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1  | INTRODUC TION

The turn of the century saw a revolution in fisheries management. 
From the reinforcement of the Magnuson- Stevens Act in 1996 and 
2006 in the US, to the introduction of the Australian Environment 
Protection and Biodiversity Conservation Act (EPBCA) in 1999, to 
the more recent reformation to the European Common Fisheries 
Policy in 2013, and adoption of a “Negative Growth” strategy by 
the Chinese Ministry of Agriculture in 2017, major countries are 
adjusting their approaches to managing shared marine resources 

(Day et al., 1999; Hsu & Wilen, 1997; Huang & He, 2019; Salomon 
et al., 2014). Inevitably, time and money to manage these resources 
is allocated disproportionately to species of great economic interest, 
neglecting many other species and habitats, especially in low- income 
countries and for small- scale fisheries. Due to the ecological value 
of non- target or by- catch species, some countries, including the US 
and Australia, mandated monitoring of these otherwise neglected 
species to minimize by- catch mortality (Dalton et al., 2018; Day 
et al., 1999; Hsu & Wilen, 1997). Without the capacity to perform 
full stock assessments on all species of conservation or commercial 
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Abstract
The productivity susceptibility analysis (PSA) is a widely used method to rapidly as-
sess species risk to fishing activities in data- poor fisheries. A step in ecological risk 
assessments and used in data- poor assessment for sustainable fisheries certification 
programmes (e.g. MSC) and recommendation lists (e.g. Seafood Watch), the PSA is 
semi- quantitative, yet little attention has been given to the theoretical basis of this 
analysis. Current thresholds designating low- , medium-  and high- risk categories di-
vide the PSA plot by equal area, assuming area corresponds to likelihood. We show 
that plot area does not correspond to likelihood, however, and existing thresholds 
need revision due to the non- uniform distribution of vulnerability scores on the PSA 
plot. The probability of medium risk assignment increases with the number of attrib-
utes used to characterize productivity and susceptibility. Here, we present a novel 
and statistically robust method to derive vulnerability, where threshold values be-
tween the risk categories are adjusted with the number of attributes used in the as-
sessment. Our comprehensive framework accounts for all variations in the method, 
including logarithmic scaling of axes, weighting of attributes and scoring procedures. 
Simulated results across a range of conditions and comparative evaluation of 302 
species in five studies show that one- third of species may be re- categorized with 
the new PSA approach. Importantly, the existing PSA approach underestimates risk 
by up to 35% when compared with the new method. These findings have strong im-
plications for management of data- poor fisheries. We recommend adoption of this 
approach to the PSA to better resolve species’ risk.
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interest, government agencies and scientists have devised risk as-
sessment frameworks to provide preliminary estimates of vulner-
ability for species or other managed resources (Hsu & Wilen, 1997; 
Pilling et al., 2009).

One of the most used risk assessment frameworks was initially 
devised by Stobutzki et al. (2001) to examine the sustainability of 
the Australian Northern Prawn Fishery. Since 1999, this framework 
has been expanded and incorporated into ecosystem- based fisher-
ies management (EBFM) programmes (Hazen et al., 2016; Townsend 
et al., 2019). This framework is called the productivity susceptibil-
ity analysis (PSA). Developed by Hobday et al. (2007, 2011) as part 
of a hierarchical approach called the Ecological Risk Assessment 
for the Effects of Fishing (ERAEF), the PSA assigns low, medium 
or high vulnerability scores to species at risk to fishing activities. 
Assignment occurs via scoring of attributes in both productivity 
and susceptibility categories. In its most popular form, there are 
7 productivity attributes, each related to the capacity of the spe-
cies to increase its population size, and 4 susceptibility attributes, 
each corresponding to potential impact on the species by fishing 
activities (Hobday et al., 2007, 2011). Subsequent modifications of 
this approach change or add relevant attributes in the assessment 
(Fujita et al., 2014; Micheli et al., 2014; Patrick et al., 2010). Each 
productivity and susceptibility attribute is valued 1, 2 or 3 as low, 
medium or high, respectively. Calculating the mean of each set of 
values yields two overall scores, one for productivity and one for 
susceptibility. After adjusting P by subtracting from 4, vulnerability 
(V) is calculated as the Euclidean distance of the point (4 − P, S) 
from (0, 0) (Hobday et al., 2007):

The adjustment for P occurs because high productivity is as-
sociated with low vulnerability. The PSA uses P and S to calculate 
vulnerability as an index of risk analogous to risk metrics otherwise 

defined in the variety of existing risk assessment frameworks in ecol-
ogy or other fields. Thresholds are given to divide the 2 × 2 P- S plane 
into three regions of equal area (Figure 1). Species with vulnerability 
scores <2.64 garner a low- risk designation, while species with scores 
above 3.18 are high risk (Hobday et al., 2007). Anything in between 
is medium risk (see Supporting Information for additional discus-
sion on threshold derivation). These risk categories serve as rapid, 
easy- to- use indicators of management priority, and are often used 
as guidelines for downstream assessment. Those species interpreted 
as medium or high risk can be assessed in greater detail in the next 
step of the ERAEF framework or given higher priority in an agency’s 
management plan. The vulnerability scores reflect relative risk and 
are not necessarily comparable across studies (Hobday et al., 2011).

The PSA has been used for a wide variety of fisheries by many 
agencies, scientists and organizations across the globe in the past 
two decades. A vulnerability index calculated from 10 productivity 
and 12 susceptibility attributes is used by NOAA for risk assessment 
of 166 US fisheries (Patrick et al., 2009, 2010). The PSA has been 
used now in dozens of published studies and government reports 
to evaluate over 1,000 fished and by- catch species. It has estab-
lished itself as a widespread and rapid tool to augment our under-
standing of data- poor fisheries (Dee et al., 2019; Duffy et al., 2019; 
Micheli et al., 2014; Stobutzki et al., 2001; Stobutzki et al., 2002). 
It is used to inform sustainable seafood practices for businesses 
and the public (Marine Stewardship Council, 2019; Monterey Bay 
Aquarium, 2020). Through the years, the PSA has been honed and 
modified to individual purposes, including the weighting of attri-
butes by perceived importance, as in Patrick et al. (2009, 2010). The 
number of attributes used varies significantly with each study as 

(1)V =

√
(4 − P)2 + S2

F I G U R E  1   Vulnerability for each species is calculated as the 
distance of the plotted point from the origin (0,0). Productivity and 
susceptibility scores range from 1 to 3, and the 2 × 2 PSA plot is 
divided into thirds of equal area at V = 2.64 and V = 3.18
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does the use of the geometric or the arithmetic mean to calculate 
the susceptibility score.

Given the variety of ways the PSA is applied, the scientific com-
munity has scrutinized the degree to which the PSA is able to pro-
vide a robust and unbiased assessment of the vulnerability of species. 
Interpretation of the PSA and related ecological risk assessment 
results (e.g. CARE, SAFE, multiple stressor EBRA, cumulative im-
pact assessment) requires attention to inputs and model assump-
tions (Battista et al., 2017; Dowling et al., 2019; Halpern et al., 2009; 
Samhouri et al., 2019; Zhou et al., 2016). Hordyk and Carruthers 
(2018) evaluated the consistency of the vulnerability scores across 
interpretations of the PSA and reliability of the PSA to conventional 
stock assessments. They found that the PSA performed unfavourably 
in a variety of conditions, particularly in its ability to accurately assign 
risk when vulnerability was not extremely high nor extremely low. The 
failure to rank species accordingly unless risk could be easily identified 
prior to analysis limits the power of the PSA as a semi- quantitative risk 
assessment method. The potential utility of the PSA has been limited 
by several factors. A few of these reasons are mentioned previously 
or explicitly tested, including correlation among attributes, use of un-
informative attributes, use of ineffective weighting schemes, assign-
ment of precautionary scores to species when data are unavailable, 
or even the quality of the data used to perform the analysis (Duffy & 
Griffiths, 2017; Hordyk & Carruthers, 2018). Other reasons that de-
serve attention include the type of mean used (geometric vs. arithme-
tic) for the susceptibility score and the number of attributes used; both 
factors warrant changing the thresholds used for risk categorization.

Here, we show that a major problem with the PSA is how vul-
nerability and the associated risk categories have been derived. As 
constructed, the three risk categories are divided by two vulnera-
bility thresholds. According to Hobday et al. (2007), “The divisions 
between these risk categories are based on dividing the area of 
the PSA plots into equal thirds. If all productivity and susceptibility 
scores (scale 1– 3) are assumed to be equally likely, then 1/3rd of the 
Euclidean overall risk values will be >3.18 (high risk), 1/3rd will be 
between 3.18 and 2.64 (medium risk), and 1/3rd will be lower than 
2.64 (low risk)” (Hobday et al., 2007). This assumption is not true 
because area does not correspond to probability on the PSA plot. 
Due to the central limit theorem, productivity and susceptibility 
scores will cluster around the mean, and therefore plotted fisheries 
will cluster toward the centre of the PSA plot. Independent of the 
fishery analysed, the PSA will produce middling vulnerability scores 
with higher frequency than extremely low or high scores. This effect 
becomes more dramatic as the number of independent attributes 
increases (Figure 2). For these reasons, the existing risk categories 
do not represent the likelihood of a species receiving a vulnerabil-
ity score and therefore are not capable of appropriately assigning 
risk. This fact may partially explain the inability of the PSA to appro-
priately discern risk in mid- range vulnerability scores as found by 
Hordyk and Carruthers (2018). To remedy this problem, it is crucial 
to adjust risk thresholds to reflect the statistical properties of the 
PSA plot defined by the central limit theorem as well as the assump-
tions used in each study for which the PSA is used. The number of 

independent attributes and the type of mean used to score produc-
tivity and susceptibility can have dramatic effects on risk categories.

The purpose of this paper is to make available a revised PSA with 
greater discriminatory power as the number of attributes increases 
and analysis assumptions change, so the PSA can be applied reli-
ably across fisheries. We provide a statistically robust foundation to 
derive vulnerability values and thresholds for risk categories. This 
new approach addresses issues with correlation between attributes; 
handles any weighting scheme, axis scaling (multiplicative vs. addi-
tive) and number of attributes; and provides recommendations for 
scoring procedures. Provided in this paper and the supplement are 
theoretical and empirical examples of the use of this new method. 
To illustrate the different outcomes between the standard PSA 
(sPSA) and our newly proposed “revised PSA” (rPSA), we report the 
differences achieved between the two approaches when applied to 
NOAA’s report in 2008 on 166 federally managed species (Patrick 
et al., 2009, 2010) and 4 other case studies, together representing 
302 fisheries across 4 continents. Full functionality of this method is 
accessible via Excel, R and Python software packages accompanying 
this paper at https://github.com/grewe lle/rPSA, though conversion 
tables are provided in the Supporting Information that allow the 
same procedures to be done manually.

2  | METHODS

In the PSA, productivity and susceptibility are each calculated as the 
mean of several attributes that take values 1, 2 or 3, correspond-
ing to low, medium or high productivity/susceptibility, respectively. 
These three values correspond to biologically relevant cut- offs for 
each attribute that are consistent across fisheries (Hobday et al., 
2007, 2011). The cut- offs serve to segregate the range of biologi-
cal values for each attribute into bins standardized by percentile. 
When bins have equal size, namely 1 = 0%– 33%, 2 = 33%– 67% and 
3 = 67%– 100%, then the expected standard deviation for each at-
tribute value is computed as follows:

! =

√
(1 − 2)2 + (2 − 2)2 + (3 − 2)2

3
=

√
2

3

F I G U R E  2   Kernel density plots showing the bivariate Gaussian 
distribution produced as a result of the scoring of productivity and 
susceptibility. More attributes used in scoring yields higher density 
plots. From left to right: 4 attributes each to calculate P and S, 
10 attributes each, and 15 attributes each [Colour figure can be 
viewed at wileyonlinelibrary.com]

https://github.com/grewelle/rPSA
www.wileyonlinelibrary.com
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If scoring is distributed 1 = 0%– 25%, 2 = 25%– 75%, 3 = 75%– 
100%, the standard deviation would be

Choosing productivity and susceptibility attributes is a key 
step in performing a robust analysis. This matter and the matter 
of weighting of influential attributes to produce a weighted mean 
are discussed but not statistically treated in previous works (Duffy 
& Griffiths, 2017; Hordyk & Carruthers, 2018; Patrick et al., 2009, 
2010). The method presented here statistically treats both consider-
ations as part of a flexible framework to compute vulnerability under 
a variety of conditions.

When attributes are judged sufficiently independent, each attri-
bute is an independent and identically distributed random variable. 
Let each attribute value for productivity be given as pi ∈

{
p1, p2…, pN

}

, where N is the number of productivity attributes assessed in the 
PSA. Similarly, M susceptibility attribute values can be given as 
sj ∈

{
s1, s2,…, sM

}
. Each productivity attribute value pi is calculated by 

subtracting the initial value from 4 to produce a plot with origin (1, 1). 
The productivity score is calculated as the arithmetic mean of pro-
ductivity attribute values, while the susceptibility score is calculated 
either as the arithmetic (additive) or geometric (multiplicative) mean of 
susceptibility attribute values. To generalize, presented are methods 
for which the attributes of both productivity and susceptibility can be 
additive or multiplicative.

2.1 | Additive scoring

In the additive case, productivity and susceptibility scores for each 
species can be computed as the arithmetic mean of the correspond-
ing attribute values, and according to the central limit theorem, 
the distribution of scores approaches Gaussian (normal). We can 
define random variables, P and S, P ∼ N(!p, "p) for productivity and 
S ∼ N(!s, "s) for susceptibility. !p is equivalent to the standard devia-
tions shown above when productivity attributes are scored with the 
same bin sizes, and likewise for !s when the scoring procedure is 
standardized for all susceptibility attributes. As values for attributes 
can only take values 1, 2 or 3, each with equal probability, the arith-
metic mean is:

and associated standard error of the mean:

The standard error of the mean decreases with increasing num-
ber of attributes used to calculate P and S. Accordingly, P and S 
scores for a set of species naturally clump toward the middle of the 
PSA plot (Figure 2).

2.1.1 | Additive weighting

Where weighting of each attribute is needed, the mean does 
not change, but productivity and susceptibility for each species 
k ∈ {1, 2,…,K} are expressed as

where 0 ≤ wi, wj ≤ 1 is the weight given to each attribute, and 
∑ N

i= 1
wi =

∑ M
j= 1

wj = 1. When weighting has been applied in the 
PSA, values of weights took whole integers. To convert whole integer 
weights to w, simply divide the whole integers by the sum of all integer 
weights used for the each set of attributes. The standard error of the 
weighted mean is:

2.2 | Multiplicative scoring

In the multiplicative case, the mean is geometric and the distribution 
of values the attributes take is lognormal. This distribution can be 
transformed to Gaussian given the nature of logarithmic identities 
that the mean is:

Therefore by taking the natural logarithm of each attribute, the 
resulting distribution is normal around the arithmetic mean of the 
log- transformed values. This gives logP ∼ N(logGM(P), !logP) and 
logS ∼ N(logGM(S), !logS). The log- transformation produces a sym-
metric distribution that allows direct comparison with distributions 
around an arithmetic mean in the case where one axis in a PSA plot 
is additive (often productivity) and the other axis is multiplicative 
(often susceptibility). Let !logP and !logS be the arithmetic means of 
the log- transformed attribute values.

Standard error of the mean is:

2.2.1 | Multiplicative weighting

Where weighting of each attribute is needed, the geometric mean 
is expressed as

! =

√
(1 − 2)2 + 2(2 − 2)2 + (3 − 2)2

4
=

√
1

2

!p = !s = 2

(2)SEp =
!p√
N

=

√
2

3N
SEs =

!s√
M

=

√
2

3M

(3)Pk =

N∑
i=1

wipi,k Sk =

M∑
j=1

wjsj,k

(4)

SEp = !p

(
N∑

i=1

w2
i

)1∕2

=

(
2

3

N∑
i=1

w2
i

)1∕2

SEs = !s

(
M∑
j=1

w2
j

)1∕2

=

(
2

3

M∑
j=1

w2
j

)1∕2

(5)GM(S) =

(
M∏
j=1

sj

) 1

M

= e
1

M

∑ M
j = 1

logsj

!logP = !logS =
log(6)

3

(6)SElogP =
!logP√

N
=

0.4536√
N

SElogS =
!logS√
M

=
0.4536√

M

(7)GM(P) =

(
N∏

i=1

p
wi

i

) 1

N

GM(S) =

(
M∏
j=1

s
wj

j

) 1

M
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Log- transforming yields

The mean of the data does not change with weighting. The cor-
responding standard error of the mean is:

2.3 | The risk axis

With calculated mean and standard error or associated log- 
transformed values for productivity and susceptibility, we can 
define a bivariate Gaussian distribution X ∼ N2(!,"), where X is a 
random column vector. µ is the mean column vector ["̂p, "̂s]

T where 
"̂p = "p or "logP and "̂s = "s or "logS. ! is the covariance matrix. Let 
ŜEp = SEp or SElogP and ŜEs = SEs or SElogS. The values of "̂ and ŜE are 
determined by whether attributes are treated as multiplicative or 
additive. Assuming productivity and susceptibility are statistically 
independent, the covariance matrix takes the form

The probability density of such a bivariate distribution is ellip-
tical, with elliptical isoclines representing standard deviations from 
the mean. The risk axis is the line whose slope is the reciprocal of 
the slope of the line that divides portion of the ellipse in the 1st and 
3rd quadrants equally and passes through the mean ("̂p,"̂s). Risk as 
a function of productivity and susceptibility of a species increases 
moving along the axis up and to the right. The equation for this axis 
can be expressed as

Let r be the risk vector in the first quadrant of a coordinate plane 
with origin at the mean ("̂p,"̂s) and defined by Equation 11. Any vec-
tor xk = [Pk− "̂p Sk− "̂s

]T can be projected along this risk vector to 
map X to one dimension. After mapping all points to the risk vector, 
the distance of each point xk = (Pk, Sk) from the mean is the magni-
tude of the projection:

Projecting points along the risk axis does not change the mean, 
but the resulting distribution along the risk axis is Gaussian and has 
a univariate variance and standard error of the mean. The projection

results in a linear transformation of X. It can be shown that lin-
ear transformation preserves the mean and the standard error is 
expressed as

2.4 | Thresholds for risk categories

The cumulative distribution function for this Gaussian distribution is:

where T is the threshold of interest. One can define Pr1( ⋅ ) =
1

3
 and 

Pr2( ⋅ ) =
2

3
 to divide the set of points into 3 equal bins by probability. 

Solving the set of equations yields thresholds T1 and T2. Because 
Z− 1

(
1

3

)
= −0.431 and Z− 1

(
2

3

)
= +0.431, we can set 

T1 = −0.431(ŜEr) and T2 = 0.431(ŜEr) units from the mean along the 
risk axis to divide the possible set of values into equal thirds. A way to 
define thresholds in two dimensions is by constructing two lines L1 and 
L2 orthogonal to the risk axis that intersect the risk axis at T1 and T2, 
respectively:

Along these two lines and any line parallel to these, any given 
point has coordinates Pk and Sk that satisfy the equation

where V is a standardized risk score that represents vulnerability of a 
species to fishing activities. For L1 and L2, V is

Grouping into low, medium or high risk is made simple by this 
relationship. After calculating the standard error and mean for each 
component, given any point (Pk, Sk), grouping is as follows:

(8)Pk =

N∑
i=1

wilogpi,k Sk =

M∑
j=1

wjlogsj,k

(9)
SElogP=!logP

(
N∑

i=1

w2
i

)1∕2

=

(
0.2058

N∑
i=1

w2
i

)1∕2

SElogS=!logS

(
M∑
j=1

w2
j

)1∕2

=

(
0.2058

M∑
j=1

w2
j

)1∕2

(10)! =
⎛
⎜
⎜⎝

(ŜEp)
2 0

0 (ŜEs)
2

⎞
⎟
⎟⎠

(11)S − "̂s =
ŜEp

ŜEs

(P − "̂p)

(12)D(xk) =
r ⋅ xk

|r|

(13)projr(X) = [r(rTr)− 1rT]X

(14)ŜEr =

√
2ŜEpŜEs√
ŜE

2

p
+ ŜE

2

s

(15)Pr (D(xk) ≤ T) =
1

2
+

1√
! ∫

D(xk)
ŜEr

√
2

0

e− t2dt

(16)L1: S = −
ŜEs

ŜEp

P + #̂s +
ŜEs

ŜEp

#̂p −
2(0.431)ŜEs√

2

(17)L2: S = −
ŜEs

ŜEp

P + #̂s +
ŜEs

ŜEp

#̂p +
2(0.431)ŜEs√

2

(18)PkŜEs + SkŜEp = V

(19)L1:V = −
√
2(0.431)ŜEpŜEs + #̂pŜEs + #̂sŜEp

(20)L2:V =
√
2(0.431)ŜEpŜEs + #̂pŜEs + #̂sŜEp

Low: PkŜEs + SkŜEp ≤ −
√
2(0.431)ŜEpŜEs + #̂pŜEs + #̂sŜEp

Med: −
√
2(0.431)ŜEpŜEs + #̂pŜEs + #̂sŜEp < PkŜEs + SkŜEp <

√
2(0.431)ŜEpŜEs + #̂pŜEs + #̂sŜEp
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To make this categorization easier, a table is provided in the sup-
plement with a list of values for V at L1 and L2 under various condi-
tions. Those wanting to quickly categorize a set of points can use 
Equation S12 and the Table in Supporting Information. The supple-
ment addresses extensions of these methods, including dependency 
among attributes and among axes. Vulnerability (V) is defined rel-
ative to the study conditions, and caution should be used to make 
cross- study comparisons when scoring procedures and input as-
sumptions differ. However, cross- study comparisons can be made 
with the strict formulation of vulnerability as a probability:

V and Vp are equally valid statistical metrics of vulnerability, with 
V holding an advantage in ease of calculation. Vp holds values be-
tween 0 and 1 and can be translated between studies and compared 
directly to probabilities corresponding to threshold values (e.g. 1/3 
and 2/3).

3  | ANALYSIS

The extent to which the results of the rPSA differ from results of 
the sPSA depends on how dramatically the risk thresholds change. 
Management priorities are shaped by risk categorization of species, 
so below we compute vulnerability scores and associated risk cat-
egorization using both PSA approaches on (a) synthetic data repre-
senting 100 simulated species evaluated across 3– 15 productivity 
and susceptibility attributes and (b) 5 empirical cases studies, includ-
ing the 2008 NOAA report on 166 commercial stocks by Patrick et al. 
(2009, 2010). We evaluate the proportion of species that change risk 
category when the new approach is applied as well as the net shift 
in average risk. Net shift in average risk is defined as the difference 
between the proportion of species moved into a higher- risk category 
and the proportion of species moved into a lower- risk category with 
the new approach.

3.1 | Sensitivity analysis of a synthetic dataset

One hundred simulated species were randomly (uniformly) assigned 
attribute values for every permutation of number of attributes from 
3 to 15 for productivity and susceptibility. Attributes were equally 
weighted, and both productivity scores were arithmetic means of 
the associated attribute values. Susceptibility scores were arithme-
tic means or geometric means, reflecting the use of both additive 
and multiplicative models for susceptibility scores in PSA studies. 
Vulnerability scores were calculated for each species for both the 
sPSA and rPSA. We categorized species according to the respective 
thresholds for both methods and, for each permutation, computed 

the mean fraction of species that change categorization under the 
new method averaged from 1,000 bootstrap replicates (standard 
error < 0.01 for each value). We demonstrate that the number of 
attributes has a strong effect on categorization as expected from 
clumping of species toward the centre of the plot. Up to 52 per-
cent of species are reassigned to another risk category when the 
new method is applied (Figure 3), with up to 35 percent net increase 
in risk observed (Figure 4). Universally, the rPSA is expected to re- 
categorize species and do so in a way that favours higher- risk assign-
ment than previously recognized through the sPSA. These effects 
are largely due to lumping of many species in the medium- risk cat-
egory and the curvature of the thresholds in the sPSA. When the 
geometric mean is used for susceptibility (Figure 3a), higher- risk as-
signment occurs more frequently than when the arithmetic mean is 
used (Figure 3b).

3.2 | Empirical case studies

To illustrate the use of this method on an empirical data set, we 
applied the existing and new PSA methods to the 2008 NOAA re-
port by Patrick et al. This study includes 166 species in managed 
North American fisheries. In this study, screening methods were 
used to remove redundant attributes in the analysis. This resulted 
in 10 attributes for productivity and 12 for susceptibility (Section 3 
in Supporting Information). When attributes were not applicable or 
informative for a species, these attributes were not scored, result-
ing in fewer attributes used to yield productivity and susceptibility 
scores. Attributes in this study are weighted according to perceived 
importance, and the productivity score is given as the arithmetic 
mean of corresponding attribute values. The susceptibility score is 
given as the arithmetic mean (Figure 5a) and the geometric mean 
(Figure 5b) of corresponding attribute values. Scoring of attributes 
is partitioned in 3 equal- sized categories, whereby assignment of 
values 1, 2 or 3 could occur uniformly. We analysed the data set 
using both the standard PSA approach and the new, revised form. 
Figure 5 shows the results of the analysis. Size and shading of dots 
corresponds to the number of species sharing the same coordinates 
on the PSA plot. Blue species are categorized as lower risk with the 
new method, red species are now higher risk than previously as-
sessed, and grey species were assigned in the same risk category 
between methods. When P and S were additive, 10% (n = 16) of spe-
cies were assigned to a lower- risk category with the new method, 
25% (n = 42) of species were assigned to a higher- risk category with 
the new method, and 65% (n = 108) of species retained their risk 
categorization. An overall reassignment of 35% (n = 58) of species 
and a net increase in risk of 16% with the new method reveal strik-
ing changes in the conclusions of the PSA study of these fisheries. 
These percentages align well with the simulation results, which 
predict reassignment of 39% of species and net increase in risk of 
13% for a PSA study using 10 productivity and 12 susceptibility at-
tributes. When P was additive and S was multiplicative, 1% (n = 2) 
of species were assigned to a lower- risk category with the new 

High:
√
2(0.431)ŜEpŜEs + #̂pŜEs + #̂sŜEp ≤ PkŜEs + SkŜEp

(21)Vp = Pr (D(xk) ≤ T) ∈ (0, 1)
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method, 37% (n = 61) of species were assigned to a higher- risk cat-
egory with the new method, and 62% (n = 103) of species retained 
their risk categorization. 38% of species were reassigned with a net 
increase in risk of 36% with the new method, matching well to the 
34% predicted via simulation for both values. Additionally, the sPSA 
assigns 34 species low risk, 91 species medium risk and 41 species 
high risk. There is a disproportionate number of medium- risk spe-
cies due to clumping of species toward the centre of the PSA plot as 
previously discussed. No species are found in lower extremes of the 
plot, and some species are found in upper extremes of the plot due 
in part to a precautionary approach to scoring of attributes without 
sufficient data. With the new method, 34 species are low risk, 32 are 
medium risk, and 100 are high risk. Species are more evenly distrib-
uted in low and medium categories, with a larger bulk of species in 
the high- risk category, representative of the precautionary scoring 
approach used.

The PSA is used widely to assess data- poor fisheries with differ-
ent needs and contexts. Its use across six continents demonstrates 
the flexibility of the approach, and the differences in species risk cat-
egorization between the sPSA and the rPSA are not equal between 
studies. The set of attributes used, model assumptions, as well as 
the species assessed play roles to determine the magnitude of the 

change observed when applying the rPSA. We compare five pre-
viously published studies, conducted across 4 continents and 302 
species: Sri Lanka (12 species, 11 attributes) (Cotter & Lart, 2011), 
aquarium trade (61 species, 22 attributes) (Dee et al., 2019), Taiwan 
(52 species, 12 attributes) (Lin et al., 2020), North America (166 spe-
cies, 22 attributes) (Patrick et al., 2009) and Galapagos (11 species, 
11 attributes) (Pontón- Cevallos et al., 2020). Figure 6 demonstrates 
that despite the range of inputs to the PSA, a significant propor-
tion of species is re- categorized with the rPSA. Moreover, in all 
five case studies, there is an observed net increase in risk assessed 
with the rPSA. Differences in each study tend to be highest when 
(a) a wide range of species is analysed, (b) more attributes are used, 
and (c) a multiplicative model is used for susceptibility (Section 3 in 
Supporting Information). These observations are expected given 
simulated results in Figure 4 and empirical results in Figure 5 and 
Figure S4 for the Patrick et al. study, which satisfies all 3 criteria.

4  | DISCUSSION

Given here is a new approach to the PSA that is broad in scope to 
account for weighting of attributes, any number of attributes used 

F I G U R E  3   Heat map representing 
the proportion of species that change 
risk category when applying the new 
PSA approach to 100 simulated species. 
Values are the average of 1,000 bootstrap 
replicates. (a) P and S are arithmetic means 
(additive model) of 3– 15 attribute values. 
Re- categorization is more pronounced as 
more attributes are used in the analysis. 
(b) P is the arithmetic mean and S is the 
geometric mean (multiplicative model) of 
3– 15 attribute values. Re- categorization is 
pronounced as more P attributes are used, 
though this trend is weaker as more S 
attributes are used, reflecting the differing 
results between the multiplicative and 
additive models [Colour figure can be 
viewed at wileyonlinelibrary.com]

www.wileyonlinelibrary.com
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to calculate productivity and susceptibility, and use of additive or 
multiplicative models for productivity and susceptibility. Quality 
of information can be easily incorporated without loss of applica-
tion as components of the weights given to each attribute. This 
revised method is adaptable to any level of mathematical training. 
Modifications are possible for large analyses with complex assump-
tions. Those variations are outlined in the methods and supplement, 
and software packages in Excel, R and Python accompany this pub-
lication. Vulnerability calculations and risk categorization can also 
be performed manually via the conversion tables provided in the 
supplement. The tables have simplified the analysis to four values, 
such that results are achieved rapidly. Vulnerability values (Vp) in this 
method are standardized, so comparisons can be made across stud-
ies with shared attributes, and species can be ranked accordingly.

Analyses examining the differences between the results of the 
sPSA and the new approach proposed (rPSA) here show signifi-
cantly improved resolution of risk for the species in the middle of 
the PSA plot. Because there is an increasing probability for species 
to fall in the middle region of the PSA plot as more attributes are 
used in the analysis, we derive a statistically robust method to com-
pute vulnerability and define risk categories according to the ex-
pected distribution of vulnerability scores rather than dividing the 

plot into three regions of equal area. With the new method, fewer 
species are now categorized as medium risk. Re- analysis of the 
Patrick et al. study of 166 North American species demonstrates 
this phenomenon with the medium- risk category downsizing from 
91 species to 32. The magnitude of the shift of species to new risk 
categories with the new method can be large. In some case stud-
ies, more than one- third of species shifted to new risk categories. 
This aligned well with the expected percent of re- categorization 
as predicted with simulation, and for a reasonable range of attri-
butes used in a PSA, this can vary from 11% to 52%. The majority 
of re- categorized species are mid- risk species that are categorized 
low or high risk with the rPSA. Due to the difference in curvature 
of the thresholds between the sPSA and rPSA, other species shift 
categorization, with a net shift to higher- risk categories using the 
rPSA. Compared to the rPSA, the sPSA underestimates overall risk 
by 0%– 35% across a range of simulated scenarios and does so by 
36% specifically for the 166 species in the NOAA vulnerability 
assessment presented by Patrick et al. Applying the rPSA to four 
other case studies demonstrated similar patterns, with the mag-
nitude of re- categorization depending on study assumptions and 
analysed species, and net increase in assessed vulnerability in all 
studies (Figure 6 and Figure S5).

F I G U R E  4   Heat map representing 
the net proportional change in risk when 
applying the new PSA approach to 100 
simulated species. Values are the average 
of 1,000 bootstrap replicates. (a) P and 
S are arithmetic means (additive model) 
of 3– 15 attribute values. In all but one 
permutation, the new method assessed 
risk higher than the existing PSA. (b) 
P is the arithmetic mean and S is the 
geometric mean (multiplicative model) of 
3– 15 attribute values. Net proportional 
change in risk is higher when the 
multiplicative model is used for S because 
the lower mean (S = 1.8 rather than 2) 
and shape of the resulting thresholds 
in the rPSA strongly favours higher risk 
assignment compared to the sPSA [Colour 
figure can be viewed at wileyonlinelibrary.
com]

www.wileyonlinelibrary.com
www.wileyonlinelibrary.com
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Together our analysis shows that the existing framework to as-
sess vulnerability through the PSA incompletely resolves and under- 
evaluates risk of species to fishing pressure, and may therefore 
jeopardize the utility of the precautionary approach used by most 
to assign higher risk to species when data are limited for certain 
attributes (Hobday et al., 2007, 2011). Improper resolution paired 
with incomplete data clouds prioritization of vulnerable species for 
downstream analysis or management. We recommend attention 
be given to the practice of high- risk assignment in the absence of 

data as the field moves toward a more refined means to assess data- 
poor fisheries. If limited in use, this type 1 error in risk assignment 
serves to benefit the few species that would have been missed due 
to lack of data in a vulnerability analysis. However, if applied to many 
species, this practice may dilute directives and resources to serve 
species in most critical need. Future work is needed to determine 
whether agnostic assignment of risk (with medium scores) rather 
than precautionary assignment of risk (with high scores) leads to im-
proved efficiency in downstream evaluation proceeding the rPSA.

Application of the rPSA in many cases will yield substantially dif-
ferent results than the standard PSA. Better resolution of species’ risk 
will both streamline the next step of the ERAEF and shift management 
priorities for many marine species. With greater pressure to determine 
the impact of fisheries, this new framework is a step toward creating 
a robust, reliable method to assess small- scale or data- deficient sys-
tems. Alone this new method represents only a small piece of efforts 
to assess these fisheries. Efforts to improve scoring through stan-
dardization, use of independent and informative attributes, and broad 
acquisition of available data is key to improving accuracy. Even still, 
when using the ERAEF framework, analyses only provide recommen-
dations to be used in downstream evaluation. Decisions on mitigation 
strategies rely on integration of vulnerability analyses with the needs 
of the communities that rely on the managed fishery. Corroborating 
vulnerability assessment provided by the PSA with local knowledge, 
trend analyses and extrapolation techniques can give a more com-
plete picture of how to best prioritize research and management ef-
forts (Finkbeiner et al., 2017; Frawley et al., 2019; Mason et al., 2019; 
Oestreich et al., 2019; Schall et al., 2018). Previous studies employing 
the existing PSA could benefit from re- analysis to discover whether 
management priorities require shifts. Realistically, this method pro-
vides an opportunity to gain insight in the risk of fished species in later 
analyses and gives a framework that allows more reliable compar-
ison across similar studies. Comparison of this method to sensitivity 
analyses of traditional stock assessments will inform our confidence 
in the reliability of the approach and is a recommended future step. 
Although we compare the standard form of the PSA (sPSA) devised by 

F I G U R E  5   One hundred and sixty- six North American species 
from Patrick et al. plotted on a PSA plot. Shade and area of the 
points correspond to the number of species at each coordinate. 
Down facing arrows represent species that are designated a 
lower risk categorization with the new PSA method compared 
to the existing method. Species with up facing arrows are 
those designated a higher risk categorization. Circles represent 
species that are designated the same risk categorization. Colours 
give the risk categorization assigned by the rPSA (blue = low, 
yellow = medium, red = high). The dotted lines are given to 
show thresholds of the existing method at V = 2.64, 3.18. New 
thresholds vary with each species in this study because not 
all species received values for all attributes. Therefore, these 
thresholds are not plotted. (a) P and S are arithmetic means 
(additive model) of attribute values. (b) P and S are arithmetic and 
geometric (multiplicative model) means, respectively, of attribute 
values [Colour figure can be viewed at wileyonlinelibrary.com]

F I G U R E  6   Compared changes in risk 
categorization between the sPSA and 
rPSA applied to five previously published 
studies. From left to right: Cotter et al. 
(Sri Lanka), Dee et al. (Aquarium), Lin et 
al. (Taiwan), Patrick et al. (North America), 
Ponton- Cevallos et al. (Galapagos). The 
two panels representing (a) the total 
proportion of species that changed 
categories between the methods and (b) 
the net increase in risk assessed with the 
rPSA show that across studies of disparate 
systems, re- categorization is significant 
and leads to an increased assessed risk to 
species

www.wileyonlinelibrary.com
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Hobday et al. to our revised form (rPSA), other variants of ecological 
risk assessments exist that share properties with the sPSA. One such 
variation calculates vulnerability as the distance from (1,1) rather than 
the origin at (0,0) (Equation S5). Other studies which use attributes to 
highlight different components of risk like exposure and sensitivity 
(Samhouri et al., 2019) can similarly benefit from the methods outlined 
in this work. The choice of the Euclidean norm by many of these stud-
ies (rather than other metrics, such as other members of the p- norms 
family) implies the improvements we show will be similar in magnitude 
for these related methods.

There are scenarios when caution is appropriate before applying 
the revised PSA approach proposed here. Firstly, if some attributes 
are highly correlated, redundant attributes should be excluded or 
the number of effectively independent attributes should be esti-
mated as described in the methods presented in the supplement. 
Secondly, when attributes are weighted, if one of the attributes is 
weighted far more than others, this method will be less accurate. 
The more attributes used, the less this is a problem, as this heav-
ily weighted attribute will contribute less overall to productivity or 
susceptibility (see Lindeberg’s condition for central limit theorems). 
Often attributes are not scored for all species due to insufficient 
data or because some attributes are not applicable for all species. 
This new PSA approach should be applied specific to each species 
when the weighting structure or number of attributes varies by spe-
cies within the same study. For example, some species are assessed 
with 10 attributes while others are assessed with 5, threshold lines 
must be re- evaluated on a species- by- species basis. Calculated vul-
nerability values (Vp) are directly comparable in this way, and either 
V or Vp can be used for risk categorization. Because the PSA is used 
to assess data- poor species, attribute scoring is often qualitative. 
Efforts to standardize this procedure by establishing specific bins 
for scoring based on percentiles in a biologically realistic range of 
values is key to making the PSA more robust. There is little use in 
applying statistics to non- statistical data. This makes for overly pre-
cise but inaccurate conclusions. The bins established can be in any 
chosen percentile range as long as calculations for standard devia-
tion are adjusted as shown above. However, the percentile ranges 
must be consistent across attributes. For ease, we recommend bins 
be treated equally so each score (1, 2, or 3) captures one- third of 
potential values. This standardization process should be consid-
ered an essential component of the rPSA. Ecological modelling or, 
when available, empirical data can inform the choice of bin thresh-
olds, as is commonplace in ecosystem- based management analyses 
(Samhouri et al., 2010). Choice of model (additive vs. multiplicative) 
depends on the expected nature of the contributions of attributes 
to productivity or susceptibility. Generally, a multiplicative model 
gives greater importance to extremely low values than an additive 
model. Therefore, its use as a model for susceptibility implies, for 
example, that a small number of low scoring attributes outweigh 
the same small number of high scoring attributes. This assumption 
may not be supported in practice if instead a few high scoring at-
tributes should have a larger than additive effect on the suscepti-
bility of a species. In the most common use of susceptibility, the 

four attributes (Availability, Encounterability, Selectivity, and Post- 
capture Mortality) are presumed to interact in a multiplicative fash-
ion because low scoring of any of these attributes reduces the risk 
associated with the other attributes. From Hobday et al. (2011): 
“For example, if a species is available in a fishing area, encounters 
the fishing gear, is selected by the gear, but is returned to the water 
unharmed (post- capture mortality low), then the overall suscepti-
bility should be recognized as low.” In contrast, an additive model 
assumes the magnitude of the effect of each attribute is not con-
tingent on the magnitude of other attributes. Choice of model is 
distinct from effects that correlation among attributes may have on 
the representation of the analysis.

Use of the rPSA, as with the sPSA, is best conducted in a risk 
assessment framework like ERAEF because results are meant to 
be used as a relative measure of vulnerability of fished or by- catch 
species to fishing. Adaptation of the rPSA in each local context 
requires input from scientists, managers, and stakeholders to de-
termine how to appropriately assess the present risks to fisher-
ies. The framework presented allows flexible choice of attributes 
while providing the statistical rigor needed to move the PSA 
and similar risk assessments to a quantitative format. Moreover, 
the method can be scaled by level of expertise and complexity 
of assumptions, making practical use widely accessible. The de-
gree to which results of the rPSA and adaptations of this method 
will change existing management will depend on the downstream 
evaluation practices of each management community. For com-
munities that rely on unrelated methods to assess data- poor fish-
eries, adoption of the rPSA could provide a robust alternative, 
though the practical choice depends on context. Unlike quanti-
tative stock assessments, which rely on empirical data, the PSA 
is qualitative, and relies on associations between the attributes 
used and Productivity or Susceptibility. Chosen attributes should, 
therefore, demonstrate a sufficiently strong and causal relation-
ship to either Productivity or Susceptibility, which are assumed 
directly related to Vulnerability. Weighting is designed to quantify 
the strength of these relationships, and efforts should be made 
to justify weight values with the most applicable empirical data. 
Future exploration is needed to optimize weighting of attributes in 
a way that leverages the improvements introduced with the rPSA. 
Vulnerability as an index of risk is not an absolute indication of 
stock decline or potential for stock decline and depends on the 
attributes used in the analysis. Because risk categorization of spe-
cies using the PSA is best interpreted relative to other species for 
which the same set of attributes can be applied, caution should be 
taken to over- interpret results of broad studies where evaluated 
attributes differ among species. In these cases it is imperative to 
conduct further assessment comparing vulnerable species as out-
lined by frameworks like ERAEF. Nevertheless, the rPSA improves 
upon an accessible method to assess risk in 90+% of fisheries 
which are considered data- poor. Without a cohesive framework to 
garner crucial information about these species, the vast majority 
of non- commercially fished species would be neglected when es-
tablishing management priorities.
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5  | CONCLUSION

The PSA provides a standardized means to determine the vulner-
ability of marine species affected by fisheries. Its structure and 
simplicity enable its use by broad interest groups, scientists and 
stakeholders. Great strides have been made to improve the way we 
assess data- deficient species, and the work presented in this study 
is intended to be a step in that direction. This new approach to the 
PSA allows incorporation of all existing modifications that have ac-
cumulated over the years and gives a statistically robust means of 
determining relative risk of species. Light is shed on why the stand-
ard PSA needs improvement and how resolution can be gained, 
especially for mid- risk species, with the new index of vulnerability 
provided by the new method. Because of its robustness across any 
variety of conditions and study types, we consider this new ap-
proach a revised PSA. We encourage incorporation of the rPSA into 
the existing ERAEF framework to improve validity of its results.
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