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Reconstructing 3D Shapes From Multiple Sketches
Using Direct Shape Optimization

Zhizhong Han"', Baorui Ma, Yu-Shen Liu“’, Member, IEEE, and Matthias Zwicker~, Member, IEEE

Abstract— 3D shape reconstruction from multiple hand-drawn
sketches is an intriguing way to 3D shape modeling. Currently,
state-of-the-art methods employ neural networks to learn a
mapping from multiple sketches from arbitrary view angles to a
3D voxel grid. Because of the cubic complexity of 3D voxel grids,
however, neural networks are hard to train and limited to low
resolution reconstructions, which leads to a lack of geometric
detail and low accuracy. To resolve this issue, we propose to
reconstruct 3D shapes from multiple sketches using direct shape
optimization (DSO), which does not involve deep learning models
for direct voxel-based 3D shape generation. Specifically, we first
leverage a conditional generative adversarial network (CGAN)
to translate each sketch into an attenuance image that captures
the predicted geometry from a given viewpoint. Then, DSO
minimizes a project-and-compare loss to reconstruct the 3D shape
such that it matches the predicted attenuance images from the
view angles of all input sketches. Based on this, we further
propose a progressive update approach to handle inconsistencies
among a few hand-drawn sketches for the same 3D shape.
Our experimental results show that our method significantly
outperforms the state-of-the-art methods under widely used
benchmarks and produces intuitive results in an interactive
application.

Index Terms—3D shape reconstruction, sketches, multiple
angles, voxels, optimization.

I. INTRODUCTION
ECONSTRUCTING 3D shapes from 2D hand-drawn
sketches is an intriguing way to interactive 3D shape

modeling. As a simple and intuitive representation [1]-[10],
sketching allows users to describe the 3D shapes that they
have in mind by just drawing lines in an interactive manner.
Due to the lack of shading or texture information, however,
2D sketches are extremely ambiguous as a representation of
3D shapes. This makes it hard to learn plausible mappings
from sketches to 3D shapes, which significantly limits the
reconstruction accuracy.
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To reduce this ambiguity, current methods [11], [12] allow
users to draw sketches from multiple viewpoints for more
detailed input, and they resort to deep learning models to
obtain the complex mapping from sketches to 3D shapes.
By allowing users to progressively draw sketches from dif-
ferent angles, deep learning models can incrementally update
the 3D shape. Current techniques use 3D voxel grids as shape
representations because they can represent arbitrary topologies
and they enable the implementation of convolutional networks
in a straightforward manner. However, 3D voxel grids lead
to a cubic complexity for memory and computation time,
which significantly limits this strategy to low resolution voxel
representations. Therefore, it is still a research challenge to
accurately reconstruct high resolution 3D shapes with more
detailed geometry.

To overcome this challenge, we propose a method to
directly optimize the reconstructed 3D shapes based on
the understanding of sketches by leveraging a 2D deep
learning model. Instead of directly generating 3D voxel
representations using deep learning models, we only leverage
the deep learning model to understand 2D sketches. Then,
we perform direct shape optimization (DSO) to reconstruct a
3D shape without the involvement of a deep learning model,
which avoids the computational burden of high resolution
voxel grids. Specifically, we employ a conditional generative
adversarial network (CGAN) [13] to understand a sketch by
translating it into an image that reveals the shape geometry
from a certain view angle. Regarding the predicted images
from multiple view angles as targets, our DSO employs a
project-and-compare loss to push the reconstructed shape
to match the target image from the same view angle. In
addition, DSO enables the progressive refinement of partial
geometry as the user creates multiple sketches interactively.
In summary, our contributions are as follows:

i) We propose a novel method to enable high resolution
3D shape reconstruction from multiple sketches. Our
direct shape optimization technique uses a project-and-
compare loss to avoid the direct involvement of deep
learning models in 3D shape reconstruction, and it
circumvents the computational burden of voxel-based
deep learning models.

ii) We introduce a progressive update approach for recon-
struction from multiple hand-drawn sketches. Our
method robustly handles inconsistencies among multiple
sketches and enables users to reconstruct high fidelity
shapes using just a few sketches.
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iii) Our experimental results demonstrate that our method
can reconstruct 3D shapes with more detailed and accu-
rate geometry in higher resolution than the state-of-the-
art.

II. RELATED WORK

3D shape modeling from sketches has been drawing
research attention in 3D computer vision for decades. Along
with the development of deep learning models [14]-[16],
there has been great progress in understanding the 3D
world in different applications, such as 3D shape feature
learning [17]-[25], shape completion [26]-[31], shape recon-
struction [32]-[39], shape captioning [40], [41], and scene
understanding [42], [43], where 3D shapes are represented
by different 3D shape representations including triangle
meshes [44]-[48], multiple views [22], [23], point clouds [24],
[25], [311, [38], [49]-[52], and voxel grids [39], [53]. Here,
we focus on work considering 3D shape reconstruction based
on sketches. We classify the related works into two categories
in terms of the involvement of deep neural networks.

A. Geometric Reasoning Based Methods

This category contains geometric reasoning based methods
that first derive geometric constraints from the local shape
features represented by lines or joints in sketches, and then
leverage the derived constraints in a shape optimization frame-
work [1]-[4]. The derived constraints may include convexity,
symmetry, orthogonality, parallelism, discontinuity, surface
orientation and surface developability [3], [54]-[56]. However,
these methods are restricted to specific sketch drawings such
as polyhedral scaffolds [57], curvature-aligned cross-sections
[58], curvature flow lines [59], or cartoon isophotes [60],
which are also required to be drawn by users as accurately
as possible for better constraint derivation. These issues make
it hard for untrained users to obtain successful results in an
interactive sketch drawing system. In contrast, our method
does not require users to provide accurate sketches to parse
local geometry, and just reconstructs 3D shapes based on the
global understanding of multiple sketches achieved using a
CGAN.

B. Deep Learning Based Methods

Thanks to the powerful learning ability of deep neural
networks, deep learning based methods are able to learn
a mapping from 2D sketches to 3D shapes in an end-to-
end manner. For example, encoder-decoder networks are a
widely used deep learning architecture to achieve this. The
encoder aims to extract features of the 2D sketches, and
the decoder transforms these features into 3D shapes. Here,
the reconstructed 3D shape could be represented as a voxel
grid [11], [61] or template-based meshes [62], where the
difference between the shape predicted by the deep learning
model and the ground truth is minimized to train the network.
The method [11] allows users to provide multiple sketches
that are employed to iteratively refine the predicted voxel grid.
However, this method is limited to low resolution 3D grids,
due to the high computation cost in deep neural networks.
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Although this method was subsequently extended to predict
normal information, which helps to smooth the surfaces of
the reconstructed shapes [12], it still suffers from the low
resolution problem. Recently, a system [63] was proposed
to infer a set of parametric surfaces that realize the smooth
drawing in 3D from a single bitmap sketch. However, this
system does not have the ability of understanding multiple
sketches drawn for the same 3D shape.

To resolve this issue, some methods represent 3D shapes
as multiple depth images [64], [65] or normal images [66]
that are predicted by deep learning models from multiple
input sketches. Each predicted depth or normal image shows
the characteristics of the 3D shape observed from a specific
view angle, where all view angles cover the whole 3D shape.
Although these methods avoid the involvement of voxel grids
in deep learning models, each depth or normal image only
represents a partial geometry of the 3D shape. Hence, this
strategy additionally requires a multi-view fusion procedure
to carefully register point clouds from different views. While
our method also adopts a multi-view strategy to circumvent
deep learning models based on voxel grids, our direct shape
optimization allows us to directly predict 3D shapes without
registration in a fusion process.

III. METHOD OVERVIEW

As shown in Fig. 1, our method aims to reconstruct a 3D
shape M using multiple sketches s; drawn from arbitrary view
angles v;, where i € [1, V] and V is the number of view angles
which can be chosen arbitrarily. Our method first employs
a CGAN to understand each sketch s; by predicting its
geometry from the corresponding view angle. In our approach,
the view-dependent geometry is represented as an attenuance
image d;, where each pixel contains the attenuance (that is,
one minus the transmittance) along a ray through the shape.
Then, we reconstruct the shape M according to the multiple
images d! predicted by CGAN using direct shape optimization
(DSO), which is cast as a tomographic reconstruction problem.
Our DSO technique minimizes a project-and-compare loss
to progressively refine the partial geometry of M such that
its projections from view angles v; match the corresponding
attenuance maps d;.

IV. RECOVERING PARTIAL GEOMETRY FROM SKETCHES
A. Conditional GAN

Our method employs a CGAN to process and interpret
the geometry of each sketch s;. A CGAN is a generative
network formed by a GAN [67] with additional conditions.
We aim to leverage the powerful generative ability of CGAN to
predict geometric details from sketches. The CGAN employs
a generator G to learn a mapping from sketches s; and a
random noise vector z to real attenuance images d;, such
that G : {s;,z} — d; (we discuss the real attenuance images
generation in Section V). The generator G is trained to predict
a d; that cannot be distinguished from real images d; by a
discriminator D. At the same time, the discriminator D is
trained to learn to distinguish predicted images from real ones,
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G CGAN

gm=mDirect shape optimization (DSO)

Fig. 1. Overview of our method. We first employ a CGAN (red arrows) to
understand the view-dependent geometry of each sketch, which can be drawn
from an arbitrary view angle. Specifically, the CGAN translates the sketch into
an attenuance image, where each pixel represents the attenuance (one minus
transmittance) of a ray that passes through the 3D shape. Then, we refine the
reconstructed 3D shape using our direct shape optimization technique, which
solves a tomographic reconstruction problem (blue arrows).

where D and G are trained adversarially, as illustrated in
Fig 2.

B. Objective Function

We train the CGAN using the standard objective function,
as defined below,

Lcgan (G, D) = Ey; g;[log(D(s;, d;))]

+Ey; c[log(1 — D(si, d)], (1)

where a': = G(si, z). D tries to distinguish predicted images
d; from real images d; by maximizing the objective function,
while G tries to fool the discriminator by minimizing the
objective function.

To prevent d; from being far away from the ground truth
d;, we also employ a L1 distance loss to further constrain the
generator G, similar as pix2pix networks [68]. The L1 loss
encourages less blurring in terms of pixel values as defined
below,

LPixef(G) a Es.‘,a‘;,z[HdF = d:”l] (2)

Finally, we aim to train an optimal generator G* to satisfy
the objective function below,

G* = argl’Igl’l mg.x LCGAN(Gv D) S ALPixef(G)s (3)

where 1 is a weight to balance the two losses, and we set
A =100 in our experiments.

C. Architecture

For the architecture of our CGAN, we employ a network
similar to pix2pix [68] to implement the generator G and
the discriminator D. Specifically, the generator G is a “U-

et” [69] which is an encoder-decoder network with skip
connections between symmetric layers in the encoder and
decoder stacks. To avoid the generation of blurry images, the
discriminator D classifies whether each N x N patch on a
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Fig. 2. Tllustration of CGAN. The generator G is trained adversarially by

competing with the discriminator D, which aims to enable G to generate d}
that are indistinguishable from the real attenuance images d;.

predicted image is real or not, where the averaged responses
across the whole image are regarded as the output. In addition,
both generator and discriminator use the modules of the
form convolution-BatchNorm-ReLu [70]. In each module, all
convolutions employ 4 x 4 spatial filters with a stride of 2.
All leaky ReLUs in the encoder are with a slope of 0.2, while
ReL.Us in the decoder are not leaky.

V. DIRECT SHAPE OPTIMIZATION

Direct shape optimization (DSO) aims to refine the recon-
structed 3D shape M using the predicted attenuance images d
from their corresponding view angles ;. Intuitively, DSO tries
to minimize a project-and-compare loss to push M such that
its projection from each view angle v; matches the predicted
image d;.

A. Shape Projection

1) Shape Representation: In DSO, M is regarded as a voxel
grid with a resolution of R x R x R, where each voxel m is a
variable in a value range of [0, 1] that represents the voxel’s
occupancy probability. In our projection model, we interpret
the occupancy probabilities as absorption coefficients, and
render images as attenuance maps where each pixel contains
the attenuance (one minus transmittance) along a ray through
the shape. Attenuance images can fully preserve the geometry
of 3D shapes in the orthogonal projection introduced later,
and more importantly, the generation of attenuance images is
differentiable, which enables the DSO in the reconstruction.

To produce the appearance of M from view angle v;,
we render M by projecting all variables m in the R x R x R
voxel grid to a 2D plane. We then leverage the rendered view
to evaluate how similar it is to the predicted image d; from
the trained CGAN.

For efficiency, we employ orthogonal projection rather
than perspective projection to map the shape M onto a 2D
plane. We represent the reconstructed 3D shape M in an
object-centered coordinate system, and we use P to denote
the entire projection procedure which produces the projected
image r; from shape M and view angle »; below,

ri=P(M,uv;). 4)

2) Coordinate Transformation: To project the voxel grid
to a 2D plane, we first transform the coordinate of each
voxel m from the object-centered coordinate system to a
viewer-centered coordinate system, as shown from Fig. 3 (a) to
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Fig. 3. The shape projection process, for clarity illustrated from 2D to 1D. Starting from a 2D shape M as a voxel grid (the center of each voxel is
represented as a green node) and a view angle v; in (a), we first transform the voxels from the object-centered into the viewer-centered coordinate system in
(b), then uniformly resample the volume into a new grid M and get the values of sampled nodes (red squares) by interpolating the nearest 4 voxels (we only
draw 4 voxel centers for clarity) in (c), and finally obtain the projected image r; of M via orthogonal projection and computing attenuance values (Eq. (7))

using the sampled grid in (d).

Fig. 3 (b). We denote the coordinate of the center of the j-th
voxel m; as m;, where j € [1, R3]. According to the camera
pose rotation matrix T; from view angle v;, the coordinate cj
of m; in this viewer-centered coordinate system is

¢, = T;m;. (5)

Note that users can draw sketches while viewing a 3D shape
as reference, so the view angle »; of each sketch is captured
when the user is drawing the sketch.

3) Resampling and Interpolation: To perform orthogonal
projection, we resample the volume into a new R x R x R
grid M that is aligned with the i-th viewer-centered coordinate
system, as shown in Fig. 3 (c). The resampled grid M;
bridges the optimization target M and the final projected image
ri. Here, we denote each resampled voxel node as m’, to
differentiate it from the voxel m; in shape M, and denote the
coordinate of m’. as ¢’ in the i-th viewer-centered coordinate
system. We employ trilinear interpolation to get the value of
each resampled voxel m’; from the nearest 8 m; in M as
follows,

e E

melm; |cj'. eS—N’N(cj’),m)—eM}

wiMmg, (6)

where wy, is the weight which is a normalized ratio in terms
of distance between the locations of ¢'.” and c;, as indicated
by the dashed line in Fig. 3 (c).

4) Shape Projection: We finally obtain the projected image
r; by computing the attenuance along all rays orthogonal to
the 2D projection plane. This is achieved by simply summing
up all resampled voxels along the axis orthogonal to the
2D projection plane, as shown in Fig. 3 (d), and then
exponentiating,

ri(u,0) =1 — e 2 Miw,,2), o

where u and v are the coordinates along the horizontal and
vertical image axes, respectively.

B. Optimization

To push shape M to look the same as the attenuance image
d; predicted by the CGAN from each v; of V view angles,
we optimize each voxel value m; in M to minimize the L2

distance between d; and the image r; projected from shape M
in Eq. (7), as defined below,

L= )" |lri—dl

ig[l,V]

8

Eq. (8) defines a loss in a project and compares the process,
hence we call it project-and-compare loss. By minimizing this
project-and-compare loss, we can refine the partial geometry
of shape M. Hence, our objective function in DSO is defined
as,

M* = arg min L.
mJ'EM

&)

which is essentially a tomographic reconstruction problem.
We optimize Eq. (9) in an iterative manner to update each
voxel m ; of shape M using the gradient obtained by the chain
rule connecting Eq. (6), Eq. (7), and Eq. (8),

oL oL or; om)

m; or; om’. om;’ a0
T 14 e it

C. Pseudo Code

To make the direct shape optimization more clear, we further
provide pseudo code below.

V1. GENERATING TRAINING SKETCHES

We generate sketches for training our CGAN using synthetic
3D shapes from a 3D shape classification benchmark, as intro-
duced in Sec. VIII-A later. For a 3D shape represented as a
voxel grid, we generate V sketches from V view angles that
are placed on a sphere around the 3D shape, where V = 25
in our experiments. In our setup, the x-z-plane is the ground
plane, the y-axis points upwards, and the object is centered
at the origin of the sphere. The V view angles are uniformly
distributed on three rings around the y-axis, and the camera is
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Algorithm 1 Direct Shape Optimization

Data: current reconstructed 3D shape M, attenuance
images d] predicted by CGAN, view angles v;,
where i € [1, V]

Result: Reconstructed 3D shape M

while : <V do

1. Coordinate transformation of M to the camera

coordinate system specified by v; using Eq. (5);

2. Calculate M; by resampling and interpolation in

the camera coordinate system using Eq. (6);

3. Project M, into an image r; using Eq. (7);

4. Calculate the error between M, and the predicted

attenuance image d using ||r; — d||2;

5. Optimize M by minimizing the error of

|| — dil|2;

always oriented towards the center of the sphere. We employ
azimuth and elevation angles & and ¢ to indicate the location
of the cameras, which are placed at @ = {0, 0.25z, 1.75x }, and
¢ = {0,0.257,0.57, ..., 2.07}. Beside these, the last camera
is located at & = 0.5z and ¢ = 0, which is right above the
3D shape. The camera system is shown in Fig. 5 (a), where
each node represents a camera location.

From each view angle »; of V view angles shown in Fig. 4
(a), we first repeat the processes described in Sec. V-A to
project the ground truth 3D shape to obtain the real attenuance
image d;, as shown in Fig. 4 (b). Then, we extract the edge
information from d;, which we will use as the training sketch
s;, using the Moore-Neighbor tracing algorithm [71], as shown
in Fig. 4 (c).

VII. SHAPE RECONSTRUCTION WITH HAND-DRAWN
SKETCHES

In a practical shape editing application, users should
be able to reconstruct a 3D shape using just a few
hand-drawn sketches, and the system should accurately and
intuitively leverage the sketches to determine the desired
shape. To achieve this goal, we propose a progressive update
approach for 3D shape reconstruction, which also robustly
handles inconsistencies among multiple hand-drawn sketches
from different view angles. Our progressive update approach
includes a retrieval process and an iterative drawing process,
as illustrated in Fig. 5.

A. Initialization by Sketch Retrieval

Specifically, to reduce the required number of hand-drawn
sketches, we first retrieve a 3D shape from a dataset by finding
the shape that best matches the first sketch (black star with
an index of 1). For this sketch-based shape retrieval step,
we represent each 3D shape in the dataset by V = 25 sketches
in the camera system in Fig. 5 (a). We then find the shape that
contains the sketch that is closest to the user provided input
sketch in the HOG [72] feature space.

Next, we use the retrieved 3D shape to initialize the voxel
grid M that is to be reconstructed, and then, update it using
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Fig. 4. Tllustration of training sketch generation. Starting from a 3D shape
and a view angle in (a), we first project the shape to an attenuance image
in (b), and then extract a sketch from the attenuance image in (c) using the
Moore-Neighbor tracing algorithm.

DSO based on the first hand-drawn sketch in Fig. 5 (b).
We employ the trained CGAN to predict the corresponding
attenuance image of the first sketch, and we use this image for
DSO. Subsequently, we provide the updated 3D shape M to
users as a reference, so that users can draw the second sketch
from a new view angle (black star with an index of 2) and
further update the shape M using two predicted attenuance
images in Fig. 5 (c). Users can iteratively draw additional
sketches from new view angles, and use DSO to update the
shape each time until they are satisfied with the result. For
illustration, Fig. 5 (d) indicates the addition of a third sketch
(black star with an index of 3).

B. The Challenge of Sketch Consistency

One challenge for our approach is that it is hard for users
to provide multiple sketches from different view angles that
are consistent with a 3D shape. For example, a user who is
trying to draw a chair may draw four legs from one view, and
then change the view to provide more details. However, it is
hard to draw the four legs with the exact same size and shape
from another view. Such inconsistencies can dramatically
degenerate the optimization result after each update. To resolve
this issue, we propose two strategies to alleviate the effect of
inconsistent user sketches.

C. Higher Confidence to the Last Sketch

The first strategy is that we give higher confidence to the
last sketch than to the previous sketches. This makes sure that
the shape M is immediately updated to match the sketch that
the user just drew. To implement the higher confidence on the
last sketch, we introduce a weighted project-and-compare loss
based on Eq. (8) and add a larger weight on the predicted
attenuance image corresponding to the last sketch, as shown

below,
> Vellre — Lz,
xe[1,X]

Ly = (11)
where x is the index of sketches drawn for the same shape
and X is the number of sketches that have been drawn before
each update. In our experiment, we only set the weight of the
last sketch to 10, such that yx = 10, and keep all the weights
for the previous sketches to be 1.

D. Higher Confidence to Directly Inferred Voxels

The second strategy is that we give higher confidence to
voxel variables that can be directly inferred by the predicted
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Fig. 5. Our process for updating reconstructed shapes using hand-drawn sketches: (a) The camera system we employ to generate training data, where each
node represents a camera which is looking at the center of 3D space covered by the camera system. (b) According to the first sketch (black star with an index
of 1) drawn by the user, we first retrieve a similar 3D shape, and update the shape according to the first sketch. (c) Repeating this process, we progressively
reconstruct the shape by updating it using a second sketch. (d) Similarly, the third sketch is drawn and used to update the shape together with the two previous

sketches. In each step, the last sketch (in dark) is given higher confidence than the previous ones (in light dark).

attenuance image dy corresponding to the last sketch. This is
to achieve an intuitive and incremental editing step where we
update the reconstructed shape M by revising only part of the
geometry based on the last sketch, and keep the rest of the
geometry unchanged. We can infer the geometry that the user
wants to keep unchanged according to the predicted image
d, of the last sketch, which we roughly split into foreground
(pixels with non-zero values) and background (pixels with zero
values). Intuitively, the current voxels with a value of 0 whose
projections are also located in the background on the predicted
image d} should keep the value of 0, since the user intends
to keep them as background. On the other hand, the current
voxels with a value of 1 whose projections are also located
in the foreground on the predicted image d should keep the
value of 1, since the user intends to keep them as part of the
3D shape.

An example of this partial geometry update is demonstrated
in Fig. 6. For example, a user wants to enlarge the current
3D shape (in blue) from a view shown in Fig. 6 (a), so the
user draws a sketch (in white) on the view in Fig. 6 (b). The
CGAN interprets the sketch by predicting its attenuance image
in Fig. 6 (c). From the predicted image, we can infer that the
user intends to keep some voxels with a value of 1 on the
current shape and some voxels with a value of 0 unchanged,
whose projections on this view are located in the red area
shown in Fig. 6 (d).

Specifically, we denote the set of unchanged voxels as U,
and fix the voxel variables in U before the coming update
using DSO. In addition, we just optimize the remaining
voxel variables in the update to minimize Eq. (11). Based on
Eq. (10), we further propose the conditional gradient for each
voxel variable m; as follows,

dLw or, om’;

b
=l e ory amj om;

0 mijeMnNm; elU

dLw
m;j

mijeMnm; ¢ U

(12)

where x is the index of sketches drawn for the same shape
and X is the number of sketches that have been drawn before
each update.

Intersection

=
4d b

(d)

Fig. 6. [Illustration of partial geometry update. For a view from the current
reconstructed 3D shape (solid blue circle) in (a), a user draws a sketch (white
star) in (b), CGAN predicts the attenuance image (background in black, front
in white) in (c). The projections of unchanged voxel variables should be in
the red area in (d).

VIII. EXPERIMENTS

We evaluate our method in different experiments in this
section. First, we explore the effects of key parameters on
the performance. Then, we conduct a comparison with the
state-of-the-art methods in automatic tests under widely used
benchmarks. Finally, we demonstrate the effectiveness of our
method by reconstructing 3D shapes in a practical application
with freely hand-drawn sketches.

A. Dataset and Evaluation

We employ a widely wused dataset including all
the 400 chairs and 300 vases from [11] with the same
training and test splitting, in addition to 3D shapes in the
sofa, airplane, bed, monitor, table, and toilet classes from the
ModelNet dataset [73], again with the standard training and
test splitting. All 3D shapes are represented as voxel grids of
resolution 643, such that R = 64. We employ binvox [74],
[75] to get the ground truth 3D voxel grids by voxelizing 3D
meshes. In addition, all our attenuance images and sketches
are with a resolution of 642.

We evaluate the difference between the reconstructed 3D
shapes and ground truth 3D shapes using the intersection-over-
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TABLE I
THE PATCH S1ZE COMPARISON UNDER VASE CLASS IN TERMS OF [oU
Patch size N | 50 100 | 150 | 200
IoU 0.65 | 0.66 | 0.65 | 0.65
TABLE II

COMPARISON OF DIFFERENT NUMBERS OF VIEWS UNDER THE VASE AND
CHAIR CLASSES IN TERMS OF IoU

View number V' 10 15 20 25
Vasc 0.65 0.66 | 0.66
Chair 0.80 | 0.94 | 0.95

| ;ii 0.92

bl

0.93

L4 J

e) Ground trut

Fig. 7. Chairs reconstructed by different numbers of sketches. The IoU
provided for each 3D shape shows that more sketches provide more geometry
details in the reconstruction.

union (IoU) metric, which is the ratio between the intersection
and the union of the two voxel grids.

B. Parameters Studies

1) Patch Size N: The first parameter we explore is the patch
size in the discriminator during CGAN training. We resize the
predicted attenuance images d; or real attenuance images d;
images to 256 x 256 when training the discriminator. Then,
we try several size candidates of N x N patches, such as N =
{50, 100, 150, 200}, to train the CGAN for the prediction of
attenuance images from sketches under the vase class. Finally,
we test each trained CGAN to get the predicted attenuance
images, which are further used to reconstruct 3D shapes.

As shown in Table I, the comparable results show that the
CGAN is not sensitive to the patch size of the attenuance
images in our method.

2) Number of Views V: We further explore the effect of
the number of views V in DSO under the vase and chair
classes. We uniformly sample views from the aforemen-
tioned 25 angles, and then use a subset of V € {10, 15, 20, 25}
views. Finally, we employ DSO to reconstruct 3D shapes using
these subsets with different numbers of views.

As shown in Table II, we always achieve better results with
more input sketches. This is because more sketches provide
more details to reconstruct 3D shapes. Visual comparison
shown in Fig. 7 also justifies this point. In Fig. 8, we demon-
strate some of the predicted attenuance images of the three
shapes in Fig. 7 from the CGAN, which demonstrates the
accurate interpretation of sketches by the CGAN.
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Fig. 8. Attenuance images predicted by the CGAN from sketches.
TABLE Il

THE EFFECT OF BINARIZING PREDICTED ATTENUANCE IMAGES d;-' ON
DSO IN TERMS OF IoU

Classes Vase | Chair | Sofa | Airplane | Bed | Monit Table | Toilet
d" 0.71 0.90 0.77 0.84 0.74 0.73 0.55 0.75
Binarized dl | 0.66 | 095 | 0.79 0.87 0.74 0.74 0.55 0.75

3) Binarizing Predicted Attenuance Images: In our experi-
ments, we found an interesting factor that can slightly affect
the accuracy of 3D shapes reconstructed by DSO. Currently,
DSO is able to directly employ the predicted attenuance
images d; from the CGAN to reconstruct 3D shapes. However,
we found that we can slightly increase the accuracy of DSO
further by using the binarized d; as input. As shown in
Table III, the IoU obtained with binarized d; by DSO are
higher than the IoU with 4/ under almost all tested shape
classes. The reason for these results might be that it is
still hard for the CGAN to accurately predict the attenuance
information in most cases, although the CGAN can learn
to distinguish between foreground (area with pixel values of
1) and background (area with pixel values of 0) very well. This
inaccuracy would cause inconsistencies among predicted atten-
uance images for the same 3D shape, which could negatively
affect the accuracy of reconstructed 3D shapes. Therefore,
we employ binarized d; to produce results in our paper.

We show three reconstructed 3D shapes from each class in
Fig. 9. These results demonstrate that DSO can reconstruct
high fidelity 3D shapes from multiple predicted attenuance
images based on the accurate interpretation of each one of
multiple sketches. Here, we only show results with binarized
d;. As shown in Table III, the 3D shapes reconstructed from
the original d; have a similar accuracy with comparable IoU.

According to the slight improvements with binarized d; in
Table III, the question arises whether it is possible to further
improve the results if we use binarized ground truth attenuance
images d; to train the CGAN. We conduct this experiment
under the two classes in Table IV. From the comparison,
however, we can see that this would lose some geometry
information and lead to lower reconstruction accuracies.

C. Comparison to Space Carving

Based on the binarized attenuance images d; predicted from
the CGAN, we could also use space carving to reconstruct a
3D shape. In the space carving process, only voxels whose
projections on each view are located in the foreground (area
with pixel values of 1) are considered occupied, while all the
other voxels are removed. By employing the same binarized
images d; as input, we compare DSO and space carving under
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TABLE IV

THE EFFECT OF BINARIZING IMAGES d; ON TRAINING THE CGAN IN
TERMS OF IoU

Class Vase | Chair
Train CGAN by d; 0.66 | 095
Train CGAN by binarized d; | 0.64 0.92

Fig. 9. Reconstructed 3D shapes under all shape classes involved in our
experiments. Three high fidelity shapes are shown in each class with their
IoU compared to the ground truth shapes.

four shape classes including vase, chair, sofa, and airplane
in Table V, where our results significantly outperform the
results obtained with space carving. Further comparison is
demonstrated by error maps in multiple views in Fig. 10.
In the two cases of airplane and chair, we first project the
shape reconstructed by space carving and DSO into attenuance
images from ten out of the V = 25 views by repeating the
process described in Sec. V-A. Then, we get an error map
between the attenuance image projected from the reconstructed
shape and the ground truth shape in the same view. From the
error maps, we can see that space carving produces larger error
on the reconstructed shapes than DSO, especially around the
boundaries of the reconstructed shapes (edges on the 2D error
maps). The reason why space carving suffers from larger errors
is that the predicted projected images d; from different views
are not perfectly consistent, even after binarization. Because of
its simple voting procedure, space carving is not very robust
to these inconsistencies. On the other hand, DSO uses an
optimization-based approach and handles these issues more
successfully, leading to much higher accuracy.

IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 29, 2020

TABLE V

COMPARISON TO SPACE CARVING UNDER FOUR
CLASSES IN TERMS OF IoU

Vase | Chair | Sofa | Airplane
Space carving | 0.59 078 | 0.76 0.66
Ours 0.66 | 095 | 0.79 0.87
TABLE VI

COMPARISON TO OTHER METHODS UNDER FOUR CLASSES
IN TERMS OF IoU

Vase Chair Sofa Airplane
MVDVP-§ | 04896 | 0.5688 | 0.6828 0.6918
MVDVP 0.4982 | 0.5732 | 0.6832 0.6938
MVDVP1 0.563 0.368 - -
Ours 0.66 0.946 0.787 0.872

D. Comparison With the State-of-the-Art

We further compare our method with Multi-View Deep Vol-
umetric Prediction (MVDVP) [11], a state-of-the-art approach
for 3D reconstruction from multiple sketches. We use four
shape classes as shown in Table VI. We denote the results
reported in the original paper as “MVDVP1”. In addition,
we also train MVDVP (“MVDVP”) and its single view version
(“MVDVP-5") using the same training data as ours, i.e., the
same sketches and voxelized 3D shapes. The comparison
shows that our method significantly outperforms MVDVP.
In addition, we also visually compare the three shapes recon-
structed by these methods with the shapes reconstructed by
our method in each one of the four shape classes in Fig. 11,
which further demonstrates the effectiveness and significance
of our method.

We also conduct a visual comparison with DepthFusion [65]
in Fig. 12, where we also show our results as meshes by
transforming voxel grids into meshes using marching cubes
for a fair comparison. DepthFusion reconstructs 3D shapes
by fusing multiple depth images that are predicted from
sketches in fixed view angles by neural networks. We use the
trained model of DepthFusion from the authors to produce the
reconstructed 3D shapes in airplane and chair classes. Besides
the advantage of the sketch input with arbitrary numbers
and view angles, our method can also reveal more accurate
structures of 3D shapes without any post processing procedure
such as the fusion process.

E. Resolution of Reconstructed Shapes

As a view-based approach, another advantage of our method
over voxel-based deep learning is the flexibility to adjust
the resolution of reconstructed shapes R. Besides suffering
from the low resolution of reconstructed shapes caused by the
computational cost of voxel grids, voxel-based deep learning
methods also cannot change the resolution of reconstructed
shapes after training networks for a specific resolution. In con-
trast, our method is able to flexibly adjust the resolution of
reconstructed shapes even when being trained at a specific
resolution in 2D. Specifically, while we train our CGAN using
sketches from shapes with R = 64, we can then resize the
predicted attenuance images d; from the CGAN to higher or
lower resolutions, such as R = {32, 128, 256}. Using resized
d; as input, DSO can then produce reconstructed shapes with
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Space carvin, DSO Ground truth Error maps from 10 views

Space carving

Space carving DSO

DSO

Fig. 10. Comparison between DSO and space curving. The error maps in multiple views show that DSO can achieve higher accuracies on 3D reconstruction.

MVDVP-§ MVDVP Qurs Ground truth MVDVP-S MVDVP Qurs Ground truth

Chair

Airplane

Sofa
Vase

Fig. 11. Comparison between Multi-View Deep Volumetric Prediction (MVDVP) in four shape classes. MVDVP can be trained with single view (MVDVP-S)
or multiple views (MVDVP) from each 3D shape. Our method outperforms both MVDVP-S and MVDVP, where the IoU is also shown below.

higher or lower resolutions. We conduct this experiment using match the much larger number of voxels in the ground truth
the vase shape class, and compare the reconstructed shapes shapes.

with different resolutions in Table VII. Although the IoU
decreases at higher resolutions, the visual results of three
shapes are still good, even at a high resolution of 2567,
as shown in Fig. 13. The reason for the lower lIoU at higher res- We evaluate our method using hand-drawn sketches in this
olutions is that it is harder to reconstruct voxels to accurately —experiment. We provide a user interface for users to draw

F. Shape Reconstruction From Hand-Drawn Skefches
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Fig. 12. Visual comparison with depth image fusion based method.

Ours

Fig. 13. Reconstructed 3D shapes from the vase class at different resolutions.

sketches, as shown in Fig. 14. The user interface shows the
currently reconstructed 3D shape in the left window, and the
user can draw a new sketch for the next update in the right
window. The user can freely rotate the current 3D shape in
the left window to provide additional sketches from desired
view angles.

We employ hand-drawn sketches to reconstruct some novel
3D shapes in each one of the eight shape classes involved in
the experiments before, as shown in Fig. 15. To reconstruct
each shape, we employ no more than three sketches, and
leverage the first sketch to retrieve a 3D shape as an initial-
ization. We also demonstrate the sketch and its corresponding
predicted attenuance image for each update. The plausible
results show that our method can first correctly understand
the hand-drawn sketches that probably never appear in the

IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 29, 2020

Fig. 14. The user interface to draw sketches. The currently reconstructed
shape is shown in the left window, where the user can view the shape from
different view angles by arbitrarily rotating the shape. The user can draw a
sketch on the screen shot of the left window in the right window to update the
currently reconstructed shapes from a viewpoint specified by rotating the shape
in the left window. Please watch our demonstration video in the submitted
multimedia file for more detail.

TABLE VII
COMPARISON OF DIFFERENT RESOLUTIONS UNDER THE
VASE CLASS IN TERMS OF IoU

1283
0.47

265°
0.39

Resolution | 32° 647
IoU 0.62 | 0.66

training set, and then, robustly handle the inconsistencies
among multiple sketches for the same shape.

G. Ablation Studies

Next, we conduct ablation studies to justify some important
elements in our method.

1) Balance Weight and Trilinear Inferpolation: Under the
chair class, we first explore the effectiveness of the loss with
the balance weight 4 when training CGAN in Eq. (3) and the
trilinear interpolation in DSO, as shown in Table VIIL.

Specifically, we remove the supervision from the ground
truth attenuance images by setting 4 = 0. We found that
the performance of 3D shape reconstruction significantly
degenerates, as shown by the result of “4A = 0”. Without
supervision from ground truth attenuance images, the predicted
attenuance images may be any images that appear real but not
the one for the specific sketches, which negatively affects the
reconstructed 3D shapes using DSO. Moreover, we emphasize
the effect of trilinear interpolation by replacing it with nearest
neighbor interpolation when resampling the 3D space in DSO.
The result of “No trilinear” shows that trilinear interpolation
can better optimize the reconstructed 3D shapes.

2) Project-and-Compare Loss: In this experiment, we com-
pare the L1 and L2 distance for the project-and-compare loss
in Eq 8. We employ the same predicted attenuance images
for each 3D shape as the input of DSO, while using the L1
and L2 distance as the project-and-compare loss, respectively.
Under the same experimental conditions, we show the results
under vase and chair classes in Table IX, where the visual
comparison is demonstrated in Fig. 16. This comparison
indicates that L2 distance is more suitable than L1 distance
for our project-and-compare loss.

3) Progressive Update Approach: We further conduct
another ablation study to justify the effectiveness of each
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Fig. 15. Reconstructed shapes from hand-drawn sketches. Each shape is reconstructed from no more than three sketches, and we also show the corresponding

predicted image for each sketch.

TABLE VIII
ABLATION STUDIES UNDER THE CHAIR CLASS IN TERMS OF [oU
A =0 | No trilinear | Ours
ToU 0.48 0.82 0.95
TABLE IX

COMPARISON OF L1 AND L2 DISTANCE IN PROJECT-AND-COMPARE LOSS
IN TERMS OF IoU

Class Vase | Chair
L1 distance 0.57 0.49
L2 distance | 0.66 | 0.95

element in our progressive update approach for reconstruction
from hand-drawn sketches. In Fig. 17 (b) to (e), we com-
pare the reconstructed shapes obtained by the project-and-
compare loss, the weighted project-and-compare loss but with-
out conditional gradient, the project-and-compare loss with
conditional gradient but without weights on views, and both
weighted project-and-compare loss and conditional gradient.
The degenerated results without either weights on views or
conditional gradient indicate that both of them are effective in
our progressive update approach to produce plausible shapes.

H. Further Analysis

1) DSO Loss: We first visualize the optimization process
of the DSO by plotting the loss in Eq. (8). Fig. 18 shows that

L1 distance L2 distance Ground

Fig. 16.
loss under the chair class in (a) and the vase class in (b).

Comparison between L1 and L2 distance in project-and-compare

the loss converges rapidly, and DSO effectively optimizes the
reconstructed 3D shape by minimizing the distance between
the attenuance images rendered from the reconstructed 3D
shape and the ones predicted from the trained CGAN. While
we show the loss over 100 epoches, the plot reveals that no
more than 50 epoches are adequate to obtain a plausible 3D
shape.

Authonzed licensed use limited to: University of Maryland College Park. Downloaded on October 04,2021 at 20:29:43 UTC from |EEE Xplore. Restrictions apply.



8732

(b) “(©) (d) ()

Fig. 17. Justification of our progressive update approach by reconstructed
shapes in a resolution of 323. (a) The input sketches. (b) Result obtained by
project-and-compare loss only. (c) Result with weighted project-and-compare
loss but without conditional gradients. (d) Result with conditional gradients
but without weighted project-and-compare loss. (e) Result obtained by our
full progressive update approach.
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Fig. 19. Some failure cases of our method. Since the CGAN can not precisely
predict the attenuance information from sketches, we binarize the predicted
attenuance images for the reconstruction, which cannot reveal the detailed
structures of sofas.

Visualization of the loss in Eq. (8) in the optimization process of

Ground truth

2) Computational Complexity: We additionally provide
computational complexity comparisons with other methods
including [11] and [65] in Table X. We compare the training
time used for one batch with the same batch size and the
testing time for one shape. Although our adversarial training is
slower than [11], we require less GPU memory to reconstruct
3D shapes in higher resolution than the 323 from [11], since
we avoid direct 3D reconstruction using neural networks.

3) Failure Cases: Finally, we show some failure cases of
our method. Because we are using the binarized attenuance
images from the trained CGAN to reconstruct 3D shapes
in DSO, we can not reveal the detailed structures, such as
the sofas in Fig. 19. As mentioned earlier, although the

IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 29, 2020

TABLE X
ABLATION STUDIES UNDER THE CHAIR CLASS IN TERMS OF loU
[11] (Caffe) [65] (Tensorflow) | Ours (Tensorflow)
Training time{s/batch) 0.2 1.8 0.5
Testing time (s/shape) 0.05 0.04 0.05
GPU (MB) 5400 10200 3500

CGAN can learn to distinguish between foreground (areas with
pixel values of 1) and background (areas with pixel values
of 0) very reliably, it is not able to precisely predict the
attenuance information from sketches, which may affect the
reconstruction using DSO. Hence we binarize the predicted
attenuance images for the reconstruction in the DSO process.

IX. CONCLUSION

With current approaches to reconstruct 3D shapes from
hand-drawn sketches, it is still challenging to generate high
fidelity and high resolution 3D voxelized shapes, because it
is hard to handle the computational costs caused by the cubic
complexity of 3D voxels in deep learning models. In contrast,
our method successfully resolves this issue by reconstructing
3D shapes without the involvement of voxel-based deep
learning models. Instead, our method effectively leverages
a CGAN to understand sketches by translating them into
attenuance images with more geometric details. We then
use a direct shape optimization technique to generate the
reconstructed 3D shape based on the predicted attenuance
images. In addition, our progressive update approach is able to
robustly handle inconsistencies among multiple hand-drawn
sketches for the same 3D shape, which enables users fto
reconstruct high fidelity 3D shapes using just a few sketches.
Our reconstructed results show that our method outperforms
the state-of-the-art methods.
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