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The Heegaard genus of a 3-manifold, as well as the growth of Heegaard genus in
its �nite sheeted covering spaces, has extensively been studied in terms of alge-
braic, geometric and topological properties of the 3-manifold. This note shows
that analogous results concerning the trisection genus of a smooth, orientable
4-manifold have more general answers than their counterparts for 3-manifolds.
In the case of hyperbolic 4-manifolds, upper and lower bounds are given in terms
of volume and a trisection of the Davis manifold is described.
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1. BOUNDS ON TRISECTION GENUS

Gay and Kirby's construction of a trisection for arbitrary smooth, ori-
ented closed 4-manifolds [6] de�nes a decomposition of the 4-manifold into
three 4-dimensional 1-handlebodies glued along their boundaries in the follow-
ing way: Each handlebody is a boundary connected sum of copies of S1 ×B3,
and has boundary a connected sum of copies of S1 × S2 (here, Bi denotes
the i-dimensional ball and Sj denotes the j-dimensional sphere). The triple
intersection of the 4-dimensional 1-handlebodies is a closed orientable sur-
face Σ, called the central surface, which divides each of their boundaries into
two 3-dimensional 1-handlebodies (and hence is a Heegaard surface). These
3-dimensional 1-handlebodies are precisely the intersections of pairs of the
4-dimensional 1-handlebodies.

A trisection naturally gives rise to a quadruple of non-negative integers
(g; g0, g1, g2), encoding the genus g of the central surface Σ and the genera g0,
g1, and g2 of the three 4-dimensional 1-handlebodies. We allow the genera to
be distinct following [14, 19]. The trisection genus of M, denoted g(M), is the
minimal genus of a central surface in any trisection of M. A trisection with
g(Σ) = g(M) is called a minimal genus trisection.
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IfM has a (g; g0, g1, g2)-trisection, then χ(M) = 2+g−g0−g1−g2. Since
the fundamental group of each 4-dimensional 1-handlebody surjects onto the
fundamental group of M, we have gk ≥ β1(M). Combining the above equation
with χ(M) = 2− 2β1(M) + β2(M) therefore gives

g(M) ≥ β1(M) + β2(M).

This is an equality for the six manifolds with trisection genus at most
two [15], and for all standard simply connected 4-manifolds [20]. Castro and
Ozbagci [4] constructed trisections of genus 2g+2 of the twisted bundles Sg×̃S2,
where Sg is a closed, connected, oriented surface of genus g. By the above
inequality, these are all minimal and so g(Sg×̃S2) = 2g + 2. More generally,
using thin-position arguments, Aranda [2] constructs trisections of all orientable
S2-bundles over closed (orientable or non-orientable) surfaces. All of these are
minimal due to the above bound (using Z2-coe�cients in the case of non-
orientable base). Meier [13] produces in�nitely many 4-manifolds admitting a
minimal genus (g; k, k, k)-trisection for each g ≥ 3 and each 0 < k < g − 1.
Minimality is shown in [13] using observations that are equivalent to the ones
given in this paper.

We have gk ≥ rkπ1(M) ≥ β1(M), where rk(π1(M)) is the minimal
number of generators of the fundamental group of M . Hence, lower bounds
on the rank give lower bounds on trisection genus, and, conversely, upper
bounds on the trisection genus give upper bounds on the rank. Moreover,
g(M) ≥ χ(M)− 2 + 3 rk(π1(M)).

Question 1. Given any �nitely presented group G, is there a smooth, ori-
ented closed 4-manifold M with π1(M) = G such that g(M) = χ(M) − 2 +
3 rk(G)?

The question has a positive answer for surface groups (using the above
examples of Sg×̃S2) and the in�nite cyclic group (by virtue of S1 × S3). The
construction of trisections for spun 4-manifolds by Meier [13] shows that the
above question also has a positive answer for every group that is the funda-
mental group of a 3-manifold satisfying the rank versus genus conjecture. It
thus has a positive answer for free products of these groups (in particular,
�nitely generated free groups), by taking connected sums of these manifolds
and application of Grushko's theorem [8,17].

We now turn to an upper bound. Let σ(M) be the minimal number of
4-simplices in a (possibly singular) triangulation ofM.We call σ(M) the trian-
gulation complexity of M. Then the upper bound on trisection genus recently
given in [3] using triangulations gives:

60 σ(M) ≥ g(M).
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This note gives some simple consequences of these upper and lower bounds.
Our starting point is the following, which at once gives upper and lower bounds
on trisection genus, and a lower bound on the triangulation complexity of a
4-manifold.

Proposition 2. Let M be a smooth orientable 4-manifold and assume

that M is not di�eomorphic to S4. Then

60σ(M) ≥ g(M) ≥ 1

3
|χ(M)|.

The proof is simple. We have χ(M) = 2 + g − g0 − g1 − g2. Hence
g(M) ≥ χ(M) − 2. In particular, the lower bound holds when χ(M) ≥ 3. If
χ(M) > 0 and β1(M) > 0, then g(M) ≥ χ(M). Now suppose 1 ≤ χ(M) ≤ 2,
β1(M) = 0 and M 6= S4. The classi�cation of trisections of genus 2 due to
Meier and Zupan [15], then implies g(M) ≥ 3 ≥ χ(M). So the lower bound
holds in the case of positive Euler characteristic. Moreover, if CP 2 is excluded
from the statement, one may replace 1/3 by 1/2.

Combining χ(M) = 2− 2β1(M) + β2(M) with the bound g(M) ≥ β1(M)
gives g(M) ≥ 1− 1

2χ(M). So if χ(M) ≤ 0, then g(M) ≥ 1
2 |χ(M)|+ 1. This is

sharp for S1 × S3, where χ(S1 × S3) = 0 and g(S1 × S3) = 1.

1.1. Stable trisection genus

We now turn to �nite sheeted covers. In particular, we are interested in
the case where there are �nite covers of arbitrarily large degree, but our results
also apply when there are only �nitely many such covers. If M is hyperbolic,
then residual �niteness implies that there are �nite covers of arbitrarily large
degree. If χ(M) < 0, then β1(M) > 0, and hence there are �nite cyclic covers
of any degree. Since the only manifold covered by S4 is the non-orientable
manifold RP 4 [9, Section 12.1], we have:

Corollary 3. Let M be a smooth orientable 4-manifold and assume that

M is not di�eomorphic to S4. Suppose N →M is a �nite sheeted cover of degree

d. Then g(N) is O(d). Speci�cally,

60σ(M) d ≥ g(N) ≥ 1

3
|χ(M)| d.

Moreover, if χ(M) 6= 0, then g(N) is Θ(d).

Another immediate corollary is in terms of the characteristic functions of
Milnor and Thurston [16]. Denote

σ∞(M) = inf
{ σ(N)

d
| N →M a degree d cover

}
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and de�ne the stable trisection genus by

g∞(M) = inf
{ g(N)

d
| N →M a degree d cover

}
.

For instance g∞(S1 × S3) = 0, g∞(T 4) = 0, g∞(Sg × S2) = 2g − 2 =

−χ(Sg) = g∞(Sg×̃S2) if g ≥ 1.

The de�nition of stable trisection genus and Proposition 2 imply:

Corollary 4. Let M be a smooth orientable 4-manifold and assume that

M is not di�eomorphic to S4. Then

60 σ∞(M) ≥ g∞(M) ≥ 1

3
|χ(M)|.

Betti numbers grow at most linearly in the degree, since the homology is

carried by a lifted triangulation. Moreover, the equality χ(M) = 2− 2β1(M) +

β2(M) implies that β2(M) must grow linearly if χ(M) > 0, and β1(M) must

grow linearly if χ(M) < 0. The question of whether the growth is linear or

sublinear for the other Betti number is governed by the L2�Betti number

b
(2)
k (M̃ ;π1(M)) due to work of L�uck [12]. Sublinear growth of β1 and linear

growth of β2 occurs in covers of hyperbolic 4-manifolds, due to positive Euler

characteristic and the work of L�uck [12]. Linear growth of both β1 and β2 oc-

curs in cyclic covers of (Sg×S2)#(S1×S3), where one unwraps the S1�factor.

Linear growth of β1 and sublinear growth of β2 occurs in covers of Sg × S2,

where β2 has constant value 2.

1.2. Geometric consequences

In dimension four, Euler characteristic is related to signature (in case

the manifold is Einstein), volume or injectivity radius (in case the manifold if

hyperbolic). This gives simple applications of the previous results. For instance,

the Gromov-Hitchin-Thorpe inequality [7, 10] implies

Corollary 5. Let M be a closed Einstein 4-manifold not di�eomorphic

to S4. Then

g(M) ≥ 1

2
| sign(M)|+ 1

7776π2
||M ||,

where sign(M) is the signature of the intersection form and ||M || is the Gromov

norm.

For congruence covers of arithmetic hyperbolic 3-manifolds, Lackenby [11,

Corollary 1.6] bounds Heegaard genus in terms of volume. His lower bound is

established in terms of the Cheeger constant, which is uniformly bounded below
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for congruence covers. The following counterpart for trisection genus is both

more general and has an elementary proof. The following two observations give

some answers to Problem 1.24 in [1].

Corollary 6. Let M be a closed hyperbolic 4-manifold. Then there is a

positive constant C = C(M) such that for any �nite cover Mi →M,

C Volume(Mi) ≥ g(Mi) ≥
3

8π2
Volume(Mi).

Proof. As noted in the proof of Proposition 2, g(Mi) ≥ χ(Mi)− 2. Since

χ(Mi) is positive and even and g(Mi) ≥ 3, in fact g(Mi) ≥ 1
2χ(Mi). This

together with Volume(Mi) = 4
3π

2χ(Mi) gives the lower bound. The upper

bound follows directly from Corollary 3 by taking C(M) = 60 σ(M)
Volume(M) . �

Since volume bounds injectivity radius, we have:

Corollary 7. Let M be a closed hyperbolic 4-manifold and let inj(M)

denote its injectivity radius. Then there is a universal positive constant C ′ such

that g(M) ≥ C ′ · inj(M).

1.3. The Davis manifold

We conclude this paper by describing trisections of the Davis manifold [5].

The Davis manifold MD is obtained by identifying opposite pairs of faces of

the 120-cell with dihedral angles 2π
5 in hyperbolic space. The boundary of

the 120-cell has a cell decomposition with 120 dodecahedra, 720 pentagons,

1200 edges and 600 vertices. The face identi�cations leave us in MD with 60

dodecahedra, 144 pentagons, 60 edges and 1 vertex. A natural triangulation

of MD is obtained as follows. Place a vertex v4 at the centre of the 120-cell, a

vertex v3 at the centre of a dodecahedral face, a vertex v2 at the barycentre of

a pentagonal face thereof, a vertex v1 at the barycentre of an edge of this, and

a vertex v0 at a vertex of this edge. This gives a Coxeter 4-simplex, usually

denoted ∆3, and the 120-cell is tiled by (120)2 = 14, 400 4-simplices that are

copies of ∆3. In particular, there is a group Γ of order (120)2 acting on MD

with MD/Γ equal to the simplex orbifold with underlying space ∆3. Ratcli�e

and Tschantz [18] computed β1(MD) = 24 and β2(MD) = 72. Whence

864, 000 = 60 · (120)2 ≥ g(MD) ≥ 96,

using the apriori bounds. We now describe how in situations such as the Coxeter

construction of the Davis manifold, the upper bound can be greatly improved

using the techniques of [3, 19].
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The idea is to partition the vertices of the triangulation into three sets,

such that each 4-simplex meets one of them in one vertex and each of the other

two sets in two vertices. This partition is then used to de�ne a piece-wise linear

map to the 4-simplex. It is shown in [3, 19] that applying certain 2�4 bistellar

moves to such a tricoloured triangulation gives a new triangulation with the

property that the pull-back of the natural cubulation of the 2�simplex de�nes a

trisection of the 4-manifold. We describe this for the case of the Davis manifold,

and refer the reader to the treatment in [3] for more details.

De�ne a partition of the vertices of the 4-simplices by S0 = Γ · v0 ∪ Γ · v1,
S1 = Γ · v2 and S2 = Γ · v3 ∪ Γ · v4. Then the graphs Γk spanned by Sk in

the 1-skeleton of the triangulation of MD have the following properties. The

graph Γ1 is the quotient of the 1-skeleton of the 120-cell and hence a bouquet of

60 circles. The graph Γ2 is the dual 1-skeleton of the cellulation of MD arising

from the 120-cell and hence also a bouquet of 60 circles. The graph Γ2 consists

of 144 isolated vertices. Each 4-simplex has two vertices in each S0 and S2,

and one in S1. Hence it meets a unique 4-simplex in the tetrahedral face with

all vertices in S0 ∪S1. This gives a decomposition of MD in double-4-simplices.

As described in [3, Construction 3], we now apply 2�4 bistellar moves to each

of these double 4-simplices. This increases the number of pentachora to 28,800.

The graphs Γ0 and Γ1 are not changed, and Γ2 turns into a connected graph

with 144 vertices and 7,200 edges. Hence Γ2 is homotopic to a bouquet of

7,057 circles.

We now compute the Euler characteristic of the central surface Σ. We

obtain one square for each pentachoron, hence there are 28,800 squares. The

number of vertices of the surface equals the number of triangles in the triangula-

tion that have vertices in all partition sets. It is not di�cult to check that there

are 14,400 such triangles. From this information, we compute g(Σ) = 7, 201.

Whence

7, 201 ≥ g(MD) ≥ 96.

The above approach applies to any Coxeter type situation. In case of the

Davis manifold, improvements can be made by choosing smaller triangulations

of the 120-cell that still have the desired partition properties. Our current best

upper bound, however, remains at 5621, and does not improve the current gap

in magnitudes. It would be interesting to see whether greater improvements

can be obtained for the known hyperbolic 4-manifolds arising from Coxeter

constructions.

Concluding remarks. The main challenge in obtaining lower bounds

on trisection genus lies in dermining lower bounds on the genera of the 4-
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dimensional 1-handlebodies. Mostow rigidity, of course, implies that every

algebraic or topological invariant of a hyperbolic 4-manifold is a geometric

invariant, but there is a philosophical distinction. It is in this spirit that we

formulate the following:

Task 8. Determine stronger lower bounds on trisection genus of hyperbolic

4-manifolds using the geometry of the manifold.
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