REFLECTIONS ON TRISECTION GENUS
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The Heegaard genus of a 3-manifold, as well as the growth of Heegaard genus in
its finite sheeted covering spaces, has extensively been studied in terms of alge-
braic, geometric and topological properties of the 3-manifold. This note shows
that analogous results concerning the trisection genus of a smooth, orientable
4-manifold have more general answers than their counterparts for 3-manifolds.
In the case of hyperbolic 4-manifolds, upper and lower bounds are given in terms
of volume and a trisection of the Davis manifold is described.
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1. BOUNDS ON TRISECTION GENUS

Gay and Kirby’s construction of a t¢risection for arbitrary smooth, ori-
ented closed 4-manifolds [6] defines a decomposition of the 4-manifold into
three 4-dimensional 1-handlebodies glued along their boundaries in the follow-
ing way: Each handlebody is a boundary connected sum of copies of S! x B3,
and has boundary a connected sum of copies of S' x S? (here, B’ denotes
the i-dimensional ball and S7 denotes the j-dimensional sphere). The triple
intersection of the 4-dimensional 1-handlebodies is a closed orientable sur-
face X, called the central surface, which divides each of their boundaries into
two 3-dimensional 1-handlebodies (and hence is a Heegaard surface). These
3-dimensional 1-handlebodies are precisely the intersections of pairs of the
4-dimensional 1-handlebodies.

A trisection naturally gives rise to a quadruple of non-negative integers
(95 90, 91, 92), encoding the genus g of the central surface ¥ and the genera go,
g1, and go of the three 4-dimensional 1-handlebodies. We allow the genera to
be distinct following [14,19]. The trisection genus of M, denoted g(M), is the
minimal genus of a central surface in any trisection of M. A trisection with
g(X) = g(M) is called a minimal genus trisection.
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If M has a (g; go, g1, g2)-trisection, then x (M) = 24+ g —go — g1 — g2. Since
the fundamental group of each 4-dimensional 1-handlebody surjects onto the
fundamental group of M, we have g > (1(M). Combining the above equation
with x(M) =2 — 28, (M) + B2(M) therefore gives

g(M) > B1(M) + B2(M).

This is an equality for the six manifolds with trisection genus at most
two [15], and for all standard simply connected 4-manifolds [20]. Castro and
Ozbagci [4] constructed trisections of genus 2g+2 of the twisted bundles S, x S2,
where S, is a closed, connected, oriented surface of genus g. By the above
inequality, these are all minimal and so g(S;xS?) = 2g + 2. More generally,
using thin-position arguments, Aranda [2] constructs trisections of all orientable
S2-bundles over closed (orientable or non-orientable) surfaces. All of these are
minimal due to the above bound (using Zo-coefficients in the case of non-
orientable base). Meier [13]| produces infinitely many 4-manifolds admitting a
minimal genus (g; k, k, k)-trisection for each g > 3 and each 0 < k < g — 1.
Minimality is shown in [13] using observations that are equivalent to the ones
given in this paper.

We have g > rkmi (M) > pi1(M), where rk(mw(M)) is the minimal
number of generators of the fundamental group of M. Hence, lower bounds
on the rank give lower bounds on trisection genus, and, conversely, upper
bounds on the trisection genus give upper bounds on the rank. Moreover,
g(M) = x(M) — 2+ 3rk(mi (M)).

Question 1. Given any finitely presented group G, is there a smooth, ori-
ented closed 4-manifold M with 71 (M) = G such that g(M) = x(M) — 2 +
3rk(G)?

The question has a positive answer for surface groups (using the above
examples of S;xS?) and the infinite cyclic group (by virtue of S' x $3). The
construction of trisections for spun 4-manifolds by Meier [13] shows that the
above question also has a positive answer for every group that is the funda-
mental group of a 3-manifold satisfying the rank versus genus conjecture. It
thus has a positive answer for free products of these groups (in particular,
finitely generated free groups), by taking connected sums of these manifolds
and application of Grushko’s theorem [8,17].

We now turn to an upper bound. Let o(M) be the minimal number of
4-simplices in a (possibly singular) triangulation of M. We call (M) the trian-
gulation complexity of M. Then the upper bound on trisection genus recently
given in [3] using triangulations gives:

60 o(M) > g(M).
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This note gives some simple consequences of these upper and lower bounds.
Our starting point is the following, which at once gives upper and lower bounds
on trisection genus, and a lower bound on the triangulation complexity of a
4-manifold.

PROPOSITION 2. Let M be a smooth orientable 4-manifold and assume
that M s not diffeomorphic to S*. Then

600(M) 2 g(M) 2 3 X(M).

The proof is simple. We have x(M) = 2+ g — go — g1 — g2. Hence
g(M) > x(M) — 2. In particular, the lower bound holds when x(M) > 3. If
x(M) > 0 and B;(M) > 0, then g(M) > x(M). Now suppose 1 < x(M) < 2,
Bi(M) = 0 and M # S* The classification of trisections of genus 2 due to
Meier and Zupan [15], then implies g(M) > 3 > x(M). So the lower bound
holds in the case of positive Euler characteristic. Moreover, if CP? is excluded
from the statement, one may replace 1/3 by 1/2.

Combining x (M) =2 —251(M) + B2(M) with the bound g(M) > 1 (M)
gives g(M) > 1 — 2x(M). So if x(M) <0, then g(M) > 1|x(M)| + 1. This is
sharp for S x S3, where x(S! x $3) =0 and g(S! x S3) = 1. O

1.1. Stable trisection genus

We now turn to finite sheeted covers. In particular, we are interested in
the case where there are finite covers of arbitrarily large degree, but our results
also apply when there are only finitely many such covers. If M is hyperbolic,
then residual finiteness implies that there are finite covers of arbitrarily large
degree. If x(M) < 0, then B1(M) > 0, and hence there are finite cyclic covers
of any degree. Since the only manifold covered by S is the non-orientable
manifold RP?* [9, Section 12.1], we have:

COROLLARY 3. Let M be a smooth orientable 4-manifold and assume that

M is not diffeomorphic to S*. Suppose N — M is a finite sheeted cover of degree
d. Then g(N) is O(d). Specifically,

600(M) d > g(N) > 2[x(M)| d

Moreover, if x(M) # 0, then g(N) is ©(d).

Another immediate corollary is in terms of the characteristic functions of
Milnor and Thurston [16]. Denote

N
Ooo(M) = inf{ U(d ) | N - M a degree d cover}
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and define the stable trisection genus by

N
Joo(M) = inf{ QSZ) | N — M a degree d cover}.

For instance goo(S' X S%) = 0, goo(T?) = 0, goo(Sy x S?) = 29 — 2 =
X(Sg) = g (S, %57) if g > 1.
The definition of stable trisection genus and Proposition 2 imply:

COROLLARY 4. Let M be a smooth orientable 4-manifold and assume that
M is not diffeomorphic to S*. Then

60 oo (M) > goo(M) > %|X(M)|-

Betti numbers grow at most linearly in the degree, since the homology is
carried by a lifted triangulation. Moreover, the equality x (M) = 2 — 25, (M) +
B2 (M) implies that Bo(M) must grow linearly if x(M) > 0, and (M) must
grow linearly if x(M) < 0. The question of whether the growth is linear or
sublinear for the other Betti number is governed by the L?-Betti number
bff)(M;m(M)) due to work of Liick [12]. Sublinear growth of 5; and linear
growth of By occurs in covers of hyperbolic 4-manifolds, due to positive Euler
characteristic and the work of Liick [12|. Linear growth of both 5, and (3 oc-
curs in cyclic covers of (S x S?)#(S! x S3), where one unwraps the S'-factor.
Linear growth of 81 and sublinear growth of 82 occurs in covers of S, x 52,
where (5 has constant value 2.

1.2. Geometric consequences

In dimension four, Euler characteristic is related to signature (in case
the manifold is Einstein), volume or injectivity radius (in case the manifold if
hyperbolic). This gives simple applications of the previous results. For instance,
the Gromov-Hitchin-Thorpe inequality [7,10] implies

COROLLARY 5. Let M be a closed Einstein 4-manifold not diffeomorphic

to S*. Then ) )
g(M) > 2 [sin(M)] + - [ M]|

where sign(M) is the signature of the intersection form and ||M|| is the Gromov

norm.

For congruence covers of arithmetic hyperbolic 3-manifolds, Lackenby [11,
Corollary 1.6] bounds Heegaard genus in terms of volume. His lower bound is
established in terms of the Cheeger constant, which is uniformly bounded below
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for congruence covers. The following counterpart for trisection genus is both
more general and has an elementary proof. The following two observations give
some answers to Problem 1.24 in [1].

COROLLARY 6. Let M be a closed hyperbolic 4-manifold. Then there is a
positive constant C = C(M) such that for any finite cover M; — M,

C' Volume(M;) > g(M;) > %Volume(Mi).
7r

Proof. As noted in the proof of Proposition 2, g(M;) > x(M;) — 2. Since
x(M;) is positive and even and g(M;) > 3, in fact g(M;) > $x(M;). This
together with Volume(M;) = %712)((Mi) gives the lower bound. The upper

bound follows directly from Corollary 3 by taking C(M) = 60 5oy O

Since volume bounds injectivity radius, we have:

COROLLARY 7. Let M be a closed hyperbolic 4-manifold and let inj(M)
denote its injectivity radius. Then there is a universal positive constant C' such
that g(M) > C" - inj(M).

1.3. The Davis manifold

We conclude this paper by describing trisections of the Davis manifold [5].
The Davis manifold Mp is obtained by identifying opposite pairs of faces of
the 120-cell with dihedral angles < 2% in hyperbolic space. The boundary of
the 120-cell has a cell decomposMon with 120 dodecahedra, 720 pentagons,
1200 edges and 600 vertices. The face identifications leave us in Mp with 60
dodecahedra, 144 pentagons, 60 edges and 1 vertex. A natural triangulation
of Mp is obtained as follows. Place a vertex vyq at the centre of the 120-cell, a
vertex vs at the centre of a dodecahedral face, a vertex vy at the barycentre of
a pentagonal face thereof, a vertex v; at the barycentre of an edge of this, and
a vertex vg at a vertex of this edge. This gives a Coxeter 4-simplex, usually
denoted Ag, and the 120-cell is tiled by (120)? = 14,400 4-simplices that are
copies of As. In particular, there is a group I' of order (120)? acting on Mp
with Mp /T equal to the simplex orbifold with underlying space As. Ratcliffe
and Tschantz [18] computed 81 (Mp) = 24 and S2(Mp) = 72. Whence

864,000 = 60 - (120) > g(Mp) > 96,

using the apriori bounds. We now describe how in situations such as the Coxeter
construction of the Davis manifold, the upper bound can be greatly improved
using the techniques of [3,19].
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The idea is to partition the vertices of the triangulation into three sets,
such that each 4-simplex meets one of them in one vertex and each of the other
two sets in two vertices. This partition is then used to define a piece-wise linear
map to the 4-simplex. It is shown in [3,19] that applying certain 2-4 bistellar
moves to such a tricoloured triangulation gives a new triangulation with the
property that the pull-back of the natural cubulation of the 2—simplex defines a
trisection of the 4-manifold. We describe this for the case of the Davis manifold,
and refer the reader to the treatment in [3| for more details.

Define a partition of the vertices of the 4-simplices by Sg =T - vgUT - vy,
S1 =T v and S = I -v3UT - vy. Then the graphs I'y spanned by Sy in
the 1-skeleton of the triangulation of Mp have the following properties. The
graph I'y is the quotient of the 1-skeleton of the 120-cell and hence a bouquet of
60 circles. The graph I's is the dual 1-skeleton of the cellulation of Mp arising
from the 120-cell and hence also a bouquet of 60 circles. The graph I'y consists
of 144 isolated vertices. Each 4-simplex has two vertices in each Sy and So,
and one in S7. Hence it meets a unique 4-simplex in the tetrahedral face with
all vertices in Sy U S7. This gives a decomposition of Mp in double-4-simplices.
As described in [3, Construction 3|, we now apply 2—4 bistellar moves to each
of these double 4-simplices. This increases the number of pentachora to 28,800.
The graphs I'g and I'; are not changed, and I'y turns into a connected graph
with 144 vertices and 7,200 edges. Hence I'y is homotopic to a bouquet of
7,057 circles.

We now compute the Euler characteristic of the central surface ¥. We
obtain one square for each pentachoron, hence there are 28,800 squares. The
number of vertices of the surface equals the number of triangles in the triangula-
tion that have vertices in all partition sets. It is not difficult to check that there
are 14,400 such triangles. From this information, we compute g(X) = 7,201.
Whence

7,201 > g(Mp) > 96.

The above approach applies to any Coxeter type situation. In case of the
Davis manifold, improvements can be made by choosing smaller triangulations
of the 120-cell that still have the desired partition properties. Our current best
upper bound, however, remains at 5621, and does not improve the current gap
in magnitudes. It would be interesting to see whether greater improvements
can be obtained for the known hyperbolic 4-manifolds arising from Coxeter
constructions.

Concluding remarks. The main challenge in obtaining lower bounds
on trisection genus lies in dermining lower bounds on the genera of the 4-
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dimensional 1-handlebodies. Mostow rigidity, of course, implies that every
algebraic or topological invariant of a hyperbolic 4-manifold is a geometric

invariant, but there is a philosophical distinction. It is in this spirit that we
formulate the following:

Task 8. Determine stronger lower bounds on trisection genus of hyperbolic

4-manifolds using the geometry of the manifold.
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