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Poland
b Department of Physics and Astronomy, University of Delaware, Newark, DE 19716

ARTICLE HISTORY

Compiled June 22, 2021

ABSTRACT
The importance of coupled clusters iterative triple and noniterative quadruple,
T(Q), electron excitations on the potential energy surfaces (PESs) of van der Waals
molecules is examined for H2–CO. Evaluation of this importance is performed by
comparing theoretical spectra with experiment. Somewhat surprisingly, although
the T(Q) contributions to interaction energies are below 3%, the inclusion of them
reduces the error of theory with respect to experiment by an order of magnitude
and qualitative agreement of the spectra in some regions is achieved only when
they are included. The main reason for these observations is that the T(Q) effects
significantly change the anisotropy of the PES.
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1. Introduction

Small van der Waals clusters are important systems for improving the understanding of
intermolecular interactions by interplay of theory and experiment. On one hand, very
accurate spectra of such systems are often available. On the other hand, ab initio elec-
tronic structure calculations of potential energy surfaces (PESs) can be performed at
high levels of theory with extrapolations to complete basis set (CBS) limits and quan-
tum nuclear dynamics calculations can be performed essentially exactly and including
all degrees of freedom. Therefore, comparisons of theoretical spectra with experiment
provide a stringent evaluation of the importance of various physical components of
intermolecular interactions and of methods used to compute these components. This
information is important for theoretical predictions for larger systems where accuracy
of theory has to be reduced and it is important to select optimal theory levels and
to be able to estimate its uncertainties. Conversely, high-accuracy calculations can be
used to interpret experimental spectra. Examples of interplay between ab initio theory
and experiment for van der Waals clusters can be found in Refs. [1–22].

The class of small van der Waals clusters can be defined as clusters containing up to 6
atoms. The full-dimensional PESs for such clusters include up to 12 degrees of freedom,
which is the current limit for performing quantum nuclear dynamics calculations [23,
24]. The electronic structure approach most often used in developments of PESs for
such clusters is the coupled clusters method with single, double, and noniterative triple
excitations, CCSD(T), Refs. [25–29]. This method is computationally fairly efficient
as it scales as O(N7) with system size and at the same time predicts interaction
energies with uncertainties of a couple percent at the CBS limit [15, 30–32]. In fact,
CCSD(T) has been shown in numerous applications to be a very reliable method to
predict properties (even for excited states [33]) for all types of molecular systems that
can be well approximated by a single Hartree-Fock (HF) determinant and therefore
it is often called the “gold standard” of electronic structure calculations. Obviously,
there are also properties that require going beyond CCSD(T) in terms of electron
excitations. The consecutive steps in the inclusion of such excitations are the iterated
triple excitations in CCSDT [34, 35] and the noniterated quadruple excitations in
CCSDT(Q) [36]. These methods are, however, much more expensive than CCSD(T)
since they scale as O(N8) and O(N9), respectively. Despite such steep scaling, both
methods found extensive applications in theoretical calculations of isolated-molecule
spectra [37–42] and in thermochemistry [43, 44].

The effects of T(Q) excitations have also been investigated in theory of intermolec-
ular interactions and the inclusion of such excitations is sometimes considered to be
a part of the “platinum standard” [45] (which also adds the Born-Oppenheimer diag-
onal correction and relativistic effects). The T(Q) terms have been included in calcu-
lations for a number of dimers, but in most cases only at a few selected points on a
PES [31, 32, 46–50]. To our knowledge, for clusters containing more than two atoms
the only PES including the T(Q) excitations was developed for H2–CO in Refs. [15, 30].
One should mention here that for up to four-electron systems consisting of three or
four lightest atoms, full configuration interaction (FCI) calculations are possible. PESs
including FCI contributions have been developed for H2–H2 in Refs. [51, 52] and for
He–H2 in Refs. [53, 54]. The T(Q) contributions not only scale as O(N9), but also
converge slowly with basis set and the use of augmented double-zeta basis sets results
in 35% average error for a set of 21 small dimers relative to CBS limits computed in
larger basis sets [55]. This error is actually not much larger than the relative errors
of the CCSD(T) level in the same basis set. However, CCSD(T) calculations can be
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performed in basis sets up to quintuple-zeta quality, which reduces the errors to below
1%, while the T(Q) effects cannot currently be computed in increased-size basis sets
for all grid points required to fit the complete PES. Nevertheless, due to the small-
ness of the T(Q) contribution to the interaction energy compared to the CCSD(T)
contribution, the absolute uncertainties in both quantities are close to each other.

As stated above, the T(Q) contributions have been used in the development of the
H2–CO PES in Refs. [15, 30], and the effects of these corrections on the interaction en-
ergies, in particular in the regions of the global and local minima, have been discussed
in these references (and also in Ref. [56]). However, the effects on spectra could not
be determined since several other aspects of the PES have been improved at the same
time. The overall effect of all these improvements was that the theoretical spectrum
of H2–CO agreed very well with experiment and allowed for the first time to interpret
the spectrum of orthoH2–CO, that had been measured a decade earlier. In the present
paper, we have developed a new PES at the CCSD(T) level of theory. In all other
respects this PES is identical to that of Refs. [15, 30], so one may also view it as the
latter PES with the T(Q) effects subtracted. Comparisons of the spectra computed
from both surfaces with the experimental spectrum allows one to evaluate the role of
these effects on the final outcome of theory: observable quantities.

2. Potential energy surface

To describe the geometry the H2–CO complex, one can use the coordinate system with
the intermolecular coordinates X = (R, θ1, θ2, φ) and the intramolecular ones (r1, r2),
where R denotes the distance between the centers of mass (COM) of monomers. The
COM of H2 is placed at the origin of the coordinate system and the COM of CO at
z = R. Then θ1 (θ2) denotes the angle between the vector starting at the appropriate
COM and ending up in H (C) and the ẑ axis, φ is the dihedral angle between these
vectors, whereas r1 and r2 are the interatomic separations in H2 and CO, respectively.

To reach our goal, i.e., to find the effect of the T(Q) contributions on the quality
of the rovibrational spectra of H2–CO, we need two surfaces: the one with the highest
possible excitation level included and the other one which differs only by the lower
level of excitations, namely the CCSD(T) level. As the former surface, we will use the
V12 surface developed in Ref. [15], the latter surface was obtained in the present paper.
The V12 surface was fitted to the ab initio interaction energies calculated on the full,
six-dimensional (6D) grid. At each grid-point in intermolecular coordinates X, the
PES was expressed as Taylor’s expansion in powers of r1 and r2. These interaction
energies were averaged over the monomers’ vibrations at each X

〈V 〉v1v2(X) = f c00(X) + f c10(X)(〈r1〉v1 − r1c) + f c01(X)(〈r2〉v2 − r2c)

+f c11(X)(〈r1〉v1 − r1c)(〈r2〉v2 − r2c)

+
1

2
f c20(X)(〈r2

1〉v1 − 2r1c〈r1〉v1 + r2
1c)

+
1

2
f c02(X)(〈r2

2〉v2 − 2r2c〈r2〉v2 + r2
2c), (1)

where f cij are the i-th and j-th numerical derivatives with respect to the r1 and r2

coordinates, calculated at the reference intramolecular separations r1c and r2c, respec-
tively. The averaging is done over the wave functions of the v1-th vibrational state of
H2 and the v2-th vibrational state of CO which results in the vibrationally averaged
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values of powers of intramonomer distances 〈rn1 〉v1 and 〈rn2 〉v2 in Eq. 1. To calculate the
infrared spectra, we actually need two vibrationally averaged surfaces 〈V 〉00 and 〈V 〉01.
The leading term in the expansion (1), f c00(X), is the interaction energy calculated for
the reference intramonomer separations r1c and r2c. This quantity was obtained at a
high level of theory (indicated by the subscript H below)

Eint,H = EHF
int [5] + δE

CCSD(T)
int [Q5] + δE

T(Q)
int [D], (2)

where EHF
int [5] is the interaction energy calculated at the HF level using the aug-cc-

pVXZ basis set [57] with X = 5. δE
CCSD(T)
int [Q5] denotes the correlation contribution

to the all-electron CCSD(T) interaction energy with the complete basis set (CBS)
1/X3 extrapolations [58] from the aug-cc-pVQZ and aug-cc-pV5Z basis sets, and

δE
T(Q)
int [D] = E

CCSDT(Q)
int [D]− ECCSD(T)

int [D] (3)

accounts for the electron correlation effects at the level of CCSDT(Q), computed in the
aug-cc-pVDZ basis set using the frozen-core approximation (in this case, the CCSD(T)
contribution in Eq. (3) also utilized this approximation). The derivatives f cij(X) with
i+ j > 0 were calculated at a lower, ‘base’ level of theory, denoted by the subscript B:

Eint,B = EHF
int [Q] + δE

CCSD(T)
int [TQ],

using notation analogous to that in Eq. (2). It has been shown in Ref. [30] that the
lower level of theory used to calculate f cij(X), i + j > 0, introduces negligible errors
in these derivatives.

In order to evaluate the importance of the δE
T(Q)
int effect, we developed in the present

work a surface fitted to the CCSD(T)-theory level.

E′int,H = EHF
int [5] + δE

CCSD(T)
int [Q5]. (4)

The leading term in formula (1), f c00, is represented by E′int,H, while the other terms
are the same as those used for V12. Such training data were fitted by exactly the same
analytic form of the potential energy surface as that used to fit V12. The resulting
surface will be further denoted as VnT(Q), where nT(Q) indicates that “no T(Q)”
contribution is included. We use this notation to emphasize that the only purpose of
this PES is the investigation of the role of the T(Q) effects. We can expect that the
quality of the VnT(Q) fit is very similar to that of V12 since we have used the same
grid points, the same functional form, the same weighting functions, and the same
optimization procedure. Thus, the only reason for the differences between VnT(Q) and

V12 comes from the absence of the δE
T(Q)
int correction in the former case. Similarly to

the V12 surface, we have obtained two versions of VnT(Q), for the v2 = 0 and v2 = 1
vibrational states of CO.

The magnitude of the δE
T(Q)
int contribution, along with the individual δET

int and

δE
(Q)
int components, was studied in Ref. [30] for a few geometries. Now we can compare

VnT(Q) and V12 for any intermolecular geometry. First, we can check the positions and
the energies of the global and local minima, see Table 1. For VnT(Q), v2 = 0, the global

minimum is shallower by 2.83 cm−1 and the position of the minimum is shifted by 0.02
bohr relative to the V12 value. For the local minimum, the corresponding values are 0.76
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cm−1 and 0.01 bohr. The differences are similar for v2 = 1. The comparison of these

two minima shows that the addition of δE
T(Q)
int changes the anisotropy of the surface.

To see this effect on anisotropy for a broader range of intermolecular geometries,
we plotted in Fig. 1 the angular dependence of VnT(Q) − V12 for two intermolecular
separations R and a few values of (θ2, φ), panels A and C, and (θ1, φ), panels B and
D. To demonstrate how large are these differences relative to the total interaction
energy, the values of VnT(Q) are also plotted. Since differences are small in comparison
with the absolute values of the energies, we use different scales of energies for each
of these quantities. In panel D, one can see how VnT(Q) − V12 changes when moving
away from the vicinity of the global minimum, (R, θ1, θ2, φ) = (8.0, 0◦, 180◦, 0◦), by
decreasing the angle θ2. Upon such changes of θ2, the value of VnT(Q) − V12 gradually

decreases from 2.65 cm−1, for θ2 = 180◦, to 0.26 cm−1 for θ2 = 0◦, whereas the value
of VnT(Q) decreases from -91.0 cm−1 to -55.5 cm−1, respectively. Thus, the inclusion

of δE
T(Q)
int enhances the anisotropy of the potential by about 2.4 cm−1, which amounts

to 2.6% of the interaction energy in the vicinity of the global minimum. The ratios
Eint(180◦)/Eint(0

◦) are 1.64 and 1.68 for VnT(Q) and V12, respectively. Also the other

panels of Fig. 1 show a strong dependence of δE
T(Q)
int on the angular orientation of the

interacting molecules. Although the effects of δE
T(Q)
int may not appear to be large in

terms of anisotropy ratios, they do introduce quite substantial changes in the spectra,
see Section 3.

3. Calculation of the spectra

The V12 interaction energy surface was very successful in predicting the infrared [15, 30]
and millimeter-wave [30] spectra for both the para and orthoH2–CO dimers. Here we
will focus on the infrared spectrum recorded at the temperature of 49 K [15, 59]. We
have performed rovibrational calculations for the VnT(Q) surface with the BOUND
package [60], using the coupled-channel method. The details of these calculations are
the same as in Refs. [15, 30]. Because the considered van der Waals spectrum accom-
panies the fundamental band of CO, we had to perform the rovibrational calculations
for both v2 = 0 and v2 = 1 versions of VnT(Q).

The rovibrational wave functions of the H2–CO complex can be characterized, for
given vibrational states of H2 and CO, by two exact quantum numbers: the total
angular momentum J and the spectroscopic parity defined as P = (−1)J+j1+j2+l,
where j1 and j2 are the quantum numbers of the angular momenta of H2 and CO,
respectively, and l denotes the quantum number of the end-over-end rotation of the
complex (i.e., for a given P and J , the sum of j1 + j2 + l has to be odd or even
for all j1, j2, and l appearing in the basis set used to expand the rovibrational wave
function). To denote the P = +1 and −1 parities, we will use notation P = e or
f , respectively. There are several rovibrational states in each block numbered by J
and P . To distinguish between them, one can use approximate quantum numbers. In
Ref. [59], McKellar proposed to use (J, P, j2, l) to characterize the states of paraH2–
CO. To extend such labeling to the orthoH2–CO complex, one needs to use also the j12

approximate quantum number, denoting the coupling of j1 and j2. Thus, altogether one
can use (J, P, j1, j2, j12, l), where j1, j2, j12, and l are approximate quantum numbers.
This labeling was used, for example, in Refs. [15, 61, 62], but it leads to ambiguities.
Therefore, in the present paper we will use nJ,P , the number of the consecutive-energy
state in each J , P block.
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It has been shown in Refs. [15, 30] that to obtain theoretical infrared spectra of the
H2–CO complex that resemble experimental ones, one has to consider quasi-bound
states. To obtain these low-energy resonances, we have used the stabilization method
and the BOUND program. In the case of paraH2–CO, the dissociation limit is 0 for
the states of the P = e symmetry and 2 · B(CO(v2 = 0)) = 3.845 cm−1 for P = f .
This defines the threshold energies above which the states are the resonances.

In Table 2, the rovibrational energies for paraH2–CO calculated from VnT(Q) and
V12 are compared to each other and to the experimental values. Let us first discuss the
dissociation energies listed in the captions. The values calculated with VnT(Q) differ by

about 0.7 cm−1 from V12 ones, consistent with the change of the depth of the VnT(Q)

surface relative to V12. The comparison of ∆v
nT(Q) with ∆v

12 shows that the deviation of

the EvnT(Q) energies from their experimental counterparts are much larger than in the

case of Ev12. The values of the root mean square error, RMSE, of EvnT(Q) relative to the

experimental values, are equal to 0.072 cm−1 for both v2 = 0 and v2 = 1 cases, whereas
the corresponding RMSEs of Ev12 amount to 0.005 cm−1 and 0.007 cm−1, an order of
magnitude difference. From Table 2, one can also notice that for some rovibrational
states the values of ∆v

nT(Q) are relatively small, while for others the discrepancies are

quite substantial. This can be attributed to the change of anisotropy of VnT(Q) relative
to V12 discussed in Sec. 2. Since the energies EvnT(Q) are given relative to the ground

state energy, the position of the excited states probing similar parts of the interaction
energy surface as the ground state should be affected in a similar way as the ground
state, leading to small discrepancies, in contrast to the excited states probing different
parts of the surface than the ground state does. The largest values of the difference
∆v

12,nT(Q) = EvnT(Q) − E
v
12 are about 0.18 cm−1, large comparing to the resolution of

the experiment, but consistent with the change of anisotropy caused by the δE
T(Q)
int

term.
The rovibrational energy pattern for orthoH2–CO is much richer than in the case

of paraH2–CO and there are about three times more rovibrational states, both bound
and quasibound. The complete list of the energy levels for orthoH2–CO calculated
for v2 = 0 and v2 = 1 with VnT(Q) is given in Table 3. These energies are compared
with their counterparts calculated with V12. The calculated energies are all positive
because the dissociation limit for the j1 = 1 rotational state of H2 is at 118.644 cm−1

and the energy zero is defined for H2(v1 = 0, j1 = 0) and CO(v2 = 0 or v2 = 1,j2 = 0)
separated to infinity. Unlike the paraH2–CO case, only for the JP = 0f symmetry
block the dissociation limit is higher by 2 · B(CO(v2 = 0)) = 3.845 cm−1, because j2
cannot be equal to 0 due to the definition of the f symmetry and the rules of coupling
of angular momenta. For VnT(Q) (V12), the ground-state energies, listed in captions of

Table 3, are equal to 98.731 cm−1 (97.967 cm−1) and 98.530 cm−1 (97.789 cm−1) for
v2 = 0 and v2 = 1, respectively, and the energies EvnT(Q) (Ev

12) are given relative to

them. From the ground-state energies, one can calculate the VnT(Q) (V12) dissociation

energies that are equal to 19.913 cm−1 (20.677 cm−1) and 20.114 cm−1 (20.855 cm−1)
for v2 = 0 and 1, respectively. The VnT(Q) ones are smaller than V12 counterparts by

0.764 cm−1 and 0.741 cm−1 for the two values of v. These shifts of the dissociation
energies are similar to those in the interaction energies and are mainly caused by the
smaller depth of VnT(Q) in comparison with V12.

Similarly to the rovibrational energy levels of paraH2–CO, the discrepancies of the
energies calculated from VnT(Q) and V12, measured by ∆v

12,nT(Q) = EvnT(Q)−E
v
12, vary

significantly from state to state, and are as large as 0.7 cm−1 in some cases. This
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particular value is larger by 0.2 cm−1 than for paraH2–CO. This difference can be
explained by the different nature of the H2-related component in the rovibrational
wave functions of the two complexes. In the case of paraH2–CO, the j1 = 0 component
dominates the wave function, whereas in the case of orthoH2–CO, it is j1 = 1. Thus, the
rovibrational wave function of orthoH2–CO is more sensitive to changes of anisotropy
of the surface because in the case of paraH2–CO the changes in anisotropy are averaged
over the orientations of the H2 molecule. The deviation of the EvnT(Q) energies from

the Ev12 ones, measured by RMSE, is equal to 0.122 cm−1 for both values of v2, and is
larger than the corresponding deviations for paraH2–CO. This difference can be once
more attributed to the nature of the rovibrational wave function that in the case of
orthoH2–CO probes the anisotropy of the interaction energy surface more strongly.
For paraH2–CO, we were able to make comparisons to experimental energy levels.
Unfortunately, such levels are not available for orthoH2–CO. Instead, we will compare
directly spectral lines.

From Tables 2 and 3, one can see that there are less bound states obtained from the
VnT(Q) surface than from the V12 one. This is due to the fact that the VnT(Q) surfaces,
for both values of v2, are shallower than their V12 counterparts, and the dissociation
energies calculated from VnT(Q) are smaller than the corresponding energies obtained
from VnT(Q). Consequently, some bound states that are just below the dissociation
limit in the case of the V12 calculations, pop out of the potential well in the case of
the VnT(Q) surface and form quasi-bound states.

From the considerations above, we already know that the rovibrational energy levels
obtained from VnT(Q), are significantly different from their counterparts obtained using
V12, both for para and orthoH2–CO. The next question is, how much those differences
affect the spectra. To find this out, we have computed the ab initio infrared spectra
at 49 K to compare them with the experimental ones recorded by McKellar [15, 59].
The calculations were performed in the way described in Refs. [15, 30]. The resulting
VnT(Q) spectra and their comparison to the experimental and V12 ones, are presented in
the Supplementary Materials (SM) in Figs. S1 and S2, for the para and orthoH2–CO
cases, respectively. Also in SM, we included tables listing all theoretical transitions
with relative intensities larger than 0.01. The selected fragments of the whole spectra
are presented in Fig. 2 for paraH2–CO and Fig. 3 for orthoH2–CO.

One could potentially compare directly the spectra computed from VnT(Q) and V12

with experimental spectra to obtain quantitative measures of the discrepancies. How-
ever, in the former case, the correspondence between the lines is far from unique for a
few percent of lines, and it would be even difficult to define an algorithm for relating
the lines (see below). Thus, we present here only qualitative analysis of the differences
between theoretical and experimental spectra.

First, let us focus on the paraH2–CO spectrum presented in Fig. 2. There are some
fragments of spectrum, e.g., those indicated by the green shading, where the peaks
obtained from VnT(Q) can be easily correlated with the experimental ones. Although
some of the peaks are significantly shifted, like in cells II and VII, they are well
separated and the theoretical patterns agree pretty well with the experimental ones.
However, one can see that the V12 spectrum is still closer to experiment. There are
also fragments of the spectrum, shaded in blue, where the agreement of the VnT(Q)

lines with the experimental ones appears to be good, but there are distortions which
can cause problems in the assignment of experimental lines. For instance, in cell I,
the calculated transition denoted by A is shifted so much that one could ignore it
and try to correlate the theoretical very small peak at 2.9 cm−1 with the peak A
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in the experimental spectrum. In cell VI, one can see a similar example, where the
transition A calculated from VnT(Q) is so close to the transition D that both of them
could be correlated with the transition D in the experimental spectrum. In the case
of the V12 spectrum, the A transition is very close to B, and both of them can be
correlated with one line in the experimental spectrum. The most problematic parts of
the VnT(Q) spectrum are those indicated with magenta. In cell V, there are three well-
separated transitions with similar intensities. If one knew only the VnT(Q) peaks and
the experimental ones, it would be almost impossible to make the proper assignments.
In this case, the quantitative disagreement turns into the qualitative one. In another
case, shown in cell III, there are three lines with C significantly shifted in VnT(Q), which
causes the wrong order of the lines. Although from the intensities of the lines one can
guess the correct order and make the proper assignment, some doubts would remain.
It should be emphasized that in all discussed cells of the spectrum, the transitions
calculated with V12 are very close to those recorded in the experiment.

In the case of the orthoH2–CO spectrum, presented in Fig. 3, one can also distin-
guish some parts of the spectrum with different levels of agreement between the VnT(Q)

theoretical transitions and the experimental ones. In cell I, there are five experimen-
tal peaks nicely modeled by the V12 spectrum. However, in the VnT(Q) spectrum, the
transitions marked by A is shifted more than the other ones and, as a consequence,
although the resulting pattern of the lines resembles, to some extent, the experimental
one, it would be difficult to make proper assignments only on the base of the VnT(Q)

calculations. In the case of cell II, the pattern of lines obtained from VnT(Q) is totally
different from that obtained from V12. Whereas the latter one can be correlated with
the experimental lines with relatively high confidence, a similar outcome could not be
expected for the former one. Another pattern of lines with improper order is shown in
cell IV. If one uses the positions of the VnT(Q) lines to assign the experimental spec-
trum, the B and C lines would be missassigned. One can make assignment also from
comparisons of the intensities, but it would be difficult to choose which contradictory
criterion should be used for the assignment: the positions or the intensities. In the
fields indicated by the blue shading, one can find cases for which the VnT(Q) calcula-
tions can lead to less certain assignments of the experiment. In cell VI, the positions
of the VnT(Q) peaks are shifted with respect to the experimental ones, and B and C
on the VnT(Q) side resemble peaks A and B on the experimental side, while the weak

feature at -2.8 cm −1 of the VnT(Q) could be wrongly connected with the experimental
C transition. In this case, the agreement of the V12 peaks with the experimental ones,
although not ideal, is good enough to give the correct assignment. In the case of cell
V, two well-separated peaks obtained from the VnT(Q) calculations can be hardly rec-
ognized as the contributors to one strong line in the experimental spectrum. However,
one should emphasize that there are also the fragments calculated from VnT(Q) that
are very close to the experimental ones, e.g., cell VII in Fig. 3.

The comparisons of the theoretical spectrum calculated from VnT(Q) with the ex-
perimental one discussed above show that in some cases the accuracy of the VnT(Q)

spectrum is not sufficiently high to perform an unambiguous assignment of the ex-
perimental spectrum. This is the case even for the paraH2–CO complex, where the
spectrum is relatively sparse.
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4. Conclusions

The effects of full triple and iterative quadruple excitations on ab initio predictions of
properties of molecular clusters have been investigated on the example of H2–CO by
comparing rovibrational spectra of this complex computed with the T(Q) contributions
included or neglected to the measured spectra. The interaction energies have been
computed on a six-dimensional grid applying a base level of theory: CCSD(T) in up to
augmented quadruple-zeta quality basis sets. These calculations were used to develop a
Taylor expansion of the interaction energy in powers of the intramonomer coordinates
for each point of the intermonomer grid. Then the leading term of this expansion was
replaced by the interaction energies computed at higher levels of theory. Two such
level were included: one with CCSD(T) in up to augmented quintuple-zeta quality
basis sets and another one with T(Q) contributions computed in augmented double-
zeta quality bases added to the former results. Both 6D surfaces were then averaged
over the intramonomer coordinates giving 4D surfaces denoted as VnT(Q) and V12,
respectively. The latter surface was actually developed earlier in Ref. [15] and was
used here without any changes. Also the spectra computed from V12 were taken from
that reference. The spectra from VnT(Q) were computed in the present work.

The effects of the T(Q) contribution on interaction energies were already discussed
in Ref. [15]. We extended this discussion here by plotting these effects as functions of
the angular coordinates to examine their anisotropy. We found that the addition of
the T(Q) contribution increases the anisotropy ration on the path from the minimum
at θ2 = 180◦ to θ2 = 0◦ from 1.64 to 1.68. While these ratios may seem to be similar to
each other, their difference corresponds to 2.4 cm−1, which is a significant difference
at the level of theory applied here, which results in discrepancies with experimental
spectra sometimes as small as 0.001 cm−1.

The main goal of our work was, however, the comparison with experimental spec-
tra. For the paraH2–CO, the experimental energy levels are available and we could
make very precise quantitative comparisons. The RMSE of VnT(Q) (V12)-level theory

relative to experiment was found to be 0.072 (0.005) and 0.072 (0.007) cm−1 for the
CO ground and first excited vibrational states, respectively. Thus, the addition of the
T(Q) contributions leads to a dramatic improvement of agreement between theory
and experiment. Apparently, the fact that the uncertainties of the T(Q) terms due to
the basis set size, estimated in Ref. [55], can be as large as 35%, does not impair this
improvement. We believe the main reason for the behaviour observed is that the signif-
icant anisotropy of the T(Q) contribution apparently leads to improved anisotropy of
the whole surface. Were this contribution more isotropic, it would result in a uniform
lowering of such surface. Such a lowering has only a small impact on energy levels
since they are given relative to the energy of the lowest rovibrational state. Of course,
the latter energy, which is equal to the negative of the dissociation energy, is affected
by the T(Q) contribution independent of its anisotropy.

For orthoH2–CO, experimental energy levels are unknown and therefore an analo-
gous analysis cannot be made. One could calculate RMSEs of theoretical lines with
respect to experimental ones, but as discussed earlier, this procedure would be highly
nonunique in the case of VnT(Q). Therefore, we discuss the relative performance only in
qualitative terms (for both spin species). It is found that while the spectra generated
from V12 agree qualitatively (in fact, also quantitatively) with experiment virtually in
the whole measured range, the spectra generated from VnT(Q) are not in qualitative
agreement with experiment is several regions of the spectrum with lines appearing in
different orders.
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PESs computed by fitting to ab initio data can be used to generate spectra and
then improved by adjusting some parameters of the fit to increase the agreement of
the computed and measured spectra. Such procedures, called tunning or morphing,
have been used since 1990s, see, e.g., Refs. [5, 63, 64]. One may ask how accurate the
initial surface should be to make such tuning successful. Our results show that the
expectations that even a low-accuracy first-principles PES will be sufficient provided
it has minima and saddle point at proper geometries is not correct. In the case VnT(Q),
the positions and depths of the minima are very similar to those of V12, while the
infrared spectra obtained from VnT(Q) are so different from the experimental ones that
they could lead to the wrong initial assignment of the spectral lines, to which the
morphed surface is fitted. Thus, in the case of H2–CO, one could successfully perform
the tuning procedure based on the V12 theoretical spectrum, but not starting from the
VnT(Q) spectrum. In general, the condition that the first-principles PES has to satisfy
is that it correctly assigns the spectrum.
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Table 1. The positions (Rmin) and values (Emin) of the global and local minima on the VnT(Q) and V12

surfaces. The values for V12 are taken from Ref. [30]. The distances are given in bohr and energies in cm−1.

The angle φ = 0◦.

(θ1,θ2)=(0◦,180◦) (θ1,θ2)=(0◦,0◦)

Rmin Emin R′min E′min

v2 = 0

VnT(Q) 7.931 -91.266 7.176 -72.981

V12 7.911 -94.096 7.168 -73.738

v2 = 1

VnT(Q) 7.946 -89.976 7.176 -73.996

V12 7.925 -92.775 7.169 -74.769
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Figure 1. Comparison of the VnT(Q) and V12 interaction energy surfaces for several geometries with the θ1
or θ2 angles varying and other intermolecular coordinates constant. In the upper part of each panel, there are
plots of the VnT(Q) surface, while the corresponding differences between two surfaces, VnT(Q)−V12, are plotted
in the lower part of each panel.
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Table 2. Comparison of the rovibrational energies Ev
nT(Q)

and Ev
12, for paraH2-CO calculated with the

VnT(Q) and V12 surfaces, with the experimental values Ev
expt [59]. The theory-experiment discrepancies

∆v
nT(Q)

= Ev
nT(Q)

− Ev
expt and ∆v

12 = Ev
12 − Ev

expt are also listed. The differences between the theoretical

energies are denoted by ∆v
12,nT(Q)

= Ev
nT(Q)

− Ev
12. The values of Ev

nT(Q)
and Ev

12 are given relative to the

energies of the ground states, which amount to -18.705 (-19.440) cm−1 and -18.884 (-19.616) cm−1 for v = 0

and 1, respectively, for Ev
nT(Q)

(Ev
12). Note that the zero of energy is for H2(v1 = 0, j1 = 0) and CO(v2 = 0 or

v2 = 1,j2 = 0) separated to infinity. The resonance states are denoted with asterisks. RMSEs are calculated

for all rovibrational energy levels presented in the table. The results for V12 are taken from Ref. [15]. The unit

of energy is cm−1.

J P nJ,P E0
expt E0

12 ∆0
12 E0

nT(Q) ∆0
nT(Q) ∆0

12,nT(Q) E1
expt E1

12 ∆1
12 E1

nT(Q) ∆1
nT(Q) ∆1

12,nT(Q)

0 2 1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0 2 2 7.079 7.083 0.004 7.045 -0.034 -0.038 7.056 7.052 -0.004 7.015 -0.041 -0.037
0 2 3 15.168 15.178 0.010 15.083 -0.085 -0.095 15.121 15.122 0.001 15.033 -0.088 -0.089

1 1 1 4.090 4.085 -0.005 4.115 0.025 0.030 4.067 4.059 -0.008 4.090 0.023 0.031
1 1 2 15.665 15.654 -0.011 15.624 -0.041 -0.030 15.570 15.555 -0.015 15.526 -0.044 -0.029

1 2 1 1.054 1.055 0.001 1.047 -0.007 -0.008 1.059 1.055 -0.004 1.047 -0.012 -0.008
1 2 2 3.618 3.614 -0.004 3.645 0.027 0.031 3.596 3.587 -0.009 3.620 0.024 0.033
1 2 3 8.485 8.489 0.004 8.443 -0.042 -0.046 8.463 8.460 -0.003 8.415 -0.048 -0.045
1 2 4 13.660 13.658 -0.002 13.626 -0.034 -0.032 13.583 13.573 -0.010 13.544 -0.039 -0.029
1 2 5 17.913 17.914 0.001 17.738 -0.175 -0.176 17.872 17.866 -0.006 17.710 -0.162 -0.156

2 1 1 6.266 6.263 -0.003 6.278 0.012 0.015 6.246 6.238 -0.008 6.254 0.008 0.016
2 1 2 11.690 11.686 -0.004 11.725 0.035 0.039 11.600 11.592 -0.008 11.632 0.032 0.040
2 1 3 18.341 18.332 -0.009 18.283 -0.058 -0.049 18.252 18.239 -0.013 18.191 -0.061 -0.048

2 2 1 3.148 3.150 0.002 3.125 -0.023 -0.025 3.153 3.151 -0.002 3.126 -0.027 -0.025
2 2 2 5.014 5.011 -0.003 5.033 0.019 0.022 4.994 4.985 -0.009 5.009 0.015 0.024
2 2 3 11.097 11.106 0.009 11.045 -0.052 -0.061 11.059 11.063 0.004 11.009 -0.050 -0.054
2 2 4 11.367 11.357 -0.010 11.386 0.019 0.029 11.296 11.281 -0.015 11.306 0.010 0.025
2 2 5 14.807 14.807 0.000 14.776 -0.031 -0.031 14.731 14.726 -0.005 14.697 -0.034 -0.029

3 1 1 9.490 9.489 -0.001 9.481 -0.009 -0.008 9.473 9.468 -0.005 9.461 -0.012 -0.007
3 1 2 14.079 14.076 -0.003 14.094 0.015 0.018 13.990 13.982 -0.008 14.002 0.012 0.020
3 1 3 22.111 22.104 -0.007 22.018 -0.093 -0.086 22.029 22.018 -0.011 21.936 -0.093 -0.082
3 1 4 23.164 23.161 -0.003 23.195∗ 0.031 0.034 22.972 22.965 -0.007 23.001∗ 0.029 0.036

3 2 1 6.248 6.253 0.005 6.199 -0.049 -0.054 6.254 6.255 0.001 6.200 -0.054 -0.055
3 2 2 7.293 7.289 -0.004 7.300 0.007 0.011 7.277 7.268 -0.009 7.282 0.005 0.014
3 2 3 12.933 12.933 0.000 12.939 0.006 0.006 12.845 12.839 -0.006 12.847 0.002 0.008
3 2 4 14.821 14.822 0.001 14.729 -0.092 -0.093 14.811 14.807 -0.004 14.715 -0.096 -0.092
3 2 5 17.501 17.506 0.005 17.461 -0.040 -0.045 17.427 17.426 -0.001 17.385 -0.042 -0.041

4 1 1 13.709 13.711 0.002 13.669 -0.040 -0.042 13.698 13.695 -0.003 13.656 -0.042 -0.039
4 1 2 17.403 17.402 -0.001 17.391 -0.012 -0.011 17.317 17.311 -0.006 17.301 -0.016 -0.010

4 2 1 10.272 10.285 0.013 10.172 -0.100 -0.113 10.260 10.269 0.009 10.156 -0.104 -0.113
4 2 2 10.517 10.509 -0.008 10.523 0.006 0.014 10.527 10.513 -0.014 10.529 0.002 0.016
4 2 3 15.255 15.255 0.000 15.234 -0.021 -0.021 15.171 15.166 -0.005 15.146 -0.025 -0.020
4 2 4 19.411 19.414 0.003 19.271∗ -0.140 -0.143 19.411 19.407 -0.004 19.268∗ -0.143 -0.139

5 1 1 18.831 18.837 0.006 18.750 -0.081 -0.087 18.829 18.829 0.000 18.745 -0.084 -0.084
5 1 2 21.650 21.651 0.001 21.598 -0.052 -0.053 21.567 21.563 -0.004 21.513 -0.054 -0.050

5 2 1 14.524 14.527 0.003 14.451 -0.073 -0.076 14.510 14.508 -0.002 14.431 -0.079 -0.077
5 2 2 15.273 15.279 0.006 15.180 -0.093 -0.099 15.297 15.297 0.000 15.205 -0.092 -0.092
5 2 3 18.426 18.428 0.002 18.368 -0.058 -0.060 18.347 18.343 -0.004 18.286 -0.061 -0.057

6 1 1 24.683 24.692∗ 0.009 24.535∗ -0.148 -0.157 24.695 24.699∗ 0.004 24.547∗ -0.148 -0.152
6 1 2 26.768 26.773∗ 0.005 26.659∗ -0.109 -0.114 26.692 26.693∗ 0.001 26.582∗ -0.110 -0.111

6 2 1 19.401 19.402 0.001 19.296∗ -0.105 -0.106 19.402 19.398 -0.004 19.293∗ -0.109 -0.105
6 2 2 20.929 20.939∗ 0.010 20.766∗ -0.163 -0.173 20.956 20.960∗ 0.004 20.797∗ -0.159 -0.163
6 2 3 22.468 22.466∗ -0.002 22.346∗ -0.122 -0.120 22.400 22.397∗ -0.003 22.275∗ -0.125 -0.122

RMSE 0.005 0.072 0.075 0.007 0.072 0.072
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Table 3. Comparison of the rovibrational energies Ev
nT(Q)

and Ev
12, for orthoH2-CO calculated

with the VnT(Q) and V12, respectively. The differences of the corresponding energies are denoted by
∆v

12,nT(Q)
= Ev

nT(Q)
− Ev

12. The values of Ev
nT(Q)

and Ev
12 are given relative to the energies of the ground

states, which amount to 98.731 (97.967) cm−1 and 98.530 (97.789) cm−1 for v = 0 and 1, respectively,
for Ev

nT(Q)
(Ev

12). Note that the zero of energy is the same as in Table 2, i.e., for H2(v1 = 0, j1 = 0) and

CO(v2 = 0 or v2 = 1,j2 = 0) separated to infinity. The resonance states are denoted with asterisks. RMSEs
are calculated for the energies corresponding to the bound states in the case of V12. The results for V12 are
taken from Ref. [15]. The experimental energy pattern for orthoH2-CO is not available in the literature. The
unit of energy is cm−1.

J P nJ,P E0
12 E0

nT(Q) ∆0
12,nT(Q) E1

12 E1
nT(Q) ∆1

12,nT(Q)

0 1 1 5.694 5.656 -0.038 5.693 5.678 -0.015
0 1 2 18.962 18.831 -0.131 18.870 18.763 -0.107
0 1 3 24.472 23.883 -0.589 24.597 23.910 -0.687

0 2 1 0.387 0.442 0.055 0.356 0.311 -0.045
0 2 2 1.171 1.259 0.088 1.226 1.430 0.204
0 2 3 4.322 4.368 0.046 4.325 4.404 0.079
0 2 4 13.062 13.091 0.029 12.982 13.033 0.051
0 2 5 18.854 18.702 -0.152 18.767 18.651 -0.116

1 1 1 0.819 0.806 -0.013 0.844 0.845 0.001
1 1 2 4.339 4.377 0.038 4.316 4.376 0.060
1 1 3 7.576 7.551 -0.025 7.566 7.561 -0.005
1 1 4 11.556 11.518 -0.038 11.474 11.455 -0.019
1 1 5 13.252 13.224 -0.028 13.179 13.184 0.005
1 1 6 13.563 13.472 -0.091 13.517 13.444 -0.073
1 1 7 19.422 19.072 -0.350 19.425 19.133 -0.292
1 1 8 20.611 20.330∗ -0.281 20.617 20.344∗ -0.273

1 2 1 0.000 0.000 0.000 0.000 0.000 0.000
1 2 2 1.686 1.836 0.150 1.771 1.693 -0.078
1 2 3 2.036 2.026 -0.010 2.004 2.251 0.247
1 2 4 4.854 4.897 0.043 4.830 4.900 0.070
1 2 5 5.573 5.610 0.037 5.563 5.622 0.059
1 2 6 11.578 11.539 -0.039 11.495 11.474 -0.021
1 2 7 12.364 12.379 0.015 12.283 12.322 0.039
1 2 8 14.105 14.008 -0.097 14.074 14.006 -0.068
1 2 9 15.082 15.067 -0.015 15.004 15.012 0.008
1 2 10 18.421 18.222 -0.199 18.360 18.196 -0.164
1 2 11 20.294 19.668 -0.626 20.419 19.828 -0.591
1 2 12 23.743∗ 23.361∗ -0.382 23.679∗ 23.394∗ -0.285
1 2 13 24.182∗ 23.539∗ -0.643 24.289∗ 23.672∗ -0.617

2 1 1 2.953 2.927 -0.026 2.976 2.961 -0.015
2 1 2 4.216 4.219 0.003 4.220 4.243 0.023
2 1 3 5.509 5.529 0.020 5.494 5.537 0.043
2 1 4 10.579 10.549 -0.030 10.574 10.554 -0.020
2 1 5 11.586 11.606 0.020 11.487 11.538 0.051
2 1 6 14.275 14.226 -0.049 14.194 14.163 -0.031
2 1 7 15.334 15.297 -0.037 15.260 15.253 -0.007
2 1 8 15.797 15.673 -0.124 15.735 15.629 -0.106
2 1 9 19.473 19.266 -0.207 19.397 19.232 -0.165
2 1 10 24.449∗ 23.683∗ -0.766 24.551∗ 23.808∗ -0.743
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Table 3. Continuation.

J P nJ,P E0
12 E0

nT(Q) ∆0
12,nT(Q) E1

12 E1
nT(Q) ∆1

12,nT(Q)

2 2 1 1.251 1.241 -0.010 1.246 1.236 -0.010
2 2 2 2.701 2.795 0.094 2.745 2.816 0.071
2 2 3 4.157 4.251 0.094 4.224 4.349 0.125
2 2 4 4.683 4.642 -0.041 4.636 4.638 0.002
2 2 5 6.665 6.682 0.017 6.636 6.683 0.047
2 2 6 7.730 7.743 0.013 7.719 7.751 0.032
2 2 7 12.158 12.185 0.027 12.056 12.106 0.050
2 2 8 12.901 12.913 0.012 12.818 12.850 0.032
2 2 9 14.358 14.292 -0.066 14.280 14.235 -0.045
2 2 10 17.099 16.976 -0.123 17.069 16.974 -0.095
2 2 11 17.918 17.832 -0.086 17.849 17.792 -0.057
2 2 12 19.497 19.343 -0.154 19.420 19.296 -0.124
2 2 13 23.900∗ 23.369∗ -0.531 23.885∗ 23.465∗ -0.420

3 1 1 6.099 6.053 -0.046 6.116 6.078 -0.038
3 1 2 6.908 6.900 -0.008 6.915 6.930 0.015
3 1 3 7.710 7.704 -0.006 7.700 7.720 0.020
3 1 4 11.880 11.879 -0.001 11.817 11.836 0.019
3 1 5 12.965 12.988 0.023 12.890 12.927 0.037
3 1 6 14.563 14.495 -0.068 14.537 14.499 -0.038
3 1 7 17.492 17.413 -0.079 17.424 17.364 -0.060
3 1 8 18.419 18.359 -0.060 18.346 18.315 -0.031
3 1 9 19.013 18.844 -0.169 18.937 18.789 -0.148
3 1 10 23.238∗ 23.232∗ -0.006 21.228∗ 20.994∗ -0.234

3 2 1 3.494 3.465 -0.029 3.488 3.453 -0.035
3 2 2 4.353 4.435 0.082 4.392 4.483 0.091
3 2 3 6.848 6.959 0.111 6.926 7.053 0.127
3 2 4 7.949 7.888 -0.061 7.893 7.867 -0.026
3 2 5 9.454 9.448 -0.006 9.421 9.444 0.023
3 2 6 10.808 10.792 -0.016 10.800 10.802 0.002
3 2 7 11.944 11.940 -0.004 11.884 11.900 0.016
3 2 8 14.173 14.193 0.020 14.070 14.113 0.043
3 2 9 14.937 14.928 -0.009 14.853 14.866 0.013
3 2 10 16.966 16.840 -0.126 16.904 16.799 -0.105
3 2 11 21.075∗ 20.882∗ -0.193 21.035∗ 20.886∗ -0.149
3 2 12 24.402∗ 24.288∗ -0.114 24.174∗ 24.159∗ -0.015

4 1 1 10.170 10.101 -0.069 10.169 10.094 -0.075
4 1 2 10.472 10.466 -0.006 10.502 10.530 0.028
4 1 3 10.956 10.899 -0.057 10.943 10.917 -0.026
4 1 4 15.042 15.018 -0.024 14.962 14.961 -0.001
4 1 5 15.456 15.438 -0.018 15.395 15.395 0.000
4 1 6 19.296 19.206 -0.090 19.269 19.205 -0.064
4 1 7 21.609∗ 21.472∗ -0.137 21.558∗ 21.448∗ -0.110
4 1 8 22.421∗ 22.250∗ -0.171 22.356∗ 22.266∗ -0.090
4 1 9 22.965∗ 22.796∗ -0.169 22.860∗ 22.713∗ -0.147
4 1 10 25.034∗ 24.920∗ -0.114 24.871∗ 24.812∗ -0.059

4 2 1 6.706 6.641 -0.065 6.693 6.591 -0.102
4 2 2 6.824 6.905 0.081 6.875 7.005 0.130
4 2 3 9.832 9.926 0.094 9.880 9.989 0.109
4 2 4 12.035 11.966 -0.069 11.972 11.939 -0.033
4 2 5 13.167 13.147 -0.020 13.153 13.155 0.002
4 2 6 14.792 14.740 -0.052 14.791 14.757 -0.034
4 2 7 15.500 15.456 -0.044 15.441 15.419 -0.022
4 2 8 17.261 17.258 -0.003 17.157 17.178 0.021
4 2 9 18.059 18.019 -0.040 17.975 17.958 -0.017
4 2 10 20.436 20.238∗ -0.198 20.397 20.225∗ -0.172
4 2 11 23.295∗ 23.285∗ -0.010 23.136∗ 23.136∗ 0.000

17



Table 3. Continuation.

J P nJ,P E0
12 E0

nT(Q) ∆0
12,nT(Q) E1

12 E1
nT(Q) ∆1

12,nT(Q)

5 1 1 14.788 14.767 -0.021 14.809 14.741 -0.068
5 1 2 14.969 14.911 -0.058 14.981 14.999 0.018
5 1 3 15.362 15.215 -0.147 15.345 15.231 -0.114
5 1 4 18.563 18.518 -0.045 18.481 18.458 -0.023
5 1 5 19.366 19.280 -0.086 19.318 19.252 -0.066
5 1 6 24.344∗ 24.252∗ -0.092 24.282∗ 24.214∗ -0.068

5 2 1 10.121 10.165 0.044 10.170 10.182 0.012
5 2 2 10.878 10.801 -0.077 10.882 10.854 -0.028
5 2 3 13.113 13.169 0.056 13.121 13.195 0.074
5 2 4 16.518 16.473 -0.045 16.453 16.441 -0.012
5 2 5 18.000 17.935 -0.065 18.009 17.963 -0.046
5 2 6 19.628 19.528 -0.100 19.638 19.555 -0.083
5 2 7 20.091 19.997∗ -0.094 20.022 19.954 -0.068
5 2 8 21.310∗ 21.270∗ -0.040 21.208∗ 21.192∗ -0.016
5 2 9 22.225∗ 22.135∗ -0.090 22.141∗ 22.081∗ -0.060

6 1 1 19.773 19.740 -0.033 19.834 19.802 -0.032
6 1 2 20.323 20.195∗ -0.128 20.306 20.205∗ -0.101
6 1 3 20.835∗ 20.649∗ -0.186 20.802∗ 20.654∗ -0.148
6 1 4 22.896∗ 22.798∗ -0.098 22.825∗ 22.750∗ -0.075
6 1 5 24.224∗ 23.992∗ -0.232 24.198∗ 24.020∗ -0.178

6 2 1 14.250 14.286 0.036 14.323 14.347 0.024
6 2 2 15.909 15.774 -0.135 15.915 15.813 -0.102
6 2 3 16.927 16.929 0.002 16.896 16.920 0.024
6 2 4 21.165∗ 21.142∗ -0.023 21.109∗ 21.113∗ 0.004
6 2 5 23.889∗ 23.758∗ -0.131 23.900∗ 23.790∗ -0.110
6 2 6 25.364∗ 25.262∗ -0.102 25.270∗ 25.151∗ -0.119
6 2 7 26.358∗ 26.256∗ -0.102 26.295∗ 26.194∗ -0.101

7 1 1 25.338∗ 25.302∗ -0.036 25.419∗ 25.319∗ -0.100
7 1 2 26.302∗ 26.094∗ -0.208 26.300∗ 26.113∗ -0.187

7 2 1 19.099 19.125 0.026 19.205 19.226 0.021
7 2 2 21.464∗ 21.335∗ -0.129 21.392∗ 21.300∗ -0.092
7 2 3 21.690∗ 21.534∗ -0.156 21.710∗ 21.570∗ -0.140
7 2 4 26.068∗ 26.040∗ -0.028 26.003∗ 25.999∗ -0.004

8 2 1 24.497∗ 24.489∗ -0.008 24.632∗ 24.631∗ -0.001
8 2 2 26.822∗ 26.642∗ -0.180 26.732∗ 26.571∗ -0.161
8 2 3 31.335∗ 31.260∗ -0.075 31.259∗ 31.206∗ -0.053

RMSE 0.122 0.122
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Figure 2. Comparison of the selected ranges of the infrared spectra of paraH2–CO calculated from the VnT(Q)

surfaces for T = 49 K (bottom part of each panel) with the experimental data from Refs. [15, 59] (upper part)
and the theoretical one calculated from the V12 surfaces in Refs. [15, 30] (central part). The experimental
spectrum is shifted by the value of the v2 = 1← 0 transition in the isolated CO equal to 2143.272 cm−1. The
experimental spectrum recorded at the gas pressure of 3.5 Torr and T = 49 K (blue line) was merged with the
spectrum recorded at 1.1 Torr and 47.5 K (black line). The dashed lines on the theoretical parts of the plot
denote transitions that involve at least one resonance state. The calculated transitions with relative intensities
larger than 0.01 are plotted. The yellow rectangles indicate gaps in the experimental data due to the strong CO
monomer lines, whereas the transition indicated by asterisks are the R-branch transitions of the isotopologues
in natural abundance. Shaded cells indicate parts of the spectra discussed in the text. They are green in the
case if all three spectra resemble each other to a degree which allows unambiguously assign the experimental
one. If the transitions calculated from VnT(Q) are significantly shifted with respect to those calculated from
from V12, the cells are shaded in blue. In the case when the order of the VnT(Q) peaks is changed in comparison
with the V12 ones, the cells are magenta shaded.
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Figure 3. Comparison of the selected ranges of the infrared spectra of orthoH2–CO calculated from the
VnT(Q) surfaces for T = 49 K (bottom part of each panel) with the experimental data from Ref. [15]
(upper part) and the theoretical one calculated from the V12 surfaces from Ref. [15, 30] (central part). The
experimental spectrum is shifted by the value of the v2 = 1 ← 0 transition in the isolated CO equal to
2143.272 cm−1. The detailed information about the symbols and the colours of shading is given in the caption
of Fig. 2.
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