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Wyspiańskiego 27, 50-370 Wroc law, Poland
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Abstract

A dispersion function Das in the form of a damped atom-atom asymptotic expan-

sion fitted to ab initio dispersion energies from symmetry adapted perturbation theory

was improved and extended to systems containing heavier halogen atoms. In order

to illustrate its performance, the revised Das function was implemented in the multi-

pole first-order electrostatic and second-order dispersion (MED) scoring model. The

extension has allowed applications to a much larger set of biocomplexes than it was

possible with the original Das. A reasonable correlation between MED and experimen-

tally determined inhibitory activities was achieved in a number of test cases, including

structures featuring nonphysically shortened intermonomer distances, which constitute

a particular challenge for binding strength predictions. Since the MED model is also

computationally efficient, it can be used for reliable and rapid assessment of the ligand

affinity or multidimensional scanning of amino acid side chain conformations in the

process of rational design of novel drugs or biocatalysts.

1 Introduction

Rational drug or material design process would greatly benefit from the availability of rapid

nonempirical estimates of relative stabilities of numerous possible conformations of interact-

ing subunits. Due to the large size of molecular systems involved, the currently available

state-of-the-art techniques like symmetry-adapted perturbation theory (SAPT), 1 would be

too costly to deal with such a task. On the other hand, preliminary tests involving hydro-

gen bonded dimers,2 several groups of protein-inhibitor systems,3–6 as well as ionic liquids7

indicate that rankings of relative stabilities could be well represented by a scoring model

consisting of multipole electrostatic and dispersion terms alone3 (MED = E
(10)
EL,MTP + Das),

where E
(10)
EL,MTP and Das denote, respectively, the electrostatic energy in the multipole ap-

proximation and the dispersion energy. Importantly, such rankings are quite insensitive to

the usage of geometries far from equilibrium,3,8,9 which can be beneficial for the in silico
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drug design process where distances between ligands and protein binding sites are frequently

inaccurate.

Whereas the long-range electrostatic multipole term could be rapidly estimated from

any multicenter multipole expansion, accurate calculations of the dispersion term for large

dimers, even in the asymptotic form, are extremely costly. This problem has been circum-

vented by an application of atom-atom dispersion functions (Das) developed by a fitting of

accurate values of dispersion and exchange-dispersion energies obtained, for a training set of

complexes,10,11 using SAPT based on density-functional theory [SAPT(DFT)]. Due to the

importance of drugs containing halogens that were only partially represented in the original

Das formulation, in this work we decided to extend the Das training set by additional dimers

containing such atoms. In particular, bromine- and iodine-containing halogen-bonded com-

plexes from the X40 database12 were included in the Das training set. Moreover, dimers

including several other new (relative to the previous version of Das from Ref. 11, which will

be denoted as D10
as ) atoms: B, Al, Si, and P were added. Subsequently, all parameters were

refitted.

The earlier versions of Das have been used in several research projects, in particular in

investigations of protein-ligand complexes. In the first attempt of ligand scoring with such

a simple MED model, the inhibitory potency of 22 inhibitors of fatty acid amide hydro-

lase (FAAH) was estimated.3 The first available Das version10 (D09
as ) was used in this MED

model. Then, the MED model with the D10
as version11 was applied in Ref. 6 to Trypanosoma

brucei pteridine reductase 1 (TbPTR1) inhibitors, as well as to the inhibitors of the fol-

lowing protein-protein interactions: EphA2-ephA1 (Ref. 4) and menin-MLL (Refs. 13 and

5). In the latter system, two separate studies on different inhibitor classes were performed,

namely thienopyrimidines (in the present contribution referred to as menin-MLL (I)) 13 and a

series of subsequently developed ligands bearing modified thienopyrimidine scaffold (menin-

MLL (II)).5 Recently, the MED model with the Das parameters from the present work (D20
as )

was applied to five halogen-bonded inhibitors of phosphodiesterase 5 (PDE5), as described

3
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in Ref. 14. Considering the performance of MED in comparison with the various scoring

approaches, essentially all the results obtained in our studies of protein-inhibitor complexes

support the conclusion about the favourable MED performance over a number of routinely

used scoring functions.3–6,13,14 For all these receptor-ligand systems, the MED model consis-

tently yielded the ranking of inhibitors on par with the best emprical scoring functions, with

no more than two such functions providing slightly better results and a dozen or so functions

performing worse. In particular, in the case of menin-MLL (I) complexes the MED-derived

scoring outperformed 14 empirical scoring approaches, yielding the best estimate of the ex-

perimental binding potency.13 What should be emphasized is that no consistency among the

top empirical scoring functions was obtained, as some functions featuring the best perfor-

mance for a particular protein-inhibitor system performed rather poorly for other systems. 4

It seems that the scoring approaches, which rely on empirical parameters derived with arbi-

trarily selected data sets, might not be general enough to be applicable to all receptor-ligand

systems. On the other hand, the nonempirical character of the MED model, associated with

the lack of calibration or training on experimentally determined affinity data, renders it valid

for a vast repertoire of complexes.

In addition to protein-ligand scoring, a research area that could possibly benefit from

the accessibility of the reliable, low-cost binding energy estimate is de novo enzyme design.

Computational development of novel enzymes featuring a predetermined catalytic activity is

a rapidly evolving field.15,16 Despite a number of successful designs,17,18 the catalytic prop-

erties of artificial biocatalysts remain within the range attainable by catalytic antibodies,

falling behind the outstanding efficiency of naturally evolved enzymes.19 Clearly, further ad-

vances in the design methodology are required, including the increased precision of designed

structures and an improved description of protein-reactant interactions. The catalytic activ-

ity of enzymes arising from the lowering of the free-energy barrier of the catalyzed reaction

is mainly determined by the magnitude of the transition state stabilization relative to the

substrate binding. According to the differential transition state stabilization (DTSS) ap-
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proach,20,21 the stronger a given molecular environment binds the transition state compared

to the substrate, the lower is the corresponding activation energy barrier and the faster

the catalyzed reaction proceeds. In the case of a multistep reaction, the most significant

differential stabilization might, in principle, accompany the rate-limiting step, i.e., the one

associated with the highest activation energy.22 As demonstrated by Beker et al. 23 for the

reaction catalyzed by ketosteroid isomerase (KSI), the concept of differential stabilization

could also be applied to the reaction intermediate, experiencing the strongest binding by the

enzyme active site. Differential intermediate state stabilization (DISS) is then expressed in

terms of the enzyme-intermediate and enzyme-substrate interaction energy, that in turn can

be calculated at various levels of theory, depending on the expected accuracy and compu-

tational affordability. As pointed out in Ref. 24, reliable modeling of enzymatic reactions

should account for the dispersion effects. The significance of dispersion interactions for

catalytic effects has recently been further reinforced by demonstrating their role in enan-

tioselective reactions.25 Therefore, the application of the MED model could bring the low

computational cost and the robustness of a nonempirical binding energy evaluation into the

in silico estimation of enzyme catalytic efficiency.23 MED has already been applied to study

enzymatic catalysis in Ref. 23. For a series of KSI mutants, it was shown that the DISS val-

ues of two amino acid residues undergoing mutation, obtained with the E
(10)
EL,MTP+Das model,

correlate with the experimental catalytic activity of the particular KSI variants, validating

the relevance of the MED model for catalytic efficiency prediction.

Another aspect of biocatalysis where the knowledge of the dispersion energy is critical are

effects of amino acid side chain rotamers. The importance of accounting for such rotamers

has recently been emphasized in Ref. 26. As demonstrated by Beker and Sokalski,27 the vast

combinatorial space of side chain rotamers could be screened employing atomic multipole

representation of the interaction energy, with the purpose of establishing the optimal amino

acid conformations constituting the preorganized active site environment. Considering the

importance of dispersion interactions for proper description of enzyme structure and function,

5
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supplementing the rotamer scanning methodology by Das term would extend the applicability

of this approach to enzymes featuring significant dispersion contribution.

Overall, the purpose of this work is to develop, test and determine the applicability

of the revised Das function, in particular in the context of the associated MED model.

Demonstrating favourable performance of the Das function and the MED model for the

description of intermolecular interactions, including those related to enzyme inhibition and

biocatalysis, should be of particular interest to the fields of in silico drug and enzyme design

as well as ab initio benchmarking.

In the present paper, we describe the development of the new Das function (Section 2) and

evaluate its performance with respect to benchmark results for small dimers from the training

set (Section 3.1) and test sets (Section 3.2). In Section 3.3, the five inhibitors of the urokinase-

type plasminogen activator (uPA),28 as well as the seven alcohol dimers studied by Hoja

et al. 2 , are examined with the revised MED model. The obtained results are discussed

and compared with previously studied protein-ligand systems.3–6,13,14 The uPA inhibitors

have been deliberately selected for testing MED approach, as they belong to one of the rare

documented cases in literature9,28 where inhibitor-binding site short contacts resulting from

the use of conventional force field optimization have been compared to ab initio MP2 results.

Such structures constitute a particular challenge for the assessment of binding energy, as both

high level quantum chemistry methods and empirical scoring functions perform rather poorly

in terms of predicting the relative stability.3 The choice of hydrogen-bonded alcohol dimers

emerged from the unusually high contribution of the dispersion interactions,2 not commonly

seen in the case of hydrogen bonding. The significance of dispersion contribution in this

particular case prompted us to test the MED capability of yielding the reliable estimate of

the relative stability. In Section 3.4, we apply the MED model to the description of the

catalytic contribution of KSI active site residues. In particular, we aim at determination of

the most catalytically active KSI residues and assessment of the role of dispersive interactions

in the total DISS characterizing the KSI-catalyzed reaction. To validate the relevance of the

6
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rotamer scanning approach to enzymes with significant share of dispersion interactions, we

attempt to determine the KSI side chain conformations optimal for catalysis by combination

of the MED model with a methodology that enables scanning of the rotamer library. 27

2 Computational methods

2.1 Electrostatic multipole expansion

We start from a brief description of the electrostatic component, which will be used in the

MED model. The first-order electrostatic multipole term, E
(10)
EL,MTP, represents the interac-

tion of permanent multipole moments of two isolated monomers. Monomers’ center of mass

(COM) moments can be partitioned into atom-centered or bond segment-centered moments,

yielding much better multipole expansion convergence at short intermolecular distances com-

pared to the COM expansion. Such distributed moments constitute a natural extension of

Mulliken’s population analysis and the inclusion of higher moments significantly improves

properties like molecular electrostatic potentials, electric fields or multipole electrostatic in-

teraction energies in comparison to the analogous properties derived from monopole moments

only.29–31 The multipole expansion can be written as

E
(10)
EL,MTP =

∑
a∈A

∑
b∈B

∑
ka

∑
kb

∑
α

∑
β

Mα
a [ka]T

ka+kb
αβ Mβ

b [kb], (1)

where Mα
a [ka] and Mβ

b [kb] are α and β components of atom-centered multipole tensors

of rank ka and kb for interacting molecules A and B, respectively, and T ka+kb
αβ is the αβ

element of the Cartesian interaction tensor containing the partial derivatives of |Rab|−1 of

rank ka+kb. The zero in the superscript indicates that the multipole moments are calculated

from Hartree-Fock (HF) densities. We employ here exponent-truncated series including all

terms up to R−n, which converges much better than moment-truncated series terminated

at a certain highest multipole moment.32 Cumulative atomic multipole moments (CAMM)

7
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reported herein for uPA inhibitors and alcohol dimers (Section 3.3) have been calculated at

the HF level of theory using a modified33 GAMESS34 program (available as IAMM option in

ELMOM section since version 2014/R1). The modeling of biocatalyst interactions has been

facilitated by the CAMM library35 for amino acid side chain rotamers,36 generated using the

HF method and the 6-31G(d)37–39 basis set. Unless otherwise stated, the atomic multipole

expansion was truncated at the R−5 term and the 6-31G(d) basis set was used.

2.2 Dispersion energy expression

The Das function,10,11 expressed as the sum of atom-atom contributions, allows to account

for the dispersion energy missing in the HF approach and in semilocal DFT functionals.

This function has the following form:

Das =
∑

a∈A, b∈B

(
−
√
C6
aC

6
b

(rab)6
f6
(√

βaβbrab
)
−
√
C8
aC

8
b

(rab)8
f8
(√

βaβbrab
))

(2)

where a and b denote atoms in monomers A and B, respectively, and fn(r) is the Tang-

Toennies40 damping function:

fn(r) = 1− e−r
n∑
i=0

ri

i!
(3)

The parameters Cn
x and βx, x = a, b are fitted to the sum of the SAPT(DFT)41–49

dispersion (E
(2)
disp) and exchange-dispersion (E

(2)
exch−disp) energy values, E

(2)
dispx:

E
(2)
dispx = E

(2)
disp + E

(2)
exch−disp (4)

The parameters were nonlinearly optimized using the functional χ2:

χ2 =
∑
i

(Das,i − Edispx,i)
2

(Edispx,i)2
(5)

where the sum extends over all geometries of all dimers. The values of the parameters were

8
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constrained to be positive during the optimization. The starting values of the parameters

already present in D10
as were taken from that function. The new parameters were selected

randomly within arbitrary chosen ranges. First, we have used a genetic algorithm minimiza-

tion to sample the whole space which was followed by indpendent simplex and Powell local

optimizations and picking the result with a smaller error. The final value of χ2 was 6.9.

The previously reported Das dispersion function,11 D10
as , is supplemented with parameters

for six more elements (B, Al, Si, P, Br, I). Moreover, additional parameters were added to

distinguish the carbon sp/sp2/sp3 hybridization. Just like in the original approach,11 unique

parameters were assigned to the hydrogen atoms connected to different elements (yielding

13 types of hydrogen atoms in total). This resulted in 30 sets of completely new C6
x, C8

x, and

βx parameters (reported in the Supporting Information, Table S1). The new Das dispersion

function, D20
as , covers most elements of the first three rows (excluding selected metals, see

below) plus bromine and iodine.

Four metals from the first three periods (Li, Be, Na, Mg) are not included in the current

parametrization (D20
as ). We have initially tried to include them, but we decided against it

for two reasons. First, the errors of D20
as for the dimers containing these metals were very

large (see Table S3 of Supporting Information), in some cases amounting to a couple of

kcal ·mol−1. Note that the results in Table S3 are for the 164 dimers from the final training

set plus the additional dimers as listed in Table S3. The calculations of the latter dimers were

done for a set of varying intermolecular distances same as for the former ones. The mean

unsigned error (MUE) and the mean unsigned relative error (MURE) for the equilibrium

configurations from Table S3 were 1.1 kcal · mol−1 and 41.5%, respectively, which should

be compared with the analogous errors on the 164 equilibrium configurations from the final

training set amounting to 0.1 kcal · mol−1 and 5.8%. The second reason for not including

metals in our parametrization was that if the dimers containing metals were included, the

performance of D20
as on the set of 164 dimers would also slightly deteriorate. The latter

problem could have been avoided by using specific parameters for all atoms interacting with

9
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the four metals, but we have decided just to drop them. These metals are problematic not

only for Das. Table S3 also shows the performance of the D350 function on the same set, in

the versions with damping optimized for the HF method and with no damping. The latter

approach gives very poor results for most dimers, whereas the former one gives errors about

twice as large as D20
as in the variant including the four metals.

2.3 Training set of the dispersion function

Compared to D10
as , the training set used for dispersion benchmarking was extended from 79

to 164 dimers (all of them are listed in Supporting Information, Table S2). Geometries of the

10 dimers containing the bromine and iodine atoms with varying intermolecular distances

were taken from the X40 database12 covering noncovalent interactions of molecules containing

halogens (the 10 dimers were chosen out of 18 dimers of this type, see Table S2). Geometries

of the remaining 154 dimers were obtained by minimizing interactions energies, free of basis

set superposition error, at the second-order of many-body perturbation theory with the

Møller-Plesset partitioning of the Hamiltonian (MP2), using the aug-cc-pVTZ basis set51

and keeping the MP2/aug-cc-pVTZ optimized geometries of monomers frozen. However,

the already optimized 79 dimers from Ref. 11 were not re-optimized. Ten configurations

with varying intermolecular distances R between COMs of monomers were generated for each

dimer, sampling the whole range between the minimum geometry and the asymptotic region,

with the relative orientation of monomers (and monomers’ geometries) kept the same as in

the dimer’s equilibrium. An exception was the benzene dimer, where the geometries were

taken along the radial cross section of the surface corresponding to a sandwich configuration

rather than to the tilted T-shape minimum52 (the latter configuration is not included in our

training set). Overall, the training set consisted of 1640 configurations.

The dispersion and exchange dispersion energies for systems from the X40 dataset (the

dimers containing bromine and iodine atoms, see Table S2 of Supporting Information) were

computed using the DFT-SAPT46–48 method implemented in MOLPRO53,54 (version 2012.1),

10
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which employs the PBE055,56 functional and the gradient-regulated asymptotic correction

(GRAC).57 We have not used the density-fitted version of DFT-SAPT. The aug-cc-pVTZ-

PP58 basis set, including relativistic pseudopotentials, was chosen for bromine and iodine

atoms, and the aug-cc-pVTZ basis was applied for the remaining atoms. The SAPT(DFT)

energies for the remaining dimers were obtained using the SAPT2012 program59 and the Dal-

ton 2.060 interface. The PBE0 functional55,56 with the Fermi-Amaldi-Tozer-Handy (FATH)

asymptotic correction43 was applied in this case. The aug-cc-pVTZ basis set, supplemented

by a 3s3p2d2f set of bond functions with (0.9,0.3,0.1) and (0.6,0.2) exponents for the sp and

df functions, respectively, was used. For each monomer, experimental ionization potential

(IP) values were taken from Ref. 61. The reason for applying MOLPRO rather than SAPT

codes in the case of the X40 dataset was that the latter codes were used by us with the DAL-

TON 2.0 front-end which does not include recent relativistic pseudopotentials. All SAPT

calculations have been performed in the dimer basis sets.

2.4 Test set for the dispersion function

The D20
as function was evaluated on test data sets originating from the following data bases:

• the S2262 set of 22 hydrogen-bonded, dispersion-bonded, and ”mixed“ representative

biocomplexes,

• the NCCE31/0563,64 set of 31 noncovalent complexation energies,

• the NBC10ext65,66 set of 10 dispersion-bound bimolecular complexes with off-equilibrium

distances (together accounting for 195 dimer geometries),

• the XB5167 set of 51 halogen-bonded dimers. Six complexes were excluded from the

XB51 database analysis due to the lack of Das parameters for lithium (Br2 − HLi,

FI− HLi, CH3I− HLi) and palladium (Br2 − PdHP2Cl, FI− PdHP2Cl, CH3I− PdHP2Cl).

As the result, only 45 dimers from the XB51 set were included in the evaluation.
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The E
(2)
dispx energies for these compounds were calculated using the computational proto-

col described in Section 2.3, using SAPT2012 in the case of the S22 and NCCE31/05 data

sets, and MOLPRO in the case of the NBC10ext and XB51 data sets. The corresponding IP

values for the monomers were obtained from Ref. 61. However, several monomers from the

XB51 dataset lacked the experimental IP values in Ref. 61, namely OPH3, NBS, and NIS.

For these molecules, which are present in the following dimers: Br2 −OPH3, FI−OPH3,

CH3I−OPH3, NCH− NBS, NH3 − NBS, PCH− NBS, NCH− NIS, NH3 − NIS, PCH− NIS,

the IP values were calculated using PBE0/aug-cc-pVTZ (including pseudopotentials for the

bromine and iodine atoms) in Gaussian (version 2016 B-01)68 as the difference between DFT

energies of a given molecule and its ion (with identical geometries in both cases).

Whenever possible, the D20
as results were compared with the results from the previ-

ously published version11 of the D10
as dispersion function and other literature parametric

dispersion functions. One such very popular function is D3BJ of Grimme et al. 50 with the

Becke-Johnson69,70 damping factor. This function is intended to be added to DFT inter-

action energies and is parametrized specifically for a given density functional. We have

considered the versions optimized for the functionals OLYP71,72 and revPBE3873 (i.e., the

revPBE74 functional with a 3/8 fraction of the exact exchange), denoted by D3BJ(OLYP)

and D3BJ(revPBE38), respectively. One should point out that the name “damping” is mis-

leading in this case since, as pointed out in Ref. 75, it not only includes the physical damping

of the asymptotic expansion due to charge-overlap effects, but also corrects DFT interaction

energies for errors unrelated to dispersion interactions. Thus, a more appropriate name may

be “switching factor”. We have included the results for D3BJ(NS), where NS stands for “no

switching”. All D3BJ computations were performed with the DFTD3 package (version 3.2,

rev. 0).76 One more dispersion function included in comparison is DD3S (damped dispersion

based on D3 and SAPT)77 which uses the D3 long-range coefficients but adjusts two out

of three free parameters in the BJ function to SAPT’s E
(2)
dispx on the NCCE31/0563,64 set of

dimers. The remaining parameter was taken from D3BJ(OLYP). Thus, DD3S is constructed
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partially in the same spirit as Das.

2.5 The MED model with Das

The proposed MED model (E
(10)
EL,MTP + D20

as ) can be used for the assessment of relative

interaction energy between monomers. In particular, the inhibitory activity of protein ligands

can be estimated with a low computational cost scaling as O(A2), where A stands for the

number of atoms.

Here, the D20
as dispersion approximation is applied in the MED model for the examination

of the uPA and its five inhibitors, previously described in Ref. 28. The structures of the uPA

complexes, together with MP2 results, were provided by Grzywa et al. 28 , while the multipole

electrostatic contribution was calculated following the description given in Section 2.1. In the

case of several protein-inhibitor complexes ranked previously with MED model encompass-

ing Das parameters other than the most recent ones proposed herein, the Das contribution

was recalculated with the latest D20
as revision. The coordinates of receptor-ligand models

and experimental inhibitory activity of the respective complexes were used as described

in articles on fatty acid amide hydrolase (FAAH),3 menin-mixed lineage leukemia protein

(menin-MLL),5,13 Trypanosoma brucei pteridine reductase 1 (TbPTR1),6 and erythropoi-

etin producing hepatocellular carcinoma A2 receptor-ephrin A1 (EphA2-ephA1)4 complexes.

The uPA inhibitor binding was also analyzed with 10 empirical scoring functions, includ-

ing AutoDock478 (referred to as AutoDock), AutoDock Vina79 (referred to as Vina in what

follows), DSX,80 RankScore,81 PLANTSPLP and PLANTSCHEMPLP (available in PLANTS

program82), GoldScore, ChemScore, ChemPLP, and ASP (available in GOLD program,83

2020.0 CSD Release). In all these calculations, the structures of uPA complexes were used

in the rescoring mode, i.e., with no docking/optimization. Unless stated otherwise, the de-

fault options for all the rescoring runs were applied. In particular, the PLANTS calculation

involved binding site definition encompassing the sphere of 15 Å radius and the origin associ-

ated with the ligand center of mass averaged over all ligands. The latter was also used as the
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center of a 40x40x40 point grid in AutoDock calculations. In the case of GOLD rescoring,

the cavity was calculated based on the ligand coordinates and the default 6 Å radius (tests

with 15 Å radius yielded identical results concerning the binding score).

In addition, the revised MED model was used on seven hydrogen-bonded (HB) alco-

hol dimers, previously studied by Hoja et al. 2 : water (H2O)2, methanol (MeOH)2, ethanol

(EtOH)2, n-propanol (nPrOH)2, isopropanol (iPrOH)2, n-butanol (nBuOH)2, and tert-bu-

tanol (tBuOH)2. The coordinates and the corresponding SAPT(DFT) interaction energy

values, used as reference, were taken from Ref. 2. The multipole electrostatic term was cal-

culated as stated in Section 2.1. However, as in the case of the SAPT calculations performed

by Hoja et al. 2 , the aug-cc-pVTZ basis set51 was selected to obtain CAMM. Additional

supermolecular interaction energy calculations at the MP2 level of theory were performed

using the Gaussian program68 (version 2016 B.01) with the same basis set and the coun-

terpoise correction84 applied to remove the basis set superposition error (BSSE). We have

correlated the E
(10)
EL,MTP, D20

as , and MED data with the experimentally measured affinities of

inhibitors. For these “protein” systems, MP2 served as a reference energy for MED. In the

case of the HB dimers, no experimental values were available, therefore E
(10)
EL,MTP, D20

as , and

MED were correlated with the SAPT(DFT) energy. In that case, the MP2 results are given

for comparison only.

The achieved performance was analyzed by means of the coefficient of determination,

R2, calculated for the interaction energy at a given level of theory with respect to the

experimentally determined inhibitory activity reported by Grzywa et al. 28 or with respect

to the reported2 SAPT(DFT) interaction energies in the case of the HB alcohol dimers:

R2 =

( ∑
(x− x)(y − y)√∑

(x− x)2
∑

(y − y)2

)2

, (6)

where x (x) is the (mean) inhibitory activity or the SAPT interaction energy in the case

of the HB alcohol dimers and y (y) is the (mean) MED interaction energy. In principle,

the interaction energy can be linearly related to the experimentally determined inhibitory
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potency values (expressed as pIC50) as long as the inhibitory potency measurements are

performed under consistent experimental conditions.3

We also computed a statistical predictor, Npred, which indicates the success rate of a

prediction of relative affinities, and is calculated for all pairs of inhibitors as the percentage of

concordant pairs with a relative stability of the same sign as in the experimentally determined

reference binding potency.8 For instance, a concordant pair is a pair of inhibitors I1, I2, for

which MED(I1) < MED(I2) and pIC50(I1) > pIC50(I2). For the total number of pairs

Ntot and the number of concordant pairs Ncon, Npred is calculated as:

Npred =
Ncon

Ntot

· 100%. (7)

Calculations of DISS involved an application of the MED model to structures of enzyme-

intermediate and enzyme-substrate complexes of Comamonas testosteroni ketosteroid iso-

merase as derived from the QM/MM simulation reported in Ref. 85. The DISS value,

constituting the difference between the enzyme and reaction intermediate (IS) or substrate

(RS) binding energies (DISS = MED(IS) − MED(RS); see Ref. 23 for further expla-

nation), was evaluated for all KSI amino acid residues in the vicinity of 5 Å of reactants,

yielding a total of 22 residues. The total DISS energy was obtained as the sum of residue-wise

DISS contributions determined for separate enzyme residue-reaction intermediate/substrate

pairs. The dangling bonds resulting from cutting an amino acid residue out of the protein

structure were saturated with hydrogen atoms. The multipole electrostatic component of

the MED model was calculated with the CAMM expansion, according to the settings given

in Section 2.1.

Subsequently, the selected 22 KSI amino acid residues were subjected to the multidi-

mensional scanning procedure, for which the MED model was implemented. Assuming that

the amino acid side chain conformations (rotamers) form a preorganized active site environ-

ment,27 scanning of the possible rotamers would yield the most optimal rotamers positions,

contributing to the lowest possible DISS energy.

15

Page 15 of 44

ACS Paragon Plus Environment

The Journal of Physical Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



The multidimensional scanning protocol involved: (i) loading amino acid rotamers with

precomputed CAMM35 into specified positions, (ii) excluding rotamers with close contacts

(less than 1.7 Å) to the protein backbone, (iii) calculating the MED energy for the retained

rotamers-reaction intermediate/substrate pairs, (iv) selecting the most stable positions yield-

ing the lowest DISS energy. To save computational time, possible rotamers were scanned

in the presence of the intermediate/substrate and the protein backbone only. However, this

approach might lead to a situation where some more catalytically active rotamers clash with

nearby residues. In such circumstances, the rotamer scan can be performed with several

rotamers simultaneously, yielding the conformations of all scanned residues optimal with

respect to both the lowering of DISS value and the mutual inter-residue interactions. This

was the case of the Phe86 residue, for which it was necessary to conduct a simultaneous scan

of three rotamers of Leu61, Phe86, and Thr93 residues. Moreover, the currently available

multidimensional scanning approach is not applicable to proline or alanine residues, there-

fore Pro39, Pro97, and Ala114 residues (present in the initial calculation of total DISS given

by KSI active site residues) were not included in this analysis.

3 Results and discussion

3.1 Das performance on training dataset

The MUE and MURE values of the newD20
as parametrization with respect to the SAPT(DFT)

E
(2)
dispx values for the training set are equal to 0.1 kcal ·mol−1 and 5.1%. The performance of

D20
as for all configurations of all dimers is shown in Figure S1 in the Supporting Information.

As expected from the MURE of 5.1%, typical relative errors are a few percent, and positive

and negative errors are evenly distributed. There is one dimer with remarkably small, below

1%, errors across the range of R: HBr-CH3OH (panel B), but generally the errors vary quite

a lot over the range of R, in many cases crossing zero at a small R and sometimes also a

second time at a large R. While the variation with R may appear fairly significant for some
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dimers, these are still within a few percent range for most dimers. There are a couple of

outliers with errors at some R in excess of 20%: C2H6-C2H6 (panel K), PCl3-PCl3 (AF),

and PH3-PH3 (AG). The fit is particularly bad for PCl3-PCl3, with all errors above 10% in

magnitude. The relative errors are often large in magnitude at large R, but the absolute

errors always go to zero in this region.

One may observe that distances between some points in the X40x10 set (Figure S1,

panels A and B) are very close, only of the order of 0.1 Å. This is due to the fact that for

some systems the authors of ref. 12 scaled the distance between two closest atoms, one from

monomer A and one from monomer B. This distance is of the order of 2 Å which (with the

step of 0.05 in the scaling factor) leads to the observed high density of points.

3.2 Evaluation of Das on test datasets

The D20
as dispersion function at equilibrium distances was calculated for the complexes found

in the S22, NCCE31/05, and XB51 (selected compounds, see Section 2.4) datasets. Addi-

tionally, D20
as was calculated for the NBC10ext dataset covering a range of off-equilibrium

intermolecular separations (summing up to the 195 dimer geometries included in the anal-

ysis). The reference SAPT(DFT) E
(2)
disp and E

(2)
exch−disp energies were calculated to obtain

MUEs and MUREs, which are listed in Table 1 (all energy values are given in Tables S4-S7

of Supporting Information). Wherever possible, the MUEs and MUREs for the older Das

version (D10
as ), Ref. 11, as well as for the DD3S dispersion term,77 are provided. The average

errors calculated for selected D3 dispersion functions50,69 are also given.

The sets S22 and NCCE31/05 partially overlap with the training sets for D10
as and D20

as :

for both functions, 10 out of 22 S22 dimers and 19 out of 31 NCCE31/05 dimers are in this

category (see Table S2, where dimers present in both groups are indicated). Thus, S22 and

NCCE31/05 cannot be treated as entirely independent validation sets. Therefore, the errors

calculated for these datasets without the overlapping dimers are also given in Tables S4-S5

of Supporting Information, along the errors computed for the whole S22 and NCCE31/05
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datasets, which are presented in Table 1.

Table 1: MUE and MURE valuesa for Das and other approximate dispersion
energies relative to E

(2)
dispx.

Method
Benchmark

S22 NCCE31/05 NBC10ext XB51b

MUE MURE MUE MURE MUE MURE MUE MURE

D20
as

c 0.42 5.90 0.18 8.12 0.14 4.06 0.40 10.28

D10
as

d 0.55 7.22 0.14 5.54 0.31 6.01 - -
DD3Se 1.32f 24.40f 0.57f 16.89f 1.18 24.98 0.70 17.50

D3BJ(HF)g 0.97 13.96 0.77 22.69 0.28 5.31 0.88 18.79
D3BJ(OLYP)g 1.76 28.73 0.84 22.43 1.28 30.05 1.01 20.01

D3BJ(revPBE38)g 2.29 34.51 1.66 48.25 0.91 15.34 2.42 51.94
D3(NS)h 2.78 34.36 1.33 33.67 1.07 20.33 5.52 89.13

aGiven in kcal ·mol−1 and percent, respectively.
bSelected dimers, see Section 2.4 for details.
cCurrent version of Das.
dPreviously published Das version, Ref. 11.
eMethod developed in Ref. 77.
fReported or calculated from the data published in Ref. 77.
gDFT-D350 dispersion term calculated with the BJ damping for the HF level of theory or the listed

functional.
hDFT-D350 dispersion term calculated without switching.

Table 1 shows that for S22 D20
as provides a modest improvement over D10

as in terms of

MURE, whereas for NCCE31/05 it gives a 47% larger MURE. This is an anticipated outcome

since there are no reasons to expect D20
as to work significantly better than D10

as on systems to

which D10
as can be applied (except for the different coefficients for different types of carbon

atoms) and since D20
as was fitted to a larger training set, it may be less accurate for the D10

as

training dimers included in S22 and NCCE31/05. The main advantage of D20
as is that it can

be applied to systems beyond the scope of D10
as , as shown on the example of the XB51 set.

The D10
as and D20

as functions are in a separate class compared to the D3-type functions in-

cluded in Table 1. In particular, D20
as yields about two times smaller MUREs than these func-

tions. Somewhat surprisingly, DD3S is not the best of such functions for S22, as its MURE

is almost two times larger than that of D3BJ(HF). DD3S is 34% better than D3BJ(HF) for

NCCE31/05, not surprisingly since it was optimized on this dataset. The DFT-optimized
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variants, D3BJ(OLYP) and D3BJ(revPBE38), perform still worse, in particular the latter

function. D3(NS) gives smaller errors on S22 and NCCE31/05 than D3BJ(revPBE38), but

performs worst of all methods on XB51.

For the NBC10ext dataset, the D20
as function provides the lowest errors, with D10

as and

D3BJ(HF) yielding twice as large MUE and comparable MURE values. The errors associated

with the other D3-type functions used in our analysis are roughly an order of magnitude

larger than those of D20
as . As NBC10ext includes dimers with a broad range of intermolecular

separations, good performance of D20
as on this benchmark shows that this function is able to

describe dispersion interactions for separations other than the equilibrium one.

The accuracy of D20
as achieved for the selected XB51 dimers is also reasonable, although

the MURE value is somewhat larger than for the three other databases. Still, all the tested

D3 variants were outperformed significantly, from a factor of two to almost an order of

magnitude in the case of D3(NS). Similar conclusions concerning the performance of D10
as

were reached in Ref. 86 on the so called UD-ARL87 benchmark set extended by the Ar2 and

Ar-HF dimers.

Table 2 includes comparisons of D20
as with D10

as on several other benchmarks sets, namely

S66,88 S66x8,88 IonHB,89 UD-ARL, and S12L.90 All values presented in Table 2 are taken

from Ref. 91 (see Ref. 91 for computational details) and show that D20
as gives systematically

more accurate dispersion energies than D10
as , although the improvements are generally not

large. The only exception is IonHB where MURE is 0.7% larger in the case of D20
as , but

MUE is 0.02 kcal · mol−1 smaller. Also the performance on UD-ARL is about the same

for both functions. For S66 and S66x8, MUE is decreased by about 0.1 kcal · mol−1 and

MURE is decreased by about 2%. The improvement is more substantial for S12L, where

MUE and MURE went down by 3.5 kcal ·mol−1 and 7.4%, respectively. MUE of D20
as on S12L

may appear fairly large, but one should realize that dispersion energies for these systems,

including up to 177 atoms, are tens of kcal · mol−1 in magnitude. Small improvements

in atomic pairwise contributions to the total dispersion energy may add up to significant
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differences between the D20
as and D10

as functions for such large complexes. Similarly to the

NBC10ext dataset, the performance of D20
as on the S66x8, IonHB, and UD-ARL sets with

varying separations confirms that D20
as could be used for the description of dispersion in the

whole range of interactions.

Table 2: MUE and MURE valuesa obtained with D20
as and D10

as relative to E
(2)
dispx.

Benchmark
Method

D20
as D10

as

MUE MURE MUE MURE

S6688 0.23 4.13 0.35 6.29
S66x888 0.18 4.93 0.27 6.80
IonHB89 0.50 13.76 0.52 13.09

UD-ARL87 0.21 6.26 0.22 6.88
S12L90 4.64 10.28 8.16 17.64

aTaken from Ref. 91 and given in kcal ·mol−1 and percent, respectively.

Reference 91 performed comparisons also for the S22 and NCCE31/05 datasets and the

MUE and MURE values reported there for these benchmarks are somewhat different than

the corresponding values given in Table 1: the MUEs differ by 0.05 kcal ·mol−1 or less, while

the MUREs by less than 2.8%. The observed discrepancies are associated with a difference

of the E
(2)
dispx reference energies occurring mainly due to the fact that calculations of Ref. 91

used the GRAC asymptotic correction, while Refs. 10 and 11, where our benchmark values

were taken from, used FATH.

3.3 Performance of the MED approach in modeling protein-ligand

interactions

To facilitate the comparison of MED performance across the receptor-ligand systems studied

with previous Das versions, the MED contribution was recalculated using the D20
as parameters

proposed in this work, yielding essentially the same conclusions on the MED scoring abilities.

The updated D20
as and MED results concerning FAAH, menin-MLL (I), TbPTR1, EphA2-
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ephA1, and menin-MLL (II) complexes (Table 3) will be discussed below.

As a further validation of the revised E
(10)
EL,MTP + Das model, in the current study this

approximate interaction energy measure was computed for selected uPA inhibitors and HB

dimers (see Tables S8-S9 for the E
(10)
EL,MTP + Das energy values). One should stress that the

MED values reported in Tables S8-S9 can be substantially different from the corresponding

SAPT or MP2 interaction energy results, as the E
(10)
EL,MTP +Das model does not account for

other interaction energy terms, e.g., the exchange contribution. Assuming that the neglected

terms are approximately constant across the selected systems, the MED results can be still

applied to inhibitory activity predictions, being an essential part of drug design protocol.

The data gathered in Tables S8-S9 were used to rank the relative energies (Npred) or to

determine their correlation with experimental values, R2. The R2 and Npred values obtained

for all systems mentioned above are given in Table 3.

Table 3: E
(10)
EL,MTP, D20

as , and MED performance for selected inhibitors in compari-
son with the MP2 results. The coefficient of determination, R2, and percentage
of successful predictions, Npred, were calculated with respect to experimentally
determined inhibitory potency values or, in the case of the HB dimers, with
respect to the SAPT interaction energy values.

System
E

(10)
EL,MTP Das MED MP2

R2 Npred R2 Npred R2 Npred R2 Npred

FAAH (Ref. 3)a 0.24 62.8 0.38 74.0 0.45 75.3 0.69 83.1
menin-MLL (I) (Ref. 13)a 0.40 69.3 0.51 77.8 0.78 79.1 0.30 69.9

TbPTR1 (Ref. 6)a 0.23 66.7 0.85 86.7 0.93 86.7 0.79 86.7
EphA2-ephA1 (Ref. 4)a 0.50 77.8 0.44 74.1 0.63 79.6 0.61 77.8

menin-MLL (II) (Ref. 5)a 0.46 74.6 0.12 58.2 0.36 70.9 0.61 81.8
PDE5 (Ref. 14) 0.20 70.0 0.96 100.0 0.86 90.0 0.90 100.0

uPA (this work)b 0.83 80.0 0.97 90.0 0.90 90.0 0.62 80.0
HB dimers (this work)c 0.40 52.4 0.96 100.0 0.86 76.2 0.90 100.0

aE
(10)
EL,MTP and MP2 results are taken from the original works referenced here, while Das and MED values

are recalculated following the development of D20
as parameters.

bInhibitors reported in Ref. 28.
cHydrogen-bonded alcohol dimers reported in Ref. 2.

In general, the MED model provides reliable results and allows for a rapid estimate of

relative binding potency. In the case of EphA2-ephA1, HB dimers, and PDE5, both MED
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and MP2 models provide comparable results, whereas for the TbPTR1 and uPA systems,

MP2 is clearly outperformed by the E
(10)
EL,MTP + Das approach. Furthermore, for TbPTR1,

PDE5, and the HB dimers, the significant correlation of the MED model with the experi-

mental results (or SAPT results in the case of HB dimers) stems essentially from the Das

dispersion approximation (e.g., for PDE5 E
(10)
EL,MTP yields R2 = 0.20 and Npred = 70.0%,

whereas D20
as results in R2 and Npred values of 0.96 and 100.0%, respectively; see Table 3).

Interestingly, in these cases MED performs worse that Das alone, which is clearly accidental.

The lowest MED coefficient of determination was obtained for the menin-MLL inhibitors

with the modified thienopyrimidine scaffold (menin-MLL (II); R2 = 0.36, see Table 3). It was

argued5 that the binding of inhibitors for this system was governed by both delocalization

and dispersion contributions, therefore the simple E
(10)
EL,MTP +Das model cannot achieve sat-

isfactory performance. Neither of the separate MED contributions, E
(10)
EL,MTP or Das, yielded

high R2 values in this case (R2 = 0.46 and 0.12 for the E
(10)
EL,MTP and Das terms, respectively).

On the other hand, the MED results obtained for thienopyrimidine ligands (menin-MLL

(I); R2 = 0.78 and Npred = 79.1%) appear to be reliable, especially when compared with an

unsatisfactory performance of the MP2 level of theory (R2 = 0.30). This could possibly be

due to the presence of shortened protein-inhibitor contacts, as already observed in the case

of the uPA system.28 It has been shown that the use of force fields in ligand-receptor docking

or modeling can lead to artificial shortening of intermolecular contacts, even by 0.5 Å.9,28

In such circumstances, the analysis of the interaction energy components at any higher

level of theory [e.g., the coupled-cluster method with single, double and noniterative triple

excitations, CCSD(T), or MP2] leads to a dramatic decrease in the quality of relative stability

predictions Npred, resulting from the dominant share of exchange repulsion at distances

shorter than the equilibrium geometry obtained from ab initio calculations. This problem

does not affect MED, therefore it yields much better Npred predictions3,8,9 in this case. In

contrast to its separate terms, the value of coefficient of determination obtained with MED

is reasonably high for the menin-MLL (I) system, which could be associated with some error
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cancellation upon the addition of the E
(10)
EL,MTP and Das terms. Likewise, the MED Npred

value is the highest for this system (see Table 3).

For the FAAH system, both MP2 and MED results are moderately significant (R2 = 0.69

and R2 = 0.45, respectively), and, similarly to menin-MLL (I), the R2 of MED attains a

higher value than for either of the E
(10)
EL,MTP or Das contributions. Despite relatively low

R2 value of the MED model, the corresponding Npred factor indicates the correct inhibitor

ranking obtained for as many as 75.3% of all the possible pairs of FAAH-inhibitor complexes.

Overall, the MED method, scaling as O(A2), is dramatically faster than MP2 (which

scales as O(N5)) and achieves better scoring for 3 out of 8 systems (menin-MLL (I), TbPTR1,

uPA), about the same for another 3 (EphA2-ephA1, PDE5, HB dimers), and worse for only

two systems (FAAH, menin-MLL (II)). Thus, the MED performance/cost ratio is excellent.

Noticeably, the computational cost of the nonempirical MED model is as affordable as

that of scoring functions used commonly throughout the drug design process.3 To further

assess the ranking capabilities of the nonempirical MED model, we carried out an analysis

of uPA inhibitor binding with 10 empirical scoring functions, including AutoDock,78 Vina,79

DSX,80 RankScore,81 PLANTSPLP, PLANTSCHEMPLP,82 GoldScore, ChemScore, ChemPLP,

and ASP.83 The correlation coefficients R and the Npred values along with the numerical data

obtained for each particular score are provided in Table S10 in the Supporting Information.

The reason for using R to evaluate the correlation here rather than R2 is that it contains

more information due to its sign indicating the direction of a linear relationship. Analysis

of the performance of particular models considered herein should account not only for the

strength of the relationship but also for its direction. The more potent compounds should

be associated with the higher absolute value of the interaction energy, which results in the

negative values of the correlation coefficient R (e.g., R = −0.95 for MED-ranked uPA in-

hibitors). Unexpectedly, all the correlation coefficient values obtained with empirical scoring

functions tested herein are positive (indicating anticorrelation), ranging from 0.01 to 0.86 for

GoldScore and PLANTSPLP, respectively (Table S10). The corresponding Npred predictivity
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values do not exceed 60% (compared to 90% for nonempirical MED scoring), with 5 scoring

functions featuring Npred equal to 50% and the remaining 4 functions yielding even lower

percentage of successful predictions. Empirical scoring functions evaluated herein seem to be

incapable of providing reasonable agreement with experimental uPA inhibitory activity, as

the interactions with less potent inhibitors are severely overestimated, probably due to the

nonphysical shortening of intermolecular distances occurring in uPA-inhibitor complexes.28

In contrast, MED results are less sensitive to such structural defects. Remarkably, inaccu-

racies in receptor-ligand structures are relatively common, resulting from the approximate

docking and/or optimization procedures, which additionally calls for scoring methods insen-

sitive to suboptimal intermonomer separation.8,9,28 Overall, these results further reinforce

the conclusion about favourable predictive abilities of MED model in comparison to empir-

ical scoring approaches. It should be stated clearly that one limitation of MED function is

the requirement of similar solvation and entropic contributions to binding free energy across

the series of ligands considered in a particular analysis. As the MED model accounts only for

the enthalpic term of binding free energy, its pertinence requires consistency of the remaining

binding free energy contributions.4,5,14

3.4 Studying enzymatic activity with the MED model

The MED model could also be applied for the study of catalytic activity of the enzyme

active site residues, with the ultimate goal of aiding a rational biocatalyst design. Herein,

we evaluated the contribution of KSI active site residues to the differential intermediate

state stabilization, DISS, expressing the binding of the intermediate by a particular residue

relative to the corresponding residue-substrate binding. KSI-catalyzed reaction consists in

isomerization of 5-androstene-3,7-dione to 4-androstene-3,7-dione occurring via two proton

transfer steps and the involvement of dienolate intermediate.85 The total DISS value arising

from the presence of 22 KSI residues was calculated as the sum of pairwise enzyme residue-

substrate and enzyme residue-intermediate interactions. The dispersion part of the total
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DISS energy obtained with the MED model amounts to −2.1 kcal · mol−1, while the total

MED DISS energy is −19.4 kcal ·mol−1 (see Table S11 in the Supporting Information for the

DISS values of separate residues). The DISS contributions of 22 KSI residues are shown in

Figure 1 for both the MED and Das models. It can be seen that most of the KSI active site

residues appear to favour the catalysis by preferential binding of the reaction intermediate.

The largest contribution to DISS results from the presence of the Tyr14 and Asp99

residues, in agreement with the site-directed mutagenesis data,92,93 demonstrating a lower

catalytic activity of KSI mutants with substitutions that involved these residues. Other

residues contributing favourably to the KSI-catalyzed reaction include Met112, Tyr55, Ala114,

and Phe82. A minor adverse impact on catalysis originates from, e.g., the Phe116, Ser58,

and Phe54 residues, exhibiting positive values of the DISS energy (Figure 1), indicating a

destabilization of the reaction intermediate compared to the substrate.

Most of the total dispersion contribution to the DISS energy arises from the residues

with the highest, favourable impact on the activation barrier lowering (i.e., Tyr14, Asp99,

Ala114, and Met112). The aromaticity of a residue (see Figure 1 for residue labels marked in

green) does not necessarily imply larger dispersive contribution of a given residue, as Asp99

or Ala114 residues, bearing no aromatic side chain, are among the ones characterized by the

largest absolute ∆Das values. Except for a relatively insignificant differential intermediate

destabilization resulting from dispersive interactions between the reaction intermediate or

substrate and, e.g., the Phe54 or Phe86 residues (see Figure 1), the dispersive interactions

generally support the catalytic influence of the enzyme active site by differential binding of

intermediate state.

The side chain conformations of amino acid residues are likely related to the enzyme

catalytic affinity.94 In particular, the influence of some designed mutations on the enzyme

activity could only been explained with a detailed insight into dynamical preorganization

of the active site acquired from extensive molecular dynamics simulations.95 To aid the

biocatalyst design, there is a need for conformation screening methodology that would yield
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Figure 1: The Das and MED contribution to the DISS value of particular KSI residues. The
residues with an aromatic side chain are shown in green.
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side chain rotamers optimal with respect to the catalytic activity and would be affordable

enough to be applied in the high-throughput scanning of possible side chain conformations.

Feasibility of the latter has already been proven with the use of CAMM library35 of amino

acid side chain rotamers.36 Herein, we demonstrate that the MED model in conjunction with

precalculated CAMM values of side chain rotamers35,36 is applicable to rapid determination

of catalysis-aiding rotamers.

Figure 2: Rotamers of KSI active site residues optimized for differential intermediate state
stabilization (in blue) in comparison with side chain conformations present in the original
structure. The reaction intermediate is shown in ball-and-stick representation.

The KSI active site residues included in Figure 1 were subjected to the multidimensional

search of rotamers, according to the protocol described in Section 2.5. The side chain

rotamers yielding the lowest possible DISS value (see Table S12 for details), as obtained

from the MED model, are presented in Figure 2.

In general, the DISS values arising from the presence of KSI residues with optimized

rotamers increased in magnitude, with the total DISS of −20.8 kcal · mol−1, lower by

1.4 kcal · mol−1 compared to residue conformations present in the original KSI structure

(see Table S12). The observed lowering of the DISS value resulting from the rotamer scan
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does not seem to be significant, but it should be emphasized that the current analysis was

performed for a highly efficient, naturally evolved enzyme, whereas in the case of the enzyme

(re)design, the ability to determine the side chain rotamer yielding the greatest catalytic ef-

fect starting from a suboptimal conformation of a mutated residue might prove crucial. 27 As

demonstrated for the KSI-catalyzed reaction, including the Das dispersion in the MED model

further extends the applicability of the differential transition state stabilization and a mul-

tidimensional scan of the side chain conformational space to enzymes with a non-negligibile

contribution of dispersive interactions.

4 Summary

We have developed an extension of the previously published D10
as (Ref. 11) dispersion func-

tion, D20
as . The current reparametrization, yielding a set of completely new D20

as parameters,

allows to compute an approximate dispersion energy for systems including six additional

elements: B, Al, Si, P, Br, I. It also distinguishes the carbon sp/sp2/sp3 hybridizations and,

similarly to the D10
as version, differentiates the hydrogen atom types based on their connection

to a given element.

An important outcome of this new development is that halogen-bonded systems of biolog-

ical significance can be studied with the revised D20
as function. As indicated by the relatively

low MUE and MURE values relative to the ab initio E
(2)
dispx energies obtained with the new

D20
as expression in the case of the S22, NCCE31/05, NBC10ext, XB51, S66, S66x8, IonHB,

UD-ARL, and S12L benchmarks, the accuracy of this approach is rather satisfactory, in

particular in comparison to other dispersion functions of similar form. D20
as can also be used

in biomolecular force fields replacing the current Cab
6 /r

6
ab terms and, of course, readjusting

some other parameters. This is of importance due to the recent finding of shortcomings of

this term in such force fields.96–99 In particular, the account of the dispersion interactions has

recently been found critical for describing disordered proteins.100 Finally, D20
as is applicable
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in the new generation of biomolecular force fields fitted simultaneously to experiment and

SAPT interaction energy components.101–103

A deficiency of D20
as is that still only selected atoms are parametrized, whereas methods

based on the D3 dispersion provide parameters for every element up to Z=94 (although the

D3 results for molecules including alkali and alkaline earth metals are essentially useless, see

Table S3 of the Supporting Information). Nevertheless, for the majority of applications in

biochemistry, all needed atoms are covered by the D20
as function. For such systems, D20

as will

likely approximate the dispersion interaction better than any published function of this type.

The revised D20
as expression was applied within the MED (E

(10)
EL,MTP + Das) model for

a scoring of uPA inhibitors and hydrogen-bonded dimers. The MED scoring is based on

the assumption that the relative protein-inhibitor interaction energies near their equilib-

rium separations can be estimated from the MED interaction energies. In addition, the

interaction energy can be linearly related to the ligand affinity. In a series of investigated

protein-ligand systems, this approach was able to provide a significant correlation between

the experimental potency and the computed E
(10)
EL,MTP + Das interaction energy. Given that

an accurate and (at the same time) efficient description of enzyme-inhibitor systems is not

straightforward, these results are of vital importance for the process of design and scoring

of novel inhibitors without involving any empirical factors. The significance of the MED

model is further reinforced by its favorable performance in ligand ranking compared to a

number of commonly used empirical scoring functions. The MED performance manifests

itself especially in the case of geometries suffering from insufficient accuracy, indicating that

MED is less prone to structural deficiencies. Featuring the computational cost as low as that

of empirical scoring functions, the MED model has been shown to yield the results of the

quality similar (or even better) to that of the top scoring approaches applied commonly in

ligand design projects.

The MED model can also be applied to study the enzyme active site residues in order

to facilitate rational biocatalyst (re)design. For this purpose, we have implemented the
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MED model into our multidimensional rotamer scan algorithm. With the KSI system as an

example, we have shown herein that accounting for dispersion in the process of obtaining the

DISS energy through a multidimensional search of amino acid rotamers is possible, therefore

extending the applicability of this method to enzymes in which dispersion interactions are

non-negligible.

Supporting Information Available

Details regarding the dispersion fit, the list of D20
as parameters along with a Python code

computing this function, the results obtained for the benchmark data sets, and the MED

results obtained for the biological systems. After this work has been finished, we found that

our code incorrectly identifies a C atom bound to k Cl, Br, or I atoms as of spn−k type

rather than spn. Since this mistake was present during the optimization, the C6, C8, and

beta coefficients for different hybridizations of C have adjusted to mitigate the effects of this

mistake and the dispersion function was able to achieve the good performance described

earlier despite this mistake. However, for cases with 3 such halogens bound to C (no such

cases appeared in any calculations in the present paper), there are no appropriate coefficients

and the code uses the universal (i.e., hybridization independent) carbon coefficient from Ref.

11.
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