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A ubiquitous principal of biological energy conversion is tran-
sient energy storage as a proton motive force (pmf) across a 
proton-sealed membrane that is employed by ATP synthases 

for generation of the more stable and universal energy equivalent 
ATP from ADP and inorganic phosphate1–3. Because protons carry 
a charge, the pmf is the sum of two components: one electrical (Δψ) 
and one chemical (ΔpH). Both are equivalent in driving ATP syn-
thesis at the ATPase enzyme4. Whereas in respiratory membranes 
the pmf is mainly stored as Δψ, for a long time it was assumed that 
the Δψ under steady-state illumination is small in photosynthetic 
thylakoid membranes and the pmf consists mainly of ΔpH5. This 
view of thylakoid pmf storage has been challenged by improved 
spectroscopic analyses6–9 that disentangle the contributions of ΔpH 
and Δψ to total pmf storage, combined with the identification and 
characterization of thylakoid ion channel/transporters mutants, 
implicating storage of a fraction of pmf as Δψ. An explanation of 
the controversy about pmf partitioning in thylakoid membranes is 
that the ΔpH/Δψ ratio is not static but dynamic and could depend 
on environmental/metabolic conditions in vivo (for example  
ref. 10), as well as the experimental conditions under which it is 
measured8. The attractiveness of dynamic pmf partitioning is that 
it enables fine-tuning of photosynthetic electron transport and light 
harvesting without compromising ATP synthesis. This is based on 
the fact that the main regulatory processes in thylakoid membranes 
are dependent on ΔpH (more precisely on the acidity of the thy-
lakoid lumen) but not Δψ. In detail, proton-releasing reactions in 

the thylakoid lumen, water splitting at photosystem II (PSII) and 
plastoquinol oxidation at the cytochrome b6f (cyt b6f) complex, 
are slowed by lumen acidification in light (high ΔpH)11,12, a phe-
nomenon called photosynthetic control. Furthermore, the photo-
protective non-photochemical quenching mechanism (NPQ, more 
precisely the dominating high-energy-quenching component (qE)) 
localized mainly in the thylakoid-hosted light-harvesting com-
plexes II is activated and triggered at high ΔpH13–15. Therefore, 
pmf redistribution from the Δψ component to the ΔpH compo-
nent would downregulate light harvesting (NPQ) and electron 
transport (photosynthetic control) but leave ATPase activity unaf-
fected9,16. How can pmf partitioning be adjusted? Here, thylakoid 
membrane ion channels and transporters come into play. The main 
ions in chloroplasts are potassium (K+) and chloride (Cl−)17,18. ΔpH/
Δψ partitioning can be tuned by the pmf-driven passive influx 
of Cl− into the thylakoid lumen and/or by K+/H+ antiport (K+ in, 
H+ out). The influx of Cl− into the lumen is expected to decrease 
Δψ (charge compensation in the lumen) allowing an increase in 
ΔpH (at constant pmf), whereas a K+/H+ antiport is expected to 
decrease ΔpH allowing an increase in Δψ. Early evidence from 
electrophysiological measurements suggesting the existence of K+ 
and Cl− channels or transporters in thylakoid membranes19,20 was 
recently validated by molecular biological studies (see reviews 21,22). 
At present, bona fide thylakoid channels/transporters are the K+/
H+ antiporter KEA3 (ref. 23), the voltage-gated Cl− channel VCCN1/
Best1 (refs. 24,25) and the Cl− channel ClCe26,27. A few years ago, the 
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two-pore K+ channel TPK3 was suggested as another thylakoid 
channel28. However, newer detailed studies make genuine chloro-
plast localization unlikely29–31. Although good characterizations of 
these thylakoid ion transporter/channels concerning sublocaliza-
tion, molecular biological characterization and their implication in 
fine-tuning photosynthetic energy conversion exist,21,22,32 a mecha-
nistic understanding of how they determine ion fluxes, ΔpH and 
Δψ across thylakoid membranes, both individually and in concert, 
is missing. This lack of a mechanistic understanding is, to some 
degree, due to the methodical challenge of measuring ion fluxes 
across thylakoid membranes in vivo. Here, we take an alternative 
approach to this challenge by combining measured photosynthetic 
parameters of thylakoid ion transporter/channel loss-of-function 
mutants with a computer model for photosynthetic light reactions 
that includes fluxes through thylakoid transporter/channels. The 
computer model is an extension of a recently published version9.

Results
Growth phenotype and characterization of thylakoid ion chan-
nel/transporter mutants. For characterization of ion fluxes over 
thylakoid membranes by KEA3, VCCN1 and ClCe transporter/
channels, single and multiple loss-of-function mutants were gen-
erated. The single knockout mutants, kea3-1 (ref. 23), vccn1-1 
(SALK_103612C)25 and clce-2 (Salk_010237)26, were used to gen-
erate homozygous double mutants, clce-2kea3-1 (ck), clce-2vccn1-1 
(cv) and vccn1-1kea3-1 (vk), and the triple mutant, vccn1-
1clce-2kea3-1 (vck) (Supplementary Fig. 1). The composition of key 
thylakoid membrane components reveals that the abundance of the 
proteins light-harvesting complexes II, PSII, photosystem I, cyt b6f 
complex, ATPase and PsbS, as well as carotenoids, is very similar 
in all eight genotypes (Supplementary Fig. 2). It was reported that 
thylakoid ion transporter/channel mutants show functional pheno-
types mainly under fluctuating light conditions25,33,34. To examine 
how fluctuating light intensities affect plant growth, total leaf areas 
were determined by plant imaging under constant and fluctuating 
light regimes (Supplementary Fig. 3). Only mutants that lack KEA3 
antiport activity show statistically significant reduced growth and 

only under fluctuating light conditions (Supplementary Fig. 3), in 
accordance with recently published data32.

Because it is expected that altered ion fluxes across the thyla-
koid membrane in ion transporter/channel mutants affect mem-
brane energization, ΔpH was examined in vivo. In the following, we 
express parameter changes in mutants as difference from wild-type 
(WT) plants (that is mutant minus WT) because this focuses directly 
on alterations caused by the mutation. A readily quantifiable proxy 
for ΔpH across thylakoid membranes is NPQ35. However, NPQ also 
depends on the PsbS protein and the xanthophyll zeaxanthin14,15,36. 
As mentioned above, neither PsbS level nor xanthophyll pool size is 
different in the mutants compared with WT (Supplementary Fig. 2) 
providing justification for the use of NPQ as a qualitative measure 
of ΔpH. To further validate the NPQ parameter as a proxy for ΔpH, 
we measured the electrochromic shift signal (ECS) on dark-adapted 
intact leaves. From ECS signals, total pmf, as well as the Δψ (ΔψECS) 
and ΔpH (ΔpHECS) components can be extracted4,37,38. Experiments 
using the ΔpH indicator 9-aminoacridine (9-AA39,40) on fresh iso-
lated intact isolated thylakoid membranes confirm that ΔpHECS 
measures ΔpH (Supplementary Fig. 4). Figure 1a shows plots of 
ΔNPQ versus ΔΔpHECS (mutant minus WT) with 7.5 minutes of 
illumination. The good correlation supports that ΔNPQ can indeed 
be used as a proxy for ΔpH changes.

Figure 1b summarizes ΔNPQ changes for growth (100 μmol 
quanta m−2 s−1) and elevated (500 μmol quanta m−2 s−1) light inten-
sities (for original NPQ kinetics see Supplementary Fig. 5). The 
ΔNPQ behaviours of the mutants are strikingly different. (1) A 
general trend is that NPQ was lower in mutants lacking either of 
the two functional chloride channels, whereas it was higher in the 
absence of the K+/H+ antiporter KEA3, consistent with each pro-
posed function in redistributing ΔpH/Δψ. (2) ClCe had less impact 
on lowering NPQ than VCCN1. (3) During illumination, mutants 
without KEA3 (k, ck, vk, vck) showed a characteristic transient 
increase in NPQ at around 2 min at 100 μmol quanta m−2 s−1. (4) For 
the same light intensity, the vccn1 mutant showed a fast (< 1 min) 
transient decline in ΔNPQ. (5) For longer time points (>10 min), 
NPQ relaxed completely to WT levels at the lower light intensity in 
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Fig. 1 | NPQ characteristics in KEA3, VCCN1 and Clce mutants. a, Correlation between NPQ changes in all mutants (ΔNPQ = NPQmutant − NPQWT)  
versus corresponding changes in the pH component of the ECS (ΔpHECS). Data are also represented as the difference of mutant minus WT  
(ΔΔpHECS = ΔpHECS, mutant − ΔpHECS, WT). Both parameters were measured on intact leaves. Data were taken after an average of 7.5 min illumination with 
500 μmol quanta m−2 s−1. b, Difference in NPQ (ΔNPQ = NPQmutant − NPQWT) for two light intensities (100 and 500 μmol quanta m−2 s−1) measured on 
intact plants. Light was turned on at 0 min and off at 20 min. Data show the mean of n (WT, c, v, k, cv, ck, vk, vck) = (16, 26, 14, 14, 14, 13, 15, 13) plants  
with standard deviation. AU, arbitrary units.
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all mutants, indicative of transient changes in ΔpH and ion fluxes 
at 100 μmol quanta m−2 s−1. (6) In contrast, at 500 μmol quanta 
m−2 s−1, a larger difference in ΔNPQ appeared over the 20 min 
illumination period, with decreases in v-mutants and increases in 
k-mutants likely pointing to sustained changes in ion fluxes and 
ΔpH at higher light or the involvement of other non-photochemical 
quenching types (see below). (7) All mutants without KEA3 showed 
slower NPQ relaxations at 500 μmol quanta m−2 s−1 visualized as a 
positive ΔNPQ spike after light off (20 min). For shorter periods 
(<10 min) the ΔNPQ changes measured in Fig. 1 are in accordance 
with published data for VCCN1 (refs. 25,32), KEA3 (refs. 34,35) and the 
higher-order mutants29,32. To date, no results have been published 
for periods >10 minutes.

Do thylakoid ion transporter/channels operate independently 
from each other? The availability of higher-order ion transporter/
channel mutants allows the possibility of examining whether the 
transport proteins operate independently in thylakoid membranes. 
Independent operation of channels/transporters would be visible 
as a similar behaviour of measured higher-order mutants compared 
with the sum of their corresponding single mutants, whereas devia-
tion between the two indicates that channels/transports function 
non-independently. The latter could be explained by compensatory 
ion fluxes triggered by loss of function of a certain channel/trans-
porter. In a recent study on thylakoid ion transporter/channels it 
was concluded that the three transporter/channels studied here 
work independently32. The ΔNPQ results in Fig. 2 confirm this 
independency for 100 μmol quanta m−2 s−1 (Fig. 2, upper panel); 
that is, the ΔNPQ change in higher-order mutants is the sum of 
respective single mutants. However, for 500 μmol quanta m−2 s−1 a 
different conclusion must be drawn. Although the chloride chan-
nel double-mutant cv shows clear indications of the independent 
operation of ClCe and VCCN1, the data for higher-order kea3 
mutants reveal that the behaviour in double and triple mutants 
deviates clearly from the sum of the single mutant for illumina-
tion times >3 min (Fig. 2 bottom panel). The data indicate that at 
higher light intensities, the ΔNPQ phenotype is dominated by the 
absence of KEA3 (measured data are more positive than the sum 
of single mutants).

Validation of a computer model simulating photosynthetic 
light reactions. Because ion fluxes, electron transport, proton 
pumping and thylakoid membrane energization form a complex, 
highly interwoven and dynamic functional network, it is difficult 
to comprehend the consequences of altered ion fluxes in thyla-
koid channel/transporter mutants on these parameters. To obtain 
mechanistic insights into the functional consequences of altered 
ion fluxes, we modified a recently published computer model9 
that describes light harvesting, electron transport, proton pump-
ing, ATP synthesis, NPQ, ion fluxes and ATP/NADPH consump-
tion in the Calvin–Benson cycle (Fig. 3a) by employing coupled 
differential equations. Rate constants, stoichiometries, pH depen-
dencies and enzyme activities of individual reactions required for 
the modelling were taken from the literature. Details of the model 
are given in Supplementary Fig. 6 and Supplementary Methods. 
Owing to substantial progress over past decades, good quantitative 
values are available for many model parameters (Supplementary 
Methods). However, the best way to build up confidence in a model 
is to test its outcomes by experiments. As a first step, we compared 
measured kinetics of chlorophyll (Chl) fluorescence parameters 
qL (fraction of open PSII centres), ΦII (operating efficiency of 
PSII) and NPQ for WT plants (Fig. 3b) with the outcome of the 
model. All three measuring parameters were well described by the 
model for 100 μmol quanta m−2 s−1 (black curves and symbols). 
The modelled NPQ amplitude for 500 μmol quanta m−2 s−1 was 
slightly lower and the relaxation was faster than measured. This 
may be explained by the fact that the model does not include slower 
NPQ components such as qZ or qI that can contribute notable at 
higher light intensities41,42; that is, the model assumes that NPQ is 
entirely the high-energy quenching part qE. As a consequence of 
the ~15% lower NPQ in the model for 500 μmol quanta m−2 s−1, the 
ΦII parameter, which is a measure of linear electron transport, is 
slightly higher compared with the measured data. Including qZ and 
qI in the model is not straightforward and the gain for the model is 
limited. Therefore, we decided not to model qZ and qI. The second 
comparison between the model and the experiment was the ΔΔpH 
changes in the mutants relative to WT for the two light intensities 
examined (Fig. 3c). The model predicts the right direction of the 
changes and for many mutants is quantitatively correct (within the 
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range of experimental deviation). Furthermore, the de-epoxidation 
state of the xanthophyll pool measured for leaves illuminated with 
500 μmol quanta m−2 s−1 light intensity is predicted quantitatively 
by our simulations (Fig. 3d). The 100 μmol quanta m−2 s−1 light 
intensity was not examined because the de-epoxidation state is very 
low at this light intensity due to low violaxanthin–de-epoxidase 
activity. Finally, model performance was tested by its prediction of 
ΔNPQ changes (Fig. 3e). Good agreement between simulated and 
measured ΔNPQ kinetics is apparent with the exception that it fails 
to simulate the measured slow ΔNPQ decline (>5 min) in the v 
and cv mutants at 500 μmol quanta m−2 s−1. One possibility is that 
the slow ΔNPQ decline reflects qZ or qI, which are not included 
in the simulations. Overall, in most cases, the model correctly pre-
dicts quantitatively different measured parameters, particularly for 
shorter (<5 min) time scales, indicating that the set of constants 
and stoichiometries used in the model describe the system well. 
This result also supports the view that partitioning of Δψ and ΔpH 
by ion movements is important for controlling photosynthetic res
ponses9,16,32,43. It is noteworthy that the model requires the involve-
ment of cyclic electron transport for proper description of the mea-
sured data. Without implementation of cyclic electron transport 
the model failed to predict the experimental qL, ΦII and NPQ data 

(Supplementary Fig. 7, compare with Fig. 3b that includes cyclic 
electron transport).

Impact of KEA3, VCCN1 and ClCe activities on ion fluxes and 
thylakoid membrane energization. Computer modelling allows 
deciphering of the individual contributions of ion transporter/
channels on fluxes of Cl− and K+ as well on membrane energiza-
tion. Because the model predicts measured parameters more accu-
rately over the first minutes of illumination, we decided to study ion 
fluxes, ΔpH and Δψ over the first 5 minutes only. This restriction to 
shorter periods is further justified by the fact that ion transporter/
channel mutants show most pronounced phenotypes under fluctu-
ating light conditions23,32,33; that is, when fast changes are required. 
Channel/transporter independence analysis in the higher-order 
mutants justifies analyses of KEA3, VCCN1 and ClCe individu-
ally over the first minutes of illumination to understand how they 
work in concert. In line with data from other groups26,27, the clce 
loss-of-function mutant phenotype is very weak for the conditions 
examined here (Supplementary Fig. 8b). Therefore, the following 
analyses focus on the impact of VCCN1 and KEA3 only, which 
reduces the complexity of the system without compromising essen-
tial aspects of ion fluxes across the thylakoid membrane. Figure 4b  
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(VCCN1) and Fig. 4c (KEA3) show differences for WT minus 
mutant, that is it reports specifically on the function of the anion 
channel or K+/H+ antiporter in WT plants.

VCCN1. The Cl− channel VCCN1 was modelled as a resistor-like 
channel (Supplementary Methods), with its response to electro-
chemical potential (Cl−) fit to in vitro observations described in 
an earlier study25. During the first seconds of illumination with 
100 μmol quanta m−2 s−1, Δψ rose steeply (peak ~7 s, Fig. 4a left 
panel) leading to activation of the voltage-gated VCCN1 channel. 
The resulting Cl− influx also peaks at ~7 s (red curve in Fig. 4b) 
indicating the causal link between Δψ and Cl− fluxes, that is Δψ 
dissipation involves mainly VCCN1 during the first minute of illu-
mination. The VCCN1-specific Δψ relaxation (Fig. 4b black) was 
accompanied by a build-up of the ΔpH component seen as anti-
parallel behaviour of ΔΔψ (black curve) and ΔΔpH (green curve) 
in Fig. 4b peaking at ~30 s. The kinetics of VCCN1-mediated 
ion fluxes are similar at 500 μmol quanta m−2 s−1 (right panel in  
Fig. 4b) but the amplitudes of these fluxes were more intense at 
higher light intensities.

KEA3. KEA3 was modelled as a proton/potassium antiporter the 
activity of which is regulated by NADPH (we used qL as a proxy 
for NADPH level) and the pHLumen in accordance with the litera-
ture (Supplementary Methods). In contrast to VCCN1, the simu-
lated behaviour for KEA3 was strikingly different (Fig. 4c). No 
notable KEA3-specific changes were apparent over the first minute 
of illumination, in a time when most VCCN1-dependent changes 

take place. Furthermore, in contrast to VCCN1, the kinetics of 
KEA3-induced changes are light-intensity dependent. At 100 μmol 
quanta m−2 s−1 alterations in ion fluxes in kea3 were more rapid 
compared with 500 μmol quanta m−2 s−1 (see also Fig. 1). We first 
focus on 100 μmol quanta m−2 s−1. KEA3-mediated K+ influx peaks 
at ~78 s (blue curve Fig. 4c) in parallel to the ΔpH build-up (Fig. 4a),  
which is expected for a proton-driven K+ import by KEA3. The 
K+/H+ antiport activity leads to a decline in ΔpH (Fig. 4c green 
curve) paralleled by an increase in the Δψ component (Fig. 4c black 
curve), that is a re-partitioning from ΔpH to Δψ occurring between 
1 and 2 min. However, after ΔpH and Δψ reached their extrema 
(~2 min), the activity of KEA3 decreases, probably as a result of 
ATP synthase activation and its impact on ΔpH43. This leads to 
a relaxation of ΔpH and Δψ at around 10 min (see ΔNPQ for k 
in Fig. 1a). Similar to VCCN1, the antiparallel ΔpH/Δψ changes 
mediated by KEA3 are almost simultaneous. At 500 μmol quanta 
m−2 s−1 KEA3-mediated K+ influx into the lumen activates later and 
lower (Fig. 4c right, blue line) although the initial ΔpH increase is 
similar to that for 100 μmol quanta m−2 s−1 (compare green curves 
in Fig. 4a, right with left). The lack of activity of KEA3 at 500 μmol 
quanta m−2 s−1 indicates regulatory inactivation of this transporter 
at higher light intensity (see below). The slow and weak KEA3 acti-
vation leads to decreased and slower re-partitioning from ΔpH to 
Δψ (Fig. 4c right).

Employing the predictive power of the computer model. KEA3 reg-
ulation. Figure 4c reveals low KEA3 activity at 500 μmol quanta m−2 s−1,  
but not at 100 μmol quanta m−2 s−1. This is unexpected because 
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the driving force for H+/K+ antiport at 500 μmol quanta m−2 s−1  
is even higher than at 100 μmol quanta m−2 s−1 (see ΔpH in Fig. 4a).  
This observation points to a downregulation of KEA3 activity at 
higher light intensities. Recent studies provide evidence for KEA3 
regulation via a so-called KTN domain located at the C-terminus 

of the antiporter44,45. For the bacterial KEA3 homologue KefC it was 
shown that the regulatory KTN domain binds NAD(P)+/NAD(P)
H46. The reduced coenzyme has an inhibitory effect on the trans-
port activity. Recently, independent studies in planta showed that 
the KTN domain of KEA3 extents into the stroma44,47 where the 

b

a

c

0 5 10 15 20 25

With KEA3 regulation Without KEA3 regulation

(Mutant-WT)

∆NPQ

500
900

100

500
900

100

Measured, 100 µmol quanta m–2 s–1

Measured, 500 µmol quanta m–2 s–1
Simulated, 100 µmol quanta m–2 s–1

Simulated, 500 µmol quanta m–2 s–1

Light intensity/µmol quanta
m–2 s–1

H+

H+
H+

K +

H+

H+

H+

Lumen

Stroma

KEA3

KEA3

H+

100 10 1 0.1 0.01

µmol quanta
m–2 s–1

100

500

∆NPQ

0

0.3

0.6

Time/min

∆
N

P
Q

0 5 10 15 20 25

0

0.3

0.6

Time/min

∆
N

P
Q

f = (5 s)–1

KEA3 KEA3
initial

VCCN1

100 µmol quanta m–2 s–1

100 µmol quanta m–2 s–1

0.3

0.2

0.1

0

–0.1

–0.2

–0.3

–0.4
0 1,000 2,000 3,000 4,000

f = (120 s)–1

∆
N

P
Q

0.3

0

0.1

0.20.2

0.1

0

–0.1

–0.2

–0.3

–0.4

∆
N

P
Q

∆
N

P
Q

Time (s)

0 1,000 2,000 3,000 4,000

Time (s) f–1 (s)

0 1,000

KEA3

VCCN1
KEA3_noreg

200 400 600 800

0 1 2 3 20 21 22

0 1 2 3 20 21 22

Time (min) Abundance relative to WT

T
im

e 
to

 e
xt

re
m

a 
(s

)
Abundance relative to WT

0.02

0

–0.02

–0.04

∆
pH

 (
V

)

0.02

0

–0.02

0.04

∆
pH

 (
V

)

KEA3
steady state

VCCN1
steady state

VCCN1
initial

VCCN1

0.01 0.1 1 10 100

0.01 0.1 1 10 1000.01

∆
pH

 o
r 

∆
ψ

 (V
)

0.1 1 10 100

0.01 0.1 1 10 100 0.01 0.1 1 10 100

30

25

20

15

10

5

0

0.04

0.02

–0.02

–0.04

0

0.04

0.02

–0.02

–0.04

0

0.04

0.02

–0.02

–0.04

0

0.04

0.02

–0.02

–0.04

0

∆
pH

 o
r 

∆
ψ

 (V
)

∆ψ, 100
∆ψ, 500

∆pH, 100
∆pH, 500

0 1,000

With KEA3 regulation
Without KEA3 regulation
KEA3 inactivation

200 400 600 800

0.3

0.2

0.1

0

∆
N

P
Q

 @
 2

 m
in

ET

ET

Fig. 5 | Computer simulation for the functional characterization and regulation of KEA3 and VCCN1. a, Comparison between measured (circles) and 
simulated (lines) ΔNPQ (mutant minus WT) data for 20 min of illumination at two different light intensities. Redox-dependent downregulation of KEA3 
activity is required for 500 μmol quanta m−2 s−1 (left graph, red line and symbols). KEA3 inactivation (right graph, black curve) derived as the difference 
between ΔNPQ with (orange) and without KEA3 (red) regulation. b, Dependence of VCCN1 and KEA3 ion fluxes expressed as ΔNPQ on sinusoidal changes 
in light intensities. The two graphs on the left show examples for high (left) and low (right) frequencies responses for KEA3 (orange), KEA3 without 
redox-regulation (red) and VCCN1 (green). The plots at the bottom show the light protocol. Numbers indicate light intensities in μmol quanta m−2 s−1. 
The amplitudes of the ΔNPQ response for the two frequencies are indicated by black horizontal lines for KEA3. The graph on the right gives a detailed 
dependence of ΔNPQ on the frequency of the fluctuating light. The panel on the far right illustrates how the antiporter activity of KEA3 responds to faster 
(top) and slower (bottom) changes in light intensities/proton pumping into the lumen. ET, electron transport chain. c, Response of ΔpH and Δψ to different 
abundances of VCCN1 and KEA3. The two graphs on the left show examples of ΔpH responses if the transporter/channel concentration changes from 
0.01- to 100-fold of the WT level. Black arrows for VCCN1 indicate a shift in the ΔpH extrema. The middle plots show ΔpH and Δψ changes as function of 
KEA3 and VCCN1 abundances for 100 (black symbols) and 500 (red symbols) μmol quanta m−2 s−1. The graphs on the upper panel illustrate initial pH/Δψ 
changes (from 0 s to 50 s), the plots in the lower panel illustrate steady-state changes (20 min of illumination). The graph on the right shows how the time 
point of the early ΔpH (Δψ) spike (black arrows in the graph to the bottom left) shifts as function of VCCN1 concentration in thylakoid membranes.

Nature Plants | VOL 7 | July 2021 | 979–988 | www.nature.com/natureplants984

http://www.nature.com/natureplants


ArticlesNATurE PlAnTs

NADP(H) pools vary according to the photosynthetic status of 
the chloroplast. It is therefore likely that elevated NADPH/NADP 
ratios at higher light intensities downregulate KEA3 activity44,47. To 
test this, we ran simulations with or without NADPH-dependent 
downregulation of KEA3 activity at different light intensi-
ties. Comparison with measured ΔNPQ data shows clearly that 
NADPH-triggered downregulation is required to explain experi-
mental results at 500 μmol quanta m−2 s−1 but that this regulation is 
not required for 100 μmol quanta m−2 s−1 (Fig. 5a, for other mutants 
see Supplementary Fig. 9). A detailed light-intensity dependency of 
the downregulation of KEA3 activity (black curve, Fig. 5a, right) 
derived from the difference of ΔNPQ in the presence (orange) and 
absence (red) of KEA3 regulation reveals a steady inactivation of 
the antiporter with increasing light intensity reaching a plateau at 
250 μmol quanta m−2 s−1.

Furthermore, the model allows for the study of functional impli-
cations if regulatory parameters of KEA3 were altered. Table 1  
summarizes changes in NPQ for different pKa values for the 
pHLumen-dependent activation of the antiporter and for different 
Hill coefficients for the reductive inactivation of KEA3 by NADPH. 
Changing the pKa values for KEA3 from 5.5 to 6.5 leads to an 
~20% acceleration in NPQ relaxation (from 28 s to 22 s), whereas 
changes in the Hill coefficient for NADPH-triggered inactivation 
has no apparent impact on the speed of NPQ kinetics. Alteration 
of the Hill coefficient has a small impact on the steady-state NPQ, 
whereas increasing the pKa value leads to a ~10% decrease in NPQ. 
The results presented in Table 1 demonstrate that modulation of the 
sensitivity of KEA3 to pHLumen or to NADPH-dependent downregu-
lation has only minor functional consequences.

KEA3 and VCCN1 under fluctuating light. A second application of 
the computer model is to determine how fast KEA3 and VCCN1 
activities respond to fluctuating (sinusoidal) light intensities. To this 
end, the simulation started with a 20-min pre-illumination period 
to activate the Calvin–Benson cycle followed by sinusoidal chang-
ing light intensities alternating between 100 and 900 μmol quanta 
m−2 s−1 over a further 40-min period (Fig. 5b, bottom). Figure 5b 
gives the ΔNPQ (mutant minus WT) for different frequencies of 
fluctuating light intensities. The two examples for high (f = (5 s)−1, 
left) and low (f = (120 s)−1, middle) frequencies demonstrate that 
the loss of KEA3 activity has a substantial impact on the fluctuat-
ing light response only for lower frequencies, but not if the light 
intensity changes faster. This is visualized by the changes in ΔNPQ 
amplitudes in response to the sinusoidal light fluctuations for the 
two frequencies (indicated in Fig. 5b). The frequency dependency 
of ΔNPQ in Fig. 5b (right) derived from this analysis monitors the 
frequency dependency of KEA3 and VCCN1 activities. It indi-
cates that only if the fluctuation in light intensity and therefore 

proton pumping into the lumen is slow enough does the lack of  
H+/K+ antiport in the kea3 mutant lead to a ΔNPQ tuning phenotype 
(see panel to the far right in Fig. 5b). The change in VCCN1 ampli-
tude is relatively small but that for KEA3 is notable (ΔNPQ > 0.2).  
Figure 5b (right) reveals that half of KEA3 antiport activity is 
reached at a frequency of ~(60 s)−1. Repeating this analysis with a 
KEA3 transport version without NADPH regulation shows that this 
leads to a less-efficient response over the entire frequency domain, 
that is this unregulated KEA3 version becomes a slow responding 
antiporter to fluctuating light.

Impact of KEA3 and VCCN1 abundances on thylakoid energetics. 
The mode of action of KEA3 and VCCN1 allows prediction of how 
changes in their relative abundance will impact ΔpH, Δψ, NPQ 
and electron transport. In contrast to these more intuitive predic-
tions, the magnitude of changes in these parameters in response 
to changes in antiporter and channel concentrations in the thyla-
koid membrane is not straightforward. Figure 5c shows how ΔpH 
changes if KEA3 or VCCN1 abundances vary between 0.01 and 
100 times WT levels (mutant minus WT) for a light intensity of 
100 μmol quanta m−2 s−1. As expected (see above), an increase in 
KEA3 levels leads to a decrease in ΔpH with a lag time of ~1 min, 
whereas an increase in VCCN1 abundance has the opposite effect, 
mainly at shorter times. These alterations in ΔpH and Δψ are anal-
ysed quantitatively in Fig. 5c (middle) for early time points (‘initial’ 
between 0 s and 50 s after light on) or for steady-state conditions 
(20 min light on). The analysis was performed for 100 (black sym-
bols) and 500 (red symbols) μmol quanta m−2 s−1. The reduction in 
KEA3 and VCCN1 abundances (0.1- and 0.01-fold) has a moderate 
effect on the pmf components. However, higher concentrations of 
KEA3 and VCCN1 lead to much larger changes in ΔpH and Δψ (in 
opposite directions). Note that ΔpH changes are expressed in volts, 
for example a change in −0.03 V as seen for 100-fold higher KEA3 
abundance translates into a ΔpH change of ~0.5 pH units or an 
NPQ decrease of an impressive 1.5 units (Supplementary Fig. 10).  
A similar change in ΔpH, Δψ, NPQ magnitudes are apparent for 
10- and 100-fold increases in VCCN1 concentrations but in oppo-
site directions and only for illumination times <30 s. An additional 
implication of changing the VCCN1 abundance in thylakoid mem-
branes is that the position of the ΔpH/Δψ spike (black arrows in 
Fig. 5c, bottom left) shifts to shorter times if VCCN1 concentra-
tion increases (Fig. 5c, right). Changing VCCN1 from 0.1-fold to 
100-fold accelerates the ΔpH/Δψ response (spike) from ~27 s to 
~5 s independent of light intensity.

Discussion
Temporal sequence of events unravelled by mutant analysis and 
mathematical modelling. In this study, we demonstrated that our 
extended mathematical model was able to describe a range of mea-
sured parameters (Fig. 3), as well as functional consequences for 
mutants that affect ion homoeostasis around thylakoid membranes. 
The model allows deciphering of an order of events that is summa-
rized in Fig. 4d for two light intensities. The data show differences 
between WT minus the vck triple mutant, which indicate how the 
concerted action of the three ion channels/transporters fine-tune 
the pmf through ion fluxes. At a growth light intensity of 100 μmol 
quanta m-2 s-1 the fast build-up of Δψ triggers Cl− influx by the 
voltage-gated VCCN1 into the lumen leading to partitioning of 
the pmf from Δψ to ΔpH. This initial partition phase is completed 
after ~30 s. At this point, the ΔpH rise is half-maximal (Fig. 4a,  
green curve) leading to activation of KEA3 and re-partitioning from 
Δψ to ΔpH that is completed after ~120 s. This is followed by a 
slower secondary re-partitioning phase from ΔpH to Δψ. Thus, the 
concerted actions of VCCN1 and KEA3 lead to oscillations in the 
Δψ and ΔpH components of the pmf. Physiologically these oscil-
lations make sense because during the initial phase of illumination 

Table 1 | Impact on enzymatic parameters of KEA3 on NPQ 
determined by the computer model

pKa Hill 5.5 6.0 6.5

1 28 s
1.94

25 s
1.85

23 s
1.77

3 28 s
1.91

24 s
1.80

22 s
1.70

5 28 s
1.89

24 s
1.77

22 s
1.66

Conditions: Illumination for 60 min with 500 μmol quanta m−2 s−1 followed by change to 100 μmol 
quanta m−2 s−1. The upper number in each cell represents the time constant for NPQ relaxation 
after the light-intensity switch. The second number gives the steady-state NPQ value for 
500 μmol quanta m−2 s−1 at the end of the 60-min period. The time constant was determined 
by bi-exponential fitting of the NPQ relaxation curve. The time represents the dominating fast 
relaxation component (amplitude 75–81%).
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the build-up of the ΔpH provides well-needed photoprotection via 
NPQ and photosynthetic control. Additionally, ΔpH build-up helps 
to activate ATP synthesis via ATP synthase by protonation of lumi-
nal amino acids48. After the initial period, a re-partition from ΔpH 
into Δψ allows faster electron transport by releasing the NPQ brake 
and photosynthetic control; that is, light is now converted more 
efficiently, which is beneficial under low light conditions. Figure 4d 
shows that an important contributor for these ΔpH/Δψ oscillations 
is the ratio of Cl− to K+ concentrations in the thylakoid lumen con-
trolled by VCCN1 and KEA3 activities. Inspection of Fig. 4d at both 
light intensities shows that ΔpH increases and Δψ decreases if the 
change in Cl− concentration is higher than the change in K+ and 
vice versa. Consequently, at crossing points of ion concentrations 
the changes in both pmf components are also equal (compare cross 
points of red/blue and black/green lines in Fig. 4d). Overall Fig. 4d 
demonstrates relative fast changes in ion concentrations, and as a 
consequence pmf partitioning, that explain why phenotypes of thy-
lakoid membrane ion transport/channel mutants are more apparent 
under fluctuating light (Supplementary Fig. 3, refs. 25,33,49). In con-
trast to 100 μmol quanta m−2 s−1, re-partitioning from ΔpH to Δψ is 
much slower at 500 μmol quanta m−2 s−1; that is, the ∆ψ /ΔpH cross-
ing point is shifted from ~90 s to ~210 s (Fig. 4d). This delay in ΔpH 
relaxation could help to photoprotect the system using NPQ/photo-
synthetic control at this higher light intensity. Mechanistically, the 
slower ΔpH relaxation at 500 μmol quanta m−2 s−1 can be explained 
by the low activity of KEA3 (see K+ flux in Fig. 4c right, blue line) 
caused by downregulation of the antiporter (see below).

Insights in KEA3 and VCCN1 operation. Defining design strategies 
for thylakoid ion transporter/channels. The power of our experien-
tially validated computer model was explored for deeper physiologi-
cal characterization of KEA3 and VCCN1 that is difficult to access 
experimentally. The analyses shown in Fig. 5a provide strong evi-
dence for redox-dependent downregulation of KEA3, probably by 
NADPH, at higher light intensities in line with indications from 
the literature44,45. The light-intensity dependence of KEA3 inactiva-
tion reveals that 50% inactivation is reached at ~100 μmol quanta 
m−2 s−1; that is, the regulation of antiport activity is tuned around 
the growth light intensity. Further insights into KEA3 and VCCN1 
operation are provided by their frequency dependency (Fig. 5b). For 
both VCCN1 and KEA3, a full response to sinusoidal modulated 
light intensities in light-adapted plants is only apparent at frequen-
cies lower than ~(100 s)−1. This might reflect a limited capacity for 
ion transport, in particular for KEA3; that is, if the proton pumping 
into the lumen by electron transport fluctuates too fast a limiting 
capacity of KEA3 leads to a damping of the proton oscillation and 
the NPQ response. It is noteworthy that these results are exclusively 
caused by KEA3 and VCCN1 and not by pleiotropic effects that are 
possible in real mutant studies. This is a clear advantage of com-
puter simulations. The analysis in Fig. 5b highlights the importance 
of redox-regulation of KEA3 activity under fluctuating light. A lack 
thereof would make the H+/K+ antiporter slower and less respon-
sive to fluctuating light intensities. Further analyses reveal that the 
biggest impact on thylakoid membrane energetics can be achieved 
by overexpressing VCCN1 and KEA3 but not by adjusting enzy-
matic parameters of KEA3 (Table 1). The latter has only a minor 
impact on NPQ. The overexpression simulation shows an intrigu-
ing high sensitivity of ∆ψ, ΔpH and NPQ on higher concentrations 
of KEA3 and VCCN1. Furthermore, increasing VCCN1 abundance 
also accelerates the transient and early ΔpH spike. The results of 
our analyses may guide genetic engineering strategies to adjust thy-
lakoid energization to optimize and fine-tune energy transduction 
in plants. In this context, the extended computer program presented 
in this study can be employed to help develop custom-made plants 
with certain bioenergetic features by uncovering and exploring 
non-intuitive behaviours of thylakoid membrane components.

Conclusion
Our computer simulations reveal that the different kinetic behav-
iours of VCCN1 and KEA3 and the accompanied ion fluxes deter-
mine mutual oscillatory increases and decreases in ΔpH and Δψ 
across thylakoid membranes required for the light-dependent 
control of electron transport and photoprotection at the onset of 
illumination. Furthermore, detailed characterization of KEA3 activ-
ity shows that the redox-dependent (NADPH) downregulation of 
KEA3 activity regulates NPQ and membrane energization around 
growth light intensities and enhances the response to fast chang-
ing fluctuating light intensities, a feature that is relevant for efficient 
plant growth in natural environments. In contrast, membrane ener-
gization and NPQ are relatively insensitive to the precise values of 
enzymatic KEA3 parameters that determine its regulatory power 
(pKa of activation, Hill coefficient for downregulation). However, 
increasing VCCN1 and KEA3 abundance in thylakoid turned out to 
be a powerful way to tune photoprotection and electron transport.

Methods
Plant materials and growth conditions. Arabidopsis thaliana WT (Col-0) and 
confirmed mutant seeds were sown on soil, and plants were maintained in a 
growth chamber at a constant temperature of 21 °C, and 9 h illumination per day 
at 120 µmol m−2 s−1. Double mutants were acquired by crossing corresponding 
single mutants: kea3-1 (ref. 23), vccn1-1 (SALK_103612C) and clce-2 (Salk_010237). 
The triple mutant was obtained by crossing kea3-1clce-2 with vccn1. Homozygous 
mutants were identified using a polymerase chain reaction with genomic DNA 
(Supplementary Fig. 1).

Phenomics. Plants that were 4 weeks old were moved to phenomic chambers with 
the same photoperiod and temperature settings as in the growth chamber. After a 
2–7-day acclimation period, Chl fluorescence parameters were measured at night 
after >2 h of dark adaptations. Data from the constant light phenomic chamber 
was acquired using the Fluorcam system (PSI Co.). Data from the fluctuating 
light phenomic chamber was acquired using PhenoCenter (LemnaTec). In the 
PhenoCenter during the day, after 20 min constant light at 120 µmol m−2 s−1,  
light intensity was set to fluctuate every 1 min, randomly among 50, 120, 250,  
400 µmol m−2 s−1 with an overall frequency of 0.6, 0.2, 0.1, 0.1 respectively,  
which ensured the average light intensity was close to 120 µmol m−2 s−1.

Isolation of chloroplasts thylakoid membranes. Chloroplast and thylakoid 
membrane isolations were done as described in a previous study50. Thylakoid 
membranes were used for gel electrophoresis and western blotting, whereas 
isolated chloroplasts were used for in vitro 9-AA fluorescence measurement.

Gel electrophoresis and western blotting. Isolated thylakoids were loaded on 
a 10% Tris–Tricine acrylamide gel (2 µg/lane for western blotting and 4 µg/lane 
for Coomassie blue staining). For western blotting, gels were wet blotted onto a 
methanol-activated PVDF membrane (0.45 µm, Millipore). Blocking was done 
in 5% milk (Bio-Rad) in Tris-Buffered Saline with Tween20 buffer (pH 7.6) for 
1 h at room temperature. Incubation with primary antibody raised against PsbS 
protein (kind gift from K.K. Niyogi, UC Berkeley, CA, USA) was done overnight 
in a cold room (dilution 1:2000). Secondary antibody anti-rabbit horseradish 
peroxidase-conjugated from donkey as a host animal (GE Healthcare) was 
incubated at room temperature for 2 h (dilution 1:50 000, Amersham, GE). 
Chemiluminescence (ECL) was recorded on Amersham Hyperfilm (GE) using 
Amersham ECL Western Blotting Detection Kit (GE).

9-AA fluorescence. 9-AA fluorescence kinetics was recorded with excitation at 
405 nm (bandwidth 1 nm) and emission at 460 nm (bandwidth 7.5 nm). Isolated 
chloroplasts with 40 μg Chl were added to 1 ml of shock buffer (25 mM HEPES, 
7 mM MgCl2, 40 mM KCl, pH 7.8 with KOH) in a reaction cuvette with constant 
stirring for ~1 min followed by addition of 1 ml of double concentration buffer 
(25 mM HEPES, 7 mM MgCl2, 260 mM KCl, 200 mM sorbitol, pH 7.8 with KOH). 
After ~1 min, 2 μl of 5 mM 9-AA were added before turning on the external  
light source following a stabilized fluorescence signal. Three minutes of 
illumination was followed by 2 min of dark relaxation. ∆pH was calculated as 
described by Van et al.51.

Pigments analysis. Leaf samples illuminated under 500 µmol m−2 s−1 light for 
20 min were frozen in liquid N2 before carotenoid extraction in 100% ethanol on 
ice. Extracted pigments were stored at −20 °C and analysed using reverse-phase 
high-performance liquid chromatography within 24 hours52.

Chl fluorescence measurements. Before light adaptation, the minimum 
fluorescence (Fo) and maximum fluorescence (Fm) were determined. For 
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light-adapted leaves the steady-state fluorescence level (Fs) and maximal 
fluorescence (Fm′) were measured and the following parameters calculated:53 
Fv/Fm = (Fm − Fo)/Fm; ΦII = (Fm′ – Fs)/Fm′; NPQ = (Fm − Fm′)/Fm′; 
qL = ((Fm′ − Fs)/(Fm′ − Fo′)) × (Fo/Fs).

Difference absorption spectroscopy. Cyt b6f complex and PSII concentrations in 
thylakoid membranes were derived from chemical difference absorption spectra 
that quantify cyt b6 and cyt f (for cyt b6f complex) and cyt b559 (for PSII). Signals 
were recorded using a Hitachi U3900 spectrometer (2-nm slit width, 530–580 nm). 
For details see ref. 54.

ECS. The ECS signals at 520 and 545 nm were measured on dark-adapted plants. 
The dark interval relaxation kinetics was recorded after illuminating a leaf at 
500 µmol quanta m−2 s−1 light for a period (1, 2, 3, 5, 10, 19.5 min). Eight plants 
were used for each genotype. The ∆pH and ∆ψ components were calculated as 
described in ref. 29.

Modelling. The photosynthetic light reaction was modelled by modifying a 
previously described model9. Key improvements involve a close match between 
the simulated data and measured data from leaf samples. Detailed updates and 
explanations are available in Supplementary Methods.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
The data sets generated during and/or analysed during the current study are 
available from the corresponding author on reasonable request.

Code availability
The computer code for our model is available online. A link is provided in 
Supplementary Information.
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