most
Kk, because the TV distance is bounded by 1. If P(Pp = 1) >
K, let vy be such that the TV distance in Eq. (15) is bounded
by €. Then the full left-hand side of this equation is bounded
by eP(Pp = 1) < €. The conclusion follows. [ |

We prefer to use (o, €) soundness, since this is often more
informative than (o, €, k) soundness, allowing for flexibil-
ity in how the protocol is used without looking inside the
soundness proof. However, in both cases, soundness proofs
may contain additional information about the relationship
between the probability of success and the error bound that is
useful when implementing the protocol in a larger context. For
example, the soundness established in theorem 19 establishes
a relationship between relevant error bounds that does not
match either definition, but readily implies forms of either
one.

In studies of specific randomness generation protocols, an
important consideration is completeness, which requires that
the actual probability of success of the protocol is nontrivially
large, preferably exponentially close to 1 with respect to rele-
vant resource parameters. Completeness is readily satisfied by
our protocols for typical Bell-test configurations.

The actual probability of success should be distinguished
from any relevant minimum acceptable probability of suc-
cess in view of the discussion above. Experimental imple-
mentations so far demonstrate that success probabilities are
acceptable, but not arbitrarily close to 1. As discussed in
the introduction, theory shows that there are randomness
generation protocols using quantum systems that can achieve
high success probabilities. Here we emphasize protocols for
which the success probability is 1 by allowing for injection of
banked randomness when insufficient randomness is available
from the allotted resources. Assuming completeness, we can
also take advantage of the ability to stop the protocol only
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when enough randomness is generated, but since this requires
care when extracting near-uniform bits from potentially long
strings, we do not develop this approach further here.

F. Test factors and test supermartingales

Definition 10. A test supermartingale [16] with respect to
a stochastic sequence R and model H is a stochastic sequence
T= (Y})f.\': o With the properties that Ty =1, for all i 7; > 0,
T; is determined by Rg; and the governing distribution, and
for all distributions in H, E(7i+1|Rg;) < T;. The ratios F; =
T;/T;—; with F; = 1if T,_; = 0 are called the test factors of T.

Here, R captures the relevant information that accumulates
in a sequence of trials. It does not need to be accessible
to the experimenter. The o-algebras induced by Rg; define
the nested sequence of o-algebras used in more general
formulations. Between trials i and i 4 1, the sequence Rg; is
called the past. In the definition, we allow for T; to depend
on the governing distribution p. With this, for a given pu,
T; is a function of Rg;. Below, when stating that RVs are
determined, we implicitly include the possibility of depen-
dence on p without mention. The u dependence can arise
through expressions such as E,(G|Rg;) for some G, which
is determined by Rg; given u. One way to formalize this is
to consider p-parameterized families of RVs. We do not make
this explicit and simply allow for our RVs to be implicitly
parameterized by . We note that the governing distribution in
a given experiment or situation is fixed but usually unknown
with most of its features inaccessible. As a result, many RVs
used in mathematical arguments cannot be observed even in
principle. Nevertheless, they play important roles in establish-
ing relationships between observed and inferred quantities.

Defining F; = 1 when 7;_; = 0 makes sense because given
{T;_y = 0}, we have {T; = 0} with probability 1. The se-
quence F satisfies the conditions that for all i, (1) F; > 0,
(2) F; is determined by Rg;, and (3) for all distributions in
H, E(Fit11Rg;) < 1. We can define test supermartingales in
terms of such sequences: Let F be a stochastic sequence
satisfying the three conditions. Then the stochastic sequence
with members 7o = 1 and 7; = ngjgiFj fori > 1 is a test
supermartingale. It suffices to check that E(7;;,|Rg;) < T..
This follows from

E(Tiy1IRg) = E(F1TiRg) = E(F|IRGHT < T, (16)

where we pulled out the determined quantity 7; from the
conditional expectation. In this work, we construct test su-
permartingales from sequences F with the above properties.
We refer to any such sequence as a sequence of test factors,
without necessarily making the associated test supermartin-
gale explicit. We extend the terminology by calling an RV F
a test factor with respect to H if F > 0 and E(F) < 1 for all
distributions in H.

For an overview of test supermartingales and their prop-
erties, see Ref. [16]. The notion of test supermartingales and
proofs of their basic properties are due to Ville [38] in the
same work that introduced the notion of martingales. The
name “‘test supermartingale” appears to have been introduced
in Ref. [16]. Test supermartingales play an important the-
oretical role in proving many results in martingale theory,
including that of proving tail bounds for large classes of

martingales. They have been studied and applied to Bell tests
[14,15,39].

The definition implies that for a test supermartingale
T, for all n, E(7,) < 1. This follows inductively from
E(Ti11) = E(E(T+1|R<)) < E(T) and Ty = 1. An applica-
tion of Markov’s inequality shows that for all € > O,

P(T, =2 1/€) < €. a7

Thus a large final value t+ = T, of the test supermartingale
is evidence against H in a hypothesis test with H as the
(composite) null hypothesis. Specifically, the RV 1/T is a
p-value bound against H, where in general, the RV U is a
p-value bound against H if for all distributions in H, P(U <
€) < €. This result can be strengthened as follows. Define
T = maxi<i<n T,

Theorem 11. For a test supermartingale T with respect to
R and H, the RV 1/T* is a p-value bound against H.

This theorem is due to Ville [38] Ch. V.2.2 (pp. 97 and 98).

Proof. The theorem follows from Doob’s maximal in-
equalities. The particular inequality we need is normally
stated for a non-negative submartingale T’ in the form

P(max 7/ > 1) < E(T,)/% (18)

where A = 1/€ for our purposes. Statements and proofs of
this inequality are readily found online. A textbook treat-
ment is in Ref. [40] Ch. V, Cor. 22. To apply the above
maximal inequality to the test supermartingale T, let T;,; =
E(T;+1|Rg;). Note that Ty is determined by Rg¢; and by
the definition of supermartingales, T, < 7;. Define T, =1
and T = ngjgi T;/T;. By pulling out determined quantities
from the conditional expectation, we get

E(T/R<;) = T/E(Tiy1/Ti111R<)
=T'E(Ti+11R<)/Tin =T} 19

Hence T’ is a test martingale. In particular, it is a non-negative
submartingale with E(7))=1. We claim that T/ > T;.
This holds for i = 0. For a proof by induction, compute
T, =TTy /Tiy1 = TiTiy1 /Tiyy 2 TiTi4/T; = Ty This
gives maxigi<n I/ 2> T%, so the event {T* > A} implies
the event in the maximal inequality, and monotonicity of
probabilities implies the theorem. ]

One can produce a test supermartingale adaptively by
determining the test factors F;, | to be used at the next trial. If
the ith trial’s data is R;, including any incidental information
obtained, Fiy; is expressed as a function of R¢; and data
from the (i + 1)th trial (a past-parameterized function of
Ri11), and constructed to satisfy Fiy; > 0 and E(Fi;|Rg;) <
1 for any distribution in the model H. Note that in between
trials, we can effectively stop the experiment by assigning all
future F;1; = 1 conditional on the past. This is equivalent to
constructing the stopped process relative to a stopping rule.
This argument also shows that the stopped process is still a test
supermartingale. Here we consider only bounded length test
supermartingales (with very large bound N if necessary), so
are not concerned with questions of convergence as N — c0.
But we note that since E(|F;|) = E(F;) < 1 for all i, Doob’s
martingale convergence theorem applies, and lim;_, o, F; exists
almost surely and is integrable. Furthermore, this limit also
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has expectation at most 1. See, for example, Ref. [40] Ch. V,
theorem 28.

More generally, we use test supermartingales for estimat-
ing lower bounds on products of positive stochastic sequences
G. Such lower bounds are associated with unbounded-above
confidence intervals. We need the following definition:

Definition 12. Let U,V,X be RVs and 1 2 € >0. I =
[U, V] is a (conservative) confidence interval for X at level €
with respect to ‘H if for all distributions in H we have P(U <
X <V)>1-—c¢€. The quantity P(U < X < V) is called the
coverage probability.

As noted above, the RVs U, V, and X may be p-dependent.
For textbook examples of confidence intervals, X is a param-
eter determined by p, and U and V are calculated from an
estimation error. We need the full generality of the definition
above. The quantity € in the definition is a significance level,
which corresponds to a confidence level of (1 — €).

Lemma 13. Let F and G be two stochastic sequences with
F; € [0, 00), G; € (0, 00], and F; and G; determined by Rg;.
Define Ty =1, T, = H1<j<iFi and Uy =1, U; = ngjgiGi’
and suppose that for all u € H, E(Fi+1/Git1|1Rg;) < 1. Then
[T,.€, 00) is a confidence interval for U, at level € with respect
to H. If U; is monotone nondecreasing, then [T "¢, 00) is a
confidence interval for U, at level € with respect to H.

Proof. The assumptions imply that the F;;/G;+; form a
sequence of test factors with respect to 7 and generate the
test supermartingale T /U, where division in this expression is
term-by-term. Therefore

P(The 2 Uy) = P(T,, /Uy 2 1/€) < €, (20)

So [T,€, 00) is a confidence interval for U, at level €.

If U; is monotone nondecreasing, observe that the event
{max;<;<, Tie > U,} is the same as {(maxigi<, 1;)/U, =
1/€}. This event in turn implies {max<;<, 1;/U; > 1/€}, be-
cause U, being nondecreasing implies that for all i, 7;/U,, <
T;/U;. Applying theorem 11, we obtain

P(T"e > Uy) = P(T*/U, > 1/e)
SPmax T/U; 2 1/e) s e (2D)

It follows that [T *¢, c0) is a confidence interval for U, at level
€. |

G. From Bell functions to test factors

Consider a specific trial subject to settings and nonsignal-
ing constraints, where the settings distribution is fixed and
known. To simplify notation, we omit trial indices and con-
ditioning on the past. Let v = u[Z] be the settings distri-
bution. A Bell functionB maps settings and outcomes to
real values and satisfies E(B(CZ)) < O for all local realistic
(LR) distributions with the given settings distribution. The
set of LR distributions given that the settings distribution
is v consists of mixtures of nonsignaling distributions with
outcomes determined by the settings. These are distributions
such that C = AB is a function of Z = XY for which A does
not depend on Y and B does not depend on X. See Sec. IX,
Eq. (158) for more detail. The expression E(B(CZ)) < 0 is
closely related to traditional Bell inequalities, which may
be expressed in the conditional formZZ]E(B’(Cz)|z) < 0.

Provided v(z) =0 implies B'(cz) =0 for all ¢, any Bell
inequality in this form can be converted to a Bell function
by defining B(cz) = B'(cz)/v(z). Conversely, a Bell function
B for settings distribution v determines a Bell inequality by
defining B’(cz) = B(cz)v(z). Bell inequalities apply to LR
distributions independent of what the settings probabilities
are, and these settings probabilities are then considered to
be the free choice of the experimenter. We do not use this
perspective here.

Let —/ be a lower bound for the Bell function B with
I > 0. Then F = (B+1)/l is a test factor with respect to
LR distributions. Such test factors can provide an effective
method for rejecting local realism (LR) at high significance
levels by use of Eq. (17). As an example, consider the (2,2,2)
Bell-test configuration, with the uniform settings distribution,
v = 1/4. The ranges of the settings X, Y and the outcomes A,
B are {0, 1}. The following is a Bell function:

B(xyab) = ([xy = 11] — [xy = 01] — [xy = 10]
— [xy = 00])la — b|. (22)

The inequality E(B(CZ)) < 0 is equivalent to the well-known
Clauser-Horne-Shimony-Holt (CHSH) inequality [41]. We
give the function in this form for simplicity and because
one way to verify that B is a Bell function is to note that
d(a, b) = |a — b| satisfies the triangle inequality, so this Bell
function belongs to the class of distance-based Bell functions.
See Refs. [42,43]. Since for all arguments, exactly one of the
expressions inside [...] is true, the minimum value of B is
—1. Thus B + 1 is a test factor. More generally, 1 + AB is a
test factor for any 0 < A < 1 [15]. By optimizing these test
factors, asymptotically optimal statistical strength [expected
— In(p-value) per trial] for rejecting LR can be achieved
[14,15].

While probability estimation uses probability estimation
factors (PEFs) to assign numerical values to experimental
outcomes, it does not require Bell functions or even Bell-test
configurations. The connection of Bell functions to test factors
serves as an instructive example and can yield PEFs useful for
probability estimation as witnessed implicitly by Ref. [13].
See also Sec. VIIA. In general, optimal PEFs cannot be
constructed from Bell functions. Therefore, in this work, we
prefer to directly optimize PEFs without referencing Bell
functions, see Secs. V and VII.

IV. PROBABILITY ESTIMATION AND RANDOMNESS
EXTRACTION

A. Probability estimation

Consider RVs R, Z, and E whose joint distribution is in the
model H. In an experiment, we observe Z, C, and possibly
other parts of R, but not E. For this section, it is not necessary
to structure the RVs as stochastic sequences, so we use D, C,
Z,and R in place of D, C, Z, and R, but follow the conventions
introduced in Sec. III B. In particular, we assume that D is
determined by C, and C is determined by R. There is no loss
of generality in this assumption. It simply allows us to omit C
(or D) as arguments of functions and in conditioners when R
is already present.
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We focus on probability estimates with coverage probabil-
ities that do not depend on E, formalized as follows.

Definition 14. Let 1>¢€ >0. The function F :
Rng(RZ) — [0,00) is a level- E-uniform proba-
bility estimator for H [e-UPE or with specifics,
€-UPE(D:R|Z; E, H)] if for all e and distributions p in H,
we have w(F(RZ) > u(D|Ze)le) = 1 — €. We omit specifics
such as H if they are clear from context. The function
U : Rng(RZ) x [0, 1] — [0, co) is a UPE if it is monotone
nondecreasing in the second argument (the confidence level)
and for each €, U(RZ, 1 — ¢) is an ¢-UPE.

The level of a probability estimator relates to the smooth-
ness parameter for smooth min-entropy via the relationships
established below in Sec. IV B. We also use the term error
bound to refer to the level of a probability estimator. The first
condition on I/ ensures that the confidence upper bounds that
it provides are nondecreasing with confidence level, so that the
corresponding confidence intervals are consistently nested.
The second is the required minimum coverage probability for
confidence regions at a given confidence level. Our inclusion
of the random variable E here and in the next definition is in
a sense redundant: Uniformity of the estimator means that we
could instead have considered the model H' of distributions
on Z and R consisting of distributions u[RZ|e] over all u € ‘H
and all e. We refer to E explicitly because of the role played
by external entities in this work.

Every €-UPE provides a lower bound on a smooth min-
entropy. For the special case D = C = R, this is theorem 11 of
Ref. [28]. Define a family of subprobability distributions fi.,

of C by fi(c) = u(clze)[F(cz) = n(c|ze)]. The key obser-

vation in the proof of theorem 11 in Ref. [28] is that the sub-
probability distributions fi., have the following properties. (1)
The weights of fi., satisfy ) _ w(fi..)u(zle) = 1 — € for each
e. (2) By definition fi,.(c) < n(c|ze) and fi . (c) < F(cz) for
each cze. The conclusion of theorem 11 in Ref. [28] is derived
from these properties alone. This theorem directly generalizes
to the case where D differs from R by replacing RVs and
rewriting property 2. Specifically, for every ¢-UPE F(RZ),
the family of subprobability distributions fi,, of DR defined

by fi.(dr) = u(dr|ze)[F (rz) > p(d|ze)] has the properties:

(1) The weights of fi,. satisfy Z: w(flze)u(zle) = 1 — € for
each e; (2) by definition fi,.(dr) < u(dr|ze) and e(dr) <
F (rz)u(r|dze) for each drze. To be able to certify randomness
in D conditional on Z while drawing on other information
in R without conditioning on it, we weaken the definition of
€-UPEs by directly imposing (1) and a “softened” version of
(2) as in the next definition. Below we show that this suffices
for establishing lower bounds on smooth min-entropy.

Definition 15. Let 1>¢€ >0. The function F :
Rng(RZ) — [0, 00) is a level-e soft E-uniform probability
estimator for H [e-soft UPE, or with specifics, e-soft
UPE(D:R|Z; E, H)] if for each e and each distribution u
in H there exists a family of subprobability distributions
i, < u[DR|ze] of DR such that the following two conditions
hold: 1) The weights of fi. satisfy >~ w(ji-)u(zle) > 1 — €;
2) there exists a non-negative function g(R|DZ) of DRZ such
that )~ q(rldz) < 1 for all dz, and

Ro(dr) < F(rz)q(rldz), (23)

for all drz. The function U : Rng(RZ) x [0, 1] — [0, 00) is
a soft UPE if it is monotone nondecreasing in the second
argument, and for each €, U(RZ, 1 — €) is an e-soft UPE.

Note that in the definition of soft probability estimators,
we have chosen to leave the dependence of fi, and g on e
and on p implicit. In this definition, we explicitly consider
the joint distribution of DR, even though we assume that D
is determined by R. Considering the joint distribution helps
simplify the notation for probabilities. However, we take this
assumption into account by not explicitly including D as an
argument to F. The purpose of Eq. (23) is to establish an
upper bound on the subprobability fi.(d) conditionally on the
event {F(RZ) < p}, see the proofs of lemmas 17 and 18 for
details. For any given e, one can interpret F'(rz)q(r|dz) as an
implicit and distribution-dependent estimate of the probability
of dr given z, where g(r|dz) depends on the distribution to be
estimated and accounts for the probability of r conditional on
dz.

The discussions in the paragraph above definition 15 sug-
gest that the notion of a soft UPE is weaker than that of a UPE,
which is formalized by the next lemma.

Lemma 16. If F is an €-UPE, then it is an e-soft UPE.

Proof. For any given e, define [, (dr)= u(dr|ze)

[F(rz) > u(d|ze)]. Then by the definition of e-UPEs,
Yo w(it)u(zle) = 1 —e. Let q(r|dz) = u(rldze). It suffices
to check Eq. (23) for elements of {drz : F(rz) > u(d|ze)}:
fo(dr) = u(dr|ze)
= u(rldze)u(d|ze)
< q(r|d2)F (rz). (24)
|
B. From probability estimation to min-entropy

The next lemma shows that e-soft UPEs with constant
upper bounds certify smooth min-entropy.

Lemma 17. Suppose that F is an e-soft UPE(D:R|Z; E, H)
such that F < p for some constant p. Then for each

e and peH, PoLipza(PIZ) < p.  Consequently,
Prlrlnfx,u[DZE](mZE) <p.

Proof. Fix e and let [i,(DR) and q(R|DZ) be as
in the definition of soft UPEs. According to our
conventions, fi,[D](d) = i, (d) =), fi,(dr). Therefore
> w(fi[DDu(zle) > 1 — €. Since ), g(r|dze) < 1, for all
dz, we have

fad) < Y F(raq(rlde) < Y pg(ridz) < p. - (25)

Further, fi,(d) < p(d|ze) for all dz, as can be seen by sum-
ming the defining inequality for fi, over r. It follows that
the fi.[D] witness that P )/ 1(DIZ) < p. For the last
statement, apply lemma 4. |

A weaker relationship holds for general soft UPEs.

Lemma 18. Suppose that F is an e-soft UPE(D:R|Z;
E, H),ueH,p=>1/IRng(D)|,and letk = P(F < p). Then
P;Q;,M[DZE\ng] (DIZE) < p/«.

Proof. Let k, = P(F < ple). Below we show that for all
values e of E,

PG/Ke

max,p.[DZ\e,ng](D|Z) < p/Ke- (26)
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Once this is shown, we can use
Zl(|F<> Z—l (elF < p)
i e = e
Ke:“« P g ]P’(ng|e)'u P

nie)
= — =1/, 27
ZM(F <p ¥ 7

and lemma 4 to complete the proof. In order to prove the
bound in Eq. (26), we apply the two conditions in the defi-
nition of e-soft UPEs. Specifically, from the second condition
in definition 15 we can prove that there exists a distribution
v[DZ le] according to which the average max-prob satisfies

P .(DIZ) < p/k,, and from the first condition in definition
15, we can bound the distance TV (v[DZle], u[DZ|e, F < p])
from above by €/k,. For the remainder of the proof, e is fixed,
so we simplify the notation by universally conditioning on
{E = e} and omitting the explicit condition. Further, we omit
e from suffixes. Thus ¥ = k., from here on.

Let x(RZ) = [F(RZ) < p]. Then x = E(x). Let «, =

w(F < plz). We have Y u(z) =« and «; = pu(z|F <
P/ u(z).

Let fi, and g witness that F is an e-soft UPE(D:R|Z; E, H).
Define ¥(drz) = i,(dr)x (rz)u(z)/k. The weight of ¥ satis-
fies

w(®) =Y fi(dr)x (ra)u(x)/x

drz

<Y wdrax(ra)/e

drz
=PF <p)/k =1, (28)

w(®) =) uldro)x(r2)/x

drz

— > (drz) = (dr)m(@)x (r2)/x

drz
=1- Z(u(drz) — i (dr)p(2)x (rz)/x
drz
> 1= (u(drz) — fi(dr)m(2)/x
drz
>1-(0—-(0—-e)/k=1—¢/k. (29)

Thus ¥ is a subprobability distribution of weight at least 1 —
€/k. We use it to construct the distribution v witnessing the
conclusion of the lemma. For each drz, we bound

V(dr)/uzIF < p) = i (dr)x(rz)/x;

S F(r2)g(rldz)x (rz)/x: < pg(rldz) /.

(30)

from which we get ¥(dz)/u(z|F < p) < p/k, by summing
over r. Define D[D|z](d) = ¥(dz)/u(z|F < p) and let w, =
w(P[D]z]), where this extends the conditional probability
notation to the subprobability distribution ¥ with the under-
standing that the conditionals are with respect to p given
{F < p}. Applying the first step of Eq. (30) and continuing

from there, we have

= Z U(drz)/uiz|F < p)

r

= Z L (dr)x (rz)/x;

b[D|z)(d)

<Y wdrlz)x (r2) /e

= Z w(dr|2)[F (rz) < p]/«;

=p(d,F < pl2)/uF < plz) = uld|z, F < p),

€29}

which also implies that w, < 1. Since D[D|z](d) < p/«k;
and p/k, > p > 1/|Rng(D)|, we can apply lemma 2 to ob-
tain distributions v, of D such that v, > U[D|z], v, < p/«;,
and TV(v,, u[Dlz, F < p]) <1 — w,. Now we can define
v(dz) = v(d)u(z|F < p). From Eq. (2),

TV(v, u[DZIF < p))

_ZTV(VZ, [Dlz, F < phuzIF < p)

z

< Q= w)pGIF < p)
=1- Z w@[D|zuIF < p)

=1—22<v(drz>/u<z|F PIGIF < p)

=1-—w() < e/k. (32)

For the average maximum probability of v, we get

2 max v(dj2)v(z) = Zm;x ve(d)uIF < p)
ZM(Z|F p)/k:

=pY_ @)/ = p/. (33)

which together with the argument at the beginning of the proof
establishes the lemma. |

We remark that the witness v constructed in the proof of
the lemma satisfies V[ZE] = u[ZE|F < p]. We refer to this v
in the next section, where to emphasize that v is constructed
conditionally on {F < p} we write v[DZE|F < p] instead of
V[DZE].

C. Protocols

Our goal is to construct probability estimators from test
supermartingales and use them in randomness generation by
composition with an extractor. The required supermartingales
are introduced in Sec. V. Here we give three ways in which
probability estimators can be composed with an extractor
for randomness generation protocols. For the first, given a
probability estimator, we can estimate smooth min-entropy
and compose with an extractor by chaining lemma 18 with
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lemma 7. The second draws on banked randomness to avoid
failure. The third requires a linear extractor. The first protocol
is given in the following theorem.

Theorem 19. Let F be an ¢,-soft UPE(D:R|Z; E, H) with
P(F < p§) =k, D a bitstring of length n, and p§ > 1/2".
Write o, = — log,(p) and suppose that £ is a strong extractor
such that (n, 1, 0,, 0, €,) satisfies the extractor constraints.
Let S be a length ! uniform and independent seed string.
Abbreviate £ = £(D, S; 0, 0, €,). Then

TV(RIESZE|F < pd], Unifgs ® IZE|F < pdl)
< e+ Qep+6)/k. (34)

In particular, Py =&, Ps =S, Pp = [F < pd] defines a

(0, €x + 2¢;, + ) sound randomness generation protocol.
Proof. By lemma 18, Pr;ha/xk,u.[DZE|F<p6](D|ZE) < pS/k. We
obtain Eq. (34) by applying lemma 7 with ¢, there replaced by
€n/k here and 6 there with §/k here. The soundness statement
follows by multiplying both sides by « in consideration of
€k < €. |
We can use the remarks after lemmas 5 and 18 to improve
the factor of 2 on ¢, in the statement of the theorem.
For this, let v witness that P;ZQ’T/L[DZE‘F@](MZE) < pé/k
according to lemma 18, where from the remark after this
lemma, v[ZE|F < p§] = n[ZE|F < pd]. Then apply the
second part of lemma 5 and the remark thereafter to
obtain a distribution v/ of DZE with TV(V, v[DZE|F <
p81) < 8/« and v'[ZE] = v[ZE|F < p8] = plZE|F < ps),
where PI‘;;S(,V,(D|ZE )< p. From lemma 6, we have
TVW'[ED, S; 01,0, €.)SZE], Unifgs @ V'[ZE]) < €,.. The
observation now follows from V'[ZE] = u[ZE|F < pé8] and
the triangle and data-processing inequalities. Namely, we get

TV(uIESZE|F < pd], Unifes @ u[ZE|F < pd])
<+ (en+8)/k. (35

The protocol performance and soundness proof of theorem
19 is closely related to the performance and proof of the
protocol soundness theorem in Ref. [13], which in turn are
based on results of Refs. [12,27]. The parameters in these
theorems implicitly compensate for the fact that we do not
require the extractor to be classical-proof, see the comments
on extractor constraints in Sec. III D.

The next protocol has no chance of failure but needs access
to banked randomness. The banked randomness cannot be
randomness from previous instances of the protocol involving
the same devices. Let I/ be a soft UPE(D:R|Z; E) for H. Let
o € N; and € > 0 be the requested number of bits and error
bound. Assume that we have access to a source of uniform
bits S that is independent of all other relevant RVs. For banked
randomness, we also have access to a second source of such
random bits S,. Let £ be a strong extractor. We define a
randomness generation protocol P(o, €;U) by the following
steps.

0. Choose n, oy, ¢, >0, ¢, >0 and [/ so that (n+
o, 1, 04, 0, €) satisfies the extractor constraints and € +
€x = €.

1. Perform trials to obtain values r and z of R and Z
expressed as bit strings, with |D| = n. Let d be the value taken
by D. (Recall that by our conventions, D is determined by R.)

2. Determine p = U(rz, 1 — ¢,) and let k = max(0, [0}, —
log,(1/p)]).

3. Obtain values (s)<; and (sp)<x from S¢; and (Sp)<x.

4. Let d' = d(sp)<;0%*, where 0%* is a string of zeros
of length o, — k.

5. If the distribution of Z is known and independent of E,
let 7/ = z, otherwise let 7’ be the empty string.

6. Output Px = E(d’, (5)<i» On, 0, €;), Ps =7'(s)g and
Pr=1.

Note that we have left the parameter choices made in the
first step free, subject to the given constraints. They can be
made to minimize the expected amount of banked randomness
needed given information on device performance and resource
bounds. It is important that the choices be made before
obtaining r, z and the seed bits. That is, they are conditionally
independent of these RVs given the pre-protocol past, where
‘H is satisfied conditionally on this past. The length of D must
be fixed before performing trials, but this does not preclude
stopping trials early if an adaptive probability estimator is
used. In this case, D can be zero-filled to length n. The
requirement for fixed length n is imposed by the extractor
properties: We do not have an extractor that can take advan-
tage of variable- and unbounded-length inputs.

Theorem 20. The protocol P(o, €;U)is a (o, €) sound and
complete randomness generation protocol with respect to H.

Proof. The protocol has zero probability of failure, so com-
pleteness is immediate. However, note that for the protocol
to be nontrivial, the expected number of banked random bits
used should be small compared to o.

Let K, D', and Z' be the RVs corresponding to the values
k, d’ and 7’ constructed in the protocol. Given the parameter
choices that are made first, K is determined by R and Z.
Define Sx = (S;,)gKO""’K and R’ = RSk. Taking advantage of
uniformity in e, we fix e and implicitly condition everything
on {E =e}. Let fi, and g be the functions witnessing that
p=U(rz, 1 —¢,) is an ¢;,-soft UPE. Now let 7, be the family
of subprobability distributions on D'R’ defined by .(d'r") =
J(dr)u(seldrz) = fi.(dr)27%, where we used that K is deter-
mined by RZ. Then .(d'r') < p2~%q(r|dz) < 27%q(r|dz).
Furthermore,

D wEu@) =YY wd'r )
dr

Z Z

= Z Z i (dr)u(sgldrz)n(z)

z dvr

= Z Z i (dr)u(z) Z w(skldrz)
4 dr

k,Sk

=Y > drp)
z dr
= o))
Z
>1—¢ (36)
It follows that the function d'r'z+ 27 1is a ¢j,-soft
UPE(D":R'|Z; E, H) with a constant upper bound, witnessed

by U, and q(+'|d'z) = q(r|dz). From lemma 17, D' has e-
smooth Z-conditional max-prob 27 given {E = e} for each
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e. The theorem now follows from the composition lemma
lemma 6 after taking note of lemma 4. |

The third protocol is the same as the second except that if
the estimated probability is too large in step 2, the protocol
fails. In this case, banked random bits are not used. This gives
a protocol Q(o, €;U) whose steps are the following.

0. Choose n, o, €,>0, ¢,>0 and [ so that
(n, 1, —log,(27°" +27"), 0, €,) satisfies the extractor con-
straints, €, + €, = € and 27" < 27%,

1. Perform trials to obtain values r and z of R and Z
expressed as bit strings, with |D| = n.

2. Determine F (rz) = U(rz, 1 — €p).

3. If F(rz) > 27, return with Qy and Qg the empty
strings and Qp = 0 to indicate failure.

4. Obtain value (s)<; from S¢;.

5. Output Qx = &, (s)<1, —log, (27 +27"), 0, &),
Qs = (s)g and Op = 1.

Theorem 21. The protocol Q(o, €;U) defined above when
used with a linear strong extractor is a (o, €) sound random-
ness generation protocol with respect to H.

Proof. Because the distribution of Z conditional on {Qp =
1} can differ significantly from its initial distribution in a way
that is not known ahead of time, Z’s randomness cannot be
reused. Consequently, in this proof, Z and E always occur
together, so we let Z stand for the joint RV ZE throughout.

The proof first replaces the distribution u[DZSQOp] by
v[DZSQp] so that v[D|Z] < 27° 4 27" and conditionally on
{Qp = 1}, the distribution’s change is small in a sense to
be defined. Since the conclusion only depends on {Qp = 1},
changes when {Qp = 0} can be arbitrary. We therefore define
TVpass s0 that for global distributions v and v’ satisfying
v[Qp] = V'[Qp] and for all RVs U,

TVpass(V[U QP]’ V/[U QP])
=TVO[U|Qp = 11,V[U[Qp = 11W(Qp = 1). (37)

Note that TV g is the same as the total variation distance be-
tween V[ MU Qp)Qp] and v'[M(U Qp)Qp) for any process
M satistying M(U1) = U and M(UQ) = v for a fixed value
v. Such processes forget U when Qp = 0. Note that (o, €)
soundness is defined in terms of TV pus.

Write xk = P(Qp = 1) and p =27%. We omit the sub-
script </ from S¢;. To construct v we refine the proof of
lemma 18. Write F(rz) =U(rz, 1 —€,), and let i, and ¢
witness that F is an €,-soft UPE(D:R|Z; E, H). The event
{Qp = 1} is the same as {F < p}. The distribution v to be
constructed satisfies V[ZSOQp] = u[ZSQp]. We maintain that
S is uniform and independent of the other RVs for both v
and p. Thus it suffices to construct v[DZQp] and define
v = v[DZQp] ® Unifs. We start by defining v[DZ|Qp = 1]
here to be v[DZ] as constructed in the proof of lemma 18.
Consistent with the notation in that proof, we also use the
notation v, = v[D|z, Qp = 1]. Note that v[Z|Qp = 1](z) =
w(z|Qp = 1). We then set

v(dz, Qp = b) = v[DZ|Qp = 1](d2)[b = 1]
+ Unif p(d)(z, Qp = 0)[b = 0]
= vz, Qp = Db = 1]
+ Unif p(d)(z, @ = 0)[b = 0]. (38)

This ensures that v[ZSQp] = u[ZSQp] after adding in the
uniform and independent RV S. The distribution v satisfies
the following additional properties by construction:

v(d|z) = v(d, Qp = 1|2) + v(d, Qp = 0[z)
= v, (d)u(Qp = 1]2) + n(Qp = 0]z)/|Rng(D)|
<p+2 =2 427" (39)
and

TVpass (W[DZSQpl, u[DZSQp])
=TV([DZS|Qp = 11, u[DZS|Qp = 1)k
< €p, (40)

in view of Eq. (32) and the preceding paragraph.
We can now apply the extractor to get

TVWIE(D, $)SZ], Unifgs ® v[Z]) < &,. 41

Here we transferred the extractor guarantee conditionally on
Z = z for each z, noting that the marginal distribution on Z
is the same for both arguments. From here on we abbreviate
E=EWD,S).

The main task for completing the proof of the theorem is to
bound TV(v[ESZ|Q, = 1], Unifes @ v[Z|Qp = 1]), which
requires transferring the distance of Eq. (41) to the conditional
distributions. For this, we need to show that for all z,

w(Qp = 12)TV(v[ES|z, Qp = 1], Unifes)
< TV(IES|z], Unifgg). (42)
Before proving this inequality we use it to prove the theorem
as follows:

TVpass(V[gSZQP]v Unifes @ u[ZQpl)
= w(Qp = NTV(W[ESZ|Qp = 1], Unifgs @ u[Z|Qp = 1])

= 1(Qp = 1)) _u(zlQp = DTV([ES|z, Qp = 11, Unifes)
= u(z Qp = DTVOIES|z, Qp = 11, Unifes)
= ZM(Z)M(QP = 1|2)TV(v[ES|z, Qp = 1], Unifgy)

< Z w(2)TV([ES|z], Unifgg)

=TVW(ESZ), Unifgs @ v(Z))
< €, 43)

where we applied Eq. (2) (twice, first with u[Z|Qp = 1] =
v[Z|Qp = 1], then with u[Z] = v[Z]), Eq. (42) (to get the
third-to-last line), and Eq. (41). The theorem now follows via
the triangle inequality for TV g, adding the TV p,gs-distance
from v[ESZQp] to n[ESZQp]. According to Eq. (40) and the
data-processing inequality, this distance is bounded by ¢,.

It remains to establish Eq. (42). We start by taking advan-
tage of the linearity of the extractor. We have

V(€ = x,s|z) = v(€ =x, 5|z, Qp = NV(Qp = 1]2)
+v(€ =x, 5|z, Qp = 0)v(Qp = 0|2)
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=v(€ =x,slz, Qp = NHu(Qp = 1|2)

+v(€ =x, 5z, Qp = 0)u(Qp = 02).
(44)

Define R; = Rng(E(D, s)) and ry = |Ry| < |[Rng(E(D, S)| =
2. Since £ is a linear extractor, Rng(D) can be treated as
a vector space over a finite field. For all x € R;, Ny, = {d :
x = &(d, s)} is a translation of the null space of d > £(d, s).
Hence ny = |Ny| is independent of x, and rn; = |Rng(D)|.
Since v[D|z, Qp = 0] is uniform by design, for x € R

:M=l>2_". 45)

[Rog(D)| 1y

For x & Ry, v(€ = x, s|z, Qp = b) = 0. In the last two equa-
tions, we can move s into the conditioner in each expression

J

v(€ =x,s|z, Qp =0)

TV (v, Unife) = ) (u:5(x) = 27) [z(x) > 277]

X

and use independence and uniformity of S with respect to Z
and Qp to get

V(€ = x|zs) = v(€ = x|zs, Qp = 1)[x € RJu(Qp = 1[2)

1
+ —[x € R[(Q, = Olo). (46)

Abbreviate v,y = v[€]zs], and v,y = V[E]|zs, Qp = b], which
are conditional distributions of £. Then v (x) = [x € R]/r;.
Write x, = u(Qp = 1|z) = u(Qp = 1|zs) for the conditional
passing probabilities. With these definitions, we can write
Vs = K,V + (1 — k;)v0 and calculate

- Z(szzsl(x) + (1 - Kz)/rs - zia)ﬂszzsl(x) + (1 - Kz)/rs > 270H

X€ER;

= Z(Kz(vzsl(x) - 2_0) + (1 — Kz)(l/rs - Z_U))[[Kz(vzsl(x) - 2_(’) +(1 - Kz)(l/rs - 2_0) > 0]]

XER;

> Z(Kz(vzsl(x) =277k (v1(x) —277) > 0]

X€ER;

=k Y (1 (x) = 27) (w1 (x) = 277) > 0]

XER;

= 1, TV (v, Unife).

Here, we used the fact that ) _ f(x)[f(x) > 0] is monotone
increasing with f, noting that 1/r; > 27°.

Since v(s|z) = v(s|z, Qp = 1) = Unifg(s), we can apply
Eq. (2) to obtain

TV([ES|z], Unifgg) = Z TV([E|zs], Unifg)v(s|z)
= Y " TV(v.,, Unifg)/|Rng(S)| (48)

and
TV(v[ESz, Qp = 1], Unifgg)
= > TV([E|zs, Q, = 1], Unife)v(slz, Qp = 1)
= Z TV (vyz1, Unife)/|Rng(S)|. (49)
Applying the previous two displayed equations and the in-

equality before that, we conclude that for all z,

n(Qp = 12)TV(v[ES|z, Qp = 1], Unifes)
=k, TV([ES]z, Qp = 1], Unifgs)

=k, Y TV(vy1, Unifg)/|Rng(S)|

(47)

<) TV(v, Unife)/|Rng(S)]
= TV(v[ES|z], Unifgy). (50)

V. TEST SUPERMARTINGALES FOR UNIFORM
PROBABILITY ESTIMATION

A. Standard models for sequences of trials

Each of theorems 19-21 reduces the problem of random-
ness generation to that of probability estimation. We now
consider the situation where CZ is a stochastic sequence of n
trials, with the distributions of the ith trial RVs C;Z; in a model
C; conditional on the past and on E. For the remainder of the
paper, the conditioning on E applies universally, and relevant
statements are uniform in the values of E. We therefore no
longer mention E explicitly. For the most general treatment,
we define R; = C;R; where R; is additional information obtain-
able in a trial and Ry = Ry, is information available initially.
Test supermartingales and test factors are with respect to
R«iZ;. According to our convention, D; is a function of C;.
We note that other situations can be cast into this form by
changing the definition of C;, for example by extending C;
with other information, and modifying models accordingly.
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Formally, we are considering models H(C) of distributions
of RZ defined by a family of conditionally defined models
Cittiraze; Of Cix1Ziy1. H(C) consists of the distributions
with the following two properties. First, for all i and r¢;z¢;,

wlCiv1Ziz1Irgiz<] € Cipipraze, - (51

We emphasize that the model C;i; specifies the set of all
possible distributions of C;yZ;;; conditional on the past and
on E, although we perform probability estimation using all
information contained in R;;; and we extract randomness only
from D;;;. Second, w satisfies that Z;;; is independent of
R, conditionally on Z¢; (and E). Models H(C) satisfying
these conditions are called standard. The second condition is
needed in order to be able to estimate Z-conditional probabil-
ities of D and corresponds to the Markov-chain condition in
the entropy accumulation framework [26].

In many cases, the sets Citqjr iz; do not depend on r, but
we take advantage of dependence on zg;. In our applications,
the sets capture the settings and nonsignaling constraints. For
simplicity, we write Ciy| = Ciy1)rz;» leaving the conditional
parameters implicit.

Normally, models for trials are convex and closed. If Z is
nontrivial, the second condition on standard models prevents
their being convex closed for n > 1, but we note that our
results generally extend to the convex closure of the model
used.

B. UPE constructions

Let F;+; be non-negative functions of C;i;Z;y;, param-
eterized by Rg; and Zg;. We call such functions “past-
parameterized”. Let To = 1 and T; = [ [, ;; F; fori > 1. For
B > 0, define Uy and Uy by

Us(RZ, 1 — €) = (Te) /P, (52)
—1/8
U;RZ, 1 —€) = <m<21x(7}6)> . (53)

We choose the F; so that they are probability estimation factors
according to the following definition.

Definition 22. Let 8 > 0, and let C be any model, not
necessarily convex. A probability estimation factor (PEF) with
power B for C and D|Z is a non-negative RV F = F(CZ) such
that for all v € C, E,(Fv(D|Z)?) < 1.

As usual, if the parameters are clear from context, we may
omit them. In particular, unless differently named RVs are
involved, PEFs are always for D|Z.

In the case where R = C =D, we show that Ug and Z/lg
are UPEs. In the general case, Uy is a soft UPE. We start with
the special case, which was also studied in our previous work
[28].

Theorem 23. Fix B > 0 and assume R = C = D. Let F be
a sequence of past-parameterized PEFs, with F; a PEF with
power B for C;. Then Ug(RZ, 1 — €) and Z/{;(RZ, 1—¢€)as
defined in Egs. (52) and (53) are e-UPE(C:C|Z; H(C)).

Note that B cannot be adapted during the trials. On the
other hand, before the ith trial, we can design the PEFs F; for
the particular constraints relevant to the ith trial.

Proof. We first observe that
i—1
[P Ci111Zi112<;C<j) = P(CailZr). (54
j=0

This follows by induction with the identity

P(CqjsilZgjsr) = P(Cj11|Zj1 L jC< )P (Cj1Zj1 L)

= P(Cj111Zj411Z<;C<j)P(CgjlZ<))
(55)

by conditional independence of Z; ;.

We claim that E+1P(C,-+1|Zi+1Z<,-C<i)’3 is a test fac-
tor determined by Cgi11Z<i+1. To prove this claim,
for all eqizg;, v = u[Cii1Ziy1leciz<i] € Ciyy. With Fiyy =
Fiy1(Cit1Zi41; e<iZg;), we obtain the bound

E(Fi 1 P(Ciy1Zip1z<ic<)’ leciz<i) = By (Fryv(Ciy1|Zin1)P)
<1, (56)

where we invoked the assumption that F;; is a PEF with
power § for C;1. By arbitrariness of ¢¢;z;, and because the
factors are determined by Cg;41Zg; 1, the claim follows. The
product of these test factors is

i—1
1_[ Fi 1 P(Cj11|Zj112<;Cs;)
j=0

i—1
=T [ [P(Cj111Zj11Z<,C<))
Jj=0

=T,P(C4|Z)’, (57

with T; = ]_[;=1 Fj. Thus, the sequence (T;P (C<i|Z<,-)ﬂ)i isa
test supermartingale, where the inverse of the second factor is
monotone nondecreasing. We remark that as a consequence,
T, is a PEF with power g8 for H(C), that is, for R = C =D,
chaining PEFs yields PEFs for standard models.

From Egs. (20) and (21) with U; = P(C¢;|Z<;)? and
manipulating the inequalities inside P'(.), we get

P(P(CcnlZcn) = (The) 7F) e, (58)
P(P(CculZ<y) = (max Tie) /) < e. (59)

To conclude that g and U ; are UPEs, it now suffices to refer
to their defining identities Eqs. (52) and (53). |

That Fiy| can be parameterized in terms of the past as
Firy = F1 (Cip1Ziy 1 Cg,‘Zgi) allows for adapting the PEFs
based on CZ, but no other information in R can be used. Since
T; is a function of Cg;Z;, this enables stopping when a target
value of T; is achieved.

In order to use additional information available in R, we
now treat the case where C, R # D. While not necessary at
this point, we do this with respect to a softening of the PEF
properties.

Definition 24. Let B > 0, and let C be any model, not nec-
essarily convex. A soft probability estimation factor (soft PEF)
with power 8 for C and D|Z is a non-negative RV F = F(CZ)
such that for each v € C, there exists a function g(C|DZ) > 0
of CDZ depending on v implicitly with )" _g(c|dz) < 1 for
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all dz and

( F(CZ)

If > .q(cldz) <1 for some dz, we can increase g to
ensure y__¢g(c|dz) = 1 without increasing the left-hand side
of Eq. (60). Hence, without loss of generality, we can
let Y _q(c|dz) =1 in the above definition. We always set
q(cldz) = 0 for values cdz with v(cdz) = 0. This does not
cause problems with Eq. (60) given the convention that
when expanding an expectation over a finite set of values,
probability-zero values are omitted from the sum.

The direct calculation in the proof of the next lemma shows
that PEFs are soft PEFs.

Lemma 25. 1f F is a PEF with power 8 for C, then it is a
soft PEF with power g for C.

Proof. Let F be a PEF with power 8 for C and v € C.
Define g(C|DZ) = v(C|DZ). Then g satisfies the condition in
the definition of soft PEFs. Since D is a function of C, we have
v(dcz) = v(cz)[[d = D(c)]. From this identity, we can deduce

< F(CZ)
E,( ——=
q(C|DZ)#

B
&, F(CZ)(w)
q(C|DZ)
B
_ EV@@M) )
v(CDZ)/v(DZ)

B
_ EV(F(CZ)<V(DZ)> )
v(Z)
E,(F(CZ)v(D|Z)")
1. (61)

wcm%)

N

Since v € C is arbitrary, this verifies that every PEF F is a soft
PEE. |
Lemma 26. Let F(CZ) be a soft PEF with power 8 for H.
Then V = (Fe)~/# is an e-soft UPE(D:C|Z; H).
Proof. Fix v € H and let g(C|DZ) be the function witness-
ing that F is a soft PEF for this v. Define

b(dc) = v(dclz)[V(cz) 2 v(clz)/q(cld2)].  (62)

The Markov inequality and the definition of soft PEFs implies
that

P,(V(CZ) < v(C|Z)/q(C|DZ))
= P,((v(C|2)/q(CIDZ))’ > V(CZ)F)
= P.(F(CZ)(v(C|Z)/q(CIDZ))? > 1/e)

<e. (63)
Hence
Y (dewz) =Y vdez)[V(cz) = v(clz)/q(cldz)]
dez dez
=P,(V(CZ) > v(C|Z)/q(C|DZ))
> 1—e. (64)

The definition of ¥,(dc) and v(dc|z) = v(c|z)[d = D(c)] en-
sure that

b.(dc) < V(cz)q(cldz), (65)

as required for soft UPEs. Since v is arbitrary, the above
verifies that V = (Fe)~'/# is an e-soft UPE. [ ]

Theorem 27. Fix B > 0. Let F be a sequence of past-
parameterized soft PEFs, with F; a soft PEF with power 8
for C;. Then Ug(RZ, 1 — €) as defined in Eq. (52) is an e-soft
UPE(D:R|Z; H(C)).

Proof. Below we first show that chaining soft PEFs yields
soft PEFs. Then, by applying lemma 26, we prove the theo-
rem.

For this result, direct chaining of the probabilities fails.
Instead, we decompose alternately according to C; and R;
given C;, as follows:

P(CgitiRgit11Zgit1)
= P(C<iR«ilZiy1)P(Cit1Ri+1|C<iR<iZgiy1)
= P(C<iR«ilZi1Z )P (Ciy11Zi11 C<iRGZg;)
X P(Ri11Ci+1Zi1 C<iRGZg;)
= P(C<RG|Z )P (Cii1lZi 1R Zg;)
X P(Ri1|Cit1Zir1RGZg), (66)

where we simplified in the last step by applying the fact that
Z;4, is conditionally independent of Rg; given Z¢; and taking
advantage of the assumption that C; is determined by R;. The
identity can be expanded recursively, replacing the first term
in the last expression obtained each time. We identify two
products after the expansion, namely,

i—1
Pei(C<R<iZ<i) = [ [P(Ci111Zj11R<;Z<j)  (67)
j=0

and

i-1
Pri(R<Zg) = HP(Rj+1|Cj+1Zj+1R<jZ<j), (68)
j=0

which satisfy
P(C«iR¢ilZsi) = P(Rg|Zg;) = PciPr,i, (69)

whenever P (C¢;Rg;|Zg;) is not zero. Again, we took advan-
tage of our assumption that C; is a function of R; to omit
unnecessary arguments.

Let u be an arbitrary distribution in H(C) and note
that for all IGZg, Vit = u[Ri+1Z,~+1|r<,-z<i] satisfies that
Vit1[Cit1Zi+1] € Cir1. According to the definition of soft
PEFs, there exists qiy1(Cit1]Dit+1Zi41; Y<iZg;) such that

By, (Fir1 Vi1 (i1 Zi41) /@11 (Cit D11 Zi)P) < 1
(70)
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and ). qi+1(Civ1ldi1zirr) < 1 for all diy1zi41, where the
past parameters are implicit. We define the additional product

i—1
0i(C«iDgiZgis R 1) = 1_[‘]j+1(cj+1|Dj+1Zj+l§jozgj)~
j=0

(71)
Later we find that the function g(R|DZ) needed for the final
soft UPE construction according to definition 15 is the i = n
instance of

P<iRiDiZg;) = Qi(CqiIDiZgi; Rei1)Pri(RiZg;).

Write

Pir1(Rix11Dip1 Zip1; RG L)
= gir1(Cit11Dit1Zi4 1; RGLGP (Rif11Ci1 Zi R L)
(72)

for the incremental factor defining p<;t+1, so that pgiy =
Di+1P<i- We show by induction that p; satisfies the required
normalization condition. The initial value is p<o = 1 (empty
products evaluate to 1), and for the induction step, for all
deip1zgiq,

D painCainldainizais)

It
= Z P<i(rgildgize;) Z Git1 (Cip1|dip12iq15 T <iZ<i)
re Tit1
X P(rip1lciv1zir1T<iz<i)- (73)

J

P(Rit1|Zipir<iz<i) \*
E| Fiq
Pi+1(Riy11Diy1Zi11)

<1

where to get the first line we used Eq. (72) and the fact
P(Riy1|Zisir<iz<i) = P(Riy1Ciy1|Zinr<iz;) because Ciyg
is determined by Ry, and to get the last line we used the
definition of soft PEFs, particularly Eq. (70). By arbitrariness
of r¢;z¢;, the claim follows.

Since H;Z(l) Dj+1 = P<n» if we set the function g in the
definition definition 24 to p¢,, we conclude that 7,,(RZ) =
]_[;f;(l) Fjy1 is a soft PEF with power B for D|Z and H(C).
Hence, chaining soft PEFs yields soft PEFs for standard mod-
els. Since Ug(RZ, (1 — €)) = (T,,¢)~ "/, to finish the proof of
the theorem, we apply lemma 26 with C there replaced by
R here, D there with D here and Z there with Z here. The
proof of lemma 26 shows that the softness witness g(R|DZ)
for Ug(RZ, 1 — €) is also given by p,. |

C. Effectiveness of PEF Constraints

The constraints on PEFs F; are linear, but it is not obvious
that this set of linear constraints has a practical realization as
a linear or semidefinite program. Theorem 28 below shows

The inner sum on the right-hand side evaluates to

> Gini(Ciildipizion r<iz<)P (i |cisi 21 P<iz<i)

Tit1
= Z Z P(riyilcivizinir<iz<)
Civ1 \Fit1:Cip1(rig1)=cit1
X qit1(Cip1]dit1Zit15 T <iZ<i)
= Z Git1(Cit11dit1Zi413 T<iZi)
Cit+1
<. (74)

Substituting back in Eq. (73) and applying the induction
hypothesis gives the normalization condition.
We claim that

Git1(Riy1Zir1; RGZ )

Fi1(Cin1Zip1; RGZLg)

= P(Ris1|Ziy 1R« Z<))?
Pit1(Riy11Div1Zi1; R Zi)P Riv1|Zie1Reili)

(75)

is a test factor determined by Rg;i1Zgiy1. To prove
this claim, with Fi = Fit1(Ciy1Ziy1; Y<iZg;) and omit-
ting the past parameters of p;;, for each rg¢zg;, we

I‘gizgi) =E (Fi+1 (
= ]EU,‘+1 <E+l <

P(Ri11Ci1Zi1r<iz<)P(Ciy11Zip v <izgi) )
P(Ri+1|Ci+1Zi117<i2<i)qi+1(Ciy11Dit1Zi1)

compute
B
r<izZg

Py, (Cit1lZis1) )ﬂ
qi+1(Cix11Dix1Zi41)

(76)

(

that when C = D, it suffices to use the extreme points Extr(C)
of the convex set C, which implies that if C is a known,
convex polytope, then a finite number of constraints suffice.
This includes the cases where C is characterized by typical
settings and nonsignaling constraints for (k, [, m) Bell-test
configurations and generalizes to cases where the settings
distributions are not fixed but constrained to be a convex
polytope. See Sec. VIII A. For the case where C # D, we
show that soft PEFs for Extr(C) are soft PEFs for C. In
particular PEFs for Extr(C) yield soft PEFs for C. When C
is a convex polytope this yields an effective construction for
soft PEFs.

Theorem 28. Let C be a convex set of distributions of CZ.
Then for § > 0 the family of inequalities

F > 0 ,
< 1 (77

E,(F(CZ)v(C|Z) forv € C,

is implied by the subset with v € Extr(C).

033465-21



KNILL, ZHANG, AND BIERHORST

PHYSICAL REVIEW RESEARCH 2, 033465 (2020)

Proof. For a given v € C, we can write the constraint on F'
as

E,(F(CZv(C|2)F) =Y F(cow(e) ™ /v)f < 1. (78)
(&4

Thus each v determines a linear inequality for F'. For distribu-

tions 0 on CZ and p on Z with Supp(c[Z]) C Supp(p) define

lsip(cz) = o (c2)"™ /p(2)?, (79)

so that /,, (cz) are the coefficients of F in the inequality above.
If p(z) =0, then o(cz) < o(z) =0, so we set I,,(cz) =0,
which is consistent since the power in the numerator is larger
than that in the denominator. Since F is non-negative, it
suffices to show that for each cz, the coefficients /,,(cz) are
biconvex functions of v and p. If v = Av; + (1 — L)y, with
0 < A< 1landv; €C,then

L (cz) < Ay, (€2) + (1 = D)y, (€2). (80)

Giventhat ) F(cz)lyy(cz) < 1forv' = v andv' = vy, we
find

D F(e)hyn(c2) < Y F ()i, (c2) + (1= Ml (c2))

<A F (el () + (1= )

€z

x Z F(c2)lyy,(c2)

<A+(1—a)=1. 81)

This observation extends to arbitrary finite convex combi-
nations by reduction to the above case. Consequently the
constraints associated with extremal distributions suffice.

Let r(x|y) = x'*#y=#, where we define r(0|0) = 0. The
desired convexity expressed in Eq. (80) is implied by the fact
that r(x|y) is biconvex in its arguments for relevant values,
which is lemma 29 below. |

Lemma 29. Define r(x|y) = x'*fy=# with 8 > 0. If (x, y)
is expressed as a finite convex combination (x,y) =
> Ai(xi, y;) where x; > 0, y; > 0 and y; = 0 implies x; = 0,
then r(x[y) < >, Air(xilyi).

Proof. This is a special case of the biconvexity of sand-
wiched Rényi powers, see Refs. [44,45]. To prove biconvexity
of r(x|y) directly, it suffices to consider convex combinations
of two arguments, so let x = Ax; + (1 — A)xp and y = Ay; +
(1 — A)y, be convex combinations as expressed in the theorem
statement. Consider

JA) =rx + A = Mxldyr + (1 = 2y2).  (82)

If yy =y, =0, then f(A) =0 for all A, which is convex.
If yy =0 < y,, then f(L) = (1 — )»)x;’ﬂ/yzﬁ, which again is
convex. By symmetry, so is f(A) for the case where y, = 0 <
y1. It therefore suffices to consider the case where y; > 0 and
vy, > 0. Now f(A) is continuous for A € [0, 1] and smooth for
A € (0, 1), so it suffices to show that /(1) > 0 as follows:

FO)=0x + (0 =) Oy + (1 =)y P!
X ((1+ B)xr —x2)(Ayr + (1 — A)ya)
+ (=B)Ox1 + (1 = L)x2) (1 — ¥2)) (83)

FO) = Gy + (1= 0)x)P o + (1= a)y2) P2
x (B(L+ B)0r =202y + (1 = dp)?

+2(=B)1 + B)(x1 —x2)(y1 — y2)(Axy
+ (1 = M)x2)(Ayr + (1 = A)y2)

+ (=B =1 = B0 =220t + (1 = 1x2)?)
= (1 + (1= M) O + (1= Myn) P2

x B(1+ B)((x1 — x2)(Ay1 + (1 = A)y2)

— (1 — )0 + (1 = 2)xp)), (84)

which is a non-negative multiple of a square. Consequently
f(A) is convex in A, and biconvexity of r(x|y) follows. |

Corollary 30. If F (CZ) is a PEF with power g for C|Z and
Extr(C), then F(CZ) is a PEF with power 8 for C|Z and the
convex closure of C.

The same observation holds for soft PEFs.

Theorem 31. If F(CZ) is a soft PEF with power 8 for D|Z
and Extr(C), then F(CZ) is a soft PEF with power 8 for D|Z
and the convex closure of C.

Proof. Letv; € Extr(C) and v = ), A;v; be a finite convex
combination of the v;. Let ¢;(C|DZ) witness that F is a soft
PEF at v;. From the joint convexity of v!*# /o# according to
lemma 29, for all cdz

v(cz)' P vi(cz)! TP

< Ai——————. 85
(X2 Aigi(cldz)vi(2))P Z (qi(cldz)vi(z))P ®

To apply lemma 29, note that the definition of soft PEFs
implies that g;(c|dz) > 0 whenever v;(cz) > 0 as otherwise
the defining inequality cannot be satisfied. Define g(c|dz) =
2 Mqi(cldz)vi(z)/v(z) if v(z) > 0 and g(c|dz) = 0 other-
wise. We have

Y qleldz) =Y xi Y gileldz)vi(2)/v(2)

<Y 2vi@)/v@) =v@)/vR) =1.  (86)

Now

F
L](cj—flz;v(clz)ﬁv(cz)
U(CZ)IJrﬂ
g(cldz)Pv(z)P
v(cz)' A

(3=, Aigi(eldz)vi(z))P
< Y MiF (c2)vi(c) P /(gileldz)vi(2)?

= F(cz)

= F(cz)

=55, ECD o
- ZA cldayp e e, (87)
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Summing both sides over dcz gives the desired inequality
F(Cz
E, <#U(C|Z)'B
q(C|DZ)F

Z)L Ev,( F(CZz)

B
(CIDZ) vi(C|Z) ) 1. (88)
|
Corollary 32. If F(CZ) is a PEF with power g for D|Z and
Extr(C), then F(CZ) is a soft PEF with power 8 for D|Z and
the convex closure of C.
Proof. By lemma 25, F(CZ) is a soft PEF with power g
for D|Z and Extr(C), so we can apply theorem 31. |

D. Log-probs and PEF optimization strategy

Given the probability estimation framework, the number of
random bits that can be extracted is determined by the negative
logarithm of the final probability estimate after adjustments
for error bounds and extractor constraints. We focus on the
quantities obtained from Eq. (52), which reflect the final
values of the soft PEF products.

Definition 33. Let F; be soft PEFs with power 8 > 0 for C;.
The log-prob of F is ), In(Fi(c;z;))/B. Given an error bound
€, the net log-prob is given by Y. In(Fi(c;z;))/B — In(1/€)/B.

In the randomness generation protocols of Sec. IV C with
the soft UPEs of Sec. V B, the net log-prob is effectively a
“raw” entropy base e available for extraction. For the protocol
to succeed, the net log-prob must exceed oy, In(2), where oy,
is the extractor parameter for the input min-entropy in bits.
In the protocol with banked randomness, the net log-prob
contributes almost fully to the input min-entropy provided to
the extractor. In Sec. IX, we further adjust the net log-prob
by subtracting the entropy used for settings choices and call
the resulting quantity the net entropy. This does not yet take
into account the entropy needed for the extractor seed, nor the
fact that the number of output bits is smaller than the input
min-entropy according to the extractor constraints.

The log-prob and net log-prob are empirical quantities.
For the average quantities with respect to a distribution, we
consider expected contributions per trial.

Definition 34. If v € C is the probability distribution of CZ
at a trial and F is a soft PEF with power 8 > 0 for C, then we
define the log-prob rate of F at v as

Oy (F; ) =Y _v(c2)In(F(c2))/B = E,(In(F))/B. (89)

cz

Let v be a distribution of CZ. If wu(ciyi1zi+1|R<iZyi) =
v(C = ¢j+1,Z = z;41) for each i and c;y 1, z;11, then the trials
are empirically i.i.d. with distribution v. That is, they are i.i.d.
from the point of view of the user, but not necessarily from the
point of view of E. In this case, the expected log-prob after
n trials is given by nO,(F; 8). When using the term ‘“rate,”
we implicitly assume a situation where we expect many trials
with the same distribution. We omit the parameters B or v
when they are clear from context. The quantity O(F') could
be called the trial’s nominal min-entropy increase. We refer to
it as “nominal” because the final min-entropy provided to the
extractor has to be reduced by In(1/€)/8 (see definition 33).
This reduction diverges as 8 goes to zero.

The log-prob rate O(F) is a concave function of F', where
F is constrained to a convex set through the inequalities de-
termined by C. The problem of maximizing O(F) is therefore
that of maximizing a concave function over a convex domain.
For (k, [, m) Bell-test configurations with k, [, m small and
typical settings and nonsignaling constraints, it is feasible to
solve this numerically. However, the complexity of the full
problem grows very rapidly with k, [, m.

E. Schema for probability sstimation

The considerations above lead to the following schematic
probability estimation protocol. We are given the maximum
number of available trials n, a probability estimation goal
q and the error bound ¢;. In general, the protocol yields a
soft UPE. The protocol can take advantage of experimentally
relevant operational details to improve probability estimation
by adapting soft PEFs while it is running. In view of theorem
23 (if C; = D;) or theorem 27 (if not), each trial’s soft PEF
can be adapted by taking advantage of the values of the R;
and Z; from previous trials as well as any initial information
that may be part of E. However, the values of the parameters
n, q, €, and B in the protocol must be fully determined by
initial information and cannot be adapted later.

Schema for probability estimation is as follows:

Given: n, the maximum number of trials, g, the probability
estimation goal, and €, the error bound.

1. Set Ty = 1. Choose B > 0 based on prior data from device
commissioning or other earlier uses of the devices.
2.Foreachi=0,...,n—1:

2.1. After the ith and before the (i + 1)th trial:

2.1.1. Determine the set C;1; constraining the distributions
at the (i 4+ 1)th trial.

2.1.2. Estimate the distribution v € C;y of Ci11Z;y; from
previous measurements (see the remark after the schema).

2.1.3. Based on the estimate v and other information avail-
able in Rg; and Z;, determine a soft PEF F;;; with power
for D;11|Z;+1 and C;y1, optimized for log-prob rate at v.

2.2. Obtain the (i + 1)th trial result ¢;j11zj+1-

23. After the ({4 I)th trial, compute
TiF 1 (civ1Zir1)-

24.1fU = (T116,)7 VP <
3.Return U = (T,e,)~ VP,

In this schema, we have taken advantage of the ability to
stop early while preserving the required coverage properties.
According to theorem 27, an implementation of the schema
returns the value of an ¢,-soft UPE suitable for use in a
randomness generation protocol with theorem 19, 20, or 21.

We remark that there are different ways of estimating the
distribution v[Cjy1Z;y1]. Our method works as along as the
estimated distribution is determined by R¢;Z¢; and initial
information. In practice, we estimate the distribution v € C;1
by maximum likelihood using the past trial results C¢;Z;,
where the likelihood is computed with the assumption that
these trial results are i.i.d. [see Eq. (163) for details]. We
emphasize that the use of the i.i.d. assumption is only for
performing the estimate. The probability estimation protocol
and the derived randomness generation protocol are sound
regardless of how we obtain the estimated distribution.

T =

g, stop and return U .
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VI. SOME PEF PROPERTIES AND PEF OPTIMALITY

A. Dependence on power

Lemma 35. 1f F is a soft PEF with power 8 for C, then
for all 0 <y < 1, FY is a soft PEF with power y g for C.
Furthermore, given a distribution p € C, the log-prob rate at p
is the same for F' and F.

We refer to the transformation of soft PEFs in the lemma
as “power reduction” by y.

Proof. We have, forallv € C,

E,(F”(CZ)(v(C|Z)/q(CIDZ))'F)
=E,((F(CZ)(v(C|2)/q(CIDZ))*)")
< (E,(F(CZ2)(v(CI2)/q(CIDZ)Y)) <1, (90)

by concavity of x — x¥ with 0 < y < 1. Hence F? is a soft
PEF with power y § for C. Accordingly,
O,(F;B) =E,(n(F))/B =E,(y In(F))/(yB)
=E,(In(F")/(yB) = O,(F";vB).  (OD
|

The lemma implies the following corollary.

Corollary 36. The supremum of the log-prob rates at p for
all soft PEFs with power § is nonincreasing in .

Hence, to determine the best log-prob rate without regard
to the error bound, one can analyze soft PEFs in the limit
where the power goes to 0. In particular, we determine the
best log-prob rate achievable by all PEFs with any power
in Sec. VIB, and we show the asymptotic optimality of this
log-prob rate in Sec. VID. Accordingly, the best log-prob
rate achievable by all PEFs is equal to the best log-prob
rate achievable by all soft PEFs. We also note the following
property: If F is a PEF with power B for C, then for all
0 <y <1, F is a PEF with power §/y for C, see lemma
14 of Ref. [28]. This property is useful for determining the
finite-data performance of PEFs, as detailed in Ref. [28].

B. PEFs and entropy estimation

Definition 37. An entropy estimator for D|C andC is areal-
valued function K of CZ with the property that for all v € C,

E,(K(CZ)) < E,( = In(v(D|Z))). 92)

The entropy estimate of K at v is E,(K(CZ)).

Entropy estimators are the analog of affine min-tradeoff
functions in the entropy accumulation framework of Ref. [26].
The following results establish a close relationship between
entropy estimators and PEFs. First we show that the set of
entropy estimators contains the log-fB-roots of positive PEFs
with power 8 > 0.

Theorem 38. Let F be a function of CZ such that F > 0.
If there exists B > O such that F# is a PEF with power g for
C,thenforallv € C, E,(In(F(CZ2))) < E,( — In(v(D|Z2))).

Proof. Suppose that F# is a PEF with power 8 > 0 for C.
For any distribution v € C,

1 > E,(FF(CZ)v(D|Z)F)
— E,,(eﬂ In(F(CZ))+B ln(V(DIZ)))

2 E,(1+ BIn(F(CZ)) + In(v(D|Z)))
=14 BIE,(In(F(CZ))) — E,(—In(v(DIZ)))].  (93)

Here we used that ¢ >1+4+x. It follows that
E,(n(F(C2))) < E,(=In(v(D|Z2))). u

According to theorem 38, positive PEFs F# with power
B define entropy estimators In(F) whose entropy estimate
at a distribution p € C is the log-prob rate of the PEF. Our
next goal is to relate log-prob rates for PEFs with power
approaching 0 to entropy estimates. For this, we need the
following definition.

Definition 39. The asymptotic gain rate at p of C is the
supremum of the log-prob rates at p achievable by PEFs with
any positive power for C.

By the properties of PEFs, the asymptotic gain rate at p of
C is the same as that of Cvx(C).

The asymptotic gain rate is defined in terms of a supremum
over all PEFs, including those whose support is properly
contained in Rng(CZ). The next lemma shows that the same
supremum is obtained for positive PEFs.

Lemma 40. Let g be the asymptotic gain rate at p of C and
define

g+ =sup{O,(FF;8): F > 0
and F?is a PEF with power 8 > 0 for C}. (94)

Then g = g, and the supremum of the entropy estimates at p
of entropy estimators for C is at least g.

Proof. 1t is clear that g > g,. Both g and g, are non-
negative because we can always choose F = 1 (see theorem
46 below). It suffices to consider the nontrivial case g > 0.
Suppose that F contributes nontrivially to the supremum
defining the asymptotic gain rate, namely, F# is a PEF with
power B > 0 and log-prob rate gr = O,(FF; 8) > 0. We can
choose F so that g is arbitrarily close to g. Consider G# =
(1 —8)F# 4+ 6 with § > 0 sufficiently small. Then G? is a
positive PEF with power 8 (see theorem 46) and has log-prob
rate

g6 = 0,(G*; B) =E,(In(G")) /B
=E,(In((1 = 8§)F# +8))/8
> E,(In((1 - 8)F))/B
=gr +1In(1 - 8)/B, (95)

by monotonicity of the logarithm. We have In(1 —§)/8 =
0(8). Consequently,

86 = gr + 0(3). (96)

Since § is arbitrary, we can find positive G so that G# is a PEF
with power 8 and log-prob rate g at p bounded below by a
quantity arbitrarily close to gr. Since gr is itself arbitrarily
close to g, we have g = g, . The last statement of the lemma
follows from theorem 38 and the definitions of asymptotic
gain rate and entropy estimators. ]

According to the lemma above, the supremum of the
entropy estimates at p by entropy estimators is an upper bound
for the asymptotic gain rate. The upper bound could be strict.
However, the next theorem implies that in fact, the supremum
of the entropy estimates gives exactly the asymptotic gain rate.
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Theorem 41. Suppose K is an entropy estimator for C.
Then the asymptotic gain rate at p is at least the entropy
estimate of K at p given by 0 = E,(K(CZ)).

Proof. To prove the theorem requires constructing families
of PEFs with small powers whose log-prob rates approach the
entropy estimate of K.

Let kpax = max(K) and ki, = min(K). We may assume
that kn.x > O as otherwise, the entropy estimate is not posi-
tive. For sufficiently small € > 0, we determine y > 0O such
that G(CZ)? = (e~¢tK(C2)r is a PEF with power y for C. We
require that € < 1/2. Consider v € C and define

f) =K (GCZYv(DIZ)) =Y (e~ K Dv(d|2)) v(c2).

cz
o7
G” is a PEF with power y provided that f(y) < 1 for all v.
We Taylor-expand f(y) at y =0 for y > 0 with a second-
order remainder.

fO)=1,

d ~
Ef(J/) = Z1n(€_€+K(CZ)U(d|Z))(e—E+K(LZ)
cz

x v(d|2))’ v(cz)
= Z(K(cz) +In(v(d|z)) — €)

cz

x (e Dy(d|z)) v(cz),

%f(y)’yzo DK (D) + i) ~ (e

= E,(K(CZ) + In(v(D|Z))) — €
< —e, (98)

2
dd—yzf(w = ;u«cz) +In(v(d|z2)) — €)?

x (e~ KDy (d|2)) v(cz). (99)

The second derivative is positive, so f(y) is convex and

v d?
fo <l —ye+/ 10| =yhay'. o0
0o ay Y=y

To bound the remainder term, we use v(cz) < v(dz) =
v(d|2)v(2), e~¢ < 1 and X2y L knn? for

2
dd—yzf(y) < ;(K(Cz) +In(v(d|z)) — €)*v(d|2)'"

x ey (7). (101)

As a function of v(d|z) (which is bounded by 1) the sum-
mand has a maximum value determined by the maximum of
gx)=(a+ In(x))2x!'*7 for 0 < x < 1 with a = K(cz) — €.
The critical points of g(x) are obtained from solving

0= j—xg(X) =x"(a + In(x))((1 + y)(a + In(x)) + 2).

(102)
The solutions x = 0 and In(x) = —a are minima with g(x) =
0. The remaining solution is obtained from In(xy) = —(a +

2/(1 + y)). The candidate maxima are at this solution and at
the boundary x; = 1. The values of g at these points are
e~ @1+)+2),

RR(ESYS

g(x)) = d°. (103)

If xo > 1, the solution at xp is irrelevant. The condition
xo < 1 is equivalent to —(a(l 4+ y) 4+ 2) < 0, in which case
g(x0) < 4. We have a®> < max((kmax — €)7, (kmin — €)?), S0
let u = max(4, krznax, kfnin ~+ |kmin| + 1/4), which is a loose
upper bound on the maximum of g(x) for 0 < x < 1. For
the bound, we used that kp,x > 0 and 0 < € < 1/2 imply
(kmax — €)* < max(1/4, k2,,.). Returning to bounding f, we
get

d

2
< > uetru(z)

(&4

= uefmy Z 1 = ue'™ |Rng(C), (104)

from which

Y
FOY<l—ey + / ud™ Rag(C)|(y — y)dy’
0

Y
< 1— ey + ulRng(C)]em / (v — vy’
0

=1 — ey + u|Rng(C)|e" >V y2 /2. (105)
To ensure that f(y) < 1, it suffices to satisfy
2 —kmax Y
y< (106)
u|Rng(C)|

Let w be the right-hand side of this inequality. To remove
the dependence of w on y while maintaining f(y) < 1, we
reduce the upper bound on y in a few steps. Since e fm? >

1 - kmaxya
/ 26(1 - kmaxy)

w>w = (107)
u|Rng(C)

Ify < w',theny < 2¢/(u|Rng(C)|), so we can substitute this
in the right-hand side for
, y 2€(l — 2kpaxe /(u|Rng(C)]))
wZw =
u|Rng(C)|

(108)

For € < u|Rng(C)|/(4kmax), this simplifies further to w” >
w” = €/(u|Rng(C)|) by substituting the bound on ¢ for the
second occurrence of € in the expression for w”. The bound
on € is satisfied since € < 1/2 is already assumed and from
u > max(4, k2 ), u/(4kmax) = 1/2. We now require

max

y < w/// _ €
<w'=_—°
u|Rng(C)|
N €
— max(4, k2., K2+ lkmin] + 1/4)Rng(C)]’

(109)

which ensures that f(y) < 1. Since the bound on f(y) is
independent of v € C, G” is a PEF with power y and the
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log-prob rate of G at p is
Op(G";y) = O,(e™ VX7 y)

=E,(K(CZ)—€¢)=0 —e, (110)

which approaches o as € goes to zero, as required to complete
the proof of the theorem. |

C. Error bound tradeoffs

So far, the results of this section have ignored the contribu-
tion of the error bound ¢, to the probability estimate, giving
the appearance that arbitrarily small powers are optimal. For
a given finite number of trials, or if €, is intended to decrease
exponentially with output min-entropy, the optimal power for
soft PEFs is bounded away from zero. This is because ¢,
increases the probability estimate by a factor of €, YF which
diverges as 8 goes to zero. We can analyze the situation for the
case where €, = e *°", where o is the log-prob rate O, (F; 8)
at a given distribution p € C. Per trial, we get a net log-prob
rate of

Op(Fii;8) = Op(F; ) —kOp(F; B)/ B
= (I —«/BE,(n(F(CZ)))/B.

We can consider the family F” of soft PEFs with power
y B obtained by power reduction of F. The net log-prob rate
at power y g is

(111)

_ K
vB

Consequently, the net log-prob rate is never improved by
power reduction of a given soft PEF. However, there are
usually soft PEFs with higher net log-prob rates but lower
powers. There is therefore a tradeoff between the log-prob rate
and the term « /B that we expect to be optimized at some finite
nonzero S. This effect is demonstrated by example in Sec. IX,
see Fig. 1.

We remark that in the above definitions, we may consider
k = k(n) as a function of n.

Op(F”, k3vB) = (1 >Op(F;ﬁ)~ (112)

D. Optimality of PEFs

Consider the situation where R;Z;E; are i.i.d. with a dis-
tribution v such that for all e, v[C;Z;|E; = ¢;] is in C. Here
we have structured the RV E as a sequence RV, E. We call
this the i.i.d. scenario with respect to v, where we specify
v as a distribution of RZE without indices. We consider the
error bound to be e~ Our results so far establish that if the
asymptotic gain rate at p = v[CZ] is g, we can certify smooth
conditional min-entropy and extract near-uniform random bits
at an asymptotic rate arbitrarily close to g. This is formalized
by the next theorem.

Theorem 42. Let g be the asymptotic gain rate at p of C
and €, = ¢~“™" with k (n) = o(1). Assume the i.i.d. scenario.
Then for any § > 0, there exists a PEF G# with power g for C

J

hemin(0) =1inf 3 > A H(D|Z;00) : 0e € Cohe 20, he=1,) Ao, =0 1.

e

such that with asymptotic probability one, the net log-prob
after n trials with PEFs F, = G(C;Z;)? and error bound ¢,
exceeds (g — d)n.

Proof. By the definition of asymptotic gain rate, there
exists a PEF G? with power 8 such that E(In(G)) = g — §/3.
We may assume g — §/3 > 0. The RV S, = Y7 In(F))/B =
Z?:l In(G(C;Z;)) is a sum of bounded i.i.d. RVs, so accord-
ing to the weak law of large numbers, the probability that
Sp = (g—28/3)n goes to 1 as n — oo. The net log-prob
is given by S, —In(1/€)/B = S, — k(n)n/B. Since k(n) =
o(1), for n sufficiently large, « (n)/8 < §/3. Thus with asymp-
totic probability 1, the net log-prob after n trials exceeds
(g—d)n. |

We claim that the asymptotic gain rate g at p is equal to
the minimum of the conditional entropies H(D|ZE;v) over
all distributions v of CZE such that v[CZ] = p, where the
conditional entropy base e is defined by

H(D|ZE;v) = ZH(V[D|Z6’])V(Z€)

ze

=E,(—In(v(D|ZE))). (113)
According to the asymptotic equipartition property (AEP)
[31] specialized to the case of finite classical-classical states,
the infimum of the conditional entropies is the optimal
randomness-generation rate in the asymptotic limit. In this
sense, our method is optimal. This also implies that the
supremum of the log-prob rates at p achievable by soft PEFs
with any power is the same as g, the supremum of the log-prob
rates at p achievable by PEFs with any power. The claim is
established by the next theorem.

Theorem 43. Let g be the asymptotic gain rate at p of
C. For all distributions v of CZE with v[CZ] = p[CZ], we
have g < H(DI|ZE;v). For |Rng(E)| sufficiently large, there
is a distribution v of CZE with v[CZ] = p[CZ] such that
g=H(DI|ZE;v).

Proof. Suppose that v is a distribution of CZE such that
v[CZ] = p. Define p, = v[CZ|E =¢] € C and XA, = v(e).
Then, p = ), A.p.. Consider an arbitrary entropy estimator
K for C and write f(0) = E,(K(CZ)) for its entropy estimate
at 0. By definition, f(0) < H(D|Z;0) for all ¢ € C. Since
f (o) is linear in o, we have

F(0) = hef(pe) <Y 1H(DIZ; po) = HD|ZE; v).

(114)

By arbitrariness of the entropy estimator, the supremum of
the entropy estimates at p is bounded by H(D|ZE;v), so by
lemma 40, we have g < H(D|ZE;v).

For the second part of the theorem, since the asymptotic
gain rate of C is the same as that of Cvx(C), without loss of
generality assume that C is convex closed. For any distribution
o € C define

(115)
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We claim that Ay, (0) is the supremum of entropy estimates
at p for C and that the infimum in the definition of Ay, (0)
is achieved by a sum involving a bounded number of terms.
The conditional entropy is concave in the joint distribution of
its variables (see, for example, Ref. [46], Cor. 11.13, which
is readily specialized to the classical case). It follows that
if one of the o, contributing to the sum defining Ay, (o) is
not extremal, we can replace it by a convex combination of
extremal distributions to decrease the value of the sum. Thus,
we only have to consider o, € Extr(C) for defining Ap,. It
follows that A,;, (o) is the convex roof extension of the func-
tion 0 — H(D|Z;0) on Extr(C). Convex roof extensions are
defined in Ref. [47]. See this reference for a proof that Ay, is
convex. In fact, the graph of /i, on C is the lower boundary of
the convex closure of the set {(o, H(D|Z;0)) : o € Extr(C)}.
Specializing Ay, (o) to the case o = p, since the dimension
is finite we can apply Carathéodory’s theorem and express
hmin(p) as finite convex combinations ), A.H (D|Z; p.) with
pe € Extr(C). The number of terms required is at most d + 2,
where d is the dimension of C. Since Ay, is convex and has a
closed epigraph, for any € > 0 there exists an affine function f
on C such that f(p) = hmin(p) — € and the graph of f is below
that of Ay, (see Ref. [48], Sect. 3.3.2 and Exercise 3.28). We
can extend f to all distributions o of CZ and express f(o)
as an expectation f(o) = E,(K(CZ)) for some real-valued
function K of CZ. Relevant existence and extension theorems
can be found in textbooks on convex analysis, topological
vector spaces or operator theory. For example, see Ref. [49],
Ch. 1. We now have that for all o € C,

Es(K(CZ)) < hmin(0) < H(D|Z;0) = Eo(—1n(0(D|2))).

(116)
It follows that K is an entropy estimator and that its en-
tropy estimate at p iS hyin(p) — €. By arbitrariness of e,
hmin(p) is the supremum of entropy estimates at p for C,
and hence g = hyin(p0) by lemma 40 and theorem 41. From
above, we can write Ay (0) = fo:f MH(D|Z; p,), with

re 20, Zg;rlz Ao = land p, € Extr(C). We can set Rng(E) =
{1,...,d 4+ 2} and define v on CZE by v(cze) = p.(cz)Ae-
Then H(D|ZE;v) = ), AH(D|Z; p.) = hmin(p) = g which

is what we aimed to prove. |

VII. ADDITIONAL PEF CONSTRUCTIONS

Effectiveness of PEF constraints as discussed in Sec. VC
provides a practical way to construct soft PEFs when the
convex closure of the set C has a finite number of extreme
points. We demonstrate this construction for the case of PEFs
in Sec. IX. In addition, we can construct PEFs by the strategies
discussed in the following two subsections.

A. PEFs from maximum probability estimators

A strategy for constructing PEFs is to determine functions
F that solve the inequalities

>

(U
1 forv € Extr(C).
(117)
Any such F' is a PEF with power 8 for C. The next theorem
provides families of PEFs satisfying these inequalities. Since

2
<

E,(F(CZ)maxg; v(d|z)”)

the expectations of such PEFs witness the maximum condi-
tional probability max,, v(d|z) in a trial, the corresponding
probability estimators may be referred to as maximum proba-
bility estimators.

Theorem 44. Suppose that B is a function of CZ such that

1—-E,(B(CZ)) > rrbax v(d|z) forallv € C. (118)
Leta < 1,8 > 0,0 < X < 1 and define
B(CZ) —
F(CZ) = (1 —a)—ﬂ(l +ﬂ¥). (119)
-«

If FF =14 AF — 1) > 0, then F’ is a PEF with power 8 for
C satisfying Eq. (117).

A reasonable choice for « in the theorem is o = b =
E,(B(CZ)) with p our best guess for the true distribution of
the trial. The inequality in Eq. (118) and the expression for F
suggests that we should maximize b for the best results at p.
To optimize the log-prob rate or the net log-prob rate, we can
then vary B and «. If the condition F’ > 0 is not satisfied, we
can either reduce A in the definition or replace B by yB and
a by yo for an appropriate y € (0, 1). The latter replacement
preserves the validity of Eq. (118). Theorem 49 shows that
PEFs obtained by these methods for a given B witness an
asymptotic gain rate of at least — In(1 — b), which justifies
the goal of maximizing b and is what we would hope for
given the interpretation of the right-hand-side of Eq. (118) as
a worst-case conditional max-prob.

Functions B satisfying the conditions in the theorem with
b > 0 for a given non-LR distribution are readily constructed
for a large class of Bell-test configurations. See the discus-
sions after the proofs of this and the next theorem. The family
of PEFs constructed accordingly contains PEFs with good
log-prob rates, as witnessed by theorem 49 below, which
quantifies the performance of B in terms of b. The family
can also be used as a tool for proving exponential randomness
expansion, see theorem 52.

Proof. We use the following general inequality: for x < 1,

1-x)*P=0-a—-—(x-—a)?

_ -B
=(1—a)—ﬁ<1—x “)
l—«

>(l—a)“’(1+ﬂx:z>,

1 (120)

since the right-hand-side defines the tangent line of the graph
of the convex function (1 — x)™# at x = «. Provided F’ > 0,
given any v € C, we can compute

E,(F(CZ)v(DIZ)') < By (F'(CZ)) max v(d|2)’
=E\(1 +A(F(CZ) — 1)) max v(d|z)’
= (1 = 2y max v(d|)’
+ 1B, (F(CZ)) max v(d|z)’

< (1= 2) +AE, (F(CZ)) max v(d|z)P.
21
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To continue, with Eq. (120) we bound

E.(F(CZ)) = IEV<(1 - a)—f’(l + ﬁ@))

l—«o

- [(1 —~ a)‘5<1 pBCD) —e a)]

1l -«
<[1-E.(BCZ)*. (122)

To apply Eq. (120), note that Eq. (118) implies E,(B(CZ)) <
1. Substituting in Eq. (121) and applying Eq. (118) gives

E,(F'(CZ)v(D|Z)F)
<A =2+ Al =E,(B(CZ)]™* max v(d|z)? < 1.
) (123)

Since v is an arbitrary distribution in C, we conclude that if
F’ > 0, it is a PEF with power 8 and, in consideration of the
first line of Eq. (121), it satisfies Eq. (117). |

For (2,2,2) Bell tests with known settings probabilities,
starting from a Bell function By with positive expectation at
p, one can determine m > O such that B = By/2m satisfies
Eq. (118). Computationally, m can be found by checking the
constraints of Eq. (118) at extremal v[C|Z]. This construction
was exploited in Ref. [13]. See the lemma in the proof of the
“Entropy production theorem” in this reference, where setting
B = (T — 1)/2m with respect to the notation there defines a
function satisfying Eq. (118). This observation about nontriv-
ial Bell functions is a consequence of the fact that positive
expectations of such Bell functions witness the presence of a
Popescu-Rohrlich (PR) box in the distribution, and such a box
has maximum outcome probability 1/2 for each setting z. (See
Sec. IX for the definition of PR boxes.)

For A = 1, theorem 44 can be generalized to a weighted
form with minor modifications to the proof.

Theorem 45. Let y be a positive function of DZ. Suppose
that B is a function of CZ such that

I~ E,(B(CZ)) > maxy(do)v(d|z) forall v € C. (124)

Leta < 1, B > 0 and define
B(CZ) -«
l—«o

If F > 0, then F is a PEF with power § for C.
Proof. 1t suffices to adjust the sequence of inequalities
leading to Eq. (123) as follows

E,(F(CZ)v(D|Z)F)

F(CZ) = y((DZ)f(1 — a)—ﬂ<1 +B ) (125)

=E, ((1 —a)”’ (1 + ﬁ%)(ywzw(mznﬂ)
< ]E,,((l —a)# (1 + ﬁ%)) rrbalx(y(dz)v(dlz))ﬂ

E,(B(CZ)) — «
l -«

= [(1 —Ot)_ﬂ<1 +B

< (1= Ey(B(C2))]) ™ (maxy (d|2)v(d]2))”

)] max(y (dz)v(dl2))’

<. (126)
]

Equation (124) defines a set of convex constraints on B.
Namely,

1 —E,(B(CZ)) > y(dz)v(d|z) foralldz and v € C. (127)

If we use B to construct PEFs according to theorem 45, a rea-
sonable goal is to maximize b=E »(B(CZ)) subject to these
constraints, where o is an estimate of the true distribution.
We remark that the asymptotic gain rate witnessed by PEFs
constructed according to theorem 45 from a given B is at least
—In(1 =b)+ E, In(y (DZ)), see theorem 49.

To maximize b, we can define B = 1 — B and solve the
following problem:

Minimize: E,(B(CZ))
Subject to: E,(B(CZ)) > y(dz)v(d|z) for alldz and v € C.

(128)

Given an optimal B, one can use Eq. (125) to define PEFs,
choosing parameters to optimize the log-prob rate at p. If F as
constructed does not satisfy F > 0, we can replace B by y’'B
and o by y’« for an appropriate ¥’ € (0, 1). Alternatively, we
can reduce the power 8.

For general C, solving Eq. (128) may be difficult. But sup-
pose that the measurement settings distribution v[Z] is fixed,
v[Z] = p[Z] for all v € C, and the conditional distributions
V[C|Z] belong to a convex set C¢|z determined by semidefinite
constraints. Now C = {v(C|Z)p(Z) : v[C|Z] € C¢iz}, which
is a special case of the sets free for Z defined in Sec. VIIT A.
This is the standard situation for Bell configurations, in
which case Eq. (128) is related to the optimization problems
described in Refs. [18-20]. These references define convex
programs that determine the maximum available min-entropy
for one trial with distribution p. In fact, the program given in
Eq. (8) of Ref. [19] is related to the dual of Eq. (128) when
Cc)z is the set of quantum realizable conditional probability
distributions. To make the relationship explicit and show that
with the given assumptions, Eq. (128) is effectively solvable,
define B by B(cz) = B(cz)p(z). With explicit sums, Eq. (128)
becomes

> B(c)p(c'12)

Yo BZ)(d'Z) = y(dz)v(d]|z)
for all dz and v[C|Z] € Ccyz. (129)

Note that v[d|z] is a linear function of v[C|Z]. Let Bpin
minimize the objective function of Eq. (129) with minimum
value 1 — b. Such a solution exists since B(cz) = max(y)p(z)
is feasible, which implies that the minimum value of the
objective function is less than or equal to max(y). More-
over, the constraints imply that the minimum is positive. By
construction, (Bmin, —1) is in the cone D* dual to the closed
convex cone D generated by D; = {(v[C|Z], y(dZ2)v(d|z)) :
V[C|Z] € Ccz, dz € Rng(DZ)}. Further, X = (p(C|Z), (1 —
b)) defines a supporting hyperplane of D* at (Bpin, —1).
Since (Bmin, —1) - (p(C)Z), (1 — b)) = 0, it suffices to check
that X is in the dual of D*. Nonzero elements of D* are
positive linear combinations of elements of the form (B, —1)
for some B and (0, a) for some o and a > 0. The first satisfies
that B is a feasible solution of Eq. (129) and by definition
of b, (B,—1)-%¥=>..B(c'?)p(c'|Z)— (1 —b) > 0. For
the second form, we have (0,a) - ¥ = ). o(cZ)p(c'|z) +
a(l — b). For all dz, Y owr 0 (') = —ay(d2)p(d]z),

Minimize:

Subject to:
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and since (Bpin, —1) € D*, (1 —b) > y(dz)p(d|z). Hence
(0,a) X > —ay(dz)p(d|z) + ay(dz)p(d|z) = 0, in consid-
eration of a > 0. The dual of D* is D again, so X € D. Be-
cause of probability normalization, D; is contained in several
hyperplanes not containing the origin, so D is pointed. The
intersection of any of these hyperplanes with D is D;. Since
the set D) is closed and bounded, it meets every extremal ray
of D where it intersects these hyperplanes (theorem 1.4.5 of
Ref. [49]). Consequently, (o[C|Z], (1 — b)) is a convex com-
bination of elements of D;. Since we are in finite dimensions
we can apply Carathéodory’s theorem and express p[C|Z] as a
finite convex combination ), Aqzvax(c'|2) = p(c'|Z) sat-
isfying D, Agzxy (d2)va(d|z) = (1 — b) with vy € Ceyz,
Y o razk = 1 and Az > 0. If we define Ay. = ) Ay and
Vi, = Zk AdzkVazk/Aaz if Lg; > 0 (otherwise, v, can be any
member of the set Ccjz), then k can be eliminated in the con-
vex combination. By construction, (1 — b) is the maximum
value of ), A4.y(dz)va(d|z) for any family v, € Cc)z and
Aa: > Osatisfying that forall ¢'z’, ), Aa-va:(c'|2) = p(c'|Z)
and ), Ag. = 1. We can write ¥y, = Aq;V4. to absorb the
coefficients A,4.. With this, the value of the following problem
is (1 — b):

Maximize: Y, y(dz)Vq.(d|z)

> a: Va2 = p(c'l2)
U4, € [0, 00)Ccz

for all 7,
for all dz.

Subject to:
(130)

The set [0, 00)Cc)z is the cone generated by Ccz. If Cc|z is
characterized by a semidefinite program, then so is [0, 00)Cc|z
(by eliminating inhomogenous constraints in the semidefinite
program’s standard form, see Ref. [48], Eq. (4.51)). Equation
(130) can then be cast as a semidefinite program also and
solved effectively. By semidefinite-programming duality, this
can then be used to obtain effective solutions of Eq. (128),
provided the semidefinite program is formulated to satisfy
strong duality. For related programs, Ref. [18] claim strong
duality by exhibiting strictly feasible solutions.

We conclude with remarks on the relationship between
the optimization problem in Eq. (130) and that in Eq. (8)
of Ref. [19] (referenced as “P8” below). To relate Eq. (130)
to P8, set y(dz) =1 and let Ccz be the set of quantum
achievable conditional probability distributions, for which
there is a hierarchy of semidefinite-programming relaxations
[34]. Then identify both ¢ and d here with ab there (so ¢ = d),
z here with xy there, and ,,(c’|z’) here with p(z)P..(c'|Z)
there, where P (c'|zZ) =), pra.poec Fap (c’|Z'). The objective
function of Eq. (130) now matches that of P8. However,
unless there is only one setting, the equality constraints
in Eq. (130) are a proper subset of those of P8. Observe
that the equality constraints of P8 when expressed in terms
of the variables P, (c’|7’) require that for each z and ¢'Z,
> o Pe:(c'|2)) = p(c’|Z). For this, note that P8 includes the
constraints y g Pup (c'|Z') = p(c'|7) forall ¢'Z. For any z, the
left-hand side can be written as > > 5., 5 _ Pap(c’|2) =
Y . Pe:(c'|2). These identities imply that )~ p(2)P..(c'|2) =
Y. p(@)p(c'lz') = p(c’|Z), but are stronger when |Rng(Z)| >
1. Furthermore, according to P8, the P,, must be expressed as
sums of the Pyp € Ccjz as specified above, and this implies
additional constraints. As a result the optimal value for P8 is
in general smaller.

B. Convex combination

Optimization over all PEFs with a given power can be
highly demanding, because both the size of the range of CZ
and the number of extreme points of C in a general (k, [, m)
Bell-test configuration are large. Furthermore, the size of the
range of CZ determines the dimension of the search space, so
if this size is large and the amount of data available for making
an estimate of the true distribution is limited, there is a risk of
overfitting when optimizing the log-prob rate for the estimated
distribution at a given power S. See Eq. (162) of Sec. IX
for the explicit formulation of the optimization problem.
However, in many cases we have a small set of candidate PEFs
expected to be helpful in a given situation, where the set was
obtained in earlier studies of the experimental devices before
running any protocols. Then, the optimization problem can be
greatly simplified by means of the next theorem.

Theorem 46. Let (F;)/_, be a collection of PEFs with
power B and define Fy = 1. Then every weighted average F' =
Yoi_oriF; with ; > 0and ), A; = 1 is a PEF with power B.

Proof. 1t suffices to observe that Fy = 1 is a PEF with an
arbitrary power, and the set of PEFs with power 8 is convex
closed since it is defined by a family of linear constraints. W

Optimizing PEFs with respect to the coefficients of
weighted averages is efficient and less susceptible to overfit-
ting issues. If p is estimated by empirical frequencies from
past trials, one can evaluate the objective function directly on
the past data, in which case the technique is not limited to
configurations with computationally manageable |Rng(CZ)|.
This strategy was proposed for optimizing test factors for
rejecting LR in Ref. [15] and used in Refs. [39,43].

VIII. REDUCING SETTINGS ENTROPY

A. Sets of distributions that are free for Z

In our applications, the sets of distributions C are deter-
mined by constraints on the Z-conditional distributions of C
and separate constraints on the marginal distributions of Z. We
first formalize this class of sets. As defined in Sec. III, for any
RV X, Sy = {p : p is a distribution of X} and Cvx(X) is the
convex closure of X.

Definition 47. Let SClZ = {(IOC\z)zeRng(Z) : for each z, £Oc|z
is a distribution of C}. The set of distributions C of CZ is free
for Z if there are closed convex sets Cejz € Sciz and Cz € Sy
such that

C =Cvx({v € Scz : WIC|Z =z]), € Cciz and v[Z] € Cz}).
(131)

In the case of Bell tests, Ccz consists of the set
of nonsignaling distributions, possibly satisfying additional
quantum constraints. If Z is a settings choice RV with known
distribution v, then Cz = {v}. For pciz = (pc.); € Sciz, we
define pcz % v by (pciz % v)(cz) = pei(c)v(z). With this, C
in Eq. (131) can be written as Cvx(Cciz x Cz). If Cz = {v},
then Cciz x Cz = Ccjz x v is already convex closed, so we
can omit the convex-closure operation.

The extreme points of Ccjz X v consist of the set of
pciz X v with pcz extremal in Ccjz. In general, we have the
following.

Lemma 48. Extr(m(qu NCZ))EEXU'(CCM) NEXtI’(Cz).
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Here, the overline on the right-hand side denotes topologi-
cal closure.

Proof. Cciz and Cz are bounded closed sets with finite
dimension, hence compact. The operation X is continuous and
therefore maps bounded closed sets to bounded closed sets. So
Cciz x Cz is bounded and closed, as is Extr(C¢|z) x Extr(Cz),
which is contained in Ccjz % Cz. From the last property,
Cvx(Cciz % Cz) 2 Cvx(Extr(Ceiz) x Extr(Cz)).

By  bilinearity of x, we have C¢zxCzC
m(Extr(qu) x Extr(Cz)). Since convex closure is
idempotent, Cvx(Cciz ¥ Cz) € Cvx(Extr(Ccjz) % Extr(Cz)).
We conclude that these two convex sets are identical.
Every bounded closed set contains the extreme points of its
convex closure (theorem 1.4.5 of Ref. [49]). Accordingly,
Extr(Cvx(Ccjz % Cz)) € Extr(Cejz) x Extr(Cy). [ |

We note that the members of Extr(Ccjz) % Extr(Cz) are
extremal. This can be seen as follows: Let the member p¢|z X
v of Extr(C¢jz) x Extr(Cz) be a finite convex combination of
members of Ccz x Cz, written as pciz X v =), A;ipciz;i X
v;. By marginalizing to Z and by extremality of v, it follows
that v; = v for all i. Given this, and extremality of pc|z, we can
also conclude that pc|z;; = pcjz. Thus the inclusion in lemma
48 becomes an equality if we topologically close the left-hand
side. In particular, if C¢jz and C; are convex polytopes, then
the right-hand side is finite and therefore W(CQZ x Cz) is
also a convex polytope with the expected extreme points, a
fact that we exploit for finding soft PEFs by our methods.

We fix the convex set Ccz € Scyz for the remainder of this
section. For brevity, instead of referring to properties “for C =
m(cc,z X Cz),” we just say “for Cz,” provided Ccy is clear
from context.

B. Gain rates for biased settings

For randomness expansion, it is desirable to minimize the
entropy of w[Z], since this is the main contributor to the
number of random bits required as input to the protocol. The
other contributor is the seed required for the extractor, but
good extractors already use relatively little seed. We expect
that reducing the entropy of ©[Z] may reduce the asymptotic
gain rate. However, in the case where we have uniform bounds
on the maximum probability as required for theorem 45, we
can show that the reduction is limited.

Theorem 49. Let pc|z € Ccjz. Let y be a positive function
of DZ. Let B be a function of CZ satisfying Eq. (124)
for C; = {Unif}. Assume that b = E,_, wunit,(B) > 0. Let
v be a distribution of Z with pu;, = min; v(z) > 0. Then
the asymptotic gain rate at pcjz ¥ v for Cz = {v} is at least
—1In(1 = b) + E ., v In(y (D2)).

Proof. Let ¢ = 1/|Rng(Z)| and w = — min(0, min(B)).
Define  B'(CZ) = B(CZ)Unifz(Z)/v(Z) = B(CZ)q/v(Z).
For all ociz € Sc|z,

Eoepon(B) =Y Eop (B(CIV(2)
=Y Eo.(B(C2)q/v(2)(2)

=Y Eo.(B(C))q = Eopyumie, (B).  (132)

By our assumptions on B, for all ocz €Ccyz, 1—
Eoesetnit, B(CZ) > maxy; y(d2)Poq, xunir, (d]2), which s
Eq. (124). Since Py, v (d|2) = Py, sunit, (d|z), we can ap-
ply Eq. (132) to conclude that B’ satisfies Eq. (124) for C; =
{v}. According to theorem 45,

F5(CZ) = y(DZ)P(1 — 15)“’(1 + ﬂ%)bb) (133)
is a PEF with power B for C; = {v} provided that Fz > 0.
Note that Eq. (124) implies b < 1. Since B’ > —wq/Pumin,
for sufficiently small B, the condition Fg > 0 is satisfied.
Specifically, we require that 8 < 1/a, where we define a =
(Wq/Ppmin + b)/(1 — b). The asymptotic gain rate g from the
theorem statement satisfies

g 2 limsupE,., %, (In(Fp))/B.
B—0y4

(134)

The expression inside the limit is

Eperv(In(Fp))/B = —In(1 — b) + E ., In(y (DZ))

1 B(CZ)—-b
—+ E]E/’C\ZNV ln <1 + ﬂ?)

(135)

In general, given Ba <1 and x > —a, we can approxi-
mate In(1 4+ Bx) from Taylor expansion around x = O with a
second-order remainder to get

(136)

In(l + px) > px — - (Bx),

1
(1= Bay
since |j%21n(1 +y)| < 1/(01 — Ba)*> for y > —Pa. Let
X =(B(CZ)—b)/(1—b). Then E,, X =0. Let
v = IEmZm(XZ), which is the variance of X. Substituting X
for x in the inequality of Eq. (136) and applying expectations
to both sides gives

B*v
"~ 2(1 — Ba)?
=—0(B).

where the minus sign on the order notation empha-
sizes that the lower bound is negative. The expression
in Eq. (135) is therefore bounded below by —In(1 —
b) + E pei,xv In(y (DZ)) — O(B) which goes to — In(1 — b) +
Epepxv In(y(DZ)) as B — 0. In view of Eq. (134), the
theorem follows. n

E e In (14 BX) >

(137)

C. Spot-checking settings distributions

To approach the asymptotic gain rate in theorem 49 re-
quires small powers which negatively impact the net log-prob
rate. We analyze the effect on the net log-prob rate in the case
where p is a mixture of a deterministic distribution §,, and
Unifz. This corresponds to using the same setting for most
trials and randomly choosing test trials with uniform settings
distribution. This is referred to as a spot-checking strategy
[23]. Later we consider a protocol where one random trial out
of a block of 2* trials has Z uniformly distributed.

To simplify the analysis, we take advantage of the fact that
for configurations such as those of Bell tests, we can hide the

033465-30



GENERATION OF QUANTUM RANDOMNESS BY ...

PHYSICAL REVIEW RESEARCH 2, 033465 (2020)

choice of whether or not to apply a test trial from the devices.
This corresponds to appending a test bit 7 to Z, where T = 1
indicates a test trial and 7 = 0 indicates a fixed one, with Z =
2o. The set Cc|zr is obtained from C¢ |z by constraining u[C|zt]
to be independent of ¢ for each z and (u[C|zt]), € Cc)z. For
any vcyz € Cc)z there is a corresponding D¢z € Ccjzr defined
by Pcj(¢) = v (c) for all ¢, z and ¢. The map vz = Vejzr
is a bijection.

Let g = 1/|Rng(Z)| and pc)z € Ccjz. Let v, be the proba-
bility distribution of ZT defined by v,(z1) = rq and v,(z0) =
(1 —=r)s,,, for some value zp of Z. Since we are analyz-
ing the case where r is small, we assume r < 1/2. The
entropy of the distribution v, is given by S(v,) = H(r) +
rin(1/g), where H(r) = —rIn(r) — (1 — r)In(1 — r). Let B
be a function of CZ satisfying Eq. (118) for Cz = {Unifz}
with b = EPC\ZNUHifz(B) >0 and v = EPC\ZNUnifz((B — b)z)
From Eq. (118), it follows that » < 1. Define B,(CZT) by

B,(CZ0) = 0,

B.(CZ1) =B(CZ)%. (138)

Let

. B.(CZT)—b
F.4(CZT)y=(1—-b)"* (1 + ,8#) (139)
Setting the function B, to zero when {T' = 0} is convenient.
Because F; g is related to the tangent line of (1 — ) Patx=5b
and B, = 0 corresponds to x = 0, the expected value of F; g is
slightly below 1 for nontest trials.

Theorem 50. There exist constants d > 0, d" > 0 indepen-
dent of r such that for 8 < dr, F, g as defined in Eq. (139) is
a PEF with power 8 for Cczr X v,, and its log-prob rate g, g
at Pcjzr X vy satisfies g, > —In(1 — b) —d'B/r.

In practical situations, we anticipate using numerical opti-
mization to determine the PEFs, which we expect to improve
on the bounds in the theorem. However, we believe that the
constants d and d’ obtained in the proof are reasonable. They
are given by

1-b
d= =,
2w+b
- 52
d =221 (140)
(1—by
with w = — min(0, min(B)).

Proof. The proof is a refinement of that of theorem 49. For
any ocyz € Sciz, consider the expectation of B, with respect
to &C|ZT N V.

E&c‘zr AV, (BI) = Z Eé‘c‘koBr(CZo)Ur(ZO)

z
+ Y Ese, BA(Czl)v(21)
Zz
= Eo B.(Czl)gr
Z
= Eq.B(C2)q
Z

= Eoc, saunit, B(CZ). (141)

Since  Pspp,p v, (d]2t) = Poyyysunit, (d]z) and B satisfies
Eq. (118) for C; = {Unifz}, so does B, but for Cz7 = {v,}.
Thus theorem 44 applies, and we have that F; g as defined in
Eq. (139) is a PEF with power § for Cczr » vy, provided S
is small enough. From Eq. (138) and the fact min(B) > —w,
we have that B, > —w/r. From the proof of theorem 49, we
can replace wq/pmin by w/r in the expression for a there to
see that it suffices to satisfy g < 1/a = (1 — b)/(w/r + b)
in order to make sure F.g > 0. The upper bound can be
estimated as

1/a =

1-b 1-> 1-b
= =T — > =
w/r+b w + br w—+b/2

given our assumption that » < 1/2 and b > 0. With foresight,
we set d = (1 — b)/(2Qw + b) < 1/(2ra). With g < dr, this
implies F,.g > 0 and fa < 1/2.

Next we lower bound Ez.,, xv, (In(F.5))/B by the same
strategy that we used in the proof of theorem 49. The result
is

(142)

- B,
8rp = ]EbC\ZT v, (In(Frp))/ B 2 —In(l = b) — 2(1_—1&1)27
(143)
where here we define v, = ]I*:,bcwzv”‘“’rxf2 with X, = (8,

E)/(l — b). Note that from Eq. (141) and the definition of b,
Epczr 20X = 0. An explicit expression for v, is obtained as
follows:

Vr = Eey 0, (X (CZT )
= Ep., (X(Cat))vy(zt)

zt

=Y B (X (C2t))v(at)
= B (X(C20))v,(20) + Y ", (X(C21)v,(z1)

= E ., X(C200) (1 = 1)+ Y Ep (X (C21))gr

EZ
- (1 _ 5)2 (1 - r) + ]Epc\zNUnifZ(Xr(CZI)z)r,

For the second term in the last line, compute
E peyy seunit, (X-(CZ1)?)

1 —_

= mEﬂquUnifz((B,(C21) _ b)z)
l -

= mqusznifz((B(CZ)/r _ 5P
1

= m[EPC\zNUnifZ((B(CZ)/r — E/r)Z) + (E/r B 5)2]

(144)

@/ + b2 /r —1)%)

e
o4+ b2(1 —r)?
= TR0 -be (1%

where for the fourth line we applied the identity E(U?) =
E(U —EW))?*) +EW)? relating the expectation of the
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square to the variance. Combining this with Eq. (144) gives

D+ =r+r(d = v+0—-rb?
vr = = = -
(1—by? (1—0b)y?
D + b?
< m (146)

Write ¢ for the right-hand side of this inequality, which is
independent of r. Substituting in Eq. (143), we get

Be/r
2(1 — Ba)?
> —In(1 — b) — 28c/r,

Epezr o, (In(Fp))/B > —In(1 = b) —

(147)

because our earlier choice for d implies Ba < 1/2. We now
set d’ = 2¢ to complete the proof of the theorem. |
From the proof above, we can extract the variance of F;. 4 at
Pcizr » vy, from which we can obtain a bound on the variance
of In(F,g). Since we refer to it below when discussing the
statistical performance of exponential randomness expansion,
we record the result here.
Lemma 51. The variance v, g of In(F,.g) with B < dr at
Pcizr X v, satisfies
,B* U+ b
Vg < 4In(2) PR S
Proof. The variance of F.g at pcizr X v, can be deter-
mined from v, in the proof of theorem 50. It satisfies

Var(F,.4) = (1 —b)"* p*v,
P L
ro(1—b)X1+h

(148)

(149)

By construction of F g, the mean of F, g is (1 — b)=#, and
F.p > (1 — b)~F /2. The latter follows from Ba < 1/2, noted
where we defined d after Eq. (142). In general, for a positive
RV U with mean it and U > ii/2,

Var(In(U)) < E((In(U) — In(@))*)
= E((In(U/))*)
=E((In(1 + (U — @)/@))*)
<4InQYE((U — i)/i)*)

= 41n(2)*Var(U)/(@1)*. (150)

Here, the first step follows from Var(Y) < E((Y — yp)?) for
any yo, where we substituted In(U ) and In(&t) for Y and yy. In
the second-last step, we used | In(1 + y)| < 2In(2)|y| fory >
—1/2, substituting (U — u)/u for y. Setting U = F, g and i =
E(F.g)=0~- b)~#, we get the inequality in the lemma. W

D. Exponential randomness expansion

For PEFs satisfying the conditions for theorem 50, it is
possible to achieve exponential expansion of the entropy of
Z.

Theorem 52. Let F,p be the family of PEFs from the-
orem 50. Consider n trials with model H(Cczr % v,) and
a fixed error bound €,. Consider pcz € Cciz and let g, g
be the log-prob rate of F.g at pcizr X v, and assume

that the trials are i.i.d. for CZT with this distribution. We
can choose r =r, and B = B, as functions of n so that
the expected net log-prob is gne; = ng,.p, — In(1/€,)/B, =
n(—In(l — b))/3 = *¥"S)) where nS(v,, ) is the total input
entropy of ZT.

The performance in the theorem statement may be com-
pared to that in Ref. [23], where the settings entropy for n
trials is €2(In®(n)) (see the end of Sect. 1.1 of the reference).
With our terminology, this implies a net log-prob 2"
where S is the total input entropy, which is subexponential in
input entropy. It is also possible to match the soundness per-
formance of the “one-shot” protocol of Ref. [22], Cor. 1.2, by
modifying the proof below with r,, and §, proportional to =%
with 0 < w < 1 instead of w = 1. However, the referenced
results are valid for quantum side information.

The proof of theorem 52 given below computes explicit
constants for the orders given in the theorem statement. The
constants depend on the PEF construction in the previous
section, and the performance can always be improved by
direct PEF optimization. As a result we do not expect the
constants to be needed in practice.

The i.i.d. assumption is a completeness requirement that
we expect to hold approximately if the devices perform as
designed. Explicit constants expressed in terms of those in
theorem 50 are given with Eq. (153) below. Notably, the
expected number of test trials is independent of n and pro-
portional to In(1/€p,), which is what one would hope for in
the absence of special strategies allowing feed-forward of
generated randomness from independent devices, an example
of which is the cross-feeding protocol of Ref. [25]. However,
since nontest trials contribute negatively to the log-prob, this
means that the full gain and the error bound are witnessed
by a constant number of test trials. One should therefore
expect a large instance-to-instance variation in the actual log-
prob obtained, raising the question of whether the success
probability, or the expected number of trials before reaching a
log-prob goal, are sufficiently well behaved. We consider this
question after the proof.

Proof. Let d and d’ be the constants in theorem 50. From
this theorem, the expected net log-prob is bounded by

. Ind/e)
&net = N&r, B, B,
>n(—1n(1 . w") _Ind/e) sy
T'n ,Bn

with b as defined for theorem 50. The input entropy per trial
S(,)=H(r)+rIn(1/q) is bounded above by —2rIn(r),
provided we take r < g/e. For this, note that rIn(1/q) <
rin(1/(re)) = —rIn(r) — rand —(1 — r)In(1 — r) < r since
the function x — —(1 — x)In(1 — x) is concave for 0 < x <
1,is equal to O at x = 1, and has slope 1 at x = 0. If we choose
r, = ¢’/n with ¢’ to be determined later, the expected number
of test trials is ¢’ and the total input entropy satisfies nS(v,,) <
2¢' In(n/c"), or equivalently n > 'S0/ For sufficiently
large n, r < g/e is satisfied. If we then choose B, = cr, =
cc’ /n with ¢ < d such that g, grows linearly with n, we have
accomplished our goal. Write gy = — In(1 — b). Substituting
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the expressions for §, and r,, in Eq. (151),

d'c  In(1/ep)
gnet>ng0<l___ ; " .
8o cc'8o
We first set ¢ = min(d, go/(3d’)), which ensures that
d'c/go < 1/3. We then set ¢ = 31n(1/e,)/(cgo). This gives
the inequality

(152)

8net == 1go/3 = (c gO/?’)enS(w" /e ) (153)

which implies the theorem. |

According to lemma 51, the variance at pcjzr < v, of the
quantity nIn(F;, g,)/B whose expectation is the expected log-
prob for the parameters chosen in the proof above is given by

rn,Bn 2n v+b2
= < 41 -
V=N ST
n? v+ b
=41n2)*— u
(),(1 3
2 /
_210f (154)

Here, to get the last line, we used Eq. (140). In view of
Eq. (152), the expected log-prob is at least 2ngy/3, with up
to 1/2 of that taken away by the error-bound requirement.
Here we are interested in the distribution of the net log-prob,
which depends on the actual trial results. The amount that is
subtracted from the log-prob to get the net log-prob for the
error bound is independent of the trial results and given by
f =nIn(1/€;)/(cc). By increasing ¢’ by a constant factor
while holding ¢ fixed, we can reduce f and still achieve
exponential expansion, albeit with a smaller constant in the
exponent. The first two terms on the right-hand side of
Eq. (152) are independent of ¢’ and provide a lower bound
on the expected log-prob. These considerations imply that
if the variance is small enough compared to (ngy/6)> (for
example), with correspondingly high probability the net log-
prob exceeds ngy/6. Small variance is implied by large ¢/,
because according to Eq. (154), the variance of the log-prob
is reduced if ¢’ is increased. To be specific, let ¥ = In(1/¢p).
We can set

o= 3
cgo
_ 3k
gomin(d, go/(3d"))
9d’
=" : (155)
g3 min(3dd’/go, 1)
from which
22 min(3dd’ /o, 1
vgzm@f”%mm( /8D oy %.(wa

9k

By Chebyshev’s inequality, a conservative upper bound on the
probability that nIn(F,, g,)/B < 2ngo/3 — J/v/A is A2, Since
at most ngy/3 is subtracted to obtain the net log-prob, if we
require that \/v/A < ngo/6, then with probability at least 1 —
A% we get a net log-prob of at least ngy/6, which is sufficient
for exponential expansion. From Eq. (156), we can achieve

this if we have

Lt L )
9x2\ 6

that is, if x > 81n(2)?>/A%. In terms of ¢/, this means that
¢ needs to be set to max(31n(1/¢;), 24 ln(2)2/)\2)/(cg0) for
a probability of at least 1 — A? of having a net log-prob of
ngo/6.

Better bounds on the probabilities above can be obtained by
taking into consideration the i.i.d. assumptions. For example,
one can apply Chernoff-Hoeffding bounds to improve the
estimates. Alternatively, we can use the option to acquire trials
until a desired net log-prob is obtained with a conservative
upper bound on the maximum number of trials.

21n(2)?

(157)

E. Blockwise spot checking

For randomness expansion without having to decompress
uniform bits for generating biased distributions of Z, we
suggest the following spot-checking strategy consisting of
blocks of trials. Each block nominally contains 2* trials. One
of them is chosen uniformly at random as a test trial, for which
we use the random variable T;, now valued between 0 and
2% — 1 with a uniform distribution. The /th trial in a block uses
Z = 7y (distribution d,,), unless [ = T 4+ 1 in which case the
distribution of Z is Unif. For analyzing these trials, observe
that the distribution of Z at the /th trial conditional on not
having encountered the test trial yet, that is, given that {I —
1 < Ti}, 1s a mixture of §,, and Unif,, with the probability
of the latter being 1/(2f — [ 4 1). Thus we can process the
trial using an adaptive strategy, designing the PEF for the
[th trial according to theorem 50, where the distribution of
T has probability r; = 1/(2¥ —1 + 1) of T = 1. We call this
the blockwise spot-checking strategy. Here we must choose
a single power for the PEFs independent of /. Once the test
trial is encountered, the remaining trials in the block do not
need to be performed as we can, equivalently, set the PEFs to
be trivial from this point on. Of course, if there is verifiable
randomness even when the setting is fixed and known by the
external entity and devices, we can continue. The average
number of trials per block is therefore (2 + 1)/2. Note that
ry%_;41 = 1/1 and the probability of reaching the 2¢ — [ + 1th
trial is //2%. When we choose the common power of the PEFs,
the goal is to optimize the expected log-prob per block in
consideration of the way in which the settings probabilities
change as well as the anticipated trial statistics. More details
on randomness expansion with the blockwise spot-checking
strategy are available in Ref. [50], where PEFs are constructed
by direct optimization.

IX. APPLICATIONS TO BELL TESTS

A. General considerations

All our applications are for the (2,2,2) Bell-test configu-
ration. In this configuration, Z = XY and D = C = AB with
X,Y,A, B € {0, 1}, so we can effectively construct the PEFs
for a trial according to theorem 28. Therefore, in this section,
we choose to illustrate the performance of PEFs as opposed
to that of soft PEFs. The distributions are free for Z. The
set of conditional distributions consists of those satisfying the
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nonsignaling constraints Eq. (5). We denote this set by NC\Z.
This includes distributions not achievable by two-party quan-
tum states, so additional quantum constraints can be consid-
ered. There is a hierarchy of semidefinite programs to generate
such constraints due to Navascues, Pironio, and Acin [34] (the
NPA hierarchy). Because semidefinite programs define con-
vex sets that are not convex polytopes and have a continuum
of extreme points, we cannot make direct use of the NPA hier-
archy. In the absence of a semidefinite hierarchy for the PEF
constraints, we require the conditional distributions to be a
convex polytope defined by extreme points. In general, we can
use the NPA hierarchy to generate finitely many additional lin-
ear constraints to add to the nonsignaling constraints. The set
of extreme points can then be obtained by available linear pro-
gramming tools and used for PEF optimization. To keep the
number of extreme points low, it helps to add only constraints
relevant to the actual distribution expected at a trial. We do
not have a systematic way to identify relevant constraints.
Below, we consider additional quantum constraints based on
Tsirelson’s bound [51]. We note that one can consider con-
structing PEFs via theorem 44 as discussed after the theorem.
With this method one can take advantage of the NPA hierarchy
directly but is restricted to PEFs satisfying Eq. (117).

The extreme points of Nz are given by the deterministic
LR distributions and variations of Popescu-Rohrlich (PR)
boxes [52]. The deterministic LR distributions are param-
eterized by two functions f4 : x > fy(x) € {0, 1} and fp :
v+ fg(y) € {0, 1} defining each station’s settings-dependent
outcome, giving distributions

Vi g (ablxy) = [fa(x) = a][fp(y) = b]. (158)

This yields the 16 LR extreme points. The PR boxes have
distributions v, defined by functions g : xy — {0, 1}, where
[{xy|g(xy) = 1}| is odd, according to

ve(ablxy) = [a = b & g(xy)]/2,

with addition of values in {0, 1} modulo 2. The function g
indicates for which settings pairs the stations’ outcomes are
perfectly anticorrelated. There are eight extreme points in this
class.

The simplest quantum constraint to add is Tsirelson’s
bound [51], which can be expressed in the form E(B(CZ)) <
(v/2—1)/4 for all distributions compatible with quantum
mechanics, with B(CZ) given by Eq. (22) and fixing the
settings distribution to be uniform. There are 8 variants of
Tsirelson’s bound expressed as

(159)

E(B,(CZ)) < (V2 —1)/4 (160)

corresponding to the eight PR boxes labeled by g, with B,(CZ)
as defined in the next paragraph. Let Q¢|z be the set of con-
ditional distributions obtained by adding the eight conditional
forms of Eq. (160) to the constraints.

For any PR box vy, let p(g) = 0 or p(g) = 1 according to
whether |g~'(1)] = 1 or |[g~!(1)] = 3 and define

By(xyab) = —(=1)**"Ola £ b p(g)].  (161)

This implies that the Bell function B(CZ) in Eq. (22) can be
expressed as B(CZ) = Bg.iyxxy(CZ), with x x y the numeric
product of x and y. For any distribution p € N¢jz x {Unifz},

the expectation of [ ,(B¢(CZ)) bounds the contribution of the
PR box v, to p in the sense that if p = (1 — p)pLr + pv,,
with prr being an LR distribution, then E,(B,(CZ)) < p/4.
From Ref. [53], one determines that the bound is tight in
the sense that if E,(Bg(CZ)) = p/4, then there exists an
LR distribution prg such that p = (1 — p)prr + pve. These
LR distributions are convex combinations of the eight de-
terministic LR distributions for which E, 1sp (Be(CZ)) = 0.
We observe that these are extremal, and all nonsignaling
distributions can be expressed as convex combinations of
extreme points involving at most one PR box. This makes it
possible to explicitly determine the extreme points of Qc)z.
They are the convex combinations (1 — q)vy, 7, + qv, with
g = ~/2 — 1 that satisfy Tsirelson’s bound with equality on
the one-dimensional line connecting one of the above eight
deterministic LR distributions to the corresponding PR box.
Note that the above argument can be generalized to determine
the extreme points of the convex polytopes obtained using
other Bell inequalities, see Ref. [54].

We emphasize that probability estimation is not based on
the Bell-inequality framework. However, any PEF F for a
Bell-test configuration has the property that F — 1 is a Bell
function and therefore associated with a Bell inequality. This
follows because the conditional probabilities for the extremal
LR distributions are either O or 1. Therefore, regardless of
the power B, the PEF constraints from these extreme points
are equivalent to the constraints for Bell functions after sub-
tracting 1. One can construct PEFs from Bell functions by
reversing this argument and rescaling the resulting factor to
satisfy the constraints induced by non-LR extreme points. But
the relationship between measures of quality of Bell functions
(such as violation signal-to-noise or winning probability) and
those of related PEFs is not clear.

B. Applications and methods

We illustrate probability estimation with three examples. In
the first, we estimate the conditional probability distribution
of the outcomes observed in the recent loophole-free Bell
test with entangled atoms reported in Ref. [7]. In the second,
we reanalyze the data used for extracting 256 random bits
uniform within 0.001 in Ref. [13]. Finally, we reanalyze the
data from the ion experiment of Ref. [10], which was the
first to demonstrate min-entropy estimation from a Bell test.
For the first example, we explore the log-prob rates and net
log-prob rates over a range of choices of parameters for
PEF power, error bound, unknown settings bias and test-trial
probability. The log-prob rates and net log-prob rates are
determined directly from the inferred probabilities of the out-
comes, from which the expected net log-prob can be inferred
under the assumption that the trials are i.i.d. For the other
two examples, we explicitly apply the probability estimation
schema and obtain the total log-prob for different scenarios.
In each scenario, the parameter choices are made based on
training data, following the protocol in Ref. [13]. We show
the certifiable min-entropy for the reported data as a function
of the error bound and compare to the min-entropies reported
in Refs. [10,13].

For determining the best PEFs, we can optimize the log-
prob rate at the estimated distribution v given the power B.
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TABLE 1. Inferred settings-conditional distribution pums(ablxy). Shown are the settings-conditional probabilities of the outcomes

estimated from all trials with the prepared state W~ reported in Ref. [7]. This is the Qcz-satisfying distribution based on the outcomes from
27683 heralded trials. Each column is for one combination of outcomes ab, and the rows correspond to the settings combination xy. Because the
probabilities are settings-conditional, each row’s probabilities add to 1, except for rounding error. We give the numbers at numerical precision
for traceability. They are used for determining PEFs, not to make a statement about the actual distribution of the outcomes in the experiment.
Statistical error does not affect the validity of the PEFs obtained [see the paragraph after Eq. (162)].

00 10 01 11
Xy
00 0.114583230563265 0.408949785618886 0.369310344143205 0.107156639674644
10 0.399140705802719 0.124392310379432 0.111262723543957 0.365204260273892
01 0.102208313465938 0.403210760398438 0.381685261240533 0.112895664895092
11 0.127756153189431 0.377662920674945 0.382647276157245 0.111933649978380

No matter which of Nz or Qcz is considered, the free-for-Z
sets C obtained accordingly have a finite number of extreme
points. We can therefore take advantage of the results in
Sec. V C to solve the optimization problem effectively. Given
the list of extreme points (Pi)?= , of the set C and the estimated
distribution v in C, the optimization problem can be stated as
follows:

Maximize: ). In(F(cz))v(cz)
Subject to:  F(cz) > 0, Yez,
Y Fleapicla) piler) <1, Vi,

(162)
Since the objective function is concave with respect to F
and the constraints are linear, the problem can be solved by
any algorithm capable of optimizing nonlinear functions with
linear constraints on the arguments. In our implementation,
we use sequential quadratic programming. Due to numerical
imprecision, it is possible that the returned numerical solution
does not satisfy the second constraint in Eq. (162) and the
corresponding PEF is not valid. In this case, we can multiply
the returned numerical solution by a positive factor smaller
than 1, whose value is given by the reciprocal of the maximal
left-hand side of the above second constraint at the extreme
points of C. Then, the rescaled solution is a valid PEF.

All examples involve inferring an experimental probability
distribution, in the first example from the published data, and
in the other two from an initial set of trials referred to as
the training set. Due to finite statistics, the data’s empirical
frequencies are unlikely to satisfy the constraints used for
probability estimation. It is necessary to ensure that the dis-
tribution for which log-prob rates and corresponding PEFs
are calculated satisfies the constraints, because otherwise, the
distribution is not consistent with the physical model underly-
ing the randomness generation process, and so unrealistically
high predicted log-prob rates may be obtained. To ensure
self-consistency, before solving the optimization in Eq. (162),
we determine the closest constraints-satisfying conditional
distributions. For this, we take as input the empirical frequen-
cies f(cz) and find the most likely distribution v of CZ with
(v[Clz]); in Q¢|z and v(z) = f(z) for each z. That is, we solve
the following optimization problem:

Maximize:

2o f(c) In(V'(cl2)/ f(clz))

Subject to:  (V'[C|z]), € Qcz- (163)

The objective function is proportional to the logarithm of the
ratio of the likelihood of the observed results with respect
to the constrained distribution v’ and that with respect to the
empirical frequencies f. This optimization problem involves
maximizing a concave function over a convex domain and can
be solved by widely available tools. Note that in all cases,
we ensure that the solution satisfies Tsirelson’s bounds. Once
v(C|Z) has been determined by solving the optimization prob-
lem in Eq. (163), we use (v[C|z]), € C¢)z for the predictions
in the first example, and for determining the best PEFs for the
data to be analyzed in the other two examples. In each case, we
use the model for the settings probability distribution relevant
to the situation, not the empirical one f(z).

An issue that comes up when using physical random num-
ber sources to choose the settings is that these sources are
almost but not quite uniform. Thus allowances for possible

o1 W\ Non-signaling, x = 1.5 x 10~2

Quantum, x = 1.5 x 1072

0.2

0181 Non-signaling, x =0 7
A Quantum, k=0

06 ignali - 1
: —————— Non-signaling, x = 1.5 x 10

0.14 TI N Quantum, k= 1.5 x 107 8
: —mememm Non-signaling, x = 1.5 x 1073

0.12 I* A —-—-—-——- Quantum, k= 1.5 x 1073 1
I
L
]
I
i

Log-prob rate or net log-prob rate

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
15}

FIG. 1. Log,-prob rates (labelled with k = 0) at pyoms for dif-
ferent powers B. The rates are shown for nonsignaling N¢jz and
quantum Q¢ (Tsirelson’s bounds only) constraints. Also shown are
the net log,-prob rates according to Eq. (111) for error bounds €, =
27" where o is the log,-prob rate and for three positive values of
k. Note that the constant « can be interpreted as a log,-error-bound
rate with respect to the nominally available entropy for randomness
generation.
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FIG. 2. Expected net log,-probs for 27683 i.i.d. trials at puoms
as a function of error bound. The number of trials is as reported in
Ref. [7] for the state |W ™).

trial-by-trial biases in the settings choices need to be made.
We do this by modifying the distribution constraints. Instead
of having a fixed uniform settings distribution, for any bias b,
we consider the set

By, = {v : v is a distribution of Vand for all v, [v(v)
— Unify (v)| < b/[Rng(V)[}. (164)

For Rng(V') = {0, 1}, the extreme points of By are distribu-
tions v of the form v(v) = (1 £ (—1)"b)/2. For the (2,2,2)
configuration, Z = XY and we use Cz;, = Cvx(Bx., ® By.)
for the settings distribution. We then consider the free-for-Z
distributions given by Nz x Czp and Qcjz X Cz,p. Thus, we
allow any settings distribution that is in the convex span of

02 T T T T

0.18

Non-signaling b

0.16 - Quantum |

0.14 1

0121 ]

0.1 1

0.08 r 1

Asymptotic gain rate

0.06 1

0.04 r b

0.02 1 1

0 . . . .
0 0.01 0.02 0.03 0.04 0.05

b

FIG. 3. Asymptotic gain rate (base 2) as a function of bias at
Patoms- This is the log,-prob rate achieved for power 8 — 0. The
probability distribution of the settings Z = XY at each trial is in the
convex closure of the distributions where X and Y are independent
and their probabilities lie in the interval [(1 — b)/2, (1 + b)/2]. Note
that except for these convex constraints, the probabilities can vary
arbitrarily from trial to trial.

0.2
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0.14 - — === Quantum, b= 0.02 b
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B
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FIG. 4. Log,-prob rates for representative biases at pyoms. Here
we show the log,-prob rate as a function of power B at three
representative biases. See also Fig. 3.

independent settings choices with limited bias. We do not
consider the convex polytope of arbitrarily biased joint set-
tings distributions given by By, but note that Cz;, € Bz 242
and Bz, € Czp. Another convex polytope that could be
used is By, = {v[V]:v(v) > e forall v}. We have Bz, C
B (1_p)4- 1t is known that there are Bell inequalities that can
be violated for certain quantum states and settings-associated
measurements when the settings distribution is arbitrary in
o forall 1/4 > € > 0[55].

5 x10°
Non-signaling, e, =1 x 1073
o5} Quantum, €, =1x 1073 A
— —— - Non-signaling, ¢, =1 x 1076 ,/, )
oL~~~ Quantum, ¢ = 1x10°6 /// ,/‘/7
------- Non-signaling, e, =1 x 1079 ,// /,/"
------- Quantum, ¢, =1 x 107° // ,,/

Net entropy
[6)]
T

051

FIG. 5. Expected net entropy (in bits) at puoms. We optimized
the power § and the probability r according to Eq. (165) given the
number of trials n and the error bound ¢, as explained in the text. The
break-even points are where the curves cross zero. The parameters
for those points are in Table II.
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TABLE II. Parameters for the break-even points for randomness expansion with p,n,. These are the parameters for the points where the

curves in Fig. 5 cross zero.

€ ne B r o
Neiz 1 x 1073 2588821
1 x107° 5177642 1.3624 x 10~* 3.7451 x 1073 0.060561
1x107° 7766462
Qc|z 1 x 10_3 1333781
1 x107° 2667562 1.4945 x 10~* 7.3516 x 1073 0.108035
1x107° 4001343

C. Exploration of parameters for a representative distribution
of the outcomes

We switch to logarithms base 2 for all log-probs and
entropies in the explorations to follow. Thus all explicitly
given numerical values for such quantities can be directly
related to bits without conversion. For clarity, we indicate the
base as a subscript throughout.

For the first example, we use outcome table XII from the
supplementary material of Ref. [7] to determine a represen-
tative distribution puoms for state-of-the-art loophole-free Bell
tests involving entangled atoms. This experiment involved two
neutral atoms in separate traps at a distance of 398 m. They
were prepared in a heralded entangled state before choosing
uniformly random measurement settings and determining the
outcomes. The experiment was loophole-free and showed
violation of LR at a significance level of 1.05 x 10~°. The
outcome table shows outcome counts for two different initial
states labeled Wt and W~. We used the counts for the state
W™, which has better violation. We determined the optimal
conditional distribution satisfying Q¢|z as explained in the
previous section, which gives the settings-conditional distri-
bution 0,ms Shown in Table 1.

We begin by exploring the relationship between power,
log,-prob rate and net log,-prob rate. Figure 1 shows the
optimal log,-prob rates and net log,-prob rates as a function
of power B for a few choices of error bound €;,. As expected,
the log,-prob rates decrease as the power B increases. The
asymptotic gain rates can be inferred from the values ap-
proached as B goes to zero. The inferred asymptotic gain
rates are approximately 0.088 and 0.191 for ./\/C|z and Qcz,
respectively. For small §, constraints Q¢)z improve the log,-
prob rates by around a factor of 2 over N¢jz. The net log,-prob
rates show the trade-off between error bound and log,-prob
rate, with clear maxima at 8 > 0.

Another view of the trade-off is obtained from the expected
net log,-prob obtained after 27683 trials at different final
error bounds, where we optimize the expected log,-prob with
respect to power B. This is shown in Fig. 2. The expected
net log,-prob is essentially the amount of min-entropy that
we expect to certify by probability estimation in measurement
outcomes from the 27683 trials in the experiment of Ref. [7].
The number of near-uniform bits that could have been ex-
tracted from this experiment’s data is substantially larger than
that shown in Fig. 8 for another Bell test using two ions.

We determined the robustness of the asymptotic gain rates
and the log,-prob rates against biases in the settings random
variables X and Y, with the settings distribution constrained
by Cz, as explained in the previous section. The bias is
bounded but may vary within these bounds from trial to trial.
Figure 3 shows how the asymptotic gain rate depends on bias.
While the maximum bias tolerated in this case is less than
0.05, based on the results of Ref. [55], we expect that there are
quantum states and measurement settings for which all biases
strictly below 1 can be tolerated in the ideal case. See also
Ref. [56]. Figure 4 shows the dependence of the log,-prob
rate on power f at three representative biases.

Finally, we consider the challenge of producing more ran-
dom bits than are consumed. This requires using a strategy to
minimize the entropy used for settings. We assume i.i.d. trials,
with settings distributed according to

ve(xy) = (1 = r)xy = 11] 4 r/4, (165)

which uses uniform settings distribution with probability r
and a default setting 11 with probability 1 — r. Let S(r) =
—(3r/4)log,(r/4) — (1 — 3r/4)log,(1 — 3r/4) be the base-
2 entropy of v., o(B) the log,-prob rate for a given PEF
with power B at pyoms, and €, = 27° the desired error bound
parameterized in terms of the x and independent of n. If we

TABLE III. Settings-conditional distribution inferred for the XOR 3 training data. The training set consists of the first 50 x 10° trials. The

table is organized as described in the caption of Table I.

ab 00 10 01 11
Xy
00 0.999596756631154 0.000106695746779 0.000100495174505 0.000196052447562
10 0.999039892488787 0.000663559889146 0.000086780398739 0.000209767223328
01 0.998967962694884 0.000089505202208 0.000729289110776 0.000213242992132
11 0.998187653168081 0.000869814729010 0.000939019719445 0.000003512383464
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FIG. 6. Net log,-probs achieved in the XOR 3 data set from
Ref. [9]. This is the net log,-prob achieved by probability estimation
applied to the analysis set after determining the best PEF and power
according to the conditional distribution inferred from the training
set. The error bound is an input parameter. The curves show the
achieved net log,-probs for nonsignaling (NC‘Z) and quantum (Qc¢z)
constraints and three representative biases. Here, we performed
probability estimation according to Eq. (53). The curve that is lowest
on the right is the net log,-prob reported in Ref. [13], where only
nonsignaling constraints were exploited.

optimistically assume that all the available min-entropy is
extractable, then the expected net number of random bits after
n trials is given by

Onet(n, &, B, 1) =no(B) — /B —nS(r).

We refer to oy, as the expected net entropy. At given values
of n and k, we can maximize the expected net entropy over
B > 0 and r > 0. Randomness expansion requires that ope; >
0. Here we do not account for the seed requirements or the
extractor constraints. Figure 5 shows the expected net entropy
as a function of n at p,oms. Of interest here are the break-even
points, which are where the expected net entropy becomes
positive. For this, consider the break-even equation no (8) —
k/B — nS(r) = 0. Equivalently, «k = (o (8) — S(r))n, and to
minimize the number of trials n required for break-even, it
suffices to maximize B(o(B) — S(r)), independently of «.
(This independence motivates our choice of parametrization
of €;,.) Given the maximizing values of 8 and r, the critical
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FIG. 7. Asymptotic gain rate (base 2) as a function of bias
estimated from the training data in the XOR 3 data set in Ref. [9]
for nonsignaling and quantum constraints.

value for n at the break-even point is expressed as
o K

BB =S’

One can see that n, scales linearly with «. Following this

strategy, we obtained the values of the parameters at the
break-even points. They are shown in Table II.

(167)

ne

D. Randomness from an optical loophole-free Bell test

Reference [13] describes the generation of 256 bits of ran-
domness within 0.001 of uniform from the optical loophole-
free Bell test of Ref. [9], assuming only nonsignaling con-
straints for certification. The data set used is labeled XOR 3
(pulses 3-9) and exhibits a p-value against LR of 2.03 x 10~/
according to the analysis in Ref. [9]. It consists of about
1.82 x 10® trials with a low violation of LR per trial. The
protocol of Ref. [13] was developed specifically to obtain
randomness from Bell-test data with little violation per trial.
It implicitly involves probability estimation. Table III shows
the closest distribution in Q¢)z inferred from the training set
consisting of the first 50 x 10° trials of XOR 3.

The analysis in Ref. [13] left open the question of how
much min-entropy one can certify in XOR 3 given bias in the
settings choices. As reported in Ref. [9], small biases were
present in the experiment, due to fluctuations in temperature

TABLE IV. Settings-conditional distribution inferred for the experiment reported in Ref. [10]. The distribution is determined from the
training set consisting of the first 1000 trials. The table is organized as described in the caption of Table 1.

ab 00 10 01 11
Xy
00 0.395306466091468 0.117610486235535 0.093816274721118 0.393266772951878
10 0.385009648861242 0.101263041214040 0.104113091951344 0.409614217973373
01 0.411397337408393 0.101519614918611 0.097960367844259 0.389122679828738
11 0.077378395334667 0.408894294740616 0.431979309917985 0.081748000006733

033465-38



GENERATION OF QUANTUM RANDOMNESS BY ...

PHYSICAL REVIEW RESEARCH 2, 033465 (2020)

that affected the physical random sources used and issues
with the high-speed synchronization electronics. A plot of
the net log,-prob achieved as a function of error bound at
a few representative biases is shown in Fig. 6. We conclude
that randomness certification from the XOR 3 data set is
robust against biases substantially larger than the average ones
inferred in Ref. [9]. The robustness is similar to that reported
in Ref. [9] for the p-value bounds against LR. To get the
results in Fig. 6, we determined the optimal PEFs and powers
according to the conditional distribution in Table III. Then we
applied the PEFs obtained to the remaining trials (the analysis
trials). Here, we did not adapt the PEFs while processing the
analysis trials.

We also determined the asymptotic gain rates from the
conditional distribution in Table III. The dependence of the
asymptotic gain rate on the bias parameter b is shown in Fig. 7.
Notably, the robustness against bias is similar to that for paioms
shown in Fig. 3. This may be due to both experiments being
designed for the same family of Bell inequalities. For higher
Bell-test bias tolerance, different inequalities and measure-
ment settings need to be used [55].

E. Reanalysis of “random numbers certified
by Bell’s theorem [10]”

Finally, we applied the procedure that we used in rean-
alyzing the XOR 3 data set in the previous section to the
data from the experiment reported in Ref. [10]. This exper-
iment involved two ions separated by about 1 meter in two
different ion traps. As a Bell test, the experiment closed the
detection loophole, but was subject to the locality loophole.
The authors certified a min-entropy of 42 bits with respect
to classical side information at an error bound of 0.01 with
3016 trials. They assumed quantum constraints (implemented
by the NPA hierarchy) for this certification. For the reanalysis,
we set aside a training set consisting of the first 1000 trials
to estimate a constraints-satisfying conditional distribution.
The distribution obtained is given in Table IV. We optimized
PEFs and their powers as described in the previous section and
applied them to the remaining 2016 trials, the analysis set. The
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FIG. 8. Net log,-probs achieved in the data from Ref. [10]. The
analysis set consisted of the last 2016 trials. Results for nonsignaling
and quantum constraints are shown. For these curves, we performed
probability estimation according to Eq. (53). The reference reported
42 bits at €, = 102 for quantum constraints.

result is shown in Fig. 8. We expect that if it had been possible
to optimize the PEFs based on the calibration experiments
preceding the 3016 trials, then the log,-probs obtained would
have been approximately 50% larger, assuming that the trial
statistics were sufficiently stable.
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