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Virtually special embeddings of integral Lorentzian lattices

Michelle Chu

Abstract. The automorphism groups of integral Lorentzian lattices act by
isometries on hyperbolic space with finite covolume. In the case of reflective
integral lattices, the automorphism groups are commensurable to arithmetic
hyperbolic reflection groups. However, for a fixed dimension, there is only
finitely many reflective integral Lorentzian lattices, and these can only occur
in small dimensions. The goal of this note is to construct embeddings of low-
dimensional integral Lorentzian lattices into unimodular Lorentzian lattices
associated to right-angled reflection groups. As an application, we construct
many discrete groups of Isom(Hn) for small n which are C-special in the sense
of Haglund-Wise.

1. Introduction

Given a finite volume polyhedron P in hyperbolic space Hn, let Γ be the group
generated by the reflections on the sides of P . If the action of Γ tiles Hn without
interiors of copies of P overlapping, we say that Γ is a hyperbolic reflection group
and its fundamental polyhedron P is a hyperbolic Coxeter polyhedron. The quotient
Hn/Γ is a finite-volume hyperbolic orbifold.

The theory of hyperbolic reflection groups provides many examples of finite
volume hyperbolic orbifolds. However, in higher dimensions, these cease to exist
[Vin84,Kho86,Pro86]. Another way to construct finite volume hyperbolic orb-
ifolds in any dimension is as quotients of Hn by the automorphism groups Aut(L)
of Lorentzian lattices L. These automorphism groups are examples of arithmetic
groups of simplest type in Isom(Hn). If the subgroup generated by reflections has
finite index in Aut(L), we say the lattice L is reflective. Such a subgroup is an
arithmetic hyperbolic reflection group.

In this note we construct embeddings of lattices into unimodular lattices of
higher dimension. The Lorentzian unimodular lattices In,1 are reflective for 2 ≤
n ≤ 19 [Vin72,KV78]. Furthermore, for 2 ≤ n ≤ 8, these are associated to reflec-
tion groups of hyperbolic right-angled polyhedra, which are geometric right-angled
Coxeter groups [PV05]. Right-angled Coxeter groups, or RACGs, are particularly
interesting because they have many nice properties which are inherited by their
subgroups. For example, virtually embedding hyperbolic 3-manifold groups into
RACGs has determined the virtual Haken and the virtual fibering conjectures for
all finite volume hyperbolic 3-manifolds as well as LERFness of their fundamental
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groups [Ago13,Wis11]. In the sense of [HW08] we say a group is C-special if it
embeds as a quasi-convex subgroup of a RACG.

We apply the lattice embeddings together with the explicit relationship be-
tween the unimodular lattices In,1 and RACGs given by [ERT12] to construct
many examples of C-special hyperbolic manifold groups in dimension 3 and 4. The
following theorem extends and improves the results in [Chu19] (see also [Chu18])
and [DMP18, Theorem 2.6].

Theorem 1.1. Let Γ be an integral arithmetic group of simplest type in Isom(H3)
or Isom(H4). Then Γ(2), the principal congruence subgroup of level 2, is compact
C-special.

For fixed dimensions, the indices of the principal congruence subgroups of level
2 contained in integral arithmetic group of simplest type are uniformly bounded.
Theorem 1.1 extends [Chu19, Theorem 1.2, Proposition 5.3][Chu18, Theorem 3.1,
Proposition 4.3, Proposition 5.3] and also improves on the bounds for the value of
D found in [DMP18, Proposition 2.6] by removing the dependence on the discrim-
inant. This gives a uniform bound for D which is independent of anything to get a
strengthening of [DMP18, Theorem 2.2]. Prior to these results, Bergeron-Haglund-
Wise showed that given an arithmetic group of simplest type in O+(n, 1), there exist
some m such that the congruence subgroup of level m is special [BHW11], but
Theorem 1.1 shows that m = 2 is enough for the cases included in Theorem 1.1.

As a consequence of Theorem 1.1 we can give a slight improvement to the
results in [Chu19].

Proposition 1.2. Let d be a square-free positive integer and Od the ring of in-
tegers in the quadratic imaginary field Q(

√
−d). The principal congruence subgroup

PSL(2,Od)(2) embeds in a RACG and has index

[PSL(2,Od) : PSL(2,Od)(2)] =

⎧⎪⎨
⎪⎩
48 if d ≡ 1, 2 mod (4)

60 if d ≡ 3 mod (8)

36 if d ≡ 7 mod (8).

In particular, since the figure eight knot group intersects PSL(2,O3)(2) in a
subgroup of index 10, we also get the following corollary.

Corollary 1.3. The figure eight knot complement has a special cover of degree
10.

This note is organized as follows: In Section 2 we give the necessary preliminary
background in integral lattices, their automorphism groups, and arithmetic groups
of simplest type. In Section 3, inspired by the lattice gluings in [All18], we construct
embeddings of integral lattices into unimodular lattices. In Section 4 we use these
embeddings to prove Theorem 1.1. Finally, in Section 5 we give an explicit example.

2. Preliminaries

2.1. Integral lattices. A lattice L is a Z-module equipped with a Q-valued
non-degenerate symmetric bilinear form (·, ·) on the vector space V = L⊗Q, called
the inner product. L is called Lorentzian if its inner product has signature +n−1.
The norm of a vector v is its inner product with itself (v, v). If the inner product
of every pair of vectors in L is Z-valued, L is called integral. In what follows, let L
be an integral lattice unless otherwise noted.
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The dual of L is the lattice L∗ = {v ∈ L ⊗ Q : (v, L) ∈ Z}. Notice that L is
integral if and only if L ⊂ L∗. We define the discriminant group as Δ(L) = L∗/L,
a finite abelian group. We will refer to the minimal number of generators of Δ(L)
as rank(Δ(L)).

The determinant of L, or detL is the determinant of an inner product matrix
AL, with respect to some Z-basis of L. It is independent of the choice of Z-basis and
in fact | detL| = |Δ(L)|. If L′ is a sublattice of L of index d then detL′ = d2 ·detL.

The Z-valued inner product on L extends to a Q-valued inner product on L∗

and descends to a Q/Z-valued inner product on Δ(L).
An integral lattice L is called strongly-square-free, denoted by SSF, if the rank of

Δ(L) is at most 1
2 dim(L) and every invariant factor of Δ(L) is square-free. In other

words, Δ(L) is a direct product of at most 1
2 dim(L)-many finite cyclic subgroups,

each of square-free order. An integral lattice is called unimodular whenever Δ(L)
is trivial.

Lattices may also be defined more generally over totally real number fields.

2.2. Automorphisms and arithmetic groups. Let k be a totally real num-
ber field with ring of integers Ok and let f be a quadratic form of signature +n−1

defined over k such that for every non-identity embedding σ : k ↪→ R, the form
fσ is positive definite. Let O(f ;R) denote the orthogonal group that preserves f
and O+(f ;R) its index-two subgroup which is time-orientation preserving. Then
the group Γ = O+(f ;Ok) = O+(f ;R) ∩ GLn+1(Ok) is a finite-covolume discrete
subgroup of O+(f ;R) which is identified with Isom(Hn) via the hyperboloid model.
The field k is called the field of definition for Γ. Any discrete subgroup of Isom(Hn)
which is commensurable to some such O+(f ;Ok) is called arithmetic of simplest
type.

If L is an integral Lorentzian lattice, then its automorphism group is the group

Aut(L) = {g ∈ GL(V )|Lg = L and fL(xg, yg) = fL(x, y) for all x, y ∈ L}
= {g ∈ GLn+1(Z)|gALg

tr = AL}
= O(fL;Z).

We call Aut(L) and any finite index subgroup of it an integral arithmetic group of
simplest type.

The principal congruence subgroup of level m in Aut(L) is the subgroup

Aut(L)(m) = {g ∈ GL(V )|vg ≡ v mod m for all x ∈ L}
= {g ∈ GLn+1(Z)|gALg

tr = AL and g ≡ In+1 mod m}
= O(fL;Z)(m)

where In+1 is the (n+ 1)× (n+ 1) identity matrix.
If n− 1 is not divisible by 8, there is, up to isomorphism over Z, a unique uni-

modular Lorentzian lattice of signature +n−1 denoted In,1. Let qn be the standard
Lorentzian quadratic form

(2.1) qn := −x2
0 + x2

1 + · · ·+ x2
n.

The unimodular lattice In,1 has automorphism group Aut(In,1) = O(qn,Z) and is
reflective for n ≤ 19 [Vin72,KV78].
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2.3. Invariants and existence of integral lattices. This section assumes
familiarity with Conway-Sloane p-adic symbols [CS99, Chapter 15].

Over the p-adic integers, a form f associated to a p − adic lattice Lp can be
decomposed as a direct sum

(2.2) f = f1 ⊕ pfp ⊕ p2fp2 ⊕ · · · ⊕ qfq ⊕ . . .

where q is a p-power and fq is a p-adic integral form with determinant prime to p.
This Jordan decomposition is unique for odd primes.

For p odd, the p-adic symbol of f is the formal product of factors qεqnq with

εq =

(
det fq
p

)
and nq = dim fq

where
(

α
p

)
denotes the Kronecker symbol.

For p = 2, the 2-adic symbol of f is the formal product of factors q
εqnq

tq or qεqnq

where the former indicates fq is of type I and the later indicates fq is of type II
and with

εq =

(
det fq
2

)
, nq = dim fq and tq = oddity(fq)

where the Kronecker symbol
(
a
2

)
is +1 if a ≡ ±1 mod 8 or −1 if a ≡ ±3 mod 8.

Unfortunately, the 2-adic symbol is not unique, since a 2-adic form can have
essentially different Jordan decompositions. However, Conway-Sloane define an
abreviated 2-adic symbol using compartments and trains. Two abreviated 2-adic
symbols represent the same form if and only they are related by sign walking see
[CS99, Chapter 15, §7.5].

By [CS99, Theorem 11, Chapter 15], there exist an integral lattice L of de-
terminant d having specified local forms Lp and signature +r−s if and only if
the determinant condition, the oddity formula, and the Jordan blocks conditions
displayed below hold.

1. The determinant condition: for each p, the εq from the p-adic symbol
satisfy

(2.3)
∏

εq =

(
a

p

)

where det(L) = pαa.
2. The oddity formula:

(2.4) signature(L) +
∑
p odd

p−excess(Lp) ≡ oddity(K2) mod 8

where

signature(L) = r − s,

p−excess(Lp) ≡
∑
q

nq(q − 1) + 4 ·#(odd powers q with εq = −1),

and oddity(L2) =
∑

tq + 4 ·#(odd powers q with εq = −1).

3. The Jordan blocks conditions: the 2-adic Jordan blocks satisfy the follow-
ing

(2.5) if type II, tq ≡ 0 mod 8
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(2.6) if nq = 1,

{
εq = +1 then tq ≡ ±1 mod 8

εq = −1 then tq ≡ ±3 mod 8

(2.7) if type I and nq = 2,

{
εq = +1 then tq ≡ 0 or ± 2 mod 8

εq = −1 then tq ≡ 4 or ± 2 mod 8

(2.8) and tq ≡ nq mod 2.

When working with the abbreviated 2-adic symbol, the Jordan blocks condi-
tions on a compartment of total dimension at least 3 reduce to just one condition:
the total oddity in the compartment has the same parity as its total dimension.

2.4. Some facts and observations. We state here some observations.
For odd p, the p-excess is always even.
If L is SSF, then since the rank of any invariant factor is square-free, the p-adic

symbol for Lp will only contains terms for q = 1 and q = p. Furthermore, since the
rank of Δ(L) is at most 1

2 dim(L), also np ≤ 1
2 dim(L).

If we take Lneg to be as L with all inner products negated, its local forms will
change as follows. If p is odd, then the p-adic symbol for Lneg

p is got from that of

Lp by multiplying each superscript by
(

(−1)nq

p

)
. The 2-adic symbol for Lneg

p is got

from that of Lp by negating each subscript.

If p � detL or if
(

−1
p

)
= 1, then the p-excess of Lp and Lneg

p agree. If p|L and(
−1
p

)
= 1, then the p-excess of Lp and Lneg

p differ by 4 mod 8.

3. Lattice embeddings

The goal of this section is to prove the following proposition.

Proposition 3.1. Let L be an integral lattice of signature +r−s and let δ =
rank(Δ(L)). Let m = max{δ + 1, 3}. Then L embeds in a unimodular lattice of
signature +r+m−s.

The proof will be separated into two cases depending on the parity of det(L).
The main idea is to use a technique in [All18]. We will construct a lattice K of
signature +δ+1−0 with det(K) = (−1)s det(L) by specifying its local forms Kp,
chosen such that there exist a group isomorphism φ : Δ(L) → Δ(K) which negates
norms and inner products. Gluing L to K along the graph of φ will then result in
a unimodular lattice.

3.1. Case 1: d is odd. If det(L) is odd, the following lemma holds regardless
of whether L is SSF.

Lemma 3.2. Let L be an integral lattice of signature +r−s with det(L) odd and
rank(Δ(L)) = δ. Let m = max{δ + 1, 3}. Then L embeds in a unimodular lattice
of signature +r+m−s.

Proof. Assume L is not unimodular and let d := (−1)s det(L). Defined the
local forms Kp as follows.

For odd p � d, define Kp by 1(
d
p )m.
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For odd p|d with d = pαa, define Kp by the product of qεqnq where for q =
pm > 1, the term qεqnq matches that of Lneg

p , and where 1ε1n1 is chosen such that∏
εq = (ap ) and

∑
nq = m.

Let t ≡ m +
∑

p odd p−excess(Kp). Since
∑

p odd p−excess(Kp) is even, t will

have the parity of m. Define K2 by 1
( d
2 )m

t .
With these choices of local forms, all conditions Equations (2.3) to (2.8) are

satisfied. So there exist an integral lattice K of signature +m−0 and determinant
d with the prescribed local forms.

Now each local form Kp differs from Lneg
p by a unimodular factor. We have

that Δ(Kp) and Δ(Lneg
p ) are isomorphic and correspond to the Sylow p-subgroups

of Δ(K) and Δ(Lneg). It follows that there exist a group isomorphism φ : Δ(L) →
Δ(K) which negates norms and inner products. Let G = {(x, φx)} be the graph of
φ. Then G is a totally isotropic subgroup of Δ(L ⊕ K) = Δ(L) ⊕ Δ(K), that is,
the natural Q/Z-valued inner product on Δ(L⊕K) vanishes on G.

Write L⊕GK for the preimage of G in (L⊕K)∗ = L∗⊕K∗. Since G is totally
isotropic, L ⊕G K is an integral lattice containing L ⊕ K as a sublattice of index
|G| and therefore its determinant is given by

(3.1) detL⊕G K =
detL⊕K

|G|2 =
d2

(d)2
= 1.

So L ⊕G K is a unimodular lattice containing L with orthogonal complement L⊥

isomorphic to K. �

3.2. Case 2: d is even.

Lemma 3.3. Let L be an integral lattice of signature +r−s with det(L) even
and rank(Δ(L)) = δ. Let m = max{δ + 1, 3}. Then L embeds in a unimodular
lattice of signature +r+m−s.

Proof. Let d := (−1)s det(L). Observe first that the SSF assumption guar-
antees that Δ(L2) (the 2-Sylow subgroup of Δ(L)) is (Z/2Z)α where d = 2αa and
2 � a. This means that the natural Q2/Z2-valued norms and inner products in
Δ(L2) are in 1

2Z2. In particular, negating norms and inner products in Δ(L2) is
trivial.

Defined the local forms Kp as follows.

For odd p � d, define Kp by 1(
d
p )m.

For odd p|d with d = pαa, define Kp by the product of qεqnq where for q =
pm > 1, the term qεqnq matches that of Lneg

p , and where 1ε1n1 is chosen such that∏
εq = (ap ) and

∑
nq = m.

Let t ≡ m +
∑

p odd p−excess(Kp). Since
∑

p odd p−excess(Kp) is even, t will

have the parity of m. Define K2 by the reduced 2-adic symbol [1(
a
2 )(m−α)2+α]t

where d = 2αa.
With these choices of local forms, all conditions Equations (2.3) to (2.8) are

satisfied. So there exist an integral lattice K of signature +m−0 and determinant
d with the prescribed local forms.

Now each local form Kp for p �= 2 differs from Lneg
p by a unimodular factor.

We then have that for all p (including p = 2) Δ(Kp) and Δ(Lneg
p ) are isomorphic

and correspond to the Sylow p-subgroups of Δ(K) and Δ(Lneg). It follows that
there exist a group isomorphism φ : Δ(L) → Δ(K) which negates norms and inner
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products. Let G = {(x, φx)} be the graph of φ. Then G is a totally isotropic
subgroup of Δ(L⊕K) = Δ(L)⊕Δ(K).

The remaining follows exactly as in the proof of Theorem 3.2. �

4. Special subgroups

In this section we gather the necessary ingredients and prove Theorem 1.1 as
a direct consequence of Theorem 4.1 and Theorem 4.2.

It can be shown that the automorphism group of a non-SSF lattice is always
contained in the automorphism group of one which is SSF [Wat62,Wat75,All12].
For SSF lattices of dimension up to 5, the rank of their discriminant groups is at
most 2. Therefore, the following corollary follows from Theorem 3.1 since L ⊗ R
is the orthogonal complement to the positive subgroups K ⊗R in the vector space
(L⊕G K)⊗ R.

Corollary 4.1. If L is an integral lattice of signature +3−1 (resp. +4−1),
then Aut(L) embeds as a geometrically finite subgroup of Aut(I6,1) (resp. Aut(I7,1))
which preserves a copy of H3 (resp. H4) in H6 (resp H7).

The following theorem of Everitt-Ratcliffe-Tschantz provides the explicit re-
lationship between the automorphism groups of the unimodular lattices In,1 for
n ≤ 8 and right-angled Coxeter groups. Recall that qn := −x2

0 + x2
1 + · · ·+ x2

n and
Aut(In,1) = O(qn,Z).

Theorem 4.2 ([ERT12, Theorem 2.1]). For 2 ≤ n ≤ 7, O+(qn,Z)(2) is a
geometric RACG. It is the reflection group of an all-right hyperbolic polyhedron of
dimension n. The group O+(q8,Z)(2) contains a geometric RACG as a subgroup of
index 2. This subgroup is the reflection group of an all-right hyperbolic polyhedron
of dimension 8.

Lemma 4.3. Let L be an integral lattice and K the corresponding integral lattice
with L⊕GK unimodular as constructed in the proof of Theorem 3.1. Then Aut(L)(2)
is contained in Aut(L⊕G K)(2).

Proof. Recall thatK was constructed so that Δ(L) ∼= Δ(K) ∼= G. An element
γ ∈ Aut(L) is in Aut(L)(2) if and only if for any v ∈ L, vγ = v+2v′ where v′ is some
other element in L, or equivalently, vγ ≡ v mod 2. Similarly, γ ∈ Aut(L ⊕G K)
if and only if for any v ∈ L ⊕G K, vγ ≡ v mod 2. If v ∈ L ⊕ K then clearly for
γ ∈ Aut(L), vγ ≡ v mod 2.

For the remainder of the proof, set γ ∈ Aut(L)(2) and u ∈ L ⊕G K − L ⊕K.
Suppose m is the smallest positive integer so that mu = u′ ∈ L ⊕ K. Then
u′γ = u′ + 2x where x ∈ L⊕K. If v is some other element of L⊕K with u′ ⊥ v,
then vγ = v + 2y for some y ∈ L⊕K and since 0 = (u′, v) = (u′γ, vγ),

0 = (u′γ, v + 2y) = (u′γ, v) + (muγ, 2y) = (u′γ, v) + 2m(uγ, y).

Thus (u′γ, v) ≡ 0 mod 2m. Also,

(u′γ, u′) = (u′ + 2x, u′) = (u′, u′) + (2x,mu) = (u′, u′) + 2m(x, u).

Thus (u′γ, u′) ≡ (u′, u′) mod 2m. Therefore u′γ ≡ u′ mod 2m and since u′ = mu
we have uγ ≡ u mod 2. This shows γ ∈ Aut(L⊕G K)(2). �

Proof of Theorem 1.1. The proof follows from Theorem 4.1, Theorem 4.2,
and Theorem 4.3 since the lattice L embeds as the orthogonal complement of the
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positive definite sublattice K and this induces the embedding of Aut(L) as a geo-
metrically finite subgroup of Aut(L⊕G K). �

We remark here that the principal congruence subgroups of level 2 have uni-
formly bounded index in integral arithmetic subgroups of simplest type in Isom(Hn).
Indeed, any such Γ is contained in some O+(f ;Z) ⊂ GLn+1(Z) and thus [Γ : Γ(2)] ≤
|GLn+1(Z/2Z)|.

The Bianchi group PSL2(Od) is contained in O+(fd;Z) where

fd =

{
2x0x1 + 2x2

2 + 2dx2
3 if d ≡ 1, 2 mod 4

2x0x1 + 2x2
2 + 2x2x3 +

d+1
2 x2

3 if d ≡ 3 mod 4

[JM96]. It is easy to see via the explicit embedding of PSL2(Od) into O+(fd;Z)
described in [Chu19, §3.1] that the image of PSL2(Od)(2) lands in O+(fd;Z)(2).
Therefore, we get that the principal congruence subgroup PSL(2,Od)(2) embeds in
a RACG. The index of this subgroup is well known to be

[PSL(2,Od) : PSL(2,Od)(2)] =

⎧⎪⎨
⎪⎩
48 if d ≡ 1, 2 mod (4)

60 if d ≡ 3 mod (8)

36 if d ≡ 7 mod (8),

(see for example [Dic01]), and thus, Theorem 1.2 follows.

5. An example

Consider the lattice L with basis {e0, e1, e2, e3} and associated inner product
matrix AL = diag{−7, 1, 1, 1}. The dual L∗ has Z-basis { 1

7e0, e1, e2, e3} and the

discriminant group Δ(L) ∼= Z/7Z is generated by the image of the vector 1
7e0. We

can take K to be the lattice with basis {e4, e5, e6} and associated inner product
matrixAK = diag{7, 1, 1}. The dual K∗ has Z-basis { 1

7e4, e5, e6} and the discrimi-

nant group Δ(K) ∼= Z/7Z is generated by the image of the vector 1
7e4. Therefore

Δ(L ⊕ K) = Z/7Z × Z/7Z and image of the vector u = 4
7e0 + 3

7e4 generates a
totally isotropic subgroup G of Δ(L ⊕K) of order Z/7Z. Indeed, u has norm −1
and pairs integrally with L⊕K. If we let v = 3

7e0+
4
7e4 then {u, v, e1, e2, e3, e5, e6}

defines an orthogonal Z-basis for L ⊕G K with associated inner product matrix
diag{−1, 1, 1, 1, 1, 1, 1}. Therefore L⊕G K = I6,1.

Since e0 = 4u−3v, a copy of L is the sublattice with Z-basis {4u−3v, e1, e2, e3}
which is the orthogonal complement of a copy of K with Z-basis {−3u+4v, e5, e6}.
The change of basis matrix is

(5.1) B =

⎛
⎜⎜⎝

4
7 0 −3

7
0 I3 0
−3
7 0 4

7
I2

⎞
⎟⎟⎠

where In denotes the n× n identity matrix. Therefore,

B · diag{−7, 1, 1, 1, 7, 1, 1} ·Btr = diag{−1, 1, 1, 1, 1, 1, 1}.

Let γ be in Aut(L). As a matrix with entries in Z preserving AL, γ the first row(
a b c d

)
satisfies a2 ≡ 1 mod 7 and b, c, d ≡ 1 mod 7. We extend γ in AutL
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to γ in Aut(L⊕K) as follows:

(5.2) γ �→

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(
γ

I3

)
if a ≡ 1 mod 7⎛

⎜⎝γ

−I2

I1

⎞
⎟⎠ if a ≡ −1 mod 7

and such an integral matrix preserves integrality when conjugated by B, that is,
B · γ ·B−1 is integral and preserves diag{−1, 1, 1, 1, 1, 1, 1}. Indeed, if

γ1 =

⎛
⎜⎜⎜⎜⎝
7a+ 1 7b 7c 7d

e f g h
i j k l
m n o p

I3

⎞
⎟⎟⎟⎟⎠ , γ2 =

⎛
⎜⎜⎜⎜⎜⎜⎝

7a− 1 7b 7c 7d
e f g h
i j k l
m n o p

−I2
I1

⎞
⎟⎟⎟⎟⎟⎟⎠

then

B · γ1 ·B−1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

16a+ 1 4b 4c 4d 12a 0 0
4e f g h 3e 0 0
4i j k l 3i 0 0
4m n o p 3m 0 0
−12a −3b −3c −3d 1− 9a 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

and

B · γ2 ·B−1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

16a− 1 4b 4c 4d 12a 0 0
4e f g h 3e 0 0
4i j k l 3i 0 0
4m n o p 3m 0 0
−12a −3b −3c −3d −9a− 1 0 0
0 0 0 0 0 −1 0
0 0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Furthermore, If γ ≡ I7 mod 2 entrywise, so is B · γ · B−1, and thus there is an
inclusion of principal congruence subgroups of level 2: Aut(L)(2) ⊂ Aut(I6,1)(2).
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