
M. Chu and A. Kolpakov (2020) “A Hyperbolic Counterpart to Rokhlin’s Cobordism Theorem,”
International Mathematics Research Notices, Vol. 00, No. 0, pp. 1–24
doi:10.1093/imrn/rnaa158

A Hyperbolic Counterpart to Rokhlin’s Cobordism Theorem

Michelle Chu1 and Alexander Kolpakov2,∗
1Department of Mathematics, University of Illinois at Chicago, 851 S.
Morgan Street, Chicago, IL 60607-7045, USA and 2Institut de
mathématiques, Université de Neuchâtel, Rue Emile-Argand 11, CH-2000
Neuchâtel, Suisse/Switzerland

∗Correspondence to be sent to: e-mail: kolpakov.alexander@gmail.com

The purpose of the present paper is to prove existence of super-exponentially many

compact orientable hyperbolic arithmetic n-manifolds that are geometric boundaries of

compact orientable hyperbolic (n + 1)-manifolds, for any n ≥ 2, thereby establishing

that these classes of manifolds have the same growth rate with respect to volume as

all compact orientable hyperbolic arithmetic n-manifolds. An analogous result holds

for non-compact orientable hyperbolic arithmetic n-manifolds of finite volume that are

geometric boundaries for n ≥ 2.

In homage to V. Rokhlin on his 100th anniversary.

1 Introduction

A classical result by V. Rokhlin states that every compact orientable 3-manifold bounds

a compact orientable 4-manifold, and thus the 3-dimensional cobordism group is

trivial. Rokhlin also proved that a compact orientable 4-manifold bounds a compact

orientable 5-manifold if and only if its signature is zero, which is true for all closed

orientable hyperbolic 4-manifolds. One can recast the question of bounding in the

setting of hyperbolic geometry, which generated plenty of research directions over the

past decades.
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2 M. Chu and A. Kolpakov

A hyperbolic manifold is a manifold endowed with a Riemannian metric of

constant sectional curvature −1. Throughout the paper, hyperbolic manifolds are

assumed to be connected, orientable, complete, and of finite volume, unless oth-

erwise stated. We refer to [34, 45] for the definition of an arithmetic hyperbolic

manifold.

A connected hyperbolic n-manifold M is said to bound geometrically if it is

isometric to ∂W for a hyperbolic (n + 1)-manifold W with totally geodesic boundary.

Indeed, some interest in hyperbolic manifolds that bound geometrically was

kindled by the works of Long, Reid [28, 29], and Niemershiem [36], motivated by a

preceding work of Gromov [15, 16] and a question by Farrell and Zdravkovska [13]. This

question is also related to hyperbolic instantons, as described in [40, 41].

As [28] shows many closed hyperbolic 3-manifolds do not bound geometri-

cally: a necessary condition is that the η-invariant of the 3-manifold must be an

integer. The 1st example of a closed hyperbolic 3-manifold known to bound geo-

metrically was constructed by Ratcliffe and Tschantz in [40] and has volume of

order 200.

The 1st examples of knot and link complements that bound geometrically were

produced by Slavich in [38, 39]. However, [25] implies that there are plenty of cusped

hyperbolic 3-manifolds that cannot bound geometrically, with the obstruction being

the geometry of their cusps.

In [30], by using arithmetic techniques, Long and Reid built infinitely many

orientable hyperbolic n-manifolds N that bound geometrically an (n+1)-manifold M, in

every dimension n � 2. Every such manifold N is obtained as a cover of some n-orbifold

ON geodesically immersed in a suitable (n+1)-orbifold OM. However, this construction

gives no control on the volume of the manifolds.

In [4], Belolipetsky, Gelander, Lubotzky, and Shalev showed that the growth rate

of all orientable arithmetic hyperbolic manifolds, up to isometry, with respect to volume

is super-exponential, in all dimensions n ≥ 2. Their lower bound used a subgroup

counting technique due to Lubotzky [32]. In the present paper, we shall use the ideas

of [30] together with the subgroup counting argument due to Lubotzky [32] (also used

in [4]), together with the more combinatorial colouring techniques from [27] in order to

prove the following facts:

Proposition 1.1. Let κn(x) = the number of non-isometric non-orientable compact

arithmetic hyperbolic n-manifolds of volume ≤ x. Then we have that κn(x) � xx for

any n ≥ 3.
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A Hyperbolic Counterpart to Rokhlin’s Cobordism Theorem 3

Proposition 1.2. Let νn(x) = the number of non-isometric non-orientable cusped

arithmetic hyperbolic n-manifolds of volume ≤ x. Then we have that νn(x) � xx for

any n ≥ 3.

Above, the notation “f (x) � xx” for a function f (x) is a shorthand for “there exist

positive constants A1, B1, A2, B2, and x0, such that A1xB1x ≤ f (x) ≤ A2xB2x, for all x ≥ x0.”

The techniques of [4, 32] provide us with super-exponentially many manifolds

of volume ≤ x (for x sufficiently large) by employing a retraction of the manifold’s

fundamental group into a free group. In our case, we need however to take extra care in

order to arrange for the kernel of such retraction comprise an orientation-reversing

element. Here, Coxeter polytopes and reflection groups come into play as natural

sources of orientation-reversing isometries, as well as building blocks for manifolds.

Then by using the embedding technique from [24] and the techniques for

constructing torsion-free subgroups from [30] (see Lemma 3.1, also Lemma 3.2 below),

we obtain the following theorems establishing that the growth rate with respect to

volume of arithmetic hyperbolic manifolds bounding geometrically is the same as that

over all arithmetic hyperbolic manifolds.

Theorem 1.3. Let βn(x) = the number of non-isometric orientable compact arithmetic

hyperbolic n-manifolds of volume ≤ x that bound geometrically. Then we have that

βn(x) � xx for n ≥ 3.

Theorem 1.4. Let γn(x) = the number of non-isometric orientable cusped arithmetic

hyperbolic n-manifolds of volume ≤ x that bound geometrically. Then we have that

γn(x) � xx for n ≥ 3.

As a by-product, we provide a different proof to a part of the results in [26] and

construct a few new Coxeter polytopes not otherwise available on the literature. For

dimensions n = 2, . . . , 6 in the compact case and dimensions n = 2, . . . , 13 in the cusped

case, we construct explicit examples of retractions onto free groups. More involved

computations may be performed in dimensions n = 14, 15 (using the polytopes from [1])

and n = 18, 19 (using the polytopes from [21]). However, the general case follows from

the main result of Bergeron, Haglund, Wise [5] on virtually retractions of arithmetic

groups of simplest type onto geometrically finite subgroups.

It is also worth mentioning that a linear lower bound with respect to volume for

the number of isometry classes of compact orientable bounding hyperbolic 3-manifolds
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4 M. Chu and A. Kolpakov

was obtained previously in [33] by extending the techniques from [23] and comparing

the Betti numbers of the resulting manifolds.

Given the present question’s background, one may think of Theorem 1.3 as a

“hyperbolic counterpart” to Rokhlin’s theorem. Indeed, not every compact orientable

arithmetic hyperbolic 3-manifold bounds geometrically, but the number of those that

do has the same growth rate as the number of all compact orientable arithmetic

hyperbolic 3-manifolds. In the light of Wang’s theorem [46] and the results of [9],

an analogous statement can be formulated for geometrically bounding hyperbolic 4-

manifolds without arithmeticity assumption.

As for the closed hyperbolic surfaces that bound geometrically, it follows from

the work of Brooks [6] that for each genus g ≥ 2 the ones that bound form a dense

subset of the Teichmüller space. Thus, there are infinitely many of them in each genus

g ≥ 2. However, there are only finitely many arithmetic ones by [4]. The argument of

Theorem 1.3 applies in this case, and we obtain:

Theorem 1.5. Let α(g) = the number of non-isometric orientable closed arithmetic

surfaces of genus ≤ g that bound geometrically. Then (cg)
g
8 ≤ α(g) ≤ (dg)2g, for some

constants 0 < c ≤ d.

Remark 1.6. An analogous statement holds for finite-area non-compact surfaces if we

substitute the genus g with the area x. Namely, then (cx)
x

32π ≤ α(x) ≤ (dx)
x

2π , for some

0 < c ≤ d.

This adds many more (albeit not very explicit) examples to the ones obtained by

Zimmermann in [47, 48].

The manifolds that we construct in abundance in order to prove Theorem 1.3–

Theorem 1.5 all happen to be orientation double covers. An easy observation implies

that any closed orientable manifold M that is an orientation cover bounds topologi-

cally: consider W ′ = M × [0, 1] and quotient one of its boundary components by an

orientation-reversing fixed point free involution that M necessarily has in this case.

The resulting manifold W is orientable with boundary ∂W ∼= M. Indeed, these are

the manifolds that are not orientation covers that may make the cobordism group

non-trivial.

Concerning geometrically bounding manifolds, we are not aware at the moment

of any that does bound geometrically and that is not an orientation cover, in both

compact and finite-volume cases.
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A Hyperbolic Counterpart to Rokhlin’s Cobordism Theorem 5

Fig. 1. A face labelling for the dodecahedron D.

2 Constructing Geodesic Boundaries by Colourings

2.1 The right-angled dodecahedron

Let D ⊂ H3 be a right-angled dodecahedron. By Andreev’s theorem [2], it is realizable as

a regular compact hyperbolic polyhedron. Suppose that the faces of D are labelled with

the numbers 1, . . . , 12 as shown in Figure 1. Let si be the reflection in the supporting

hyperplane of the i-th facet of D, for i = 1, . . . , 12, and let 
12 = Ref(D) = 〈s1, s2, . . . , s12〉
be the corresponding reflection group.

Let P be the pentagonal 2-dimensional face of D labelled 5, and let 
4 =
〈s1, s3, s9, s11〉 be an infinite-index subgroup of 
12, which we may consider as a

reflection group acting on the supporting hyperplane of P, which is isometric to H2.

There is a retraction R of 
12 onto 
4 given by

R : si �→
{

si, if i ∈ {1, 3, 9, 11},
id, otherwise.

The group 
4 is virtually free: it contains F3
∼= 〈x, y, z〉, a free group of rank 3, as

an index 8 normal subgroup. Indeed, with x = s1s11, y = (s1s9)2, z = s1s3s11s3, we have

F3 realized as a subgroup of 
4, which is the fundamental group of a 2-sphere with four

disjoint closed discs removed, as depicted in Figure 2.

Let P be a simple n-dimensional polytope (not necessarily hyperbolic) with m

facets labelled by distinct elements of � = {1, 2, . . . , m}. A colouring of P, according to

[12, 14, 20, 42, 43], is a map λ : � → Zn
2 . A colouring is called proper if the colours of

facets around each vertex of P are linearly independent vectors of V = Zn
2 .
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6 M. Chu and A. Kolpakov

Fig. 2. The sphere S2 with four disjoint closed discs removed and one of eight tiles associated

to 
4 shaded. The reflection side of s6 completes this tile to the pentagon P and removing it is

equivalent to cutting out a closed disc.

Proper colourings of compact right-angled polytopes P ⊂ Hn give rise to

interesting families of hyperbolic manifolds [14, 23, 42, 43]. Such polytopes P are

necessarily simple.

In [23], the notion of a colouring is extended to let V = Zs
2, s ≥ 2, be a finite-

dimensional vector space over Z2, and in [27] the notion of colouring is extended to

polytopes that are not necessarily simple but rather satisfy a milder constraint of being

simple at edges.

A polytope P ⊂ Hn is called simple at edges if each edge belongs to exactly (n−1)

facets. In the case of a finite-volume right-angled polytope P ⊂ Hn, P is simple if P is

compact, and P is simple at edges if it has any ideal vertices.

A colouring of a polytope P ⊂ Hn that is simple at edges is a map λ : � → V,

where V = Zs
2, s ≥ n, is a finite-dimensional vector space over Z2. A colouring λ is proper

if the following two conditions are satisfied:

1. Properness at vertices: if v is a simple vertex of P, then the n colours of facets

around it are linearly independent vectors of V.

2. Properness at edges: if e is an edge of P, then the (n − 1) colours of facets

around e are linearly independent.

Given a fixed labelling � of the facets of a finite-volume right-angled polytope

P ⊂ Hn, we shall write its colouring as a vector λ = (λ1, . . . , λm), where λi =∑dim V−1
k=0 λ(i)k · 2k is a binary representation of the vector λ(i) ∈ V for all i ∈ �.

Let si be a reflection in the supporting hyperplane of the i-th facets of P. Then

a proper colouring λ : � → V defines a homomorphism from the reflection group 
 =
Ref(P) = 〈s1, s2, . . . , sm〉 of P to V, such that ker λ is a torsion-free subgroup of 
 [27].
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A Hyperbolic Counterpart to Rokhlin’s Cobordism Theorem 7

Let us consider one of the colourings of D defined in [14, Table 1] that gives

rise to a non-orientable manifold cover of the orbifold H3�
12. Namely, choose λ =
(1, 2, 4, 4, 2, 6, 3, 5, 5, 3, 1, 7), so that the i-th component of λ corresponds to the colour λi

of the i-th face of D. As follows from [23, Corollary 2.5], this colouring is indeed non-

orientable, since λ1 + λ2 + λ7 = 0 in Z3
2. Thus, M = H3�
, with 
 = ker λ a torsion-free

subgroup of 
12, is a non-orientable compact hyperbolic 3-manifold.

The reflection group 
12 is an index 120 subgroup in the reflection group Ref(T)

of the orthoscheme T = [4, 3, 5], which is arithmetic. Thus, 
12 is also arithmetic.

Moreover, Ref(T) = O+(q,Z[ω]), with ω = 1+√
5

2 , for the quadratic form q = −ωx2
0 +

x2
1 + x2

2 + x2
3, as described in [3, §7] and, initially, in [7].

Next, let ρ : 
 → R(
) be the restriction of R. Observe that R(
) = 
4, and thus

ρ : 
 → 
4 is an epimorphism. Here, we use the fact that s1 = ρ(s1s2s7), s3 = ρ(s3s4),

s9 = ρ(s8s9), and s11 = ρ(s2s10s11), where all the respective products of si’s belong to


 = ker λ.

For any subgroup K ≤ F3 of index n, let us consider ρ−1(K) = R−1(K) ∩ 
. Then

K has index 8n in 
4, and H = ρ−1(K) has index 8n in 
.

Moreover, we produce an orientation-reversing element δ ∈ 
 such that δ ∈ H for

every such H.

Having established these facts, we know that there are � nn non-conjugate in

Isom(H3) subgroups of 
 by using the argument of [4, §5.2], and thus there are � xx non-

isometric non-orientable compact arithmetic 3-manifolds M = H3�H of volume ≤ x (for

x > 0 big enough). This proves the 3-dimensional case of Proposition 1.1.

Now, observe that x = s1s11, and λ(x) = (1, 0, 0)t + (1, 0, 0)t = 0 in Z3
2. Similarly,

λ(y) = λ(z) = 0. Also, R maps x, y, and z respectively to themselves. Thus, F3 = 〈x, y, z〉 ⊂
ρ(
). Finally, the element δ = s2s4s6 is such that λ(δ) = (0, 1, 0)t + (1, 0, 0)t + (1, 1, 0)t = 0,

and ρ(δ) = id, so that δ ∈ 
 and δ ∈ H = ρ−1(K), for every K ≤ F3.

Given that H ≤ O+(q,Z[ω]) for an admissible quadratic form q, we have that

the argument in the proof of [24, Corollary 1.5] applies in this case, and thus, the non-

orientable compact manifold M = H3�H embeds into a compact orientable manifold

N = H4�G, for some arithmetic torsion-free G ≤ O+(Q,Z[τ ]), with Q = q + x2
4. Then

cutting N along M produces a manifold N//M, which is connected since N is orientable

while M is not. Also, since M is a one-sided submanifold of N, the boundary ∂N′

is isometric to M̃, the orientation cover of M. Thus, we obtain a collection of � nn

orientable arithmetic 3-manifolds M̃ that bound geometrically. However, some of them

can be isometric, since the same manifold M̃ can be the orientation cover of several

distinct non-orientable manifolds N1, . . . , Nm.
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8 M. Chu and A. Kolpakov

In order to estimate m, observe that each Ni is a quotient of M̃ by a fixed point

free orientation-reversing involution. Let the number of such involutions for M̃ be I(M̃).

Then m ≤ I(M̃) ≤ |Isom(M̃)| ≤ c1 · Vol(M̃) ≤ c2 · n = c3x. Indeed, the isometry group

of M̃ is finite, and by the Kazhdan–Margulis theorem [22], there exists a lower bound

for the volume of the orbifold M̃�Isom(M̃) ≥ c0 > 0, from which the final estimate

follows. Thus, we have at least � nn/(c2n) � nn � xx non-isometric compact orientable

arithmetic hyperbolic 3-manifolds M̃ of volume ≤ x that bound geometrically. The

upper-bound of the same order of growth follows from [4]. This proves the 3-dimensional

case of Theorem 1.3.

2.2 The right-angled 120-cell

Let C ⊂ H4 be the regular right-angled 120-cell. This polytope can be obtained by the

Wythoff construction with the orthoscheme [4, 3, 3, 5] that uses the vertex stabilizer

subgroup [3, 3, 5] of order (120)2 = 14400. The polytope C is compact, and each of its 3-

dimensional facets is a regular right-angled dodecahedron isometric to D defined above.

Let us choose a facet F of C and label it 120. Since F is isometric to D, we can

label the neighbouring facets of F as follows:

• choose an isometry ϕ between F and D and transfer the labelling of

2-dimensional faces of D depicted in Figure 1 from D to F via ϕ,

• if F ′, a facet of C, shares a 2-face labelled i ∈ {1, 2, . . . , 12} with F, label F ′

with i.

The remaining facets of C can be labelled with the numbers in {13, . . . , 119} in an

arbitrary way. Let si denote the reflection on the supporting hyperplane of the i-th facet

of C, and let 
120 = Ref(C) = 〈s1, s2, . . . , s120〉.
Now define a colouring � of C by using the colouring λ of D defined above.

Namely, we set

�(si) =
{

λi, for 1 ≤ i ≤ 12,

2i−10, for 13 ≤ i ≤ 120.

Observe that � is a proper colouring of C, as defined in [23], and thus 
 = ker �

is torsion free. Also, � is a non-orientable colouring. As in the case of D, we use the

retraction R in order to map 
120 onto 
4 that contains F3 as a finite-index subgroup.

By taking preimages H = ρ−1(K) in 
 of index n subgroups K ≤ F3 and applying our

argument from the previous section, we complete the proof of Proposition 1.1 in the

4-dimensional case and obtain � nn non-isometric non-orientable compact arithmetic
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A Hyperbolic Counterpart to Rokhlin’s Cobordism Theorem 9

Fig. 3. A face labelling for the bi-pyramid R3. The compact vertices in H3 are the central one and

the one at ∞. All other vertices are ideal and belong to ∂H3.

hyperbolic 4-manifolds M = H4�H. The rest of the argument follows from [24, Theorem

1.4]. Thus, the 4-dimensional case of Theorem 1.3 is also proven.

2.3 Non-compact right-angled polytopes

Let R3 be a right-angled bi-pyramid depicted in Figure 3, which is the 1st polytope in

the series described by L. Potyagaı̆lo and È. Vinberg in [37]. The construction in [37]

produces a series of polytopes Rn ⊂ Hn, for n = 3, . . . , 8, of finite volume, with both

finite and ideal vertices, such that each facet of Rn is isometric to Rn−1. Each Rn is

produced by Whythoff’s construction from the quotient of Hn by the reflective part of

O+(fn,Z), with fn = −x2
0 + ∑n

k=1 x2
k, for n = 3, . . . , 8.

If we provide a non-orientable proper colouring of R3, as defined in [27], we

can apply our previous reasoning in order to prove Proposition 1.2 and Theorem 1.4 as

consequence. Let us label the faces of R3 as shown in Figure 3, and let the colouring be

λ = (1, 1, 4, 7, 5, 2). It is easy to check that λ is indeed proper, since we need to check only

the colours around the finite vertices and edges of R3. Also, λ is non-orientable, since

λ4 + λ5 + λ6 = 0 in Z3
2. Let 
 = ker λ.

Let si be the reflection in the i-th facet of R3, and 
6 = 〈s1, . . . , s6〉, and � =
〈s1, s2, s3〉. Observe that � contains a free group of rank 2 as a normal subgroup of index

4. Indeed, F2 = 〈x, y〉, with x = s1s2, y = s3s1s2s3 is such a subgroup.

Let R be a retraction 
6 → � given by

R : si �→
{

si, if i ∈ {1, 2, 3},
id, otherwise.
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10 M. Chu and A. Kolpakov

Since R maps x and y respectively to themselves, and λ(s1s2) = (1, 0, 0)t +
(1, 0, 0)t = 0 in Z3

2, we have that F3 ⊂ R(
). Moreover, for δ = s4s5s6 it holds that λ(δ) = 0,

as already verified above, and R(δ) = id. Then the argument from the previous case of

the right-angled dodecahedron applies verbatim.

For the induction step from Rn−1 to Rn, we just need to enhance the colouring

in the way completely analogous to the extension of a non-orientable colouring of the

dodecahedron D to a non-orientable colouring of the 120-cell C. Again, the rest of the

argument proceeds verbatim in complete analogy to the previous cases.

2.4 Surfaces that bound geometrically

Let P ⊂ H2 be a compact regular right-angled octagon, with sides labelled anti-

clockwise 1, 6, 2, 7, 3, 8, 4, 5. Let si be the reflection in the i-th side of P, and


8 = Ref(P) = 〈s1, s2, . . . , s8〉 be its reflection group. Also, let 
4 = 〈s1, s2, s3, s4〉 and

F3 = 〈x, y, z〉, with x = s1s2, y = s1s3, z = s1s4, be a free subgroup of 
4 of index 2. The

retraction of 
8 onto 
4 is given by

R : si �→
{

si, if i ∈ {1, 2, 3, 4},
id, otherwise.

Let us choose a colouring λ = (1, 1, 1, 1, 2, 3, 5, 6) for P, which is a proper and non-

orientable one, since λ1 +λ5 +λ6 = 0 ∈ Z3
2. Let 
 = ker λ. An easy check ensures that F3 ⊂

R(
), as well as that R(δ) = id for an orientation-reversing element δ = s6s7s8 ∈ 
. Then

the lower bound α(x) ≥ (cx)
x

32π , for some constant c > 0, for the number of geometrically

bounding surfaces of area ≤ x (for x large enough) follows immediately: the area of P
equals 2π , 
 has index 8 in 
8, and the orientation cover of a non-orientable surface

has twice its area. We also use the fact that the rank d ≥ 2 free group Fd has ≥ (n! )d−1

subgroups of index ≤ n, for n large enough. The upper bound α(x) ≤ (dx)
x

2π , for some

constant d ≥ c > 0, follows from [4]. Since area = 4π(g − 1), for an orientable genus

g ≥ 2 surface, this proves Theorem 1.5. The case of non-compact finite-area surfaces

mentioned in Remark 1.6 proceeds by analogy.

3 Constructing Geodesic Boundaries by Arithmetic Reductions

We start by recalling the following lemma of Long and Reid [30, Lemma 2.2] (c.f. also the

remark after its proof).

Lemma 3.1 (Subgroup lemma). Let 
 < O+(n, 1) be a subgroup of hyperbolic isometries

defined over a number field K and δ an element of 
. Let θ1, θ2 : 
 → Fi be two
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A Hyperbolic Counterpart to Rokhlin’s Cobordism Theorem 11

homomorphisms of 
 onto a group Fi, with torsion-free kernels. Let �(g) = (
θ1(g), θ2(g)

)
:


 → F1 × F2. Suppose that θi(δ) has order ki < ∞, i = 1, 2, and any prime dividing

gcd(k1, k2) appears with distinct exponents in k1 and k2. Then �−1〈(θ1(δ), θ2(δ))〉 is a

torsion-free subgroup in 
 of finite index that contains δ.

The following lemma is used in order to show that the maps that we choose in

the sequel as θi, i = 1, 2, in the subgroup lemma above have torsion-free kernels. Its

proof is very similar to that of [30, Lemma 2.4].

Lemma 3.2 (No torsion lemma). Let 
 < O+(n, 1) be a finite subgroup defined over

the ring of integers OK of a number field K, and let p ∈ OK be an odd rational prime

that does not divide the order of 
. Then the reduction of 
 modulo the ideal J = (p) is

isomorphic to 
.

Proof. A non-trivial element g of the kernel of the reduction map 
(OK) → 
(OK/J )

can be written in the form g = id + prh, where h is a matrix not all of whose entries are

divisible by pr, with r some positive integer. Let q < ∞ be the order of an element g ∈ 
.

Then we get

id = gq = id + qprh +
q∑

t=2

(
q

t

)
prtht,

and thus

qh = 0 mod pr.

The latter implies pr divides q, since h �= 0 mod pr. Thus, p divides q, and q divides the

order of 
, since q is the order of an element of 
. The latter is a contradiction, and thus

the reduction map has trivial kernel. �

As shown by Vinberg in [44], in some cases for an admissible quadratic form q

of signature (n, 1) defined over a totally real number field K with ring of integers OK it

holds that O+(q, OK) = Ref(P)� Sym(P), where P ⊂ Hn is a finite-volume polytope. Here,

Ref(P) denotes the associated reflection group, and Sym(P) is the group of symmetries

of P. Also, we assume that OK is a principal ideal domain in order to keep our account

simpler. We refer the reader to [17] for more details.

If the above presentation of O+(q, OK) takes place for some finite-volume

polytope P ⊂ Hn, the form q is called reflective, and the polytope P is called its

associated polytope.
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12 M. Chu and A. Kolpakov

An algorithm introduced by Vinberg in [44] and implemented in [18] by Gugliel-

metti allows us to find the associated polytope P ⊂ Hn in finite time for any reflective

admissible quadratic form of signature (n, 1).

3.1 Compact polytopes in dimensions 5 and 6

Let ω = 1+√
5

2 and let Pn ⊂ Hn be the polytopes associated to the quadratic forms

q5 = −(−1 + 2ω)x2
0 + x2

1 + x2
2 + x2

3 + x2
4 + x2

5,

q6 = −2ωx2
0 + x2

1 + x2
2 + x2

3 + x2
4 + x2

5 + x2
6.

The polytopes P5 and P6 are apparently new and were found by using AlVin and CoxIter

software [18, 19]. They differ substantially from the polytopes that appear in [7, 8] and

have fewer facets.

Let 
n = Ref(Pn) be the reflection group of Pn with generators si, i ∈ In, where

In is the set of outer normals to the facets of Pn or, equivalently, the set of nodes of

the Coxeter diagram of Pn. (The notation used is as follows: a dashed edge means two

reflection hyperplanes have a common perpendicular, a solid edge means parallel (at the

ideal boundary) hyperplanes, a double edge means label 4, a single edge means label

3, any other edge has a label on it describing the corresponding dihedral angle. The

colours are used for convenience only.) With standard basis {v0, v1, . . . , vn}, the Vinberg

algorithm determines the outer normals for n = 5, 6 that are given in the Appendix.

The associated reflection group 
n is arithmetic and contains a virtually free

parabolic subgroup

� =
⎧⎨⎩〈s5, s6, s9〉, for n = 5,

〈s6, s9, s17〉, for n = 6.

Indeed, � is isomorphic to the (2, ∞, ∞)-triangle group (here � is not actually generated

by reflections in the sides of a hyperbolic finite-area triangle but is rather only

abstractly isomorphic to such a group; however, we are interested in its algebraic

rather than geometric properties, regarding its subgroup growth), which contains F2

as a subgroup of index 4.

The retraction R : 
n → � is defined by sending all but three generators of 
n

to id, with the only generators mapped identically being those of � < 
n.

In order for R being well defined, we essentially need that the generators of

� be connected to the rest of the diagram by edges with even labels only, since any

two generators connected by a path of odd-labelled edges are conjugate. This folds, for
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A Hyperbolic Counterpart to Rokhlin’s Cobordism Theorem 13

instance, if the facets corresponding to the reflections generating � are redoubleable in

terms of [1].

The element

δ =
⎧⎨⎩s1s2s3s4s7, for n = 5,

s7s13s18, for n = 6,

is orientation-reversing, as it is a product of an odd number of reflections in Hn.

Moreover, δ ∈ ker R.

We shall set the map � from Lemma 3.1 to be a pair of reductions modulo

various rational primes, and then use Lemma 3.2 in order to ensure that their kernels

are torsion free. Indeed, we need to choose such an odd prime p ∈ Z that it does not

divide the order of any finite parabolic subgroup in the diagram of Pn, n = 5, 6. The

least common multiples of orders of finite parabolic subgroups for Pn, n = 5, 6 are

given in Table 1 (the orders of all finite parabolic subgroups associated with Pn can be

obtained by using CoxIter [18] with the -debug option).

For 
 ∈ GL(n+1,OK), where OK is the ring of integers of a number field K, let φp

denote the homomorphism 
 → GL(n + 1,OK/J ) induced by reduction modulo J = (p),

the principal ideal generated by a rational integer p.

Let us consider the reductions φ7 and φ11 as defined above, and let � = (φ7, φ11).

For n = 5, the order of φ7(δ) equals 800 = 25 · 52, while the order of φ11(δ) equals

8052 = 22 · 31 · 111 · 611, as follows by straightforward computations, c.f. [10, 11]. For

n = 6, the order of φ7(δ) equals 8 = 23, while the order of φ11(δ) equals 44 = 22 · 111.

Then Lemma 3.1 and Lemma 3.2 apply, and 
 = �−1〈(φ7(δ), φ11(δ))〉 is a torsion-

free subgroup of finite index in 
n that contains the orientation-reversing element δ

and retracts onto the free group 
 ∩�. Then the argument analogous to that of Section 2

applies.

3.2 Right-angled cusped polytopes in dimensions 4 to 8

Let Pn ⊂ Hn be the right-angled polytopes associated to the principal congruence

subgroups of level 2 for the quadratic forms

fn = −x2
0 + x2

1 + x2
2 + · · · + x2

n, for n = 4, . . . , 8.

Let 
n = Ref(Pn) be the associated reflection group, with generators si, i ∈
In, where In is the set of outer normals to the facets of Pn. With standard basis
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14 M. Chu and A. Kolpakov

TABLE 1 Polytopes Pn, n = 5, 6, their Coxeter diagrams, and the least common multiple (LCM) of

the orders of their parabolic finite subgroups

Polytope Diagram LCM

P5 57600 = 28·32·52

P6 230400 = 210 · 32 · 52

{v0, v1, . . . , vn}, the Vinberg algorithm starts with the 1st n outer normals being

ei = −vi, for 1 ≤ i ≤ n,

and continues with the next
(n

2

)
outer normals

ei,j = v0 + vi + vj, for 1 ≤ i < j ≤ n,

all of them being 1-roots, as is necessary for determining the reflective part of the

principle congruence level 2 subgroup rather than that of the whole group of units for
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A Hyperbolic Counterpart to Rokhlin’s Cobordism Theorem 15

fn. Let us set en+1 = e1,2 = v0 +v1 +v2 and en+2 = e3,4 = v0 +v3 +v4 as a more convenient

notation.

Such 
n is arithmetic, and it contains a virtually free parabolic subgroup � =
〈s3, s4, sn+2〉. Indeed, � is isomorphic to the (2, ∞, ∞)-triangle group that contains F2 as

a subgroup of index 4. Consider the retraction

R : si �→
{

si, if i ∈ {3, 4, n + 2},
id, otherwise.

The element δ = s1s2sn+1 is orientation-reversing, as it is a product of three

reflections in Hn. Moreover, δ ∈ ker R.

For 
 < GL(n + 1,Z), let φm denote the homomorphism 
 → GL(n + 1,Z/mZ)

induced by reduction modulo a positive integer m. By [35, Theorem IX.7], we know that

the kernel of φm is torsion-free for m > 2. The reduction of δ modulo 3 has order 4 = 22,

while its reductions modulo 4 has order 2, c.f. [10, 11]. Letting � = (φ3, φ4), Lemma 3.1

applies, and 
 = �−1〈(φ3(δ), φ4(δ))〉 is a torsion-free subgroup of finite index in 
n that

contains the orientation-reversing element δ and retracts onto the free group 
 ∩ �.

3.3 Cusped polytopes in dimensions 9 to 13

Let Pn ⊂ Hn be the polytopes from Table 7 in [44] associated to the quadratic forms

fn = −2x2
0 + x2

1 + x2
2 + · · · + x2

n for n = 9, 10, and 13,

while Pn, for n = 11, 12, be the polytopes with Coxeter diagrams given in Figure 4,

respectively. The latter ones appear to be new and were found by using AlVin [19].

Let 
n = Ref(Pn) be the reflection group of Pn with generators si, i ∈ In, where In
is the set of nodes in the Coxeter diagram of Pn. Such 
n is arithmetic, and it contains a

virtually free parabolic subgroup � indicated in Table 2.

Since � is generated by reflections in redoubleable facets, we can define a

retraction R : 
n → �, as before, that send all the generators of 
n to id, except of

those of �.

The orientation-reversing element δn ∈ ker R is defined by

δn =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
s1s2s3 . . . s8sn+2, for n = 9, 10, 13,

s7s8s16, for n = 11,

s2s11s18, for n = 12.
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16 M. Chu and A. Kolpakov

Fig. 4. The Coxeter diagrams for (a) P11 and (b) P12, together with their associated quadratic

forms.

TABLE 2 A virtually free parabolic subgroup � < 
n, for n = 9, . . . , 13

n Generators of � Triangle group ∼= �

9 s9, s10, s12 (2, ∞, ∞)

10 s10, s11, s13 (2, 4, ∞)

11 s11, s12, s18 (4, 4, ∞)

12 s12, s13, s20 (4, 4, ∞)

13 s13, s14, s19 (2, ∞, ∞)

TABLE 3 Orders of the reductions of δ and their prime factorizations, c.f. [10, 11]

n m1 k1 = order of φm1(δn) m2 k2 = order of φm2(δn)

9, 10, 13 3 84 = 22 · 31 · 71 4 34 = 21 · 171

11, 12 3 6 = 21 · 31 4 4 = 22

Letting � = (φm1
, φm2

), Lemma 3.1 applies with m1 and m2 as in Table 3. Here,

we also notice that δn for n = 10, 13 is an extension of δ9 by the identity map, which

simplifies the computations.
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A Hyperbolic Counterpart to Rokhlin’s Cobordism Theorem 17

Then 
 = �−1〈(φm1
(δ), φm2

(δ))〉 is a torsion-free subgroup of finite index in 
n

that contains the orientation-reversing element δ and retracts onto the free group 
 ∩�.

4 Constructing Geometric Boundaries from Virtual Retracts

Let qn be an admissible quadratic form of signature (n, 1) defined over a totally real

number field K with ring of integers OK , and let qn+1 = qn + x2
n+1. Suppose also that


n < O+(qn, OK) is a torsion-free subgroup either of finite co-volume or co-compact.

Now assume that there exists a retraction Rn : 
n → � of 
n onto a virtually

free subgroup � such that ker Rn contains an orientation-reversing element δ.

By [24, Proposition 7.1], there exists a torsion-free finite-index subgroup 
′
n+1 ≤

O+(qn+1, OK), such that 
n < 
′
n+1. Moreover, we may assume that Hn/
n is a

properly embedded totally geodesic submanifold of Hn+1/
n+1. Thus, the group 
n

is a geometrically finite subgroup of 
′
n+1. By [5, Theorem 1.4], there is a finite index

subgroup G < 
′
n+1, such that G virtually retracts to its geometrically finite subgroups.

In particular, G virtually retracts to G∩
n. However, since 
′
n+1 is linear, the arguments

of [31, Theorem 2.10] apply to give a virtual retraction from 
′
n+1 onto 
n. Let 
n+1

be the finite index subgroup of 
′
n+1 that retracts onto 
n. Then the composition

Rn+1 : 
n+1 → 
n → � is a retraction of 
n+1 onto �, such that δ ∈ ker Rn+1.

All the previous arguments from Section 3 apply, and we obtain Theorems 1.4–

1.5 for all n ≥ 2, since we can use any of our examples worked out in Sections 2–3 as a

basis for the above inductive procedure.

A.1 Outer normals for compact P5

(subsection 3.1)

ei = −vi + vi+1 for 1 ≤ i ≤ 4,

e5 = −v5,

e6 = ωv0 + (2 + ω)v1,

e7 = ω(v0 + v1 + v2 + v3),

e8 = (1 + ω)(v0 + v1) + ω(v2 + v3 + v4 + v5).

A.2 Outer normals for compact P6

(subsection 3.1)

ei = −vi + vi+1 for 1 ≤ i ≤ 5,

e6 = −v6,
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18 M. Chu and A. Kolpakov

e7 = v0 + w(v1 + v2),

e8 = ω(v0 + v1 + v2 + v3 + v4),

e9 = ωv0 + 2ωv1,

e10 = (1 + ω)(v0 + v1 + v2) + ω(v3 + v4 + v5 + v6),

e11 = (1 + 2ω)v0 + (1 + 3ω)v1 + (1 + ω)(v2 + v3 + v4) + ω(v5 + v6),

e12 = (1 + 2ω)v0 + (2 + 3ω)v1 + ω(v2 + v3 + v4 + v5 + v6),

e13 = (2 + 2ω)v0 + (1 + 2ω)(v1 + v2 + v3 + v4 + v5) + v6,

e14 = (2 + 3ω)v0 + (2 + 4ω)v1 + (2 + 2ω)v2 + (1 + 2ω)(v3 + v4 + v5) + v6,

e15 = (2 + 3ω)v0 + (3 + 4ω)v1 + (1 + 2ω)(v2 + v3 + v4) + 2ωv5,

e16 = (2 + 4ω)v0 + (3 + 6ω)v1 + (1 + 2ω)(v2 + v3 + v4 + v5) + v6,

e17 = (3 + 4ω)v0 + (2 + 5ω)v1 + (2 + 3ω)(v2 + v3 + v4 + v5) + ωv6,

e18 = (4 + 5ω)v0 + (4 + 6ω)v1 + (2 + 4ω)(v2 + v3 + v4 + v5).

A.3 Outer normals for cusped P4

(subsection 3.2)

ei = −vi for 1 ≤ i ≤ 4,

ei = v0 + vj1 + vj2 for 5 ≤ i ≤ 10 and 1 ≤ j1 < j2 ≤ 4.

A.4 Outer normals for cusped P5

(subsection 3.2)

ei = −vi for 1 ≤ i ≤ 5,

ei = v0 + vj1 + vj2 for 6 ≤ i ≤ 15 and 1 ≤ j1 < j2 ≤ 5,

e16 = 2v0 + v1 + v2 + v3 + v4 + v5.

A.5 Outer normals for cusped P6

(subsection 3.2)

ei = −vi for 1 ≤ i ≤ 6,

ei = v0 + vj1 + vj2 for 7 ≤ i ≤ 21 and 1 ≤ j1 < j2 ≤ 6,

ei = 2v0 + vj1 + · · · + vj5 for 22 ≤ i ≤ 27 and 1 ≤ j1 < j2 < j3 < j4 < j5 ≤ 6.
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A Hyperbolic Counterpart to Rokhlin’s Cobordism Theorem 19

A.6 Outer normals for cusped P7

(subsection 3.2)

ei = −vi for 1 ≤ i ≤ 7,

ei = v0 + vj1 + vj2 for 8 ≤ i ≤ 28 and 1 ≤ j1 < j2 ≤ 7,

ei = 2v0 + vj1 + · · · + vj5 for 29 ≤ i ≤ 49 and 1 ≤ j1 < j2 < j3 < j4 < j5 ≤ 7,

ei = 3v0+ 2vj1 + vj2 + · · · + vj7 for 50 ≤ i ≤ 56 and 1 ≤ j1 < j2 < j3 < j4 < j5 < j6 < j7 ≤ 7.

A.7 Outer normals for cusped P8

(subsection 3.2)

ei = −vi for 1 ≤ i ≤ 8,

ei = v0 + vj1 + vj2 for 9 ≤ i ≤ 36 and 1 ≤ j1 < j2 ≤ 8,

ei = 2v0 + vj1 + · · · + vj5 for 37 ≤ i ≤ 92 and 1 ≤ j1 < j2 < j3 < j4 < j5 ≤ 8,

ei = 3v0 + 2vj1 + vj2 + · · · + vj7 for 93 ≤ i ≤ 148,

ei = 4v0 + 2(vj1 + · · · + vj3) + vj4 + · · · + vj7 for 149 ≤ i ≤ 204

and 1 ≤ j1 < j2 < j3 < j4 < j5 < j6 < j7 ≤ 7,

ei = 5v0 + 2(vj1 + · · · + vj6) + vj7 + vj8 for 205 ≤ i ≤ 232,

ei = 6v0 + 3vj1 + vj2 + · · · + vj8 for 233 ≤ i ≤ 240

and 1 ≤ j1 < j2 < j3 < j4 < j5 < j6 < j7 < j8 ≤ 8.

A.8 Outer normals for cusped P9

(subsection 3.3)

ei = −vi + vi+1, for 1 ≤ i ≤ 8,

e9 = −v9,

e10 = v0 + 2v1,

e11 = v0 + v1 + v2 + v3 + v4,

e12 = 2v0 + v1 + v2 + v3 + v4 + v5 + v6 + v7 + v8 + v9.

A.9 Outer normals for cusped P10

(subsection 3.3)

ei = −vi + vi+1, for1 ≤ i ≤ 9,

e10 = −v10,

e11 = v0 + v1 + v2 + v3 + v4,

e12 = v0 + 2v1,

e13 = 2v0 + v1 + v2 + v3 + v4 + v5 + v6 + v7 + v8 + v9 + v10.
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20 M. Chu and A. Kolpakov

A.10 Outer normals for cusped P11

(subsection 3.3)

ei = −vi + vi+1, for 1 ≤ i ≤ 7, and i = 9, 10,

ei = −vi, and i = 8, 11,

e12 = v0 + v9 + v10 + v11,

e13 = v0 + 2v1 + v9,

e14 = v0 + v1 + v2 + v3 + v4,

e15 = 2v0 + v1 + v2 + v3 + v4 + v5 + v6 + v9 + v10,

e16 = 2v0 + v1 + v2 + v3 + v4 + v5 + v6 + v7 + v8 + v9,

e17 = 3v0 + 2(v1 + v2) + v3 + v4 + v5 + v6 + v7 + v8 + v9 + v10 + v11,

e18 = 4v0 + 2(v1 + v2 + v3 + v4 + v5 + v6 + v7) + v9 + v10 + v11.

A.11 Outer normals for cusped P12

(subsection 3.3)

ei = −vi + vi+1, for 1 ≤ i ≤ 10,

ei = −vi, for i = 11, 12,

e13 = v0 + 2v1 + v12,

e14 = v0 + v1 + v2 + v3 + v4,

e15 = 2v0 + v1 + v2 + v3 + v4 + v5 + v6 + v7 + v8 + v12,

e16 = 2v0 + v1 + v2 + v3 + v4 + v5 + v6 + v7 + v8 + v9 + v10,

A.11 Outer normals for cusped P12

(subsection 3.3)

ei = −vi + vi+1, for 1 ≤ i ≤ 10,

ei = −vi, for i = 11, 12,

e13 = v0 + 2v1 + v12,

e14 = v0 + v1 + v2 + v3 + v4,

e15 = 2v0 + v1 + v2 + v3 + v4 + v5 + v6 + v7 + v8 + v12,

e16 = 2v0 + v1 + v2 + v3 + v4 + v5 + v6 + v7 + v8 + v9 + v10,

e17 = 3v0 + v1 + v2 + v3 + v4 + v5 + v6 + v7 + v8 + v9 + v10 + v11 + 2v12,

e18 = 3v0 + 2(v1 + v2) + v3 + v4 + v5 + v6 + v7 + v8 + v9 + v10 + v11 + v12,

e19 = 3(v0 + v1) + v2 + v3 + v4 + v5 + v6 + v7 + v8 + v9 + v10 + v11,

e20 = 5v0 + 2(v1 + v2 + v3 + v4 + v5 + v6 + v7 + v8 + v9 + v10 + v11 + v12).
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A Hyperbolic Counterpart to Rokhlin’s Cobordism Theorem 21

A.12 Outer normals for cusped P13

(subsection 3.3)

ei = −vi + vi+1, for 1 ≤ i ≤ 12,

e13 = −v13,

e14 = v0 + v1 + v2 + v3 + v4,

e15 = v0 + 2v1,

e16 = 2v0 + v1 + v2 + v3 + v4 + v5 + v6 + v7 + v8 + v9 + v10,

e17 = 3v0 + 3v1 + v2 + v3 + v4 + v5 + v6 + v7 + v8 + v9 + v10 + v11 + v12,

e18 = 3v0 + 2v1 + 2v2 + v3 + v4 + v5 + v6 + v7 + v8 + v9 + v10 + v11 + v12 + v13,

e19 = 5v0 + 2(v1 + v2 + v3 + v4 + v5 + v6 + v7 + v8 + v9 + v10 + v11 + v12 + v13).
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