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Abstract— A major challenge in moving average (MA)
estimation is the selection of an appropriate averaging
window length or timescale over which measurements re-
main relevant to the estimation task. Prior works typically
perform timescale selection by examining multiple window
lengths (or models) before selecting the ‘optimal’ one using
heuristics, domain knowledge expertise, goodness-of-fit,
or information criterion (e.g. AIC, BIC etc.). In the presented
work, we propose an alternative mechanism based on Allan
Variance (AVAR) that obviates the need for assessing multi-
ple models and systematically reduces reliance on heuris-
tics or rules-of-thumb. The Allan Variance approach is used
to identify the timescale that minimizes bias, thus deter-
mining the timescale over which past information remains
most relevant. We also introduce an alternative method to
obtain AVAR for unevenly spaced timeseries. The results
from moving average estimation using an Allan Variance-
determined window length are compared to the optimal
moving average estimator that minimizes mean square
error (MSE) for a variety of signals corrupted with Gaus-
sian white noise. While the relevant timescales determined
through AVAR tend to be longer than those associated with
minimum MSE (i.e. AVAR-based MA estimation requires
more measurements spread over a longer period of time),
the AVAR-based moving average approach provides a valu-
able, systematic technique for near-optimal simple moving
average estimation.

Index Terms— Moving average estimation, Allan Vari-
ance, data relevance, timescale, noise.

I. INTRODUCTION

MOVING Average (MA) estimation has been used ef-
fectively across a wide range of domains including

hydrology [1], neuroscience [2], econometrics [3], and robotics
[4] [5] to name a few. Its widespread adoption is primarily
driven by its ease of use, and often by the inability to use
model-based techniques such as the Kalman filter, due to lack
of reliable, high-fidelity dynamical models in specific domains.
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For example, in the field of safe autonomous vehicles, knowl-
edge of the friction coefficient between the vehicle tires and
roadway may be crucial for safe operation. However, it is
extremely difficult to generate high-fidelity models of how
the friction coefficient varies over time and space [6]. Thus,
moving average estimation or similar data-driven methods may
be the only recourse available to make such predictions. While
there are many powerful data-driven parameter estimation
techniques such as deep neural networks, they often require
a large training data set and are unable to respond to sudden
unsampled changes in the dynamics of the parameter.

Moving average estimation is itself a broad field of study
that includes various techniques such as Auto-regressive Mov-
ing Average (ARMA), locally weighted moving average [7],
and kernelized ARMA estimation [8]. While the concept of
moving averages and MA estimation has been around since
the early twentieth century, the challenge of selecting an
appropriate or characteristic timescale over which to average
measurements persists to this day, encompassing the many
techniques mentioned above. For the purposes of this paper,
we refer to the characteristic timescale as the window length
that includes the most relevant measurements or information
for a given estimation task, where maximizing relevancy is
associated with minimizing bias.

Practically, the research community has addressed this issue
by examining several different timescales (or window lengths
or orders). By fitting a model for each of these window lengths,
we can determine goodness-of-fit (or use information criteria
such as AIC) to select an appropriate timescale that best suits
the modeling or estimation task. Depending on the complexity
of the data and problem, this may be a computationally
inefficient and time-intensive approach.

While there exist several model selection methods which
help in efficiently searching for an appropriate or characteristic
timescale [9] [10] [11] the process of finding an appropriate
or characteristic timescale requires multiple iterations and a
significant degree of trial and error.

To overcome these limitations, we leverage the concept
of Allan Variance (AVAR), and propose a novel and more
systematic on-the-fly method to determine the time horizon
over which measurements remain relevant to the estimation
task. Allan Variance was originally developed to ascertain
the frequency of atomic clocks, but has since been adapted
to study a large variety of timeseries signals in a diverse
range of applications [12] [13]. In this paper, we demon-
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strate that using the AVAR-determined timescale results in
near-optimal moving average estimation. While we focus on
simple moving average estimation, where measurements are
weighted equally across the observing window, the presented
methodology may be generalized to other moving average
formulations. Moreover, due to the original intent and design
of Allan Variance, most studies incorporating AVAR have
been restricted to analysis of regularly-sampled timeseries.
We extend AVAR to irregularly-sampled timeseries, enabling
the identification of characteristic timescales and performing
simple MA estimation for such data.

II. ALLAN VARIANCE

While Allan Variance was originally developed to address
the issue of frequency stability and time synchronization be-
tween atomic clocks [12], it has quickly become a useful tool
for modeling and de-noising inertial sensors [14] [15]. Detailed
analysis on noise modeling and characterization using Allan
Variance can be found in a previous work by one of the authors
[13]. In the presented work, we assume that the underlying
signals (deterministic or stochastic) are corrupted by Gaussian
white noise, though the AVAR approach extends easily to
other noise types as well. Allan Variance helps determine a
trade-off between signal components whose variance increases
with time versus those whose variance decreases over time, to
obtain a characteristic timescale that minimizes bias.

Mathematically, the local moving average θ̄k of a regularly-
sampled timeseries Θ = {θ1, θ2, ..., θn} at time instant k with
a window length (or timescale) of m is defined as:

θ̄k =
1

m

k∑
i=k−m+1

θi (1)

where m represents the window length or the number of
samples in each averaging window (m < n/2), n represents
the number of measurements, and θ denotes a measured
variable or parameter (such as road-tire friction coefficient in
studies on safe vehicle autonomy).

The 2-sample Allan Variance for a regularly-sampled time
series Θ as a function of timescale m is defined as [12]:

σ2
A(m) =

1

2
E
[
(θ̄k − θ̄k−m)2

]
(2)

where the expectation operator in (2) may be approximated,
so that the Allan Variance can be evaluated using measured
timeseries data with the following expression [16]:

σ̂2
A(m) =

1

2(n− 2m)

n∑
k=2m+1

(
θ̄k − θ̄k−m

)2
(3)

Figure 1 shows the Allan Variance for a random walk
signal corrupted by white noise as a function of the averaging
window length or timescale, plotted on a logarithmic scale
(as is typical). While this approach for calculating Allan
Variance works well for regularly-sampled data, many real-
world applications do not readily generate such data. As a
result, we present alternative approaches for scenarios where
the timeseries data are not regularly sampled.

Fig. 1: Allan Variance of a random walk signal corrupted with
Gaussian white noise which has been sampled regularly. The
Allan Variance is calculated using the expression (3) and the
graph depicts mean values and standard deviations obtained
from 100 Monte Carlo simulations. The Allan Variance trend
indicates that in this particular case, bias is minimized at
averaging timescales of approximately 0.03s.

A. Allan Variance for Irregularly Sampled Data

Irregularly sampled data may come in various forms, such
as intermittent data with large intervals between sets of rapid
bursts of measurements, or sampling intervals that follow the
properties of a known distribution. Several different strategies
may be employed to evaluate Allan Variance for such irregu-
larly sampled timeseries data. For example, naı̈vely speaking,
we may choose to sample the data at a higher frequency to
obtain regularly sampled data, but this is not always possible
or feasible. Other researchers have proposed interpolation to
overcome irregular sampling of data [17], but Sesia and Tavella
have showed that this approach would produce considerable
bias in the evaluation of Allan Variance [16]. Instead, they
propose to evaluate Allan Variance by using available data and
simply disregarding the absence of missing measurements or
data [16].

In this paper, we expand upon this approach and propose
an alternative method that evaluates the Allan Variance for
irregularly-sampled data without any prior knowledge about
the signal characteristics. Nonetheless, readers may use an-
other AVAR estimator, such as the ones included in [18], [19],
or [20], that better suits their particular application of interest.
Specifically in this work, we first notice that the expression in
(1) is no longer applicable for irregularly-sampled data as the
number of measurements in any given averaging window are
not identical across different windows. To address this limita-
tion, we adopt the expression τ to represent the duration of the
averaging window in continuous-time notation. Specifically, as
in (1), the local average of the parameter θ may be evaluated
in continuous time as the average of recent measurements that
are no older than the timescale τ . Mathematically, we can
express this as:

θ̄t =
1

|Ct|
·
∑
θti∈Ct

θti (4)

where Ct = {θti : t − τ < ti < t} is the set of recent
measurements within a window of length τ , and |Ct| denotes
the cardinality of set Ct, i.e. the number of measurements
contained in Ct ⊂ Θ. Clearly, θ̄t is undefined for |Ct| = 0.

In irregularly-sampled data, it is likely that the number
of measurements in different windows of equal length τ is



not constant. Throughout this paper, in order to generate
irregularly sampled measurements, we create a measurement
time vector by randomly sampling timestamps from a uniform
distribution. This results in uneven spacing between successive
measurements. Further, the modification proposed in (4) en-
ables us to evaluate the Allan Variance using adjacent windows
of equal width τ , even if these windows contain a non-identical
number of measurements. The original definition of Allan
Variance in (2) may now be re-written in continuous time as
follows:

σ2
A(τ) =

1

2
E
[
(θ̄t − θ̄t−τ )2

]
(5)

To approximate the expected value in (5), we propose an
approach similar to (3), but which uses weighted averaging.
Specifically, each term of (θ̄t− θ̄t−τ )2 may be associated with
a joint weight value wt to account for irregular or missing
data. Subsequently, the Allan Variance may be evaluated as a
weighted average, with continuous-time windows with more
measurements given larger weights, and those with fewer
measurements given smaller weights. To evaluate the Allan
Variance for irregularly-sampled data we use this joint weight
for successive windows as follows:

σ̂2
A(τ) =

1

2
∑
S wt

∑
S

wt(θ̄t − θ̄t−τ )2 (6)

where both summations are performed over a finite set of time
instances t ∈ S, which governs the coarseness of estimation
while evaluating the expectation operator in expression (5).

The joint weight of the two adjacent windows may be
assumed to be the product of the number of measurements
in each window, i.e.:

wt = |Ct||Ct−τ | (7)

though other weighting schemes may be chosen based on do-
main knowledge expertise or signal processing considerations.

Also, the coarseness of set S, i.e. the time increments used
to slide the windows, may depend on how timestamps are dis-
tributed. It is suggested that practitioners begin with the mean
value of the time interval between measurements, examining
the evaluated Allan Variance, and using finer sliding window
step size if needed. Alternatively, to make the simulation more
time efficient, it is also possible to set the sliding step to
the particular window length at which the AVAR is being
estimated. A caveat of the proposed approach is that the joint
weight wt becomes zero if either |Ct| or |Ct − τ | is zero. In
such cases, we disregard any time windows during which no
measurements were obtained.

Figure 2 shows the performance of our proposed method
for calculating AVAR in a comparison with equally weighted
(unweighted) AVAR evaluation. The performance of the clas-
sical formulation with regularly sampled data in the expression
(3) is also provided as the reference. As is evident from the
figure, the weighted AVAR outperforms the unweighted AVAR
evaluation specially across the longer window lengths. Next,
we discuss how to leverage the bias-minimizing characteristic
timescales obtained from Allan Variance to inform moving
average estimation.

III. MOVING AVERAGE ESTIMATION WITH ALLAN
VARIANCE-INFORMED CHARACTERISTIC TIMESCALE

Simple moving average estimation refers to the process of
recovering a time-varying reference or determining a parame-
ter θr(t) by taking the moving average of the given time series
of historical noisy measurements Θ over a known temporal
horizon τ . For regularly-sampled measurements, the simple
moving average estimate of the parameter θ at any arbitrary
time step k ∈ {1, 2, ..., n} can be written as:

θ̂k =
1

m

k∑
i=k−m

θi (8)

Similarly, for irregularly-sampled data, the SMAE at any
arbitrary time t can be calculated as the average of recent
measurements that are no older than the time scale τ . Un-
surprisingly, using an expression similar to (1), the SMAE for
irregularly-sampled data may be evaluated as the local average
at the time t, i.e. θ̂t = θ̄τt where the superscript τ denotes the
window length for local averaging. Throughout this study, we
considered the last available estimate θ̂t− for undefined values
of θ̄t, i.e. when |Ct| = 0.

The choice of the characteristic timescale τ , however, plays
an important role in the performance of the moving average
estimator. Several aspects govern the choice of the parameter
τ , among them being the signal dynamics, noise characteris-
tics, and the distribution of timestamps. As mentioned earlier,
the choice of window length or timescale has traditionally
been dictated by domain expertise or evaluation using trial
and error. The primary contribution of the presented work
is to reduce dependence on such heuristics and provide a
more systematic method to choose the characteristic timescales
at which measurements remain relevant to the estimation
task. The method of choice for selection of the characteristic
timescale is through identifying the averaging time at which
Allan Variance (evaluated based on (5)) is minimized. The
timescale at which Allan Variance is minimized corresponds
to the minimum bias in the moving average estimate (evaluated
using (8)) given the signal dynamics and measurement noise
characteristics. This process produces a near-optimal averaging
time scale τ∗ without having any prior knowledge about the
parameter dynamics, i.e. θ̂t = θ̄τ

∗

t where

τ∗ = arg min
τ

σ2
A(τ) (9)

Next, we discuss results for near-optimal moving average
estimation using AVAR-informed characteristic timescales.

IV. RESULTS

In this section, we examine the performance of simple mov-
ing average estimation of a time-varying parameter θ, where
the parameter may vary according to different deterministic or
stochastic signals and is corrupted by white noise. The char-
acteristic timescale at which the moving average estimation is
performed is determined through the Allan Variance approach
outlined in previous sections. Specifically, the performance
of the AVAR-informed moving average estimation task is
determined in three steps. First, the Allan Variance of the
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Fig. 2: (a) Allan Variance of random walk signal. Solid line represents the AVAR estimated by expression (3) using the original
5000 regularly sampled timestamps, dashed line represents AVAR estimated using expression (6), and dash-dotted line denotes
AVAR obtained by setting all the weights to one (unweighted averaging). All lines represent the mean of 1000 Monte Carlo
simulations and for both latter simulations, 1000 random time stamps are uniformly realized from [0, 1]. (b) The percentage
error between irregularly sampled AVAR (simple and weighted averaging) and the reference regularly sampled AVAR.

provided timeseries data is evaluated using the approximation
used in (6). Second, the timescale τ∗ associated with the min-
imum value of the Allan Variance is determined. The moving
average estimation is performed using this AVAR-informed
timescale for several different signals, such as ramp, sine wave,
square wave and random walk, all corrupted by Gaussian
white noise. Finally, to validate our results we perform moving
average estimation using several different window lengths
spread over a large temporal range. The optimal timescale is
then determined as the one which minimizes the mean square
error between the estimate and the actual value of the signal
over a given time period. Finally, the performances of the
optimal MSE estimator and the Allan Variance-informed MA
estimator are compared.

Figure 3(a) shows the AVAR-informed simple moving aver-
age estimation of a ramp signal with an additive noise drawn
from N (0, 0.1). In addition, the figure also includes the true
signal (thin black line), noisy measurements (gray dots), and
the optimal simple moving average estimate (faint blue line)
corresponding to the timescale that minimizes the MSE. Figure
3(b) shows the Allan Variance as a function of the averaging
time or window length (top), and the mean-square error for
moving average estimates as a function of window length (bot-
tom). The red and blue square markers indicate the window
lengths or timescales for which the Allan Variance and the
moving average MSE are minimized, respectively. Figures 4,
5, and 6 show these results for random walk, sinusoid, square
wave signals, respectively. In each scenario, the reference
signal θr is corrupted with a specified amount of zero mean
white Gaussian noise as indicated in the figures. A simple
moving average estimator is then implemented to determine
θr from a set of irregularly-sampled temporal measurements.
In all the simulations, the SMAE returns the previous estimate
if there is no measurement across the window.

Table I shows the results of performance comparisons be-
tween the optimal MSE estimator and the near-optimal AVAR-
informed MA estimator by using the mean square error over
the signal length as a measure of accuracy. As is evident,

the AVAR-informed MA estimator performs quite well with
relatively moderate errors as compared to MSE of the optimal
MA estimate, across a variety of noisy deterministic and
stochastic signals. Figures 3, 4, 5, and 6 show the correspond-
ing analysis for each signal type. Moreover, the timescale
at which AVAR is minimized is also compared against the
optimal window length, indicating good agreement between
optimal and AVAR-informed characteristic timescales.

The reader should note that AVAR evaluates this character-
istic timescale in the absence of any prior knowledge about
the signal or the noise model, whereas the MSE estimator
possesses knowledge of the true signal. The ability to obtain
a near-optimal characteristic timescale may be tremendously
valuable in several applications where the original signal
characteristics are unknown or change with time.

TABLE I: Near-optimal timescale evaluation using AVAR in
a comparison with the optimal timescale calculated based on
MSE of the MA estimation for unit ramp, random walk, and
two different periodic signals. Asterisks in the last column
indicate association with Figs. 3, 4, 5, and 6, respectively.

Signal Domain [s] ω MSEoptimal MSEAVAR Error [%]

Unit ramp [0, 1] - 1.05× 10−3 1.12× 10−3 6.97∗

Random walk [0, 1] - 6.4238 6.5858 2.52∗

sin(ωt) [0, 10]
1 5.91× 10−3 6.48× 10−3 9.60

2 9.57× 10−3 11.22× 10−3 17.19∗

4 16.19× 10−3 21.54× 10−3 33.03

square(ωt) [0, 103]
0.01 70.64× 10−3 70.66× 10−3 0.03

0.02 94.76× 10−3 96.82× 10−3 2.17∗

0.04 151.27× 10−3 162.46× 10−3 7.39

V. CONCLUDING REMARKS AND FUTURE WORKS

The presented work has demonstrated an Allan Variance-
based technique for systematically identifying a characteristic
timescale at which to perform simple moving average esti-
mation. The primary insight of this work is in associating



(a) (b)

Fig. 3: (a) A unit ramp reference signal θr = t (black narrow line) and corresponding 500 noisy measurements (dots). The
irregular measurement timestamps are randomly generated from a uniform distribution and the reference signal is corrupted
by Gaussian white noise with σ = 0.1 unit. (b) Allan Variance of the measurement time series and the mean square error
of the moving average estimation calculated at various window lengths (time scales). Both graphs show mean values and the
corresponding standard deviation (shaded area) obtained from 500 Monte Carlo simulations.

(a) (b)

Fig. 4: (a) A random walk reference signal (black line) and corresponding 500 noisy measurements (gray dots). The random walk
signal is generated using 5000 samples and the measurement timestamps are randomly generated from a uniform distribution.
The signal is corrupted by zero mean Gaussian white noise with σ = 5 unit. (b) Allan Variance of the time series and the
mean square error of the moving average estimation calculated at various window lengths (time scales). Both graphs show
mean values and the corresponding standard deviation (shaded area) obtained from 500 Monte Carlo simulations.

(a) (b)

Fig. 5: (a) A sinusoidal reference signal θr = sin(2t) (black line) and corresponding 1000 noisy measurements (gray dots). The
irregular measurement timestamps are randomly generated from a uniform distribution and the reference signal is corrupted
by Gaussian white noise with σ = 0.2 unit. (b) Allan Variance of the measurement time series and the mean square error
of the moving average estimation calculated at various window lengths (time scales). Both graphs show mean values and the
corresponding standard deviation (shaded area) obtained from 500 Monte Carlo simulations.
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Fig. 6: (a) A square reference signal θr = square(0.02t) (black line) and corresponding 1000 noisy measurements (gray dots).
The irregular measurement timestamps are randomly generated from a uniform distribution and signal is corrupted by Gaussian
white noise with σ = 0.5 unit. (b) Allan Variance of the measurement time series and the mean square error of the moving
average estimation calculated at various window lengths (time scales). Both graphs show mean values and the corresponding
standard deviation (shaded area) obtained from 500 Monte Carlo simulations.

the AVAR-informed characteristic timescales to the notion of
duration over which data remains relevant. As evinced by
the Allan Variance plots, there is an optimal timescale at
which bias in the signal is minimized. Performing moving
average estimation at shorter time scales produces higher bias
estimates due to signal and/or noise characteristics. On the
other hand, performing MA estimation at longer timescales
also produces higher bias estimates on account of the data
losing its relevancy towards the estimation task. The AVAR-
informed MA estimation thus balances these two trade-offs of
accuracy and relevancy in a near-optimal manner, without rely-
ing on iterations or heuristics. Perhaps, equally as importantly,
the AVAR-informed moving average estimation is able to
perform the estimation task in a near-optimal manner without
a priori knowledge of the signal or noise model. This makes
the presented approach widely applicable to a large number
of scenarios where high fidelity models are cumbersome or
difficult to obtain, such as determining road-tire friction in
safe autonomy applications. In future works, we will address
the theoretical aspects of the presented method and expand
it to include real-time adaptation to discontinuous signals
through the use of Dynamic Allan Variance (DAVAR) which
will help improve the moving average estimate. Moreover,
the notion of characteristic timescales (or data scales) allows
for systematically dealing with under- and over-fitting trade-
offs, thus finding applicability in locally weighted estimation
methods that utilize more sophisticated kernel functions [7].
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