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ABSTRACT: Marine organisms are exposed to stressors associated with climate change through-
out their life cycle, but a majority of studies focus on responses in single life stages, typically early
ones. Here, we examined how negative impacts from stressors associated with climate change,
ocean acidification, and pollution can act across multiple life stages to influence long-term popu-
lation dynamics and decrease resilience to mass mortality events. We used a continuous-size-
structured density-dependent model for abalone (Haliotis spp.), calcifying mollusks that support
valuable fisheries, to explore the sensitivity of stock abundance and annual catch to potential
changes in growth, survival, and fecundity across the organism's lifespan. Our model predicts that
decreased recruitment from lowered fertilization success or larval survival has small negative
impacts on the population, and that stock size and fishery performance are much more sensitive
to changes in parameters that affect the size or survival of adults. Sensitivity to impacts on
subadults and juveniles is also important for the population, though less so than for adults. Impor-
tantly, likelihood of recovery following mortality events showed more pronounced sensitivity to
most possible parameter impacts, greater than the effects on equilibrium density or catch. Our
results suggest that future experiments on environmental stressors should focus on multiple life
stages to capture effects on population structure and dynamics, particularly for species with size-
dependent fecundity.
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1. INTRODUCTION

Marine ecosystems are subject to multiple sources
of environmental stress, many increasing in intensity
with climate change and human activity. Organisms
are exposed to higher temperatures, altered water
chemistry, decreased oxygen levels, disrupted hydro-
dynamic patterns, pollution from toxins and terrestrial
run-off, and heightened noise levels, to name some of
the most prominent examples (Walther et al. 2002,
Parmesan & Yohe 2003, Perry et al. 2005, Harley et al.
2006, Fabry et al. 2008, Cheung et al. 2009, Hoegh-
Guldberg & Bruno 2010, Doney et al. 2012). These
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stressors can have pronounced effects across the en-
tire life history of a species (e.g. Gibson et al. 2011,
Pankhurst & Munday 2011), increasing the vulnera-
bility of its population to extraction (Perry et al. 2010)
and catastrophic events (e.g. corals and hurricanes;
Andres & Rodenhouse 1993, Roff & Mumby 2012,
Mora et al. 2016). Mass mortality events caused by
extreme environmental events are expected to in-
crease under climate change (Jentsch et al. 2007,
Hegerl et al. 2011), including temperature spikes
(e.g. Dayton & Tegner 1984, Garrabou et al. 2009,
Wernberg et al. 2013, Arafeh-Dalmau et al. 2020) and
prolonged hypoxic conditions (Diaz 2001, Grantham
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et al. 2004, Chan et al. 2008, Vaquer-Sunyer & Duarte
2008, Laffoley & Baxter 2018).

Determining the long-term effects of environmen-
tal stressors on marine populations is critical for con-
servation and sustainable management. For logistical
reasons, research on stress effects has often focused
on early life stages (e.g. Sheppard Brennand et al.
2010, Nakamura et al. 2011, Pineda et al. 2012, Rosa
et al. 2013); however, early stages are not always the
most sensitive (e.g. hypoxia and warming for clams,
Clark et al. 2013, 2016; warming for copepods, Tang-
wancharoen & Burton 2014; warming for fish, Mess-
mer et al. 2017). The combined effect of 2 or more
stressors may be stronger than expected from each
stressor individually, as documented for decreased
oxygen and pH for fish (DePasquale et al. 2015) and
sea urchins (O'Donnell et al. 2009, Sheppard Bren-
nand et al. 2010), warming and decreased oxygen for
krill (Tremblay & Abele 2016), and warming and
salinity for oysters (Rybovich et al. 2016, Lowe et al.
2017). The trait most sensitive to an environmental
stressor at the individual level might not have the
largest effect on overall fitness and population
dynamics, as with cadmium and nematode fecundity
(most sensitive) and delayed maturity (most impor-
tant to fitness; Kammenga et al. 1996).

One major component of climate change with the
potential to act throughout the lifespan of a marine
species is ocean acidification (OA), caused by the in-
creasing ocean uptake of CO, and concurrent
changes in seawater chemistry. OA is expected to
greatly impact the structure and function of marine
ecosystems (Teixido6 et al. 2018), although the precise
effects are species-specific and difficult to predict
(Orr et al. 2005, Fabry et al. 2008, Doney et al. 2009,
2012, Gaylord et al. 2015). Research on the potential
species-level effects of OA (Kroeker et al. 2013) has
revealed significant decreases in growth and repro-
ductive success across a wide variety of organisms
(e.g. snails and sea urchins, Shirayama & Thornton
2005; mussels and oysters, Gazeau et al. 2007; corals,
Hoegh-Guldberg & Bruno 2010; seagrasses and mar-
ine algae, Koch et al. 2013), caused primarily by
reduced calcification rates and delayed larval devel-
opment. However, due to the limitations of laboratory
experimentation, most understanding of the impacts
of OA stress comes from studies focusing on the lar-
val and juvenile stages, despite the fact that species
are exposed to OA throughout their life cycles. The
full effects of OA, as well as other stressors, across an
individual's life history and, more critically, how
these changes affect population-level dynamics are
still not well understood.

Taking OA as an example of a pervasive environ-
mental stressor with increasing, potentially negative
effects, we identified mollusks as a group of particu-
lar importance, given their role as grazers or preda-
tors in creating biogenic habitat, their commercial
value, and their sensitivity, as calcifying organisms,
to increased acidity (Parker et al. 2013). As with other
groups, mollusk OA research has primarily focused
on the effects of acidification on larvae and juveniles
(e.g. Havenhand et al. 2008, Byrne et al. 2010, Crim
et al. 2011, Moulin et al. 2011, Yu et al. 2011). Al-
though it has been hypothesized that the direct neg-
ative impact may be stronger at early life history
stages (Kroeker et al. 2013), this hypothesis has
rarely been tested, and it is still unclear how experi-
mental results translate into population-level
changes. To address these gaps, we use a size-struc-
tured integral projection model (IPM) to explore pop-
ulation sensitivity to negative impact across an ani-
mal's life history, a type of analysis common in
management (Lande 1988, Akcakaya 2000, Caswell
2000, Gerber & Heppell 2004). This approach has
been successfully used to inform conservation of ani-
mals such as sea turtles (Crouse et al. 1987), tortoises
(Doak et al. 1994), whales (Caswell et al. 1999),
amphibians (Vonesh & De la Cruz 2002), and ducks
(Hoekman et al. 2002) subject to poaching, bycatch,
increased temperature, and other stressors, but this is
the first study that specifically uses an IPM to analyze
sensitivity of an abalone population and fishery per-
formance with respect to environmental stresses.

We chose abalone (Haliotis spp.) as representative
calcifying organisms because of their commercial
and conservation importance. Abalone are found
globally, and the collective market value of both aba-
lone fisheries (6500 metric tons, mt) and aquaculture
(~129000 mt, Cook 2016) was between US $2 and
3 billion in 2015 (assuming a flat value of $20 kg™!). Ad-
ditionally, multiple North American abalone species
are either of concern (pink H. corrugata; green
H. fulgens; California Department of Fish and Game
2005) or endangered (black H. cracherodii; white H.
sorenseni; NOAA 2001, 2009), and all California fish-
eries were closed in the 1990s because of rapid popu-
lation declines (Karpov et al. 2000). Similarly, several
species and fisheries have declined worldwide due to
a combination of overfishing and environmental causes,
including in South Africa (Hauck & Sweijd 1999, Rae-
maekers et al. 2011), New Zealand (Breen et al. 2003,
McKenzie & Smith 2009), Mexico (Morales-Bojorquez
et al. 2008), and Australia (Ferguson et al. 2017), with
global fishery output falling by almost two-thirds
(Cook 2016). Although some studies have investigated
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the effects of lowered pH on abalone larval develop-
ment (Crim et al. 2011), juvenile growth (Harris et
al. 1999, Kim et al. 2013), and fertilization success
(Boch et al. 2017), little is known about the potential
effects of OA on adult fitness or overall population
health.

In prior experimental work, we determined that
fertilization success for red abalone H. rufescens is
negatively affected when gametes are exposed to pH
values below 7.5 (Fig. 1; Boch et al. 2017). Although
the observed effect is strong, it is impossible to assess
in the laboratory how overall abalone population
dynamics might be affected by this decline, or similar
temperature- or oxygen-mediated impacts on very
early life stages. For example, a 50 % drop in fertil-
ization success might produce only minimal popula-
tion effects if spawning adults are abundant and the
number of new recruits is limited primarily by
density-dependent processes. Conversely, a popula-
tion experiencing occasional recruitment failure due
to low density, i.e. the Allee effect, may decline to
extinction (Allee 1932). In addition, there are many
other life history parameters which may be sensitive
to OA. Reduced calcification rates may produce indi-
viduals with thinner shells, for example, potentially
increasing vulnerability to predators and lowering
juvenile or adult survival rates. Prioritizing shell
strength might slow overall growth rate, delaying
time to maturity and reproductive output. Thus,
stressors such as OA may impact multiple stages and
processes, and it is difficult in a laboratory setting to
assess how negative impacts interact to affect overall
population persistence and dynamics.

To address these questions, we used a continuous-
size-structured abalone population model from Aalto
et al. (2019) to explore the population-level effects of
deleterious changes to life-history parameters across
multiple life stages in a simulated abalone fishery.
First, we assumed a sustainably managed fishery and
focused primarily on how declines in each parameter
would affect a theoretical equilibrium biomass and
catch, under a scenario of gradual ocean acidification.
We additionally simulated a sudden mass mortality
event to explore whether the long-term effects of a
stressor such as OA could affect short-term resilience
to catastrophe by delaying or preventing population
and fishery recovery. Finally, we combined small si-
multaneous changes in recruitment, growth, and sur-
vival parameters to determine if negative interactive
effects would exceed the expected additive outcome.
We discuss the results in the context of the potential
relative impacts of sudden mass mortality events and
combined stresses from other environmental drivers
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Fig. 1. Abalone fertilization response to low pH (from Boch

et al. 2017). The solid black line represents a segmented

model fit; dashed lines represent 95 % confidence limits. The

y-axis represents proportional fertilization success, and the

x-axis represents the measured pH in each experimental

sample. The small black solid circle represents the break-
point estimate, with error bars showing SE

thought to be rapidly changing in the Anthropocene,
such as temperature and decreased oxygen.

2. METHODS
2.1. Model description

We used the IPM (Ellner & Rees 2006) from Aalto et
al. (2019) to simulate recruitment, survival, and
growth of green abalone Haliotis fulgens, a species
ranging from central southern California, USA, to
southern Baja California, Mexico, under increasing
OA. The IPM allows continuous size structure, rather
than using discrete size or age classes, which is neces-
sary when modeling the impact of small life history
parameter changes on a species with size-dependent
survival and fecundity. All model parameters and
equations are given in the Supplement at www.int-res.
com/articles/suppl/m643p075_supp.pdf. We modeled
annual abalone growth using a probabilistic non-
negative Gompertz growth function (Fig. 2a; Bardos
2005) developed to match the highly variable abalone
growth dynamics seen in the field (Troynikov et al.
1998). Both abalone survival (Fig. 2b) and egg pro-
duction (Fig. 2c) increase exponentially with length.
Following Button's (2008) empirical study and other
research on abalone breeding (Shepherd & Partington
1995, Gascoigne & Lipcius 2004, Zhang 2008, Catton
et al. 2016), we assumed the existence of an Allee effect
and modeled breeding success as an increasing and
saturating function of spawner density that ranged
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Fig. 2. Population dynamic elements of the annual abalone growth model. (a) Growth by size. The horizontal and vertical axes
indicate starting length and amount of growth, respectively. Growth is distributed across a range, with brightness indicating
relative proportion of the size class growing a specific amount. (b) Survival proportion based on length. (c) Fecundity (total egg
production for mature individuals) based on length. (d) Allee effect. Relative breeding success based on density of adults. The
dashed line indicates the density associated with roughly 80 % breeding success, the default value for the baseline model

between 0 and 1, with a threshold density below which
recruitment begins to fail (Fig. 2d). Multiple studies
have found that low-density abalone populations have
difficulty recovering even after a fishery closure (e.g.
Tegner 1993, Rothaus et al. 2008, Coates et al. 2013,
2014), suggesting that Allee effects are potentially im-
portant to recovery of depleted abalone stocks follow-
ing a mass mortality event.

We assumed a closed system with density-depen-
dent settlement, with no net effect on local recruit-
ment from offshore larval input or loss, and annual
fluctuations in relative settler survival rate due to
year-to-year environmental variability. We set the
carrying capacity to produce an unfished density of
~0.2 ind. m~? based on the work of McShane (1991)
and Daume et al. (2004) and consistent with field
data (Rogers-Bennett et al. 2004, Micheli et al. 2008).

We modeled catch as a constant proportion h of com-
mercial size abalone harvested annually, representing
a constant level of effort. We set h to the fishing pres-
sure required to produce 2/3 of the maximum sustain-
able yield (Fysy), as determined by prior simulation
with no OA effects. This is a precautionary reference
point that was commonly used in the past in fisheries
management (Jennings et al. 2001), and is generally
considered a good compromise between maximizing
sustainable yields and minimizing risk of collapse.

2.2. Analysis

We established baseline catch and population val-
ues by running 200 simulations for 300 timesteps
(vears) to ensure that the population reached equi-
librium (because the standard deviations for equi-
librium biomass and catch were <1% of mean val-
ues for each scenario and much smaller than the
difference from parameter changes, additional runs
would produce little benefit). The 8 parameters
tested (Table 1) governed different aspects of
abalone life history: for recruitment, we used larval
production (combined gamete production, fertiliza-
tion success, and larval development) and Allee
sensitivity; for survival, we used juvenile survival,
subadult survival, and adult survival; and for
growth, we used growth rate, maximum size, and
size at maturity. To test the importance of each
potential OA effect, we systematically decreased
each parameter by up to 20% in 1 or 2.5 % intervals,
depending on the sensitivity of the parameter (or
increased, in the case of size at maturity), ran 200
simulations (300 yr each) for each value, and com-
pared the new equilibrium catch and population to
the baseline values without OA effects to determine
the relative change. We used linear regression to
estimate change in biomass density or catch as a
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Table 1. Abalone growth model response slopes for changes in 8 life

history parameters

single-parameter results. We chose larval
production as the ‘recruitment’ term and

growth rate as the ‘growth’' term. Because
Aspect of Model Slope of regression sensitivity to changes in adult survival was
life history parameter Density Catch Recovery high and similar in strength to changes in

likelihood o o . .

growth rate, combining 5% declines in both
Recruitment would guarantee extinction. Consequently,
Larval production ew op oros  0.11 0.11 1.00 we used juvenile survival as the representa-
Allee sensitivity dagg 0.047  0.048  1.00 tive survival term. We added size at maturity
Survival as an alternative to growth rate because its
Juvenile, <50 mm % 405 401 465 behavior was different from the other growth
Subadult, 250 mm, <L,y Oly 4.68 4.77 5.39
Adult, >L,, Ot 039  10.90 10.12 parameters, although the 2 parameters are
Growth inter-related if maturity is primarily based on
Size at maturity Linat -166 -031 -0.5 age. All simulations were run using the pro-
Maximum size L, 999 11.30 11.15 gramming language R v. 3.4.4 (R Develop-
Growth rate G 9.77 10.19 9.64 ment Core Team 2018).

Relative density

function of change in parameter, with a steeper
slope indicating greater sensitivity. Similarly, we
evaluated the effect on population resilience by
running each simulation to equilibrium, simulating
a catastrophic hypoxic upwelling event with 50 %
mortality (similar to mortality levels observed by
Micheli et al. 2012), and continuing to run each sim-
ulation until the population either recovers or, if suf-
ficiently below the Allee threshold, goes extinct.
Finally, we investigated possible interactive effects
by testing different combinations of 2 parameters
from 3 general life history aspects (recruitment, sur-
vival, and growth) and comparing the combined
effect of a 5, 7.5, or 10% decrease in both para-
meters with the additive effect predicted by the 2

1.00j
o
0.75 -
0.50 ® = | arval production
== = Allee sensitivity
o === Juvenile survival
= == = Subadult survival
0.25 A ===ns Adult survival
o Size at maturity
o Maximum size
A Growth rate
0.00

3. RESULTS

The equilibrium spawning stock biomass density
(slightly greater than abalone fishery stock size, be-
cause Ly > Ly, where Ly is minimum length at
harvest) was most sensitive to parameters which di-
rectly affected the size and number of adult abalone
(Table 1, Fig. 3). Specifically, these parameters were
maximum size (L), growth rate (G), and adult survival
oy (length >L,,). The next most sensitive were sub-
adult survival oy (length 250 mm and <L), juvenile
survival o; (length <50 mm), and size at maturity
(Limat)- Finally, the population was least sensitive to
the recruitment parameters larval production (e,,) and
Allee sensitivity (a,4). The same sensitivity pattern was

seen for catch (Table 1, Fig. 4a) and re-
covery likelihood (Table 1, Fig. 4b). Re-
covery likelihood showed greater over-
all sensitivity to the potential OA effects,
meaning that for most parameter
N changes, the decrease in recovery like-
lihood (Fig. 4b) was greater than the
decrease in equilibrium density (Fig. 3)
or catch (Fig. 4a). In particular, recov-
ery likelihood had a more pronounced
non-linear response to most parameter
impacts (excepting larval production
and Allee sensitivity), caused by the

“10 ] 0 10
Change in parameter value (%)

Fig. 3. Sensitivity of equilibrium population density to changes in life history
parameters. The y-axis represents relative equilibrium population density
compared to the baseline case (default parameter value), and the x-axis repre-
sents percentage deviation from default parameter values. The lines represent
standard regressions for each parameter tested (see Table 1 for slope values)

non-linearity of the underlying Allee
effect governing population recovery
(Fig. 2d). Although a polynomial fit
was significantly better for some of the
parameters, depending on the metric,
we used linear regression exclusively
to facilitate comparison.

20
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lines are the same as in Fig. 3. (a) Equilibrium catch. (b) Recovery likelihood following a 50 % mortality event. The default pop-
ulation carrying capacity is set to be at the 80 % Allee effect threshold (i.e. due to the Allee effect, recruitment is 80 % of maxi-
mum at equilibrium density). Note the significant non-linear response for some of the parameter changes, although linear
trendlines are shown for ease of comparison
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Fig. 5. Interactive effects of parameter combinations in the abalone growth model. (a) Sensitivity of equilibrium population
density to simultaneous changes in 2 life history parameters. The axes and regression lines are the same as in Fig. 3; prod.:
production; juv.: juvenile, surv.: survival, mat: maturity. (b) Comparison between combined ocean acidification effects and
predicted additive effect. The y-axis indicates the relative decrease in population density compared to baseline for each multi-
ple-stressor model and the same stressors combined additively. The results shown are for a 5% change in each parameter
(=5 % for larval production, growth rate, and juvenile survival; +5 % for size at maturity). Larv. P.: larval production, J. surv.: ju-
venile survival; Size mat.: size at maturity. (c) Proportional magnitude of interactive effect. The x-axis indicates the change in
parameter value, as in panel (a). The y-axis shows the combined effect on density relative to the additive effect, with values
>1.0 indicating a positive interactive effect. Points and lines are the same as in (a), although the lines simply link points. Note
that for 2 of the combined parameter scenarios, the population went extinct for values <=5 %

All of the parameter combinations showed positive as the predicted additive effects (Fig. 5a). For a 5%
interactive effects, with abundance in the combined reduction, the biggest interactive effect was seen for
effect scenarios decreasing 1.02-1.39 times as much any combination which included growth rate (1.23-
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2.24 times; Fig. 5b). All 3 parameter combinations
which did not cause extinction at higher stress effect
levels (those without growth rate decreases) showed
the biggest interactive effect at -10% (1.10-1.39
times; Fig. 5c). Note that we used the simulated OA
impact values for each model, not the predicted val-
ues from linear regression, to avoid over-estimating
the additive impact because of non-linearity in para-
meter sensitivity.

4. DISCUSSION

Our modeling analysis suggests that, for a calcify-
ing marine mollusk, population level impacts of envi-
ronmental stressors, such as OA, are driven by differ-
ential responses of later life stages, highlighting the
importance of considering the sensitivity of the entire
life cycle of the species and identifying and focusing
analysis on the most sensitive stages. Specifically, the
model predicts that population size is most sensitive
to parameters which directly affect the creation and
survival of large, fecund adults. This is consistent
with studies that have highlighted the key role of 'big
old fat fecund female fish’ in population persistence
and fisheries management (Longhurst 2002, Palumbi
2004, Micheli et al. 2012, De Leo & Micheli 2015),
and prior sensitivity analysis identifying adult sur-
vival as the most critical factor for red and white
abalone management and conservation (Rogers-
Bennett & Leaf 2006). Similarly, gorgonian popula-
tion persistence was found to be most sensitive to
adult survival, not fecundity (Gotelli 1991, Linares et
al. 2007), although sensitivity to recruitment failure
varied by species (Hughes & Tanner 2000).

Because fecundity scales exponentially with aba-
lone size, decreasing the growth rate, maximum size,
or adult survival has a disproportionate impact on
overall larval production across the entire lifespan of
an individual. Conversely, relaxation of density-
dependent competition for space and resources
during recruitment and in the early life stages may
partially compensate for the potential reduction in
mean fecundity or fertilization success caused by OA.
These results highlight the importance of increasing
our understanding of how environmental stress af-
fects the creation and survival of large, fecund adults
in harvested marine invertebrate populations in order
to more effectively manage and conserve these im-
portant components of marine biodiversity under cli-
mate change scenarios. Regardless of the potential
environmental stressor, future empirical studies
should focus on the possible long-term, cumulative ef-

fects on growth and survival of late immature stages
and adults over the entire lifespan, and examine ef-
fects on multiple parameters and how they combine to
influence adult survival and reproductive output.

On the other hand, the risk of recruitment failure
caused by non-linear, negative density-dependent
breeding (i.e. the Allee effect) could interact power-
fully with catastrophic events. A 33% decrease in
equilibrium abundance (following, for example, a 5%
decline in growth rate; light gray dotted line, Fig. 3)
could translate into a 60 % likelihood of extinction fol-
lowing a moderate mass mortality event (Fig. 4b).
Given that extreme events such as heat waves, hy-
poxia, and harmful algal blooms are expected to in-
crease with climate change (Jentsch et al. 2007,
Hegerl et al. 2011), adjusting fishing effort for this
decrease in resilience, for example, by lowering fish-
eries mortality, F, below the standard MSY-based ref-
erence point to maintain a biomass 'buffer' against
catastrophe, could be critical to sustainable manage-
ment (Wagner et al. 2007, Game et al. 2008).

Even small deleterious effects can have unexpect-
edly large population-level impacts if they act syner-
gistically across several life history parameters, cre-
ating interactive effects more damaging than the
sum of the individual changes. Our simulation found
that the loss of equilibrium abundance was 23-220 %
worse than the cumulative expected loss when a 5 %
decrease in growth rate was combined with a similar
decrease in another life history parameter. Because
these detrimental effects acted simultaneously on
different life stages, their combined effect across an
individual's lifespan was greater than parameters
with overlapping effects (for example, both larval
production and size at maturity generally lower life-
time fecundity). Although studies have identified
multiple early life processes which are impacted by
stressors such as OA (e.g. both larval settlement and
growth in corals; Albright & Langdon 2011), our
analysis stresses the importance of cumulative inter-
active effects across the individual's lifespan. In our
simulations, multiple co-occurring small effects
across key survival, growth, and fecundity parame-
ters can largely amplify the demographic conse-
quences of a reduction of each parameter individu-
ally, disrupting fishery sustainability, or even push a
recoverable decline into extinction. In the case of
abalone, our study showed that the non-linearity of
the response to multiple stress effects across the indi-
vidual's lifespan is more extreme than for the single
effect scenarios, with a shift from -4 to -5 % (juvenile
survival + growth rate) or -5 to —=7.5 % (larval produc-
tion + growth rate) dropping equilibrium abundance
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from ~60% to 0. Combined effects could result from
a single stressor affecting multiple parameters or the
overall effects of changes in more than one environ-
mental driver.

Prior research has focused on measuring responses
of individual organisms to stresses such as OA, but
determining the actual impacts requires considering
changes within the full ecological context (Gaylord et
al. 2015). This includes population dynamics, species
interactions, interactions with other environmental
stressors, resilience in the face of catastrophe, and
the potential for adaptation through genetic plasticity
or selection. Here, we assumed that environmental
stress could cause declines in life history parameters
of between 5 and 20% (well within the range of
observed responses to OA; Kroeker et al. 2013), and
projected those changes across a full population over
time. Our model predicts that population size and
persistence are much more sensitive to adult growth
and survival, parameters that are difficult to study in
a laboratory setting, than the more tractable early life
history parameters such as fertilization success and
larval survival, although extreme stress scenarios
resulting in near-complete reproductive failure or
close to 100 % larval mortality are expected to have
population impacts. It is well recognized that ex-
treme events, such as hypoxic crises (Diaz 2001,
Vaquer-Sunyer & Duarte 2008, Laffoley & Baxter
2018), heatwaves (Garrabou et al. 2009, Arafeh-Dal-
mau et al. 2020), and disease outbreaks (Ward & Laf-
ferty 2004, Miner et al. 2006, 2018), can eliminate a
large fraction of a managed population. Our analysis
shows that environmental stressors that do not cause
mass mortality but a progressive reduction in fertil-
ization success may lead to recruitment failure in
species with negative density dependence. Much
less recognized in the literature is the fact that even
small changes in key demographic parameters, such
as growth rate and adult survival as shown in our
study, have a cumulative effect over the entire life-
span of an individual that is comparable to that
caused by major catastrophic events. Therefore,
future studies of the impact of OA and other environ-
mental stressors should not dismiss the long-term
consequences of small changes caused by climate
change. Our study also casts light on the interactive,
non-linear effect of small, multiple, co-occurring
stressors, which might have profound consequences
on the persistence of populations of commercial or
conservation value, especially when the effects are
additive or synergetic and not compensative. Conse-
quently, our results suggest that current research
may underestimate the effects of environmental

stressors, at least for marine invertebrates with size-
dependent fecundity and especially when multiple
impacts are involved. These predictions can help
guide future laboratory and field research towards a
more comprehensive understanding of how chang-
ing marine conditions can alter not only individual
fitness, but population structure, resilience, and key
ecosystem services such as fisheries sustainability.
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