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The purpose of the present paper is to prove existence of super-exponentially many
compact orientable hyperbolic arithmetic n-manifolds that are geometric boundaries of
compact orientable hyperbolic (n + 1)-manifolds, for any n > 2, thereby establishing
that these classes of manifolds have the same growth rate with respect to volume as
all compact orientable hyperbolic arithmetic n-manifolds. An analogous result holds
for non-compact orientable hyperbolic arithmetic n-manifolds of finite volume that are

geometric boundaries for n > 2.

In homage to V. Rokhlin on his 100th anniversary.

1 Introduction

A classical result by V. Rokhlin states that every compact orientable 3-manifold bounds
a compact orientable 4-manifold, and thus the 3-dimensional cobordism group is
trivial. Rokhlin also proved that a compact orientable 4-manifold bounds a compact
orientable 5-manifold if and only if its signature is zero, which is true for all closed
orientable hyperbolic 4-manifolds. One can recast the question of bounding in the
setting of hyperbolic geometry, which generated plenty of research directions over the

past decades.
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2 M. Chu and A. Kolpakov

A hyperbolic manifold is a manifold endowed with a Riemannian metric of
constant sectional curvature —1. Throughout the paper, hyperbolic manifolds are
assumed to be connected, orientable, complete, and of finite volume, unless oth-
erwise stated. We refer to [34, 45] for the definition of an arithmetic hyperbolic
manifold.

A connected hyperbolic n-manifold M is said to bound geometrically if it is
isometric to WV for a hyperbolic (n + 1)-manifold VW with totally geodesic boundary.

Indeed, some interest in hyperbolic manifolds that bound geometrically was
kindled by the works of Long, Reid [28, 29], and Niemershiem [36], motivated by a
preceding work of Gromov [15, 16] and a question by Farrell and Zdravkovska [13]. This
question is also related to hyperbolic instantons, as described in [40, 41].

As [28] shows many closed hyperbolic 3-manifolds do not bound geometri-
cally: a necessary condition is that the p-invariant of the 3-manifold must be an
integer. The 1st example of a closed hyperbolic 3-manifold known to bound geo-
metrically was constructed by Ratcliffe and Tschantz in [40] and has volume of
order 200.

The 1st examples of knot and link complements that bound geometrically were
produced by Slavich in [38, 39]. However, [25] implies that there are plenty of cusped
hyperbolic 3-manifolds that cannot bound geometrically, with the obstruction being
the geometry of their cusps.

In [30], by using arithmetic techniques, Long and Reid built infinitely many
orientable hyperbolic n-manifolds N that bound geometrically an (n+1)-manifold M, in
every dimension n > 2. Every such manifold N is obtained as a cover of some n-orbifold
O, geodesically immersed in a suitable (n+1)-orbifold O ,,. However, this construction
gives no control on the volume of the manifolds.

In [4], Belolipetsky, Gelander, Lubotzky, and Shalev showed that the growth rate
of all orientable arithmetic hyperbolic manifolds, up to isometry, with respect to volume
is super-exponential, in all dimensions n > 2. Their lower bound used a subgroup
counting technique due to Lubotzky [32]. In the present paper, we shall use the ideas
of [30] together with the subgroup counting argument due to Lubotzky [32] (also used
in [4]), together with the more combinatorial colouring techniques from [27] in order to

prove the following facts:

Proposition 1.1. Let «,(x) = the number of non-isometric non-orientable compact
arithmetic hyperbolic n-manifolds of volume < x. Then we have that «,(x) < x* for

any n > 3.
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A Hyperbolic Counterpart to Rokhlin’s Cobordism Theorem 3

Proposition 1.2. Let v, (x) = the number of non-isometric non-orientable cusped
arithmetic hyperbolic n-manifolds of volume < x. Then we have that v, (x) < x* for

any n > 3.

Above, the notation “f(x) =< x*" for a function f(x) is a shorthand for “there exist
positive constants A, By, A4,, B,, and x,, such that A, x51¥ < f(x) < A,x52%, forall x > x,.”

The techniques of [4, 32] provide us with super-exponentially many manifolds
of volume < x (for x sufficiently large) by employing a retraction of the manifold’s
fundamental group into a free group. In our case, we need however to take extra care in
order to arrange for the kernel of such retraction comprise an orientation-reversing
element. Here, Coxeter polytopes and reflection groups come into play as natural
sources of orientation-reversing isometries, as well as building blocks for manifolds.

Then by using the embedding technique from [24] and the techniques for
constructing torsion-free subgroups from [30] (see Lemma 3.1, also Lemma 3.2 below),
we obtain the following theorems establishing that the growth rate with respect to
volume of arithmetic hyperbolic manifolds bounding geometrically is the same as that

over all arithmetic hyperbolic manifolds.

Theorem 1.3. Let f,(x) = the number of non-isometric orientable compact arithmetic
hyperbolic n-manifolds of volume < x that bound geometrically. Then we have that

B(x) < x* forn > 3.

Theorem 1.4. Let y,(x) = the number of non-isometric orientable cusped arithmetic
hyperbolic n-manifolds of volume < x that bound geometrically. Then we have that

Y (x) < x*¥ forn > 3.

As a by-product, we provide a different proof to a part of the results in [26] and
construct a few new Coxeter polytopes not otherwise available on the literature. For
dimensions n = 2,...,6 in the compact case and dimensions n = 2,...,13 in the cusped
case, we construct explicit examples of retractions onto free groups. More involved
computations may be performed in dimensions n = 14, 15 (using the polytopes from [1])
and n = 18,19 (using the polytopes from [21]). However, the general case follows from
the main result of Bergeron, Haglund, Wise [5] on virtually retractions of arithmetic
groups of simplest type onto geometrically finite subgroups.

It is also worth mentioning that a linear lower bound with respect to volume for

the number of isometry classes of compact orientable bounding hyperbolic 3-manifolds
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4 M. Chu and A. Kolpakov

was obtained previously in [33] by extending the techniques from [23] and comparing
the Betti numbers of the resulting manifolds.

Given the present question’s background, one may think of Theorem 1.3 as a
“hyperbolic counterpart” to Rokhlin’s theorem. Indeed, not every compact orientable
arithmetic hyperbolic 3-manifold bounds geometrically, but the number of those that
do has the same growth rate as the number of all compact orientable arithmetic
hyperbolic 3-manifolds. In the light of Wang's theorem [46] and the results of [9],
an analogous statement can be formulated for geometrically bounding hyperbolic 4-
manifolds without arithmeticity assumption.

As for the closed hyperbolic surfaces that bound geometrically, it follows from
the work of Brooks [6] that for each genus g > 2 the ones that bound form a dense
subset of the Teichmiiller space. Thus, there are infinitely many of them in each genus
g > 2. However, there are only finitely many arithmetic ones by [4]. The argument of

Theorem 1.3 applies in this case, and we obtain:

Theorem 1.5. Let a(g) = the number of non-isometric orientable closed arithmetic
surfaces of genus < g that bound geometrically. Then (cg)% < a(g) < (dg)%9, for some

constants 0 < ¢ < d.

Remark 1.6. An analogous statement holds for finite-area non-compact surfaces if we
substitute the genus g with the area x. Namely, then (cx)32in <ax) < (dx)%, for some

0<c<d.

This adds many more (albeit not very explicit) examples to the ones obtained by
Zimmermann in [47, 48].

The manifolds that we construct in abundance in order to prove Theorem 1.3-
Theorem 1.5 all happen to be orientation double covers. An easy observation implies
that any closed orientable manifold M that is an orientation cover bounds topologi-
cally: consider W' = M x [0, 1] and quotient one of its boundary components by an
orientation-reversing fixed point free involution that M necessarily has in this case.
The resulting manifold W is orientable with boundary oW = M. Indeed, these are
the manifolds that are not orientation covers that may make the cobordism group
non-trivial.

Concerning geometrically bounding manifolds, we are not aware at the moment
of any that does bound geometrically and that is not an orientation cover, in both

compact and finite-volume cases.
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A Hyperbolic Counterpart to Rokhlin’s Cobordism Theorem 5

Fig. 1. Aface labelling for the dodecahedron D.

2 Constructing Geodesic Boundaries by Colourings
2.1 The right-angled dodecahedron

Let D C H® be a right-angled dodecahedron. By Andreev’s theorem [2], it is realizable as
a regular compact hyperbolic polyhedron. Suppose that the faces of D are labelled with
the numbers 1, ..., 12 as shown in Figure 1. Let s; be the reflection in the supporting
hyperplane of the i-th facet of D, fori =1,...,12, and let T';, = Ref(D) = (sy,Sy,...,51)
be the corresponding reflection group.

Let P be the pentagonal 2-dimensional face of D labelled 5, and let I'y =
(S1,53,89,817) be an infinite-index subgroup of TI';,, which we may consider as a
reflection group acting on the supporting hyperplane of P, which is isometric to H?.

There is a retraction R of I';, onto I', given by

s;, ifie{l,3,911},
R:s;— . .
id, otherwise.

The group TI', is virtually free: it contains F; = (x, y, z), a free group of rank 3, as
an index 8 normal subgroup. Indeed, with x = 5,51, ¥ = (5;59)%, Z = 5,535,535, we have
F; realized as a subgroup of I'y, which is the fundamental group of a 2-sphere with four
disjoint closed discs removed, as depicted in Figure 2.

Let P be a simple n-dimensional polytope (not necessarily hyperbolic) with m
facets labelled by distinct elements of Q = {1,2,...,m}. A colouring of P, according to
[12, 14, 20, 42, 43], is amap A : Q@ — Z7. A colouring is called proper if the colours of

facets around each vertex of P are linearly independent vectors of ¥V = Z7.

1.20Z 1890100 $0 U0 Jasn obeoaiys 1e sioulj|| Jo Ausiaaiun ‘Aieiqr] Ausisaiun Aq 91.2698S/8S | B_U/UIWI/EE0 L 0 | /10P/3[01B-80UBAPE/UIWI/WOD dNoolwapese//:sdjy WwoJ) papeojumoq



6 M. Chu and A. Kolpakov

Fig. 2. The sphere S2 with four disjoint closed discs removed and one of eight tiles associated
to 'y shaded. The reflection side of sg completes this tile to the pentagon P and removing it is

equivalent to cutting out a closed disc.

Proper colourings of compact right-angled polytopes P C H" give rise to
interesting families of hyperbolic manifolds [14, 23, 42, 43]. Such polytopes P are
necessarily simple.

In [23], the notion of a colouring is extended to let V = Z3, s > 2, be a finite-
dimensional vector space over Z,, and in [27] the notion of colouring is extended to
polytopes that are not necessarily simple but rather satisfy a milder constraint of being
simple at edges.

A polytope P C H" is called simple at edges if each edge belongs to exactly (n—1)
facets. In the case of a finite-volume right-angled polytope P ¢ H", P is simple if P is
compact, and P is simple at edges if it has any ideal vertices.

A colouring of a polytope P ¢ H" that is simple at edges is amap A : @ — V,
where V = Z3, s > n, is a finite-dimensional vector space over Z,. A colouring 1 is proper

if the following two conditions are satisfied:

1. Properness at vertices: if v is a simple vertex of P, then the n colours of facets
around it are linearly independent vectors of V.
2. Properness at edges: if e is an edge of P, then the (n — 1) colours of facets

around e are linearly independent.

Given a fixed labelling Q of the facets of a finite-volume right-angled polytope

P c H", we shall write its colouring as a vector A = (&,...,A,,), where ;, =
gi:n(l) V-1 Ay - 2k isa binary representation of the vector A(i) € V for all i € Q.

Let s; be a reflection in the supporting hyperplane of the i-th facets of P. Then

a proper colouring A : @ — V defines a homomorphism from the reflection group I' =

Ref(P) = (sy,8,,...,S,,) of Pto V, such that ker is a torsion-free subgroup of I' [27].
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A Hyperbolic Counterpart to Rokhlin’s Cobordism Theorem 7

Let us consider one of the colourings of D defined in [14, Table 1] that gives
rise to a non-orientable manifold cover of the orbifold H®,T;,. Namely, choose A =
(1,2,4,4,2,6,3,5,5,3,1,7), so that the i-th component of A corresponds to the colour A;
of the i-th face of D. As follows from [23, Corollary 2.5], this colouring is indeed non-
orientable, since A; + A, + A, = 0 in Z3. Thus, M = H® /T, with ' = ker » a torsion-free
subgroup of I';,, is a non-orientable compact hyperbolic 3-manifold.

The reflection group I';, is an index 120 subgroup in the reflection group Ref(T)
of the orthoscheme T = [4,3,5], which is arithmetic. Thus, I'j, is also arithmetic.
Moreover, Ref(T) = 0" (q, Zlw)), with v = %g for the quadratic form g = —a)x(z) +
x? + x% + x3, as described in [3, §7] and, initially, in [7].

Next, let p : T — R(T") be the restriction of R. Observe that R(I') = Iy, and thus
p : ' — I'y is an epimorphism. Here, we use the fact that s; = p(5;5,57), S3 = p(5354),
Sg = p(SgSg), and s;; = p(S,5;0511), where all the respective products of s;'s belong to
' = kera.

For any subgroup K < F; of index n, let us consider p~}(K) = R"}(K) NT. Then
K hasindex8ninTly,, and H = p 1K) has index 8n in I".

Moreover, we produce an orientation-reversing element § € I' such that § € H for
every such H.

Having established these facts, we know that there are < n" non-conjugate in
Isom(H?3) subgroups of I' by using the argument of [4, §5.2], and thus there are < x* non-
isometric non-orientable compact arithmetic 3-manifolds M = H3 /H of volume < x (for
x > 0 big enough). This proves the 3-dimensional case of Proposition 1.1.

Now, observe that x = s;s;;, and A(x) = (1,0,0)* + (1,0,0)" = 0 in Z%. Similarly,
A(y) = A(2) = 0. Also, R maps x, y, and z respectively to themselves. Thus, F; = (x,y,2) C
p(I). Finally, the element § = s,5,54 is such that A(8) = (0,1,0)! +(1,0,0)* +(1,1,0)' =0,
and p(8) = id, so that § € ' and § € H = p~1(K), for every K < F,.

Given that H < 07(q,Zlw]) for an admissible quadratic form g, we have that
the argument in the proof of [24, Corollary 1.5] applies in this case, and thus, the non-
orientable compact manifold M = H®,H embeds into a compact orientable manifold
N = H* /G, for some arithmetic torsion-free G < 01 (Q, ZIr]), with Q = q + XZ. Then
cutting N along M produces a manifold N//M, which is connected since N is orientable
while M is not. Also, since M is a one-sided submanifold of N, the boundary aN’
is isometric to M, the orientation cover of M. Thus, we obtain a collection of = n"
orientable arithmetic 3-manifolds M that bound geometrically. However, some of them
can be isometric, since the same manifold M can be the orientation cover of several

distinct non-orientable manifolds N, ..., NV,,.
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In order to estimate m, observe that each N; is a quotient of M by a fixed point
free orientation-reversing involution. Let the number of such involutions for M be I(M).
Then m < I(M) < |Isom(M)| < c - Vol(M) < Cy - n = c3x. Indeed, the isometry group
of M is finite, and by the Kazhdan-Margulis theorem [22], there exists a lower bound
for the volume of the orbifold Z\7I/Isom(1|7[) > ¢y > 0, from which the final estimate
follows. Thus, we have at least < n"/(c,n) < n' < x* non-isometric compact orientable
arithmetic hyperbolic 3-manifolds M of volume < x that bound geometrically. The
upper-bound of the same order of growth follows from [4]. This proves the 3-dimensional

case of Theorem 1.3.

2.2 The right-angled 120-cell

Let C ¢ H* be the regular right-angled 120-cell. This polytope can be obtained by the
Wythoff construction with the orthoscheme [4, 3,3, 5] that uses the vertex stabilizer
subgroup [3, 3, 5] of order (120)? = 14400. The polytope C is compact, and each of its 3-
dimensional facets is a regular right-angled dodecahedron isometric to D defined above.

Let us choose a facet F of C and label it 120. Since F is isometric to D, we can

label the neighbouring facets of F as follows:

e choose an isometry ¢ between F and D and transfer the labelling of
2-dimensional faces of D depicted in Figure 1 from D to F via ¢,
e if F/, a facet of C, shares a 2-face labelled i € {1,2,...,12} with F, label F’

with 1.

The remaining facets of C can be labelled with the numbers in {13,...,119} in an
arbitrary way. Let s; denote the reflection on the supporting hyperplane of the i-th facet
of C, and let I'; 55 = Ref(C) = (s, Sy, ..., S120)-

Now define a colouring A of C by using the colouring A of D defined above.

Namely, we set

AGs) Aj forl<i<12,
S;) = .
! 2i-10  for 13 <i < 120.

Observe that A is a proper colouring of C, as defined in [23], and thus I' = ker A
is torsion free. Also, A is a non-orientable colouring. As in the case of D, we use the
retraction R in order to map I'y,, onto I'y that contains F; as a finite-index subgroup.
By taking preimages H = p~!(K) in I of index n subgroups K < F; and applying our
argument from the previous section, we complete the proof of Proposition 1.1 in the

4-dimensional case and obtain < n"™ non-isometric non-orientable compact arithmetic

1.20Z 1890100 $0 U0 Jasn obeoaiys 1e sioulj|| Jo Ausiaaiun ‘Aieiqr] Ausisaiun Aq 91.2698S/8S | B_U/UIWI/EE0 L 0 | /10P/3[01B-80UBAPE/UIWI/WOD dNoolwapese//:sdjy WwoJ) papeojumoq



A Hyperbolic Counterpart to Rokhlin’s Cobordism Theorem 9

Fig. 3. A face labelling for the bi-pyramid R3. The compact vertices in H? are the central one and
the one at co. All other vertices are ideal and belong to 3H3.

hyperbolic 4-manifolds M = H* /H. The rest of the argument follows from [24, Theorem

1.4]. Thus, the 4-dimensional case of Theorem 1.3 is also proven.

2.3 Non-compact right-angled polytopes

Let R4 be a right-angled bi-pyramid depicted in Figure 3, which is the 1st polytope in
the series described by L. Potyagailo and E. Vinberg in [37]. The construction in [37]
produces a series of polytopes R,, C H", for n = 3,...,8, of finite volume, with both
finite and ideal vertices, such that each facet of R,, is isometric to R,,_;. Each R, is
produced by Whythoff’s construction from the quotient of H" by the reflective part of
0" (f,, Z), with f,, = —x3 + > }_, xZ, forn=3,...,8.

If we provide a non-orientable proper colouring of R5, as defined in [27], we
can apply our previous reasoning in order to prove Proposition 1.2 and Theorem 1.4 as
consequence. Let us label the faces of R4 as shown in Figure 3, and let the colouring be
r=(1,1,4,7,5,2). It is easy to check that A is indeed proper, since we need to check only
the colours around the finite vertices and edges of R4. Also, A is non-orientable, since
Mg+ g+ rg=0inZ3. Let I' = kera.

Let s; be the reflection in the i-th facet of R5, and I'y = (s;,...,55), and A =
(81,84, 53). Observe that A contains a free group of rank 2 as a normal subgroup of index
4. Indeed, F, = (x,y), with x = 5;5,, ¥ = 535,5,53 is such a subgroup.

Let R be a retraction I'y — A given by

s;, ifie{1,23},

R:s;— . .
id, otherwise.
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10 M. Chu and A. Kolpakov

Since R maps x and y respectively to themselves, and A(s;s,) = (1,0,0)" +
(1,0,00! =0in Zg, we have that F; C R(I"). Moreover, for § = s,555¢ it holds that A(§) = 0,
as already verified above, and R(§) = id. Then the argument from the previous case of
the right-angled dodecahedron applies verbatim.

For the induction step from R,_; to R,, we just need to enhance the colouring
in the way completely analogous to the extension of a non-orientable colouring of the
dodecahedron D to a non-orientable colouring of the 120-cell C. Again, the rest of the

argument proceeds verbatim in complete analogy to the previous cases.

2.4 Surfaces that bound geometrically

Let P C H? be a compact regular right-angled octagon, with sides labelled anti-
clockwise 1, 6, 2, 7, 3, 8, 4, 5. Let s; be the reflection in the i-th side of P, and
I'g = Ref(P) = (s;,S8,,...,5g) be its reflection group. Also, let I'; = (s;,5,,53,5,) and
Fy; = (x,y,2), with x = 5,55, ¥y = 5,53, Z = 5154, be a free subgroup of I', of index 2. The

retraction of I'g onto I'y is given by

s;; ifie{l,2,3,4},
R:s;—~> 1 . .
id, otherwise.

Let us choose a colouring » = (1,1,1,1, 2, 3,5, 6) for P, which is a proper and non-
orientable one, since A; +A5+ig = 0 € Z3. Let I' = ker A. An easy check ensures that F; C
R(T"), as well as that R(§) = id for an orientation-reversing element § = sgs;sg € I'. Then
the lower bound a(x) > (cx) 327, for some constant ¢ > 0, for the number of geometrically
bounding surfaces of area < x (for x large enough) follows immediately: the area of P
equals 27, I' has index 8 in I'g, and the orientation cover of a non-orientable surface
has twice its area. We also use the fact that the rank d > 2 free group F; has > (n! yd-1
subgroups of index < n, for n large enough. The upper bound w(x) < (dx)?=, for some
constant d > ¢ > 0, follows from [4]. Since area = 47 (g — 1), for an orientable genus
g > 2 surface, this proves Theorem 1.5. The case of non-compact finite-area surfaces

mentioned in Remark 1.6 proceeds by analogy.

3 Constructing Geodesic Boundaries by Arithmetic Reductions

We start by recalling the following lemma of Long and Reid [30, Lemma 2.2] (c.f. also the

remark after its proof).

Lemma 3.1 (Subgroup lemma). LetT" < O"(n, 1) be a subgroup of hyperbolic isometries

defined over a number field K and § an element of I'. Let 6;,0, : ' — F; be two

1.20Z 1890100 $0 U0 Jasn obeoaiys 1e sioulj|| Jo Ausiaaiun ‘Aieiqr] Ausisaiun Aq 91.2698S/8S | B_U/UIWI/EE0 L 0 | /10P/3[01B-80UBAPE/UIWI/WOD dNoolwapese//:sdjy WwoJ) papeojumoq



A Hyperbolic Counterpart to Rokhlin’s Cobordism Theorem 11

homomorphisms of I onto a group F;, with torsion-free kernels. Let ©(g) = (01 (9,6, (g)) :
I' — F; x F,. Suppose that 6;(§) has order k; < oo, i = 1,2, and any prime dividing
gcd(k,, k,) appears with distinct exponents in k; and k,. Then ©~1((0,(5),6,(8))) is a

torsion-free subgroup in I' of finite index that contains 4.

The following lemma is used in order to show that the maps that we choose in
the sequel as 6;, i = 1,2, in the subgroup lemma above have torsion-free kernels. Its

proof is very similar to that of [30, Lemma 2.4].

Lemma 3.2 (No torsion lemma). Let I' < O"(n,1) be a finite subgroup defined over
the ring of integers O of a number field K, and let p € O be an odd rational prime
that does not divide the order of I'. Then the reduction of I' modulo the ideal J = (p) is

isomorphic to I'.

Proof. A non-trivial element g of the kernel of the reduction map I'(Og) — T'(Ok/J)
can be written in the form g = id 4+ p"h, where h is a matrix not all of whose entries are
divisible by p”, with r some positive integer. Let g < co be the order of an element g € I'.

Then we get

q
id=g9=id +qgp"h + Z (3)prtht,
t=2

and thus
gh=0 modp".

The latter implies p” divides g, since h # 0 mod p". Thus, p divides g, and g divides the
order of T, since q is the order of an element of I". The latter is a contradiction, and thus

the reduction map has trivial kernel. |

As shown by Vinberg in [44], in some cases for an admissible quadratic form q
of signature (n, 1) defined over a totally real number field K with ring of integers Oy it
holds that O (g, Og) = Ref(P) x Sym(P), where P C H" is a finite-volume polytope. Here,
Ref(P) denotes the associated reflection group, and Sym(P) is the group of symmetries
of P. Also, we assume that O is a principal ideal domain in order to keep our account
simpler. We refer the reader to [17] for more details.

If the above presentation of O*(q,Og) takes place for some finite-volume
polytope P c H", the form q is called reflective, and the polytope P is called its

associated polytope.
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12 M. Chu and A. Kolpakov

An algorithm introduced by Vinberg in [44] and implemented in [18] by Gugliel-
metti allows us to find the associated polytope P C H" in finite time for any reflective

admissible quadratic form of signature (n, 1).

3.1 Compact polytopes in dimensions 5 and 6

Letw = #g and let P, C H" be the polytopes associated to the quadratic forms

g5 = —(—1 + 2w)x5 + X2 + x5 + x5 + X3 + X,
g = —2a)x(2) + x% + x5 +X§ +XE+X§ +X§.

The polytopes P5 and Py are apparently new and were found by using AlVin and CoxIter
software [18, 19]. They differ substantially from the polytopes that appear in [7, 8] and
have fewer facets.

Let I',, = Ref(P,) be the reflection group of P, with generators s;, i € I,,, where
L

, is the set of outer normals to the facets of P, or, equivalently, the set of nodes of

the Coxeter diagram of P,. (The notation used is as follows: a dashed edge means two
reflection hyperplanes have a common perpendicular, a solid edge means parallel (at the
ideal boundary) hyperplanes, a double edge means label 4, a single edge means label
3, any other edge has a label on it describing the corresponding dihedral angle. The
colours are used for convenience only.) With standard basis {vy, vy,...,v,}, the Vinberg
algorithm determines the outer normals for n = 5, 6 that are given in the Appendix.

The associated reflection group I',, is arithmetic and contains a virtually free
parabolic subgroup

(Ss,S6,8q), forn =25,
A= 5156/ 59

(SgsSg,S17), forn =6.

Indeed, A is isomorphic to the (2, 0o, c0)-triangle group (here A is not actually generated
by reflections in the sides of a hyperbolic finite-area triangle but is rather only
abstractly isomorphic to such a group; however, we are interested in its algebraic
rather than geometric properties, regarding its subgroup growth), which contains F,
as a subgroup of index 4.

The retraction R : I'), — A is defined by sending all but three generators of T,
to id, with the only generators mapped identically being those of A < T,,.

In order for R being well defined, we essentially need that the generators of
A be connected to the rest of the diagram by edges with even labels only, since any

two generators connected by a path of odd-labelled edges are conjugate. This folds, for
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A Hyperbolic Counterpart to Rokhlin’s Cobordism Theorem 13

instance, if the facets corresponding to the reflections generating A are redoubleable in
terms of [1].

The element

5159535,8;, forn =25,

57513818 forn =86,

is orientation-reversing, as it is a product of an odd number of reflections in H".
Moreover, § € kerR.

We shall set the map © from Lemma 3.1 to be a pair of reductions modulo
various rational primes, and then use Lemma 3.2 in order to ensure that their kernels
are torsion free. Indeed, we need to choose such an odd prime p € Z that it does not
divide the order of any finite parabolic subgroup in the diagram of P,, n = 5,6. The
least common multiples of orders of finite parabolic subgroups for P,, n = 5,6 are
given in Table 1 (the orders of all finite parabolic subgroups associated with P,, can be
obtained by using CoxIter [18] with the -debug option).

ForT € GL(n+1, Og), where O is the ring of integers of a number field X, let ép
denote the homomorphism I' - GL(n + 1, Or/J) induced by reduction modulo J = (p),
the principal ideal generated by a rational integer p.

Let us consider the reductions ¢, and ¢,; as defined above, and let ® = (¢, ¢;;).
For n = 5, the order of ¢,(5) equals 800 = 2° . 52, while the order of ¢1,(8) equals
8052 = 22 .31 .11' .61, as follows by straightforward computations, c.f. [10, 11]. For
n = 6, the order of ¢,(8) equals 8 = 23, while the order of ¢1,(8) equals 44 = 22.111.

Then Lemma 3.1 and Lemma 3.2 apply, and I"' = @‘1((¢7(8),¢11(6))) is a torsion-
free subgroup of finite index in I',, that contains the orientation-reversing element §
and retracts onto the free group I' N A. Then the argument analogous to that of Section 2

applies.

3.2 Right-angled cusped polytopes in dimensions 4 to 8

Let P, C H" be the right-angled polytopes associated to the principal congruence

subgroups of level 2 for the quadratic forms
fo= —Xg—i—xf—kxg—i—---—i—x,zl,forn:4,...,8.

Let I',, = Ref(P,) be the associated reflection group, with generators s;, i €

I,, where I, is the set of outer normals to the facets of P,. With standard basis
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14 M. Chu and A. Kolpakov

TABLE 1 Polytopes Pp, n = 5,6, their Coxeter diagrams, and the least common multiple (LCM) of

the orders of their parabolic finite subgroups

Polytope Diagram LCM

Ps 57600 = 28.32.52
Pg 230400 = 210.32 .52
{vg,vy,...,vy,}, the Vinberg algorithm starts with the 1st n outer normals being

e, =—-v;, forl <i<n,

and continues with the next (}) outer normals

e j=votv;+v forl<i<j<mn,

all of them being 1-roots, as is necessary for determining the reflective part of the

principle congruence level 2 subgroup rather than that of the whole group of units for
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A Hyperbolic Counterpart to Rokhlin’s Cobordism Theorem 15

fn-Letussete,, | =e , =vy+v,+Vv,ande,, , = ez, = Vy+V3+V, as a more convenient
notation.

Such I',, is arithmetic, and it contains a virtually free parabolic subgroup A =
($3,54,8,40). Indeed, A is isomorphic to the (2, 00, 00)-triangle group that contains F, as

a subgroup of index 4. Consider the retraction

s;, ifie{3,4,n+2},

R: Si > . .
id, otherwise.

The element § = s;s,s,,, is orientation-reversing, as it is a product of three
reflections in H". Moreover, § € ker R.

ForT < GL(n + 1,%Z), let ¢,, denote the homomorphism I' — GL(n + 1,Z/mZ)
induced by reduction modulo a positive integer m. By [35, Theorem IX.7], we know that
the kernel of ¢,, is torsion-free for m > 2. The reduction of § modulo 3 has order 4 = 22,
while its reductions modulo 4 has order 2, c.f. [10, 11]. Letting ® = (¢3, ¢,), Lemma 3.1
applies, and I' = ©~! ((93(8), 94(8))) is a torsion-free subgroup of finite index in I',, that

contains the orientation-reversing element § and retracts onto the free group I' N A.

3.3 Cusped polytopes in dimensions 9 to 13

Let P, C H" be the polytopes from Table 7 in [44] associated to the quadratic forms
fo=—2x5+ x5 +x%+---+x2 forn=9,10, and 13,

while P,, for n = 11,12, be the polytopes with Coxeter diagrams given in Figure 4,
respectively. The latter ones appear to be new and were found by using A1vin [19].

Let I',, = Ref(P,) be the reflection group of P, with generators s;, i € I,, where I,
is the set of nodes in the Coxeter diagram of P,. Such I',, is arithmetic, and it contains a
virtually free parabolic subgroup A indicated in Table 2.

Since A is generated by reflections in redoubleable facets, we can define a
retraction R : I',, — A, as before, that send all the generators of I',, to id, except of
those of A.

The orientation-reversing element §,, € ker R is defined by

515283 ...8gS,,,, forn=29,10,13,
8 = 15753516/ forn =11,

$5811S18 forn =12.
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16 M. Chu and A. Kolpakov

(a) fir = —2x3 + 2 + ... + 23 + 223 + 223, + 223, (b) fiz = —22d + a3 +... + 2} + 227,

Fig. 4. The Coxeter diagrams for (a) P;; and (b) P;g, together with their associated quadratic

forms.

TABLE 2 A virtually free parabolic subgroup A < Ty, forn=29,...,13

n Generators of A Triangle group = A
9 S9, 510/ S12 (2,00,00)
10 $10/ S11/ 513 (2,4,00)
11 S11.S12, 518 (4,4, 00)
12 S12. 513/, S20 (4,4, 00)
13 $13, S14/ S19 (2,00,00)

TAaBLE 3 Orders of the reductions of § and their prime factorizations, c.f. [10, 11]

n mp k1 = order of ¢m, (6n) mo ko = order of ¢m, (6n)
9,10, 13 3 84 =2%2.31.71 4 34 =21.171
11,12 3 6=21.31 4 4=22

Letting © = (P, $m,), Lemma 3.1 applies with m; and m, as in Table 3. Here,
we also notice that §,, for n = 10,13 is an extension of §y by the identity map, which

simplifies the computations.
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A Hyperbolic Counterpart to Rokhlin’s Cobordism Theorem 17

Then I' = @)_1((<1)m1 (8), ¢, (8))) is a torsion-free subgroup of finite index in I,

that contains the orientation-reversing element § and retracts onto the free group N A.

4 Constructing Geometric Boundaries from Virtual Retracts

Let q,, be an admissible quadratic form of signature (n, 1) defined over a totally real

2
n+1*

I', < 0"(q,, Ok) is a torsion-free subgroup either of finite co-volume or co-compact.

number field K with ring of integers Oy, and let q,,,; = g, + x Suppose also that

Now assume that there exists a retraction R,, : I';, = A of I',, onto a virtually
free subgroup A such that ker R, contains an orientation-reversing element §.

By [24, Proposition 7.1], there exists a torsion-free finite-index subgroup F;z+1 <
O+(qn+1,OK), such that T',, < F;H»l‘ Moreover, we may assume that H"/I', is a
properly embedded totally geodesic submanifold of H”+1/Fn+1. Thus, the group I,

is a geometrically finite subgroup of I'; ;. By [5, Theorem 1.4], there is a finite index

/
n+1l’

In particular, G virtually retracts to GNT',,. However, since I';,,, is linear, the arguments

subgroup G < T’ such that G virtually retracts to its geometrically finite subgroups.

of [31, Theorem 2.10] apply to give a virtual retraction from I'; , onto I',. Let I',,;

/
n+1

R,.;:T,,; —» T'y > Alisaretraction of ', ; onto A, such that § € kerR,, ;.

be the finite index subgroup of I' that retracts onto I',,. Then the composition

All the previous arguments from Section 3 apply, and we obtain Theorems 1.4—
1.5 for all n > 2, since we can use any of our examples worked out in Sections 2-3 as a

basis for the above inductive procedure.

A.1 Outer normals for compact P;

(subsection 3.1)

e, =—-vi+vy forl <i<4,
e5 = —Vs,

eg = wvg + (2 + w)vy,

e7 =w(vg+ vy + vy +vs),

eg = (1 +w)(vg+vy) +w(vy +v3 + va + vs).

A.2 Outer normals for compact Py

(subsection 3.1)
e; :_Vi+Vi+1 for 1 Slf 5/

eg = —Vg,
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18 M. Chu and A. Kolpakov

e7 =vp + w(vy + v2),

eg =w(vo + V1 + V2 +v3+va),

eg = wvp + 2wvy,

e1o = (1 +w)(vo + v1 + v2) + (V3 + v4 + V5 + vg),

e11 = (1 +2w)vg+ (1 4+ 3w)vy + (1 +w)(ve +v3 + vg) + w(vs + V),
ej2 = (1 +2w)vg+ (2+ 3w)v] + w(vy + V3 +vg + vs + vg),

e13 = 2+ 2w)vo + (1 + 2w)(v1 + V2 + V3 + V4 + V5) + Ve,

e14 = 2+ 3w)vg+ 2+ 4w)vy + (24 2w)vy + (1 4+ 2w)(v3 + V4 + V) + Ve,
e15 = (2+3w)vg + 3+ 4w)vy + (1 + 2w)(vy 4+ v3 + Vg) + 2wVs,

eig = (2+4w)vg + (34 6w)vy + (1 + 2w)(vy + v3 + V4 + V5) + Vg,
e17 =B +4w)vg + (24 5w)vy + (2 + 3w)(vy + v3 + V4 + V) + wvg,

€18 = (4 +5w)vg + (4 + 6w)v) + (2 + 4w) (V2 + V3 + Vg + V5).

A.3 Outer normals for cusped P,
(subsection 3.2)
ej=—v; forl <i<4,

e; =vo +vj +vj, for5<i<10 and 1 <j; <jo <4.

A.4 Outer normals for cusped P;

(subsection 3.2)

e;=-v; forl <i<5,

ej=vo+vj +vj, for6 <i<15 and 1 <j; <jz <5,

ejg =2vg+ vy + vy +v3+vg+vs.

A.5 Outer normals for cusped Pg

(subsection 3.2)

ej=—-v; forl <i<§,

ej=vo+vj tvj for7<i<21 and1<j; <j2 <6,

e =2vo+vj +--+vj for22<i<27 and1<j; <jz <j3 <Jja<Jjs<6.
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A Hyperbolic Counterpart to Rokhlin’s Cobordism Theorem 19

A.6 Outer normals for cusped P,

(subsection 3.2)

ej=-v; forl <i<7,

ej=vo+vj +vj, for8<i<28 and1<j; <j2 <7,

€ =2vo+vj +--+vj for29<i<49 and1 <j; <j2<j3<Jja<Jjs <7,

e =3vo+2vj, +vj,+ -+ Vvj, for50 <i <56 and 1 <jj <j2 <j3 <ja <Jjs <Jg <Jj7 =<7

A.7 Outer normals for cusped Pg

(subsection 3.2)

e;=—v; forl <i<S8,

ej=vo+vj +vj for9<i<36 and1<j; <j2 <8,

€ =2vo+vj +--+vj for37<i<92 and1<j; <j2<j3<Jja<Jjs=<8

ei=3vo—|—2vj1—|—vj2—|—~-~+vj7 for 93 < i < 148,

ej=4vo+2(vj; -+ Vi) +vj, + -+ vy for 149 <i < 204
and1<j; <jz <Jjs <ja<Js <Je <j7 =7,

e; = 5vp + 2(vj, + - + V) + vy, + vy, for 205 < i < 232,

e; = 6vg + 3vj, +vj, +--- +vj, for 233 <i <240

and 1 <j1 <Jj2 <Jj3 <Jja <Js <Js <J7 <Jjg <8

A.8 Outer normals for cusped P,

(subsection 3.3)

e, =—vi+vi, forl <i<8§,
eg = —Vg,

ejg = vo + 2vy,

€11 = Vo + V1 + V2 +V3+ Vg,

eyj2 =2vg+ vy + vy 4+ v3+vg+ vs + vg + vy 4+ vg + vg.

A.9 Outer normals for cusped P,
(subsection 3.3)

e, =—vi+vi, forl <i<9,

e10 = —Vio,

€11 =Vo+ V1 +V2+V3+Vy,

ei2 =vp +2vy,

ej3 =2vg+ vy + vy +Vv3+va+vs+ve+ vy +vg 4+ vg + vip.
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20 M. Chu and A. Kolpakov

A.10 Outer normals for cusped P,

(subsection 3.3)

e;=—-vi+viy, forl <i<7, andi=9,10,

e;=—v;, andi=8,11,

€12 = Vo + Vg + Vip + Vi1,

e13 =vg + 2vy + vg,

€14 = Vo + V1 + V2 + V3 + Vg,

e15 = 2vp + vy + V2 + V3 + V4 + Vs + Vg + Vg + V10,

e1g =2vg+Vvy + vy +v3+vg+ vy + vg + vy 4+ vg + vg,

e17 = 3vp + 2(vy + v2) + v3 + V4 + Vs + Vg + V7 + Vg + Vg + Vig + V11,

ejg =4vg + 2(vy + v +v3 +vg +vs 4+ Vg +Vv7) + Vg + V1o + V11

A.11 Outer normals for cusped P,

(subsection 3.3)

e, =—v;+vi, forl <i<10,

ej=—v;, fori=11,12,

e13 =vo +2vy +Vviz,

€14 =Vo + V1 + V2 +V3+7Vy,

el5 =2vo+vi+va+v3+va+vs+ve+vy+vg+viz,

elp =2vg+ vy +Vvo +Vv3+va+vs+ v+ vy +vg+vg 4 vig,

A.11 Outer normals for cusped P,

(subsection 3.3)

e, =—v;+vi, forl <i<10,

ej=—v;, fori=11,12,

e13 =vp +2vy + viz,

€14 = Vo + V1 + V2 + V3 + Vg,

e15 =2vo+ vy +va2+v3+vs+vs+ve+v7+vg+ Vi,

e16 = 2vp + V1 + Vg + V3 + V4 + V5 + Vg + V7 + Vg + Vg + V10,

e17 =3vp+ vy + V2 + V3 + Vg + Vs + Vg + V7 + Vg + Vg + Vip + V11 + 2Vi2,
e18 =3vp +2(v1 +Vv2) + V3 +Vva + V5 + Vg + V7 + Vg + Vg +Vig+ Vi1 + V12,
e19 = 3(vo + v1) + v2 +v3 + va + Vs + Vg + V7 + Vg + Vg + Vip + V11,

exg =5vg 4+ 2(vy + v + V3 + Vg + Vs 4+ Ve + V7 + Vg + Vg + Vig + Vi1 + Vi)

1.20Z 1890100 $0 U0 Jasn obeoaiys 1e sioulj|| Jo Ausiaaiun ‘Aieiqr] Ausisaiun Aq 91.2698S/8S | B_U/UIWI/EE0 L 0 | /10P/3[01B-80UBAPE/UIWI/WOD dNoolwapese//:sdjy WwoJ) papeojumoq



A Hyperbolic Counterpart to Rokhlin’s Cobordism Theorem 21

A.12 Outer normals for cusped P,

(subsection 3.3)

e, =—-vi+vi, forl <i<12,

€13 = —vi3,

€14 =V + V1 + V2 + V3 + Vg,

e15 =vp +2vy,

e1g =2vp+ vy +Vv2+ V3 +va+Vs+ v+ V7 +vg+vg+ Vo,

e17 =3vp+3vy + V2 +Vv3+va+Vs5+Vve+V7+vg+ Ve +vig+ Vit Vi,

e1g =3vp +2vy +2vp +v3 + Vs + Vs + Ve + V7 + Vg + Vg + Vip + Vi1 + Vi2 + Vi3,

e19 =5vp + 2(vy +v2 +v3 +Vva + Vs + Vg + V7 + Vg + Vg + Vig + V11 + V12 + V13).
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