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Abstract

3D reconstruction from images is a core problem in com-
puter vision. With recent advances in deep learning, it has
become possible to recover plausible 3D shapes even from
single RGB images. However, obtaining detailed geome-
try and texture for objects with arbitrary topology remains
challenging. In this paper, we propose a novel approach for
reconstructing point clouds from RGB images. Unlike other
methods, we can recover dense point clouds with hundreds
of thousands of points, and we also include RGB textures. In
addition, we train our model on multiple categories, which
leads to superior generalization to unseen categories com-
pared to previous techniques. We achieve this using a two-
stage approach, where we first infer an object coordinate
map from the input RGB image, and then obtain the final
point cloud using a reprojection and completion step. We
show results on standard benchmarks that demonstrate the
advantages of our technique.

1. Introduction
3D reconstruction from single RGB images has been

a longstanding challenge in computer vision. While re-
cent progress with deep learning-based techniques and large
shape or image databases has been significant, the recon-
struction of detailed geometry and texture for a large va-
riety of object categories with arbitrary topology remains
challenging. Point clouds have emerged as one of the most
popular representations to tackle this challenge because of
a number of distinct advantages: unlike meshes they can
easily represent arbitrary topology, unlike 3D voxel grids
they do not suffer from cubic complexity, and unlike im-
plicit functions they can reconstruct shapes using a single
evaluation of a neural network. In addition, it is straight-
forward to represent surface textures with point clouds by
storing per-point RGB values.

In this paper, we present a novel method to reconstruct
3D point clouds from single RGB images, including the op-
tional recovery of per-point RGB texture. In addition, our
approach can be trained on multiple categories. The key

idea of our method is to solve the problem using a two-
stage approach, where both stages can be implemented us-
ing powerful 2D image-to-image translation networks: in
the first stage, we recover an object coordinate map from
the input RGB image. This is similar to a depth image,
but it corresponds to a point cloud in object-centric coor-
dinates that is independent of camera pose. In the second
stage, we reproject the object space point cloud into depth
images from eight fixed viewpoints in object space, and per-
form depth map completion. We can then trivially fuse all
completed object space depth maps into a final 3D recon-
struction, without requiring a separate alignment stage, for
example using the iterative closest point algorithm (ICP)
[3]. Since all networks are based on 2D convolutions, it is
straightforward to achieve high resolution reconstructions
with this approach. Texture reconstruction uses the same
pipeline, but operating on RGB images instead of object
space depth maps.

We train our approach on a multi-category dataset and
show that our object-centric, two-stage approach leads to
better generalization than competing techniques. In addi-
tion, recovering object space point clouds allows us to avoid
a separate camera pose estimation step. In summary, our
main contributions are as follows:

• A strategy to generate 3D shapes from single RGB im-
ages in a two-stage approach, by first recovering object
coordinate images as an intermediate representation,
and then performing reprojection, depth map comple-
tion, and a final trivial fusion step in object space.

• The first work to train a single network to reconstruct
point clouds with RGB textures on multiple categories.

• More accurate reconstruction results than previous
methods on both seen and unseen categories from
ShapeNet [4] or Pix3D [33] datasets.

2. Related Work
Our method is mainly related to single image 3D recon-

struction and shape completion. We briefly review previous
works in these two aspects.

2169

2021 IEEE Winter Conference on Applications of Computer Vision (WACV)

978-1-6654-0477-8/21/$31.00 ©2021 IEEE
DOI 10.1109/WACV48630.2021.00222

20
21

 IE
EE

 W
in

te
r C

on
fe

re
nc

e 
on

 A
pp

lic
at

io
ns

 o
f C

om
pu

te
r V

is
io

n 
(W

A
C

V
) |

 9
78

-1
-6

65
4-

04
77

-8
/2

0/
$3

1.
00

 ©
20

21
 IE

EE
 | 

D
O

I: 
10

.1
10

9/
W

A
C

V
48

63
0.

20
21

.0
02

22

Authorized licensed use limited to: University of Maryland College Park. Downloaded on October 04,2021 at 20:27:34 UTC from IEEE Xplore.  Restrictions apply. 



Figure 1: Approach overview. An image X is passed through a 2D-3D network to reconstruct the visible parts of the object,
represented by an object coordinate image C. X and C represent the texture and 3D coordinates of a shape respectively,
which yield a partial shape with texture Pdt when combined by a Joint Texture and Shape Mapping operator. Next, by Joint
Projection, Pdt is jointly projected from 8 fixed viewpoints into 8 pairs of partial depth maps and textures maps, which are
translated to completed maps by the Multi-view Texture-Depth Completion Net (MTDCN) that jointly completes texture and
depth maps. Alternatively, Multi-view Depth Completion Net (MDCN) only completes the depth maps. Finally, the Joint
Fusion operator fuses the completed multiple texture and depth maps into completed point clouds.

Single image 3D reconstruction. Along with the develop-
ment of deep learning techniques, single image 3D recon-
struction has made huge progress. Because of their regu-
larity, early works mainly learned to reconstruct voxel grids
from 3D supervision [7] or 2D supervision [34] using dif-
ferentiable renderers [43, 37]. However, these methods can
only reconstruct shapes at low resolution, such as 323 or
643, due to the cubic complexity of voxel grids. Although
various strategies [13, 35] were proposed to increase the res-
olution, these methods were too complex to follow. Mesh
based methods [39, 21] are also alternatives to increase the
resolution. However meshes often have fixed topologies,
which limits the space of representable 3D shapes. Point
cloud based methods [10, 29, 46, 23] provide another di-
rection for single image 3D reconstruction. However, some
of these methods are also limited to low resolutions, which
makes it hard to reconstruct small geometric details.

Besides low resolution, lack of texture is another issue
that affects the realism of generated shapes. Current meth-
ods aim to map the texture from single images to the recon-
structed shapes either represented by mesh templates [17]
or point clouds using object coordinate maps [32]. [26]
proposed a differentiable point feature rendering module
named DIFFER to reconstruct 3D point clouds with col-
ors from single images. The texture prediction pipeline of
[17] samples pixels from input images directly and works
on symmetric objects with a good viewpoint. Some other
methods (e.g. [48, 34]) try to predict novel RGB views
by view synthesis. Although these methods have shown
promising results in some specific shape classes, their mod-
els were usually trained on one single category for category-
specific reconstruction.

Recently implicit functions have also been used to repre-
sent shapes [27, 24, 25, 5, 11, 42, 6]. Fed with a latent code
and a query point, a neural network is trained to predict the
SDF value [24, 42] or the binary occupancy of the point

[27, 25]. Though these methods can generate high resolu-
tion geometry by evaluating the learned implicit functions at
query 3D points at arbitrary resolutions, they cannot recon-
struct shapes and textures at the same time in their pipelines.

Different from all these methods, our method can jointly
learn to reconstruct very dense point clouds with texture
for multiple-category reconstruction by a two-stage recon-
struction approach, leveraging object coordinate maps (also
called NOCS maps [38, 32]) as intermediate representation.
Different from previous methods [47, 46] that use depth
maps as intermediate representation in a viewer-centered
setting, our method works on object-centered coordinates.
Besides the capability of predicting textures, compared with
the implicit function-based methods, our approach gener-
ates 3D point clouds by multi-view back-projection, while
implicit function-based methods usually need the marching
cubes [22] algorithm as post-processing to extract surfaces.
Shape completion. Shape completion is to infer the whole
3D geometry from partial observations. Different methods
use volumetric grids [8] or point clouds [45, 44, 1] as shape
representation for this task. Point-based methods are often
based on encoder-decoder structures that employ the Point-
Net architecture [28] as a backbone. Although these works
have shown nice completed shapes, they are limited to low
resolution. To resolve this issue, Hu et al. [14] introduced
Render4Completion to cast the 3D shape completion prob-
lem into multiple 2D view completions, and they demon-
strate promising potential on high resolution shape com-
pletion. Our method follows this direction, however, we
perform image-based 3D reconstruction and not only learn
geometry but also texture.

3. Approach

Most 3D point cloud reconstruction methods [23, 7, 9]
solely focus on generating 3D shapes {Pi = [xi, yi, zi]}
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from input RGB images X ∈ RH×W×3, where H × W
is the image resolution and [xi, yi, zi] are 3D coordinates.
Recovering the texture besides 3D coordinates is a more
challenging task, which requires learning a mapping from
RH×W×3 to {Pi = [xi, yi, zi, ri, gi, bi]}, where [ri, gi, bi]
are RGB values.

We propose a method to generate high resolution 3D pre-
dictions and recover textures from RGB images. At a high
level, we decompose the reconstruction problem into two
less challenging tasks: first, transforming 2D images to 3D
partial shapes that correspond to the observed parts of the
target object, and second, completing the unseen parts of
the 3D object. We use object coordinate images to repre-
sent partial 3D shapes, and multiple depth and RGB views
to represent completed 3D shapes.

As shown in Figure 1, our pipeline consists of four sub-
modules: (1) 2D-3D Net, an image translation network
which translates an RGB image X to a partial shape Pd

(represented by object coordinate image C); (2) the Joint
Projection module, which first jointly maps the partial shape
Pd with texture X to generate Pdt, a partial shape mapped
with texture, and then jointly projects Pdt into 8 pairs of par-
tial depth [D1, . . . , D8] and texture views [T1, . . . , T8] from
8 fixed viewpoints (the 8 vertices of a cube); (3) the multi-
view texture and depth completion module, which consists
of two networks: Multi-view Texture-Depth Completion
Net (MTDCN), which generates completed texture maps
[T ′1, . . . , T

′
8] and depth maps [D′1, . . . , D

′
8] by jointly com-

pleting partial texture and depth maps, and as an alternative,
Multi-view Depth Completion Net (MDCN), which only
completes depth maps and generates more accurate results
[D̂1, . . . , D̂8]; (4) the Joint Fusion module, which jointly
fuses the completed depth and texture views into completed
3D shape with textures, like Sd+t and Sdt.

3.1. 2D RGB Image to Partial Shapes

We propose to use 3-channel object coordinate images
to represent partial shapes. Each pixel on the object coor-
dinate image represents a 3D point, where its (r, g, b) value
corresponds to the point’s location (x, y, z). An object co-
ordinate image is aligned with the input image, as shown in
Figure 1, and in our pipeline, it represents the visible parts
of the target 3D object. With this image-based 3D repre-
sentation, we formulate the 2D-to-3D transformation as an
image-to-image translation problem, and propose a 2D-3D
Net to perform the translation based on the U-Net [30] ar-
chitecture as in [16].

Unlike the depth map representation used in [47,
46], which requires camera pose information for back-
projection, the 3-channel object coordinate image can rep-
resent a 3D shape independently.

Figure 2: Partial shapes to multiple views.

3.2. Partial Shapes to Multiple Views

In this module, we transform the input RGB image X
and the predicted object coordinate image C to a partial
shape mapped with texture, Pdt, which is then rendered
from 8 fixed viewpoints to generate depth maps and texture
maps. The process is illustrated in Figure 2.
Joint Texture and Shape Mapping. The input RGB image
X is aligned with the generated object coordinate image C.
An equivalent partial point cloud Pdt can be obtained by
taking 3D coordinates from C and texture from X .

We denote a pixel on X as pXi = [uXi , v
X
i , r

X
i , g

X
i , b

X
i ],

where uXi and vXi are pixel coordinates, and similarly, a
point on C as pCi = [uCi , v

C
i , x

C
i , y

C
i , z

C
i ]. Given pXi and

pCi appearing at the same location, which means uXi = uCi
and vXi = vCi , then pXi and pCi can be projected into 3D
coordinates as Pi = [xi, yi, zi, ri, gi, bi] on partial shape
Pdt, where ri, gi, bi are RGB channels and xi = xCi , yi =
yCi , zi = zCi , ri = rXi , gi = gXi , bi = bXi .
Joint Projection. We render multiple depth maps D =
{D1, . . . , D8} and texture maps T = {T1, . . . , T8} from
8 fixed viewpoints V = {V1, . . . , V8} of the partial shape
Pdt, where Dn ∈ RH×W , Tn ∈ RH×W×3, n ∈ [1, 8].

Given n, we denote a point on depth map Dn as
pDi = [uDi , v

D
i , d

D
i ] where uDi and vDi are pixel coordi-

nates and dDi is the depth value. Similarly, a point on Tn
is pTi = [uTi , v

T
i , r

T
i , g

T
i , b

T
i ], where rTi , g

T
i , b

T
i are RGB

values. Then, we transform each 3D point Pi on the partial
shape Pdt into a pixel p′i = [u′i, v

′
i, d
′
i] on depth map Dn by

p′i = K(<nPi + τn) ∀i, (1)

where K is the intrinsic camera matrix, <n and τn are the
rotation matrix and translation vector of view Vn. Note that
Eq. (1) only projects the 3D coordinates of Pi.

However, different points on Pdt may be projected to the
same location [u, v] on the depth map Dn. For example,
in Figure 2, p1 = [u, v, d1], p2 = [u, v, d2], p3 = [u, v, d3]
are projected to the same pixel pDi = [uDi , v

D
i , d

D
i ] on Dn,

where uDi = u, vDi = v. The corresponding point on the
texture map Tn is pTi = [uTi , v

T
i , r

T
i , g

T
i , b

T
i ] where uTi =

u, vTi = v.
To alleviate this collision effect, we implement a pseudo-

rendering technique similar to [15, 20]. Specifically, for
each point on Pdt, a depth buffer with a size of U × U
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is used to store multiple depth values corresponding to the
same pixel. Then we implement a depth-pooling operator
with stride U × U to select the minimum depth value. We
set U = 5 in our experiments. In depth-pooling, we store
the indices of pooling (j) and select the closest point from
the view point Vn among {p1, p2, p3}. For example, in Fig-
ure 2, pooling index j = 1, the selected point is p1, and the
corresponding point on Pdt is P1. In this case, we copy the
texture values from P1 to pTi .

3.3. Multi-view Texture and Depth Completion

In our pipeline, a full shape is represented by depth im-
ages from multiple views, which are processed by CNNs
to generate high resolution 3D shapes as mentioned in
[20, 14].
Multi-view Texture-Depth Completion Net (MTDCN).
We propose a Multi-view Texture-Depth Completion Net
(MTDCN) to jointly complete texture and depth maps. MT-
DCN is based on a U-Net architecture. In our pipeline, we
stack each pair of partial depth map Dn and texture map Tn
into a 4-channel texture-depth map Qn = [Tn, Dn], Qn ∈
RH×W×4, n ∈ [1, 8]. MTDCN takes Qn as input, and
generates completed 4-channel texture-depth maps Q′n =
[T ′n, D

′
n], Q

′
n ∈ RH×W×4, where T ′n andD′n are completed

texture and depth map respectively. The completions of the
car model are shown in Figure 3. After fusing these views,
we get a completed shape with texture Sdt in Figure 1.

In contrast to the category-specific reconstruction in
[17], which samples texture from input images, thus having
its performance relying on the viewpoint of the input im-
ages and the symmetry of the target objects, MTDCN can
be trained to infer textures on multiple categories and does
not assume objects being symmetric.
Multi-view Depth Completion Net (MDCN). In our ex-
periments, we found it very challenging to complete both
depth and texture map at the same time. As an alterna-
tive we also train MDCN, which only completes partial
depth maps [D1, . . . , D8] and can generate more accurate
full depth maps [D̂1, . . . , D̂8]. We then map the texture
[T ′1, . . . , T

′
8] generated by MTDCN to the MDCN-generated

shape Sd to get a reconstructed shape with texture Sd+t as
illustrated in Figure 1.

Different from the multi-view completion net in [14],
which only completes 1-channel depth maps, MTDCN can
jointly complete both texture and depth maps. In addition,
there is no discriminator in MTDCN or MDCN, in contrast
to [14].

3.4. Joint Fusion

With the completed texture maps T ′ = [T ′1, . . . , T
′
8] and

depth maps D′ = [D′1, . . . , D
′
8] by MTDCN and more

accurate completed depth maps D̂ = [D̂1, . . . , D̂8] by
MDCN, we jointly fuse the depth and texture maps into a

Figure 3: Completions of texture and depth maps.

colored 3D point, as illustrated in Figure 1.
Joint Fusion for MTDCN. Given one point pD

′

i =

[uD
′

i , vD
′

i , dDi ] on D′n, and the aligned point pT
′

i =

[uT
′

i , v
T ′

i , rT
′

i , gT
′

i , bT
′

i ] on the texture map T ′n, where
uD

′

i = uT
′

i and vD
′

i = vT
′

i , the back-projected point on
Sdt is P ′i = [x′i, y

′
i, z
′
i, r
′
i, g
′
i, b
′
i] by

P ′i = <−1s (K−1pD
′

i − τn) ∀i. (2)

Note that Eq. 2 only back-projects the depth map D′n to
the coordinates of P ′i, while the texture of P ′i is obtained
from pT

′

i , where r′i = rT
′

i , g′i = gT
′

i , b′i = bT
′

i . We also
extract a completed shape Sd without texture.
Joint Fusion for MDCN. We map the texture [T ′1, . . . , T

′
8]

generated from MTDCN to the completed shape of MDCN
Sd+t. The joint fusion process is similar. However, since
texture and depth maps are generated separately, a valid
point on a depth map may be aligned to an invalid point on
the corresponding texture map, especially near edges. For
such points, we take their nearest valid neighbor on the tex-
ture map. Since Sd is generated by direct fusion of depth
maps [D̂1, . . . , D̂8], Sd+t has the same shape as Sd.

3.5. Loss Function and Optimization

Training Objective. We perform a two-stage training and
train three networks: 2D-3D Net (G1), MTDCN (G2), and
MDCN (G3). Given an input RGB image X , the gener-
ated object coordinate image is C = G1(X). The training
objective of G1 is

G1
∗ = argmin

G1

||G1(X)− Y ||1, (3)

where Y is the ground truth object coordinate image.
Given partial texture-depth images Qn = [Tn, Dn], n ∈

[1, 8], the completed texture-depth images Q′n = G2(Qn),
we get the optimal G2 by

G2
∗ = argmin

G2

||G2(Qn)− Y ′||1, (4)
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where Y ′ is the ground truth texture-depth image.
MDCV only completes depth maps and takes 1-channel

depth maps as input. Given a partial depth map Dn, the
completed depth map D̂n = G3(Dn). G3 is trained with

G3
∗ = argmin

G3

||G3(Dn)− Ŷ ||1, (5)

where Ŷ is the ground truth depth image.
Optimization. We use Minibatch SGD and the Adam op-
timizer [18] to train all the networks. More details can be
found in the supplementary material.

4. Experiments

We evaluate our methods (Ours-Sd+t generated by
MDCN, and Ours-Sdt by MTDCN) on single-image 3D re-
construction and compare against state-of-the-art methods.
Dataset and Metrics. We train all our networks on syn-
thetic models from ShapeNet [4], and evaluate them on both
ShapeNet and Pix3D [33]. We render depth maps, texture
maps and object coordinate images for each object. More
details can be found in the supplementary material. The im-
age resolution is 256 × 256. We sample 100K points from
each mesh object as ground truth point clouds for evalua-
tions on ShapeNet, as in [20]. For a fair comparison, we use
Chamfer Distance (CD) [2] as the quantitative metric. An-
other popular option, Earth Mover’s Distance (EMD) [10],
requires that the generated point cloud has the same size
as the ground truth, and its calculation is time-consuming.
While EMD is often used as a metric for methods whose
output is sparse and has fixed size, like 1024 or 2048 points
in [9, 23], it is not suitable to evaluate our methods that
generates very dense point clouds with varying numbers of
points. We also report the performance in terms of F-score
for overall evaluations.

4.1. Single Object Category

We first evaluate our method on a single object cate-
gory. Following [43, 20], we use the chair category from
ShapeNet with the same 80%-20% training/test split. We
compare against two methods (Tatarchenko et al. [34] and
Lin et al. [20]) that generate dense point clouds by view
synthesis, as well as two voxels-based methods, Perspec-
tive Transformer Networks (PTN) [43] in two variants, and
a baseline 3D-CNN provided in [43].

The quantitative results on the test dataset are reported
in Table 1. Test results of other approaches are referenced
from [20]. Our method (Ours-Sd+t) achieves the lowest CD
in this single-category task. A visual comparison with Lin’s
method is shown in Figure 4, where our generated point
clouds are denser and more accurate. In addition, we also
infer the textures of the generated point clouds.

Figure 4: Reconstructions on single-category task.

4.2. General Object Categories from ShapeNet

We also simultaneously train our network on 13 cate-
gories (listed in Table 3) from ShapeNet and use the same
80%-20% training/test split as existing methods [7, 23].
Reconstructing novel objects from seen categories. We
test our method on novel objects from the 13 seen categories
and compare against (a) 3D-R2N2 [7], which predicts vol-
umeric models with recurrent networks, and (b) PSGN [9],
which predicts an unordered set of 1024 3D points by fully-
connected layers and deconvolutional layers, and (3) 3D-
LMNet which predicts point clouds by latent-embedding
matching. We only compare methods that follow the same
setting as 3D-R2N2, and do not include [20] which assumes
fixed elevation or OptMVS [40]. We use the pretrained
models readily provided by the authors, and the results of
3D-R2N2 and PSGN are referenced from [20]. We extract
the surface voxels of 3D-R2N2 for evaluation.

Table 3 shows the quantitative results. Since most meth-
ods (e.g. [23, 9]) need ICP alignment as a post-processing
step to achieve finer alignment with ground truth, we list the
results without and with ICP. Note that PSGN predicts ro-
tated point clouds, so we only list the results after ICP align-
ment. Ours-Sd+t outperforms the state-of-the-art methods
on most categories. Specifically, we outperform 3D-LMNet
on 12 categories out of 13 without ICP, and 7 with ICP. In
addition, we achieve the lowest CD in average. Different
from other methods, our methods do not rely too much on
ICP, and more analysis can be found in Section 4.4.

We also visualize the predictions in Figure 6. It can be
seen that our method predicts more accurate shapes with
higher point density. Besides 3D coordinate predictions, our
method also predicts textures. We demonstrate ours-Sd+t

from two different views (v1) and (v2).
Reconstructing objects from unseen categories. We also
evaluate how well our models generalizes to 6 unseen cat-
egories from ShapeNet: bed, bookshelf, guitar, laptop, mo-
torcycle, and train. The quantitative comparisons with 3D-
LMNet in Table 4 shows a better generalization of our
method. We outperform 3D-LMNet on 4 categories out of
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Method CD
3D CNN (vol. loss only) 4.49

PTN (proj. loss only) 4.35
PTN (vol. & proj. loss) 4.43

Tatarchenko et al. 5.40
Lin et al. 3.53
Ours-Sdt 3.68

Ours-Sd+t 3.04
Table 1: CD on single-category task.

Category Pd Ours-Sd+t

airplane 10.53 4.19
bench 7.85 3.40
cabinet 19.07 4.88

car 11.14 2.90
chair 8.69 3.59

display 12.43 4.71
lamp 11.95 6.18

loudspeaker 20.26 6.39
rifle 9.47 5.44
sofa 10.86 4.07
table 8.83 3.27

telephone 9.83 3.16
vessel 9.08 3.79
mean 10.58 3.91

chair 9.04 3.04

Table 2: Mean CD of partial shape Pd and
completed shape Sd+t to ground truth.

Category 3D-R2N2 PSGN 3D-LMNet Ours-Sdt Ours-Sd+t

airplane (4.79) (2.79) 6.16 (2.26) 3.70 (3.37) 4.19 (3.66)
bench (4.93) (3.80) 5.79 (3.72) 4.27 (3.83) 3.40 (3.10)
cabinet (4.04) (4.91) 6.98 (4.46) 6.77 (5.89) 4.88 (4.50)

car (4.81) (3.85) 3.17 (2.91) 2.93 (2.95) 2.90 (2.90)
chair (4.93) (4.24) 7.08 (3.74) 4.47 (4.12) 3.59 (3.22)

display (5.04) (4.25) 7.89 (3.72) 5.55 (4.94) 4.71 (3.85)
lamp (13.03) (4.56) 11.36 (4.57) 8.06 (7.13) 6.18 (5.65)

loudspeaker (6.69) (6.00) 7.95 (5.46) 9.53 (8.28) 6.39 (5.74)
rifle (6.64) (2.67) 4.46 (2.55) 5.31 (4.28) 5.44 (4.30)
sofa (5.50) (5.38) 6.06 (4.44) 4.43 (3.93) 4.07 (3.57)
table (5.26) (4.10) 6.65 (3.84) 4.59 (4.26) 3.27 (3.14)

telephone (4.61) (3.50) 3.91 (3.10) 4.98 (4.72) 3.16 (2.90)
vessel (6.82) (3.59) 6.30 (3.81) 4.13 (3.85) 3.79 (3.52)
mean (5.93) (4.13) 6.14 (3.59) 4.68 (4.26) 3.91 (3.56)

Table 3: Average CD of multiple-seen-category experiments on ShapeNet. Num-
bers beyond ‘()’ are the CD before ICP, and in ‘()’ are after ICP.

Category 3D-LMNet Ours-Sdt Ours-Sd+t

bed 13.56 (7.13) 12.82 (8.43) 11.46 (6.51)
bookshelf 7.47 (4.68) 8.99 (7.96) 5.63 (4.89)

guitar 8.19 (6.40) 7.07 (7.29) 5.96 (6.33)
laptop 19.42 (5.21) 9.76 (7.58) 7.08 (5.67)

motorcycle 7.00 (5.91) 7.32 (6.75) 7.03 (5.79)
train 6.59 (4.07) 9.16 (4.38) 9.54 (3.93)

mean 10.37 (5.57) 9.19 (7.06) 7.79 (5.52)

Table 4: Average CD of multiple-unseen-category experiments on ShapeNet.

Category PSGN 3D-LMNet OptMVS Ours-Sdt Ours-Sd+t

chair (8.98) 9.50 (5.46) 8.86 (7.23) 8.35 (7.40) 7.28 (6.05)
sofa (7.27) 7.82 (6.54) 8.25 (8.00) 8.54 (7.18) 8.41 (6.83)
table (8.84) 13.57 (7.62) 9.09 (8.88) 9.52 (9.06) 8.53 (7.97)

mean-seen (8.55) 9.73 (6.04) 8.75 (7.67) 8.54 (7.55) 7.74 (6.53)

bed* (9.23) 13.11 (9.02) 12.69 (9.01) 10.91 (8.41) 11.04 (8.19)
bookcase* (8.24) 8.32 (6.64) 8.10 (8.35) 10.38 (9.72) 8.99 (8.44)

desk* (8.40) 11.75 (7.72) 9.01 (8.50) 8.64 (8.16) 7.64 (7.18)
misc* (9.84) 13.45 (11.34) 13.82 (12.36) 12.58 (11.03) 11.48 (9.30)
tool* (11.20) 13.64 (9.09) 14.98 (11.27) 13.27 (11.70) 12.18 (9.02)

wardrobe* (7.84) 9.46 (6.96) 6.96 (7.26) 9.15 (8.80) 8.33 (8.26)
mean-unseen (8.81) 11.67 (8.22) 10.48 (8.83) 10.19 (8.86) 9.57 (8.07)

Table 5: Average CD on both seen and unseen category on Pix3D dataset. All numbers are
multiplied by 100. ‘*’ indicates unseen category. Figure 5: Results on un-

seen categories

6 before or after ICP. Qualitative completions are shown in
Figure 5. Our methods perform reasonably well on the re-
construction of bed and guitar, while 3D-LMNet interprets
the input as sofa or lamp.

4.3. Real-world Images from Pix3D

To test the generalization of our approach to real-world
images, we evaluate our trained model on Pix3D [33]. We
compare against the state-of-the-art methods, PSGN [9],
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Figure 6: Reconstructions of the seen categories on ShapeNet dataset. ‘C’ is the generated object
coordinate image, and ‘GT’ is another view of the target object. Ours-Sdt is generated by MTDCN,
Ours-Sd and Ours-Sd+t are generated by MDCN.

Data lmnet ours
S-s 6.65 4.63

S-uns 10.15 8.53
P-s 8.85 7.22

P-uns 10.08 9.59
Table 6: 6D pose
evaluations (ADD-S
[41]). S: ShapeNet, P:
Pix3D. ‘-s’ and ‘-uns’
are seen and unseen
categories separately.

Data lmnet ours
S-s 0.42 0.09

S-uns 0.46 0.29
P-s 0.38 0.16

P-uns 0.30 0.16
Table 7: Relative CD
improvements after
ICP.

3D-LMNet [23] and OptMVS [40]. Following [23, 33],
we uniformly sample 1024 points from meshes as ground
truth point cloud to calculate CD, and remove images with
occlusion and truncation. We have 4476 test images from
seen categories, and 1048 from unseen categories.

Reconstructing novel objects from seen categories in
Pix3D. We test the methods on 3 seen categories (chair,
sofa, table) that co-occur in the 13 training sets of ShapeNet,
and the results are shown in Table 5. Even on real-world
data, our networks generate well aligned shapes, while other
methods largely rely on ICP. Qualitative results are shown
in Figure 7. Our method generates denser point clouds with
reasonable texture. Besides more accurate shape alignment,
our method also predicts better shapes, like the aspect ratio
in the ‘Table’ example.

Reconstructing objects from unseen categories in Pix3D.
We also test the pretrained models on 7 unseen categories
(bed, bookcase, desk, misc, tool, wardrobe), and the results
are shown in Table 5. Our methods outperform other ap-
proaches [9, 40, 23] in mean CD with or without ICP align-
ment. Figure 7 shows a qualitative comparison. For ‘Bed-1’
and ‘Bed-2’, our methods generate reasonable beds, while
3D-LMNet regards them as sofa or car-like objects. Simi-
larly, we generate reasonable ‘Desk-1’ and recover the main
structure of the input. For ‘Desk-2’, our method estimates
the aspect ratio more accurately and recovers some details
of the target object, like the curved legs. For ‘Bookcase’,
ours generates a reasonable shape, while OptMVS or 3D-
LMNet takes it as a chair.

4.4. More Experimental Results

Evaluations on F-score [19, 36] metric. Different from
CD, F-score (the harmonic mean between precision and re-
call) is another evaluation metric for 3D reconstruction. In
Table 8, we also provide the results on F-score calculated
on 40K points. For F-score, the higher, the better. As sug-
gested by [36], we take a distance threshold d of 0.5%, 0.8%
and 1%. Our method outperforms 3D-LMNet [23] on both
Pix3D and ShapeNet by a large margin.
Comparisons with GenRe [47] on generalization. GenRe
has shown good generalization on reconstructing objects
from unseen classes from single RGB images. We trained
our model on the same dataset as [47], including ShapeNet
cars, chairs, and airplanes, and tested on real images of
beds, bookcases, desks, sofas, tables, and wardrobes from
Pix3D. Results of AtlasNet [12], Shin et al. [31], and
GenRe are from [47]. The CD reported is calculated on
1024 points. We outperform the three baseline methods:
object-centered AtlasNet, and two viewer-centered methods
[47, 31] on five out of seven classes.
6D Pose estimation. Besides CD, pose estimation should
also be evaluated in the comparisons among different
object-centered reconstruction methods. We compare 6D
pose estimation accuracy by calculating the average clos-
est point distance (ADD-S) [41]. The results are reported
in Table 6 (S: ShapeNet, P: Pix3D), where our method
outperforms 3D-LMNet on all test datasets. For ADD-S,
the lower, the better. Note that since P and P ′ both are
ground truth shapes under different poses, the ADD-S met-
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Figure 7: Reconstructions on Pix3D. ‘C’ is object coordinate image, and ‘GT’ is ground truth.

d=0.5% lmnet ours
S-s 0.72 2.55

S-uns 0.37 1.72
P-s 0.41 1.74

P-uns 0.27 1.39
d=0.8% lmnet ours

S-s 1.55 4.13
S-uns 1.17 2.95
P-s 1.35 2.92

P-uns 0.91 2.42
d=1% lmnet ours

S-s 3.17 4.86
S-uns 1.89 3.59
P-s 2.17 3.51

P-uns 1.49 2.92

Table 8: F-score
on ShapeNet and
Pix3D. S: ShapeNet,
P: Pix3D, s: seen,
uns: unseen; lmnet:
3D-LMNet, ours:
Ours-Sd+t. F-score is
multiplied by 10.

AtlasNet Shin et al. GenRe Ours-Sd+t

chair 0.80 0.89 0.93 0.57
bed 1.14 1.06 1.13 0.86

bookc. 1.40 1.09 1.01 1.14
desk 1.26 1.21 1.09 1.18
sofa 0.95 0.88 0.83 0.77
table 1.34 1.24 1.16 1.07

wardr. 1.21 1.16 1.09 1.06

Table 9: Comparisons with GenRe on seen (chair) and un-
seen classes (the rest) from Pix3D. CD is multiplied by 10.

ric does not take the reconstruction completeness into ac-
count. More details about the experiment can be found in
the supplementary material.

Ablation study 1: contributions of each reconstruc-
tion stage to the final shape. Considering both 2D-3D
and view completion nets perform reconstruction, in Ta-
ble 2, we compare the generated partial shape Pd with the
completed shape Ours-Sd+t on the multiple-category and
single-category tasks. For the former, the mean CD de-
creases from 10.58 to 3.91 after the second stage.

Ablation study 2: the impact of ICP alignment on the
reconstruction results. Besides ADD-S, we also evalu-
ate the pose estimations of 3D-LMNet and our methods
by comparing the relative mean improvement of CD after
ICP alignment in Table 7, which is calculated from Table
3, 4, 5. A bigger improvement means a worse alignment.
Although the generated shapes of 3D-LMNet are assumed
to be aligned with ground truth, its performance still relies
heavily on ICP. But our methods rely less on ICP, which
implies that our pose estimation is more accurate.

5. Conclusion

We propose a two-stage reconstruction method for 3D
reconstruction from single RGB images by leveraging ob-
ject coordinate images as intermediate representation. Our
pipeline can generate denser point clouds than previous
methods and also predict textures on multiple-category re-
construction tasks. Experiments show that our method out-
performs the existing methods on both seen and unseen cat-
egories on synthetic or real-world datasets.
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