
Removal Attacks on Logic Locking
and Camouflaging Techniques

MUHAMMAD YASIN , (Student Member, IEEE), BODHISATWA MAZUMDAR , (Member, IEEE),
OZGUR SINANOGLU, (Senior Member, IEEE), AND JEYAVIJAYAN RAJENDRAN, (Member, IEEE)

M. Yasin is with the Electrical and Computer Engineering, New York University, Tandon School of Engineering, Brooklyn, NY 11201
B. Mazumdar is with the Computer Science and Engineering, Indian Institute of Technology Indore, Indore, MP 453552, India

O. Sinanoglu is with the New York University in Abu Dhabi, Abu Dhabi 129188, United Arab Emirates
J. Rajendran is with the Department of Electrical Engineering, University of Texas at Dallas, Richardson , TX 75080

CORRESPONDING AUTHOR: M. YASIN (yasin@nyu.edu)

ABSTRACT With the adoption of a globalized and distributed IC design flow, IP piracy, reverse engineering,
and counterfeiting threats are becoming more prevalent. Logic obfuscation techniques including logic locking
and IC camouflaging have been developed to address these emergent challenges. A major challenge for logic
locking and camouflaging techniques is to resist Boolean satisfiability (SAT) based attacks that can circumvent
state-of-the-art solutions within minutes. Over the past year, multiple SAT attack resilient solutions such as
Anti-SAT and AND-tree insertion (ATI) have been presented. In this paper, we perform a security analysis of
these countermeasures and show that they leave structural traces behind in their attempts to thwart the SAT
attack. We present three attacks, namely “signal probability skew” (SPS) attack, “AppSAT guided removal
(AGR) attack, and “sensitization guided SAT” (SGS) attack”, that can break Anti-SAT andATI, within minutes.

INDEX TERMS Hardware security, logic locking, logic encryption, IC camouflaging, boolean satisfiability,
SAT

I. INTRODUCTION

A. THE NEED FOR HARDWARE IP PROTECTION

In present-day semiconductor manufacturing, integrated cir-
cuits (ICs) are designed and fabricated in a globalized multi-
vendor environment, leading to concerns such as IC piracy,
overproduction and counterfeiting [2]. A malicious foundry
can reverse-engineer a GDSII layout file to obtain its gate-
level netlist, or overbuild ICs to sell them illegally, leading to
a serious economic loss to IC design companies [3], [4].
Moreover, the design may be pirated during test/assembly
stages [5], or malicious circuits in the form of Hardware tro-
jans may be embedded in the design [4]. Even an end-user
may pirate the design using the state-of-the-art reverse engi-
neering tools [6]. Reverse engineering can can extract
design/technology details of an IC using imaging techniques.
It involves several steps that include: depackaging an IC,
delayering and imaging individual layers, and analyzing the
collected images to identify design/IP details [6].

B. DESIGN-FOR-TRUST TECHNIQUES

Several design-for-trust countermeasures, including logic
locking [7], IC camouflaging [8], and split manufacturing [9]

have been developed to prevent IP piracy and reverse engi-
neering attacks [10], [11]. Among these countermeasures,
logic locking [5], [7], [12],–[16] and IC camouflaging [8],
[17], [18] have gained significant interest from the research
community as they can be easily integrated within the
existing IC design flow. Moreover, as opposed to split
manufacturing, both of these countermeasures provide secu-
rity against reverse engineering attacks carried out by a mali-
cious end-user. Logic locking and IC camouflaging are
typically referred to as hardware obfuscation techniques as
they obfuscate/hide critical design details from the attacker.
Logic Locking. Logic locking is a gate-level technique; a

design is locked by inserting additional locking circuitry post
logic synthesis [11], [20], [21] as illustrated in Figure 1. The
design can be unlocked/made functional by only loading the
secret key onto on-chip tamper-proof memory. An example
locked netlist constructed using XOR/XNOR key gates is
shown in Figure 2.
IC Camouflaging. IC camouflaging is a layout level tech-

nique; selected gates in the design are replaced with their cam-
ouflaged counterparts [8], [17],–[19], [22]. Camouflaged
gates look identical from the top-view but can implement

Received 14 March 2017; revised 31 May 2017; accepted 26 July 2017.
Date of publication 21 August 2017; date of current version 9 June 2020.

Digital Object Identifier 10.1109/TETC.2017.2740364

VOLUME 8, NO. 2, APRIL-JUNE 2020

2168-6750� 2017 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.

See ht _tps://www.ieee.org/publications/rights/index.html for more information. 517

Authorized licensed use limited to: Texas A M University. Downloaded on October 05,2021 at 00:15:43 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0001-9475-2796
https://orcid.org/0000-0001-9475-2796
https://orcid.org/0000-0001-9475-2796
https://orcid.org/0000-0001-9475-2796
https://orcid.org/0000-0001-9475-2796
https://orcid.org/0000-0003-1883-4639
https://orcid.org/0000-0003-1883-4639
https://orcid.org/0000-0003-1883-4639
https://orcid.org/0000-0003-1883-4639
https://orcid.org/0000-0003-1883-4639

different functions. An example INV/BUF camouflaged gate
is shown in Figure 3 [23]; the gate behaves either as a buffer
or an inverter as dictated by the configuration of contacts 1
and 2 being either real or dummy. Transformations between
logic locking and IC camouflaging have been proposed,
enabling security analysis of both techniques using the same
set of tools/algorithms [19]. Throughout this paper, we dis-
cuss the security aspects using the terminology associated
with logic locking.
Traditional Locking Locking. An important research ques-

tion in logic locking (and IC camouflaging) is to find the gate
locations in a netlist that can be locked (or camouflaged)
with maximum security benefits per unit implementation
overhead. The earlier research efforts focused on developing
gate selection strategies (e.g., random (RLL) [7], fault analy-
sis-based (FLL) [14], or strong interference-based (SLL)
[20]) that determine the gates to be locked (camouflaged)
within the netlist [7], [8], [14], [20].

SAT Attack Resilient Logic Locking. Since the inception of
a Boolean satisfiability (SAT) based attack against logic
locking/camouflaging techniques, the focus of research has
shifted towards developing countermeasures that offer strong
resilience against the SAT attack [17], [18], [24] (see
Section II-D for details.). The attack uses specialized distin-
guishing input patterns (DIPs) for iteratively refining the key
search space. The techniques developed recently to mitigate
the SAT attack include SARLock [25], Anti-SAT [26],
CamoPerturb [23], and AND-tree insertion (ATI) [27] (See
Section II-E for details). The fundamental theme underlying
these techniques is to utilize point functions implemented by
AND/NAND/OR/NOR trees to minimize the number of keys
eliminated per DIP.
Removal Attack. In the SAT attack resilient techniques

mentioned above, the protection circuitry (implementation of
a point function) may be decoupled from the original circuit
that needs to be protected, rendering these techniques vulner-
able to the removal attack. The removal attack aims at
retrieving the original circuit by identifying and removing/
bypassing the protection circuitry. The first step is to identify
the protection circuitry, which may be hampered due to
layers of obfuscation in the design. This paper focuses on
evaluating the resilience of the SAT attack resilient logic
locking/camouflaging techniques against the removal
attacks. The contributions of the paper are as follows:
1) We develop signal probability skew (SPS) attack that

breaks Anti-SAT [26]. The SPS attack leverages the
structural traces in the netlist to identify and remove the
Anti-SAT block within minutes. The attack is scalable
to large circuits; moreover, it becomes more effective
with increasing key size.

2) We identify the security vulnerabilities in the ATI tech-
nique [27] and develop sensitization guided SAT (SGS)
attack that circumvents ATI in most of the circuits by

FIGURE 1. An illustration of logic locking and IC camouflaging in the context of IC design and fabrication flow.

FIGURE 2. (a) The original circuit. (b) A camouflaged circuit consisting of INV/BUF camouflaged gates. (c) Equivalent logic locked

circuit constructed by replacing INV/BUF camouflaged gates with XOR key gates. (d) Transforming an INV/BUF camouflaged to its logic

locking counterpart using a MUX; further simplification of the MUX-based gate to an XOR key gate [19].

FIGURE 3. Camouflaged layout of an INV/BUF gate. The gate

behaves as an inverter or a buffer based on the configuration of

circled contacts. When contact 1 is real and contact 2 is dummy,

the gate behaves as an inverter. The gate behaves as a buffer

when contact 1 is dummy and contact 2 is real [23].

518 VOLUME 8, NO. 2, APRIL-JUNE 2020

Yasin et al.: Removal Attacks on Logic Locking and Camouflaging Techniques

Authorized licensed use limited to: Texas A M University. Downloaded on October 05,2021 at 00:15:43 UTC from IEEE Xplore. Restrictions apply.

exploiting the bias in the input distribution of the
inserted AND-tree.

3) We demonstrate how SARLock [25] is vulnerable to
simple removal attacks, whereas, CamoPerturb [23]
exhibits resiliency against the aforementioned
attacks.

4) The simple yet effective attacks we propose emphasize
the importance of developing countermeasures without
leaving structural traces, which could be exploited in
ways much simpler than the main expected threat (i.e.,
the SAT attack).

II. BACKGROUND AND RELATEDWORK

A. DEFINITIONS

Logic Locked Netlist. The original netlist F is a Boolean
function F : I ! O, where I ¼ f0; 1gn and O ¼ f0; 1gm.
The locked netlist is a Boolean function L : I � K ! O,
where K ¼ f0; 1gq. Upon activation using the secret key ks,
Lði; ksÞ ¼ FðiÞ; 8i 2 I. There are v key gates in L, each
implementing p possible Boolean functions, determined by
the key k (consisting of dlog2pe-bits) .
Security of Logic Locking. A logic locking technique is

considered secure if the effort required by an attacker to
determine the correct key value ks, or equivalently, retrieve
the original circuit functionality is exponential in the number
of key gates: Oð2vÞ.
Camouflaged Netlist. The camouflaged netlist

C : I � A! O consists of u camouflaged gates, where the
assignment A : ½1; . . . ; u� ! G maps each camouflaged gate
to an element in G, the set of possible Boolean functions that
a camouflaged gate can implement. For the correct assign-
ment As, Cði;AsÞ ¼ FðiÞ; 8i 2 I.
Security of IC Camouflaging. An IC camouflaging tech-

nique is considered secure if the effort required by an attacker
to determine the correct assignment value As, or equivalently,
retrieve the original circuit functionality is exponential in the
number of camouflaged gates: Oð2uÞ.
Transformations. Transformations between logic locking

and IC camouflaging enable security analysis of both techni-
ques using the same set of algorithms [19]. The transforma-
tion T : C ! L replaces each camouflaged gate with p gates
(each implementing one of the functions in G) and a p : 1
MUX having dlog2pe select inputs. The transformation for
an INV/BUF camouflaged gate is illustrated in Figure 2(d).
The logic locked netlist in Figure 2(c) is generated by replac-
ing each INV/BUF in the camouflaged netlist in Figure 2(b)
with its logic locking counterpart, i.e., an XOR/XNOR key
gate [19].
Removal Attack. A removal attack is a transformation

R : LðI;KÞ ! HðIÞ such that HðiÞ ¼ FðiÞ; 8i 2 I. Thus,
upon the removal of the protection circuit, an attacker can
obtain an implementation that produces the correct output for
every input irrespective of the key value. For logic locking
solutions that combine two or more logic locking techniques,
it is essential that an attacker is not able to target the techni-
ques on an individual basis.

B. TRADITIONAL OBFUSCATION TECHNIQUES

In this section, we present a summary of traditional obfusca-
tion techniques and attacks.
Logic Locking Primitives. A wide variety of logic locking

primitives have been used. The combinational primitives
include XOR/XNOR gates [7], [14], [20], [21], AND/OR
gates, multiplexers, whereas the sequential primitives include
look-up tables [12] and obfuscated finite state machines
(FSMs) [15], [30].
IC Camouflaging Primitives. Camouflaged gates can be

constructed by using real/dummy contacts [8], [31], manipu-
lating polarities of dopants in the active regions of transis-
tors [32],–[34], or adjusting the threshold voltage of
transistors in a circuit [22]. Available spaces in the design
can also be filled using metal layers and filler cells to prevent
insertion of malicious logic in the design [35].
Traditional Attacks. There exist multiple attacks, applica-

ble to both logic locking and IC camouflaging, that can com-
promise their security. A summary of these attacks is
presented in Table 1. In the sensitization attack, key bits are
individually sensitized1 to the outputs by applying judi-
ciously crafted input patterns. Test-data mining [5] and hill
climbing attack [21] leverage the vulnerabilities associated
with test data. Differential power analysis attack exploits the
correlation between power consumption and key value to
extract the secret key [28]. The aforementioned attacks basi-
cally rely on divide-and-conquer approaches that are no
more applicable to SAT attack resilient logic locking techni-
ques, where standalone implementations of point functions
(e.g., AND/NAND trees) are integrated at with the original
circuit.

C. THREAT MODEL(S)

Logic locking and IC camouflaging have slightly different
threat models that differ basically in only one aspect. Logic
locking assumes an untrusted foundry, whereas IC
camouflaging assumes a trusted foundry. However, both
techniques assume that the attacker has access to the same
set of assets: a reverse-engineered netlist and a functional IC.
The attacker uses computational/simulation tools on the
reverse-engineered (but obfuscated) netlist, while he/she
exercises the functional IC (oracle) to produce chip outputs
for input patterns of interest.
The difference between logic locking and camouflaging

attacks lies in when/how the attacker gets access to the
required assets. Thus, both techniques can be evaluated for
security on a uniform basis. In this paper, we address security
from a logic locking perspective.

D. SAT ATTACK

The SAT attack is applicable to both logic locking [24]
and IC camouflaging [17], [18]. As per the SAT attack

1.Sensitization of an internal line l to an output O refers to the condition (val-
ues applied from the primary inputs to justify the side input of gates on the
path from l to O to the non-controllable values of the gates) which surjec-
tively maps l to O and thus renders any change on l observable on O.

VOLUME 8, NO. 2, APRIL-JUNE 2020 519

Yasin et al.: Removal Attacks on Logic Locking and Camouflaging Techniques

Authorized licensed use limited to: Texas A M University. Downloaded on October 05,2021 at 00:15:43 UTC from IEEE Xplore. Restrictions apply.

threat model, the attacker has access to a reverse-engi-
neered netlist and a functional IC [17], [18], [24]. The
main idea of the SAT attack is to reveal the correct key
(or the correct functionality of camouflaged gates) by
selectively applying the DIPs to a functional IC [24]. The
attack rules out incorrect key values by using DIPs itera-
tively. A DIP is an input value for which at least two
unique key values, k1 and k2, produce differing outputs, o1
and o2, respectively. Since o1 and o2 are different, at least
one of the key values is incorrect. A single DIP may rule
out multiple incorrect key values, reducing the computa-
tional effort of the attack.
Example. Let us consider an example SAT attack on the

logic locked circuit shown in Figure 2(c). Table 2 represents
the output values of the locked circuit for different key and
input combinations. The values ðk0; . . . ; k7Þ represent all
possible values for three key inputs fK1;K2;K3g. When the
attack is launched, it takes four DIPs to obtain the correct

key. The last column in the table lists the keys eliminated in
each iteration. For example, in iteration 4, the pattern 010 is
used that eliminates all incorrect keys, and thus identifies k5
as the correct key.
The efficiency of the SAT attack depends on the order of

choosing the DIPs. The total execution time of the SAT
attack comprising � iterations with ti as the execution time
for the ith iteration is T ¼P�

i¼1 ti [26]. The SAT attack can
be mitigated if either ti or � increases exponentially with the
key size.

E. SAT ATTACK RESILIENT OBFUSCATION

Figure 4 presents the recent SAT attack resilient logic lock-
ing/camouflaging techniques. The underlying idea of all
these techniques is to utilize point functions to control the
amount of error injected into a circuit on the application of
incorrect key values. A point function is a Boolean function
that produces the output value 1 at exactly one point. Exam-
ple implementations include AND gates and password
checkers.
SARLock. As shown in Figure 4(a), SARLock integrates

a comparator and a mask block with the original circuit to
be protected [25]. For the correct key value, no error is
injected in the circuit and the correct output is retained. For
each incorrect key value, an error is injected into the circuit
for only one input pattern, leading to an incorrect output for
the specific pattern. Assuming that FðIÞ is the original
circuit, the output O of the circuit locked using SARLock
can be presented as O ¼ FðIÞ � ððI ¼¼ KÞ � ðI ¼¼ ksÞÞ,

TABLE 2. Analysis of the SAT attack [24] against random logic

locking [7].

The red entries represent the keys identified as incorrect. k5 is the correct
key; the columns with all correct output values are shaded blue.

TABLE 1. A Comparison of the attacks against logic locking.

Attack Attacker
location

Attacker
assets

Attack
method

Proposed
defense

Sensitization [8], [20] Foundry /
end-user

1) Locked netlist
2) Functional IC

Sensitization of key bits to circuit outputs Key-interference based
logic locking [13]

SAT [17], [24] Foundry /
end-user

1) Locked netlist
2) Functional IC

SAT-based algorithm that rules out incorrect
keys iteratively

AES-based [13], Anti-
SAT [26], SAR-
Lock [25], CamoPerturb
[23], ATI [27]

Hill climbing [21] Foundry /
test facility

1) Locked netlist
2) Test data

Start with a random key CK. Flip the bits in
CK based on the Hamming distance

Test-aware logic
locking [21]

Test-data mining [5] Foundry /
test facility

1) Locked netlist
2) Test data

Find the key that maximizes fault coverage and
satisfies test data constraints

Post-test activation [5]

Differential power
analysis [28]

Foundry /
end-user

1) Locked netlist
2) Functional IC

Generate a differential trace from power
samples for each key value

–

AppSAT [29] Foundry /
end-user

1) Locked netlist
2) Test data

Reduce a multi-layered defense to
single-layered defense by augmenting
SAT attack with random oracle queries

SARLock, Anti-SAT

Signal probability
skew

Foundry /
end-user

1) Locked netlist Trace the Anti-SAT block using signal skew
and remove it

CamoPerturb

AppSAT guided
removal

Foundry /
end-user

1) Locked netlist
2) Functional IC

Use AppSAT to find FLL key bits; trace keys
to identify and remove Anti-SAT

CamoPerturb

Sensitization guided
SAT

Foundry /
end-user

1) Locked netlist
2) Functional IC

Guide the SAT attack using patterns from
sensitization attack

CamoPerturb

The attacks are also applicable to the counterpart camouflaging techniques.

520 VOLUME 8, NO. 2, APRIL-JUNE 2020

Yasin et al.: Removal Attacks on Logic Locking and Camouflaging Techniques

Authorized licensed use limited to: Texas A M University. Downloaded on October 05,2021 at 00:15:43 UTC from IEEE Xplore. Restrictions apply.

where K denotes the key inputs, and ks is the correct key
value.
Anti-SAT. The Anti-SAT block shown in Figure 4(b) com-

prises two blocks, B1 ¼ gðX;Kl1Þ and B2 ¼ gðX;Kl2Þ [26].
These blocks share the same inputs X, but are locked with
different keys Kl1 and Kl2. The outputs of B1 and B2 drive an
AND gate to produce the output signal Y . The two blocks
produce complementary outputs when correct key value is
applied; for all inputs, Y ¼ 0, leading to a correct output. For
an incorrect key value, the output of B1 and B2 is 1 for a spe-
cific input pattern; for that pattern, Y ¼ 1, leading to an
incorrect output. Assuming that Anti-SAT protects one of
the primary outputs of the original circuit FðIÞ, the protected
output O can be represented as O ¼ FðI;Kl0Þ�
ðgðX � Kl1Þ ^ gðX � Kl2ÞÞ, where Kl0 represents the key for
the logic locked circuit. We elaborate on the security proper-
ties of Anti-SAT in Section III-C.
CamoPertub. In CamoPerturb, the original logic cone FðIÞ

is perturbed for exactly one minterm is to hide the true imple-
mentation from an attacker [23]. The output of the logic cone
for the perturbed minterm is then restored using a camouflaged
secret and a comparator block, as illustrated in Figure 4(c). Let
F0ðIÞ represent the Boolean function for the perturbed logic
cone, then O ¼ F0ðIÞ � ðI ¼¼ csÞ, where cs is the camou-
flaged secret.
AND/OR-Tree Insertion (ATI). While Anti-SAT [26], SAR-

Lock [25], and CamoPerturb [23] add external point functions
to the original netlist, ATI aims at identifying these structures
inside the original netlist in an attempt to decrease the imple-
mentation overhead [27]. The inputs of the identified AND/
OR tree are camouflaged by inserting INV/BUF camouflaged
gates as illustrated in Figure 4(d). The INV/BUF gates can be
replaced with the XOR/XNOR counterparts to obtain a logic
locked AND-tree. Let us assume the original circuit can be
represented as being composed of two functions,
FðIÞ ¼ TandðIÞ � F0ðIÞ, where TandðIÞ is the AND-tree, F0ðIÞ
is the rest of the circuit, and � is the Boolean operator integrat-
ing the two sub-circuits. The output of the ATI circuit with the

locked AND-tree can be represented as O ¼ TandðI;KÞ�
F0ðIÞ. We discuss the security aspects of ATI in Section I V-A.

F. SIGNAL PROBABILITY SKEW

The signal probability skew attack, to be presented in
Section III-C, is based on the notion of probability skew. We
define signal probability skew sx of a signal x as,

sx ¼ Pr½x ¼ 1� � 0:5; (1)

where, Pr½x ¼ 1� indicates the probability that signal x is 1.
As 0 � Pr½x ¼ 1� � 1, the range of s is ½�0:5; 0:5�. The SPS
of a signal denotes the amount by which a signal is distin-
guishable from a random guess, i.e., Pr½x ¼ 1� ¼ 0:5. An
attacker has a negligible advantage of guessing the signal
value over a random guess if the corresponding SPS s is
close to zero. For instance, all primary inputs and key inputs
(unknown to the attacker) are equiprobable, hence their skew
is zero.
Consider a two-input AND gate with inputs in1 and in2

with the corresponding SPS values s1 and s2, respectively.
The SPS of the output, sAND is defined as,

sAND ¼ Pr½y ¼ 1� � 0:5 ¼ Pr½in1 ¼ 1�Pr½in2 ¼ 1� � 0:5

¼ 0:5ðs1 þ s2Þ þ s1s2 � 0:25:
(2)

If the inputs to an AND gate have zero SPS values, then
sAND ¼ �0:25, demonstrating the skew that every AND gate
introduces. The SPS of an OR gate and an XOR gate is
shown in Figure 5. It can also be noted that OR gates add a
positive skew, while XOR gates reduce the absolute skew,
restoring it closer to zero. XOR/XNOR key gates, where the
key inputs are treated as primary inputs, introduce a skew of
zero.
In MUX-based logic locking [14], the select input of a

MUX is a key input with zero skew; the data inputs are inter-
mediate signals from the original circuit. The SPS of a MUX
output can be derived as,

FIGURE 4. SAT attack resilient logic locking/camouflaging techniques. a) SARLock [25], b) Anti-SAT [26], c) CamoPerturb [23], and d)

ATI [27].

VOLUME 8, NO. 2, APRIL-JUNE 2020 521

Yasin et al.: Removal Attacks on Logic Locking and Camouflaging Techniques

Authorized licensed use limited to: Texas A M University. Downloaded on October 05,2021 at 00:15:43 UTC from IEEE Xplore. Restrictions apply.

sMUX ¼ 0:5ðs1 þ s2Þ; (3)

where s1 and s2 are the SPS of the inputs.

G. APPSAT ATTACK

AppSAT, a recent variant of SAT attack, aims at reducing a
multi-layered defense to single- layer (e.g., Anti-SAT+FLL
to Anti-SAT) [29]. The AppSAT attack builds upon the SAT
attack by querying the functional IC with a fixed number of
random DIPs at regular intervals and augmenting the CNF
formula with new constraints based on these DIPs. The
attack terminates when the Hamming distance between the
correct output from the functional IC and the locked netlist is
very low (� 1

2n), where n is the key size. Upon termination,
the attack returns an approximately correct key that yields an
approximate netlist [29].
While the AppSAT attack can produce only an approxi-

mate netlist, it can be used as a pre-processing attack to peel
off defenses one at a time. Subsequently, other attacks can be
used to obtain the exact netlist, as we will show in
Section III-F.

III. REMOVAL ATTACK ON ANTI-SAT

A. ANTI-SAT

As already mentioned in Section 2.5, the Anti-SAT block
consists of two complementary blocks B1 ¼ gðX;Kl1Þ and
B2 ¼ gðX;Kl2Þ. The blocks integrated together render the
SAT attack effort exponential in key size, i.e., in the number
of key bits. An instance of the Anti-SAT block is shown in
Figure 6 [26]. At the inputs of B1 and B2, a set of XOR/
XNOR key gates is inserted. The number of key inputs is the
same as the number of signals tapped from the logic locked
circuit, i.e., jKl1j ¼ jKl2j ¼ jXj ¼ n. The resulting key size is
thus 2n. The output Y is implemented as Y ¼ gðX � Kl1Þ^
gðX � Kl2Þ. The output Y is 0 for all inputs when the correct
keys Kl1 and Kl2 are applied. For incorrect keys, Y may take
on the value 1, injecting error on an internal net in the netlist.
SAT Attack Resilience. The computational effort required

by the SAT attack decode the 2n key bits is defined in terms
of the number of input vectors that make the function g equal
to 1, i.e., the on-set of g [26]. For an n-bit input vector
L 2 f0; 1gn, such input vectors are elements of the set,

LT ¼ fLjgðLÞ ¼ 1g; jLT j ¼ p: (4)

Anti-SAT constructs g in such a way that p is close to either
1 or 2n � 1. For the Anti-SAT block in Figure 6, p ¼ 1. The
lower bound on the number of SAT attack iterations (number

of DIPs) to recover the 2n key bits of the Anti-SAT block
is [26]

�l ¼ 22n � 2n

pð2n � pÞ : (5)

For p 2 f1; 2n � 1g, the number of required iterations �l is
2n, i.e., exponential in the number of key bits in the Anti-
SAT block. So, the SAT attack resilience of Anti-SAT hinges
on p being either very small or very large. As Anti-SAT pro-
vides a provable measure to increase the SAT attack effort
exponentially in key size, the conventional logic locking
techniques need to be combined with the Anti-SAT block to
obtain foolproof logic locking.
Secure and Random Integration. The SAT attack resil-

ience of Anti-SAT also depends on the internal nets that
drive the inputs of Anti-SAT block. Two integrations of
Anti-SAT with original logic locked circuit are considered in
[26]: secure integration and random integration.
Secure Integration. In this scheme, the n inputs of the

Anti-SAT block are driven by n primary inputs of the logic
locked circuit. The output Y is connected to a wire in the
original logic locked circuit that is among the top 30 percent
in observability.
Random Integration. In this scheme, the inputs as well as

the output of the Anti-SAT block are connected to random
wires in the logic locked circuit. The SAT attack results
show that secure integration provides a higher resilience than
random integration as it requires more iterations, resulting in
a larger execution time to reveal the secret key [26].

B. SECURITY VULNERABILITIES IN ANTI-SAT

The main vulnerability of Anti-SAT is that it is incorporated
into the netlist at a single point, where its output Y is XORed
with an internal net. Therefore, Anti-SAT defense has to rely
on different obfuscation schemes that make the identification
of the block (and, thus, signal Y) difficult for an attacker. At
the same time, SAT attack resilience is ensured by choosing a
skewed p value, as dictated by Equation (5), irrespective of
the structural and functional obfuscation. This basic construc-
tion principle inevitably leads to structural traces that help
identify the Anti-SAT block output in a given netlist; the pro-
posed SPS attack exploits these traces to break Anti-SAT.

C. SIGNAL PROBABILITY SKEW ATTACK

In this section, we present signal probability skew attack that
detects the output signal Y of the Anti-SAT block. We show

FIGURE 5. SPS of OR and XOR gate outputs where s1 and s2 are

the SPS of the inputs of the gates.

FIGURE 6. An instance of the Anti-SAT block consisting of AND/

NAND trees [26].

522 VOLUME 8, NO. 2, APRIL-JUNE 2020

Yasin et al.: Removal Attacks on Logic Locking and Camouflaging Techniques

Authorized licensed use limited to: Texas A M University. Downloaded on October 05,2021 at 00:15:43 UTC from IEEE Xplore. Restrictions apply.

that the absolute difference of the probability skew (ADS) of
the inputs of a gate is the maximum for the gate G, which
produces the output Y of the Anti-SAT block.
Threat Model. The threat model of the SPS attack is

weaker than that of the SAT attack [24] and Anti-SAT [26].
SPS attack does not require access to a functional IC; the
attack requires only a reverse-engineered netlist. In contrast,
the SAT attack requires a functional IC as well.
Let us consider the skew of individual gates in the Anti-

SAT block shown in Figure 6. The XOR key gates produce
zero skew signals. The blocks gðX;Kl1Þ and gðX;Kl2Þ com-
prise an n-input AND and an n-input NAND gate, respec-
tively. The SPS sn�AND for the AND gate is defined as,

sn�AND ¼
Yn

i¼1
ð0:5þ siÞ � 0:5; (6)

where si is the SPS of the ith input. As si ¼ 0, the SPS of
n-input AND gate in gðX;Kl1Þ is,

sgðX;Kl1Þ ¼ 0:5n � 0:5: (7)

For large n, sgðX;Kl1Þ � �0:5, indicating p � 1. Similarly, for
the n-input NAND gate output in gðX;Kl2Þ, the SPS is,

sn�NAND ¼ 0:5�
Yn

i¼1
ð0:5þ siÞ: (8)

As si ¼ 0, the SPS of the NAND gate in gðX;Kl1Þ is,
s
gðX;Kl1Þ ¼ 0:5� 0:5n: (9)

For large n, s
gðX;Kl1Þ � 0:5, indicating p � 2n � 1. The abso-

lute difference of the probability skew of the inputs of the
AND gate G, ADSG, can be computed as,

ADSG ¼ sgðX;Kl1Þ � s
gðX;Kl1Þ

���
��� ¼ 1� 2� 0:5n: (10)

If the number of inputs to the Anti-SAT block is high,
ADSG ¼ jsgðX;Kl1Þ � s

gðX;Kl1Þj ffi 1. ADSG close to 1 indicates
that the two inputs of the gate G exhibit the highest skews
but with opposite polarity. This property of gate G distin-
guishes it from the rest of the gates not only in the Anti-SAT
block but also in the entire circuit. The SPS attack on a logic
locked circuit with the Anti-SAT block comprises computing
the SPS values of all the gates in the circuit. The gate with
the highest SPS value, i.e., a gate with oppositely skewed
inputs is the suspect gate G, the output gate of the Anti-SAT
block. The SPS attack is described in Algorithm 1.
SPS attack applies to arbitrary g and �g. In case of n-input

OR gate and n-input NOR gate for the functions g and �g, the
corresponding SPS values are,

sn�OR ¼ 0:5�
Yn

i¼1
ð0:5� siÞ; (11)

sn�NOR ¼
Yn

i¼1
ð0:5� siÞ � 0:5: (12)

The ADSG value will again be close to 1 for large n.

SPS versus SAT Resilience. SPS attack is highly effective
when p 2 f1; 2n � 1g; these values of p lead to the maximum
ADSG. One option to reduce the effectiveness of the attack is
to use a value of p far from 1 and 2n � 1, reducing the signal
skew values. However, any such attempt would make Anti-
SAT vulnerable to SAT attacks as dictated by Equation (5).
Anti-SAT is thus cornered by SAT attack and the proposed
SPS attack. This is further illustrated in Section III-D3.

Algorithm 1. Signal Probability Skew Attack

Input: Cantisat // Locked netlist with Anti-SAT
Output: Clock // Locked netlist after removing Anti-SAT

block
1 ADSarr fg
2 for gj 2 Cantisat do
3 ADSarrðgjÞ compute_ADS(Cantisat; gj)
4 end
5 G find_maximum (ADSarr) // Anti-SAT output
6 Y find_value_from_skew (G) // Correct value of Y
7 Clock remove_TFI(Cantisat;G; Y) // Remove the
gates that are in TFI of gate G alone

Removing the Anti-SAT Block. In SPS attack, the gate G is
identified using the highest ADS trace. The logic locked cir-
cuit may contain a few signals that exhibit high ADS values,
close to ADSG. These false candidates can be filtered out by
checking for simple structural traces. By analyzing the transi-
tive fan-in (TFI) of the candidate gates and eliminating the
gates whose TFI does not include at least 2n key inputs, we
can correctly identify the gate G.
Identifying Value of Y . Once G has been identified, the

value of the output signal Y can be determined from sY . If
sY < 0, the value of Y in the functional IC is 0; otherwise, it
is 1. Knowing the correct value of Y , one can trace back and
discard the gates that are in the fan-in of signal Y alone. The
remaining circuit is re-synthesized the circuit using the cor-
rect value of Y . Upon removal, the Anti-SAT stripped circuit
can be represented as O ¼ FðI;Kl0Þ. To identify Kl0 for the
logic locked circuit (which is locked using traditional SAT
attack-vulnerable techniques such as fault analysis-based
logic locking), SAT attack can be launched.
Example. The objective of the SPS attack on the circuit in

Figure 10 is to identify the output gate of the Anti-SAT
block, i.e., G11. The highest five ADS values for the circuit
are shown in Table 4. The pair of complementary signals, G8
and G10 with opposite SPS values leads to the highest ADS
for G11, enabling the precise detection of the output of the
Anti-SAT block. The SPS for the output of G11 is
sY ¼ �0:398, implying that the signal is skewed towards 0.

D. SPS ATTACK RESULTS

1) EXPERIMENTAL SETUP

The SPS attack experiments are conducted using ISCAS
benchmark circuits [36] and OpenSPARC microprocessor
controllers [37]. The SPS attack and the SAT attack are exe-
cuted on a server with 6-core Intel Xeon W3690 CPU,

VOLUME 8, NO. 2, APRIL-JUNE 2020 523

Yasin et al.: Removal Attacks on Logic Locking and Camouflaging Techniques

Authorized licensed use limited to: Texas A M University. Downloaded on October 05,2021 at 00:15:43 UTC from IEEE Xplore. Restrictions apply.

running at 3.47 GHz, with 24 GB RAM [24]. The Anti-SAT
block is integrated with fault analysis based logic lock-
ing [14], which is referred to as TOC’13(5 percent), follow-
ing the convention used in [26].

2) IMPACT OF KEY SIZE (n)
The number of keys in the basic Anti-SAT block is 2n, where
n is the number of keys in the individual blocks g and �g. For
the SPS attack to be effective, ADSG must increase with n.
Figure 7 demonstrates that as n increases, ADSG increases
exponentially initially and then saturates close to a value of
1. The SPS attack is successful when ADSG is close to 1, rep-
resenting a gate whose inputs are skewed towards opposite
values. As an example, for n ¼ 16, the skew at the output of
the block g (an AND tree) will be � �0:5, whereas the skew
at the output of the block �g (a NAND tree) will be � 0:5.
The ADSG will be� 1. For larger n values, ADSG approaches
1 even further. Thus, the attack effectiveness increases with
n, which is counter-intuitive for any attack.

3) SAT ATTACK VERSUS SPS ATTACK

Impact of p on Attack Success. The Anti-SAT block offers
the highest resistance against the SAT attack when p � 1 or
p � 2n; then, the number of iterations for the SAT attack is
� 2n. The resistance is the least when p � 2n�1. Figure 8 dis-
plays the SAT attack resistance normalized by 2n ¼ 65536
for n ¼ 16.
The resistance to the SPS attack can be represented as

1� ADSG. When ADSG � 0, the resistance is the maximum;
this also implies p � 2n�1 and the minimum resistance to the
SAT attack. The resistance to the SPS attack is the minimum

when p � 1 or p � 2n as demonstrated in Figure 8; for these
values of p, the SAT attack resistance is the maximum. Thus,
the two attacks are complementary to each other. One of the
attacks is highly effective for any value of p. The regions of
effectiveness of the SPS and the SAT attack are shown as red
and blue regions, respectively, in Figure 8.
Attack Execution Time. Figure 9 shows that the execution

time of the SAT attack depends on the value of p, which dic-
tates the number of iterations of the attack. For p ¼ 1 and
p ¼ 65535, the attack takes more than a day to complete. For
the SPS attack, which involves computing the signal proba-
bilities of few gates (� 100 for n ¼ 16), the attack time is a
few seconds, and practically negligible compared to the exe-
cution time of the SAT attack.

4) SPS ATTACK ON MULTI-LAYERED DEFENSE

In practical settings, the Anti-SAT block is integrated with
an existing (SAT attack vulnerable) logic locking technique

FIGURE 7. Impact of n on ADSG, the absolute difference of skew at

the inputs of gate G, the output of Anti-SAT block, for p ¼ 1.
SPSðgÞ and SPSð�gÞ represent the skew of the AND and NAND tree

in the Anti-SAT block.

FIGURE 8. Normalized attack resistance of the Anti-SAT block for

n ¼ 16. For the SAT attack, the resistance is the number of itera-

tions of the attack normalized by 65536. For the SPS attack, the

resistance is specified as 1� ADSG. The SPS attack is highly

effective in region shaded red; the SAT attack is effective in the

region shaded blue.

FIGURE 9. Execution time of the SAT attack and the SPS attack

on basic Anti-SAT block for n ¼ 16. The execution time of the

SAT attack is more than a day for p 2 f1; 2n � 1g, whereas, the

execution time of the SPS attack is less than 2 minutes for all val-

ues of p.

FIGURE 10. Functional and structural obfuscation between Anti-

SAT and logic locked circuit of Figure 2(c). fK1A; . . . ;K3Ag are the

key inputs to the logic locked circuit, fK1B; . . . ;K6Bg are the key

inputs to the Anti-SAT circuit, fK1LF ; . . . ;K3LFg (blue) are the key

inputs for functional obfuscation, and fK1SF ;K2SFg (green) are

the key inputs for structural obfuscation.M1 and M2 are used for

MUX-based logic locking.

524 VOLUME 8, NO. 2, APRIL-JUNE 2020

Yasin et al.: Removal Attacks on Logic Locking and Camouflaging Techniques

Authorized licensed use limited to: Texas A M University. Downloaded on October 05,2021 at 00:15:43 UTC from IEEE Xplore. Restrictions apply.

such as FLL [14]. For maximum SAT attack resistance,
secure integration is utilized. In secure integration of Anti-
SAT (referred to as TOC’13(5%)+n-bit BA in [26]), n inputs
of the Anti-SAT block are connected to n primary inputs of
the logic locked circuit [26]. ADSG is represented as
1� 0:5n�1, irrespective of the logic locked circuit. For a suc-
cessful attack, ADSG must be higher than the ADS of all the
other gates in the circuit.
Table 3 presents the results for the SPS attack on secure

integration. The column “HC ADS” displays the highest
ADS value for the gates in the original circuit (excluding the
gates in the Anti-SAT block). With n ¼ 16, the gates with
ADS
 ð1� 0:515Þ are candidates for the gate G. We
observe that there is only one candidate for gate G in all the
circuits except for s15850. The circuit s15850 has two other
gates whose ADS values are higher than the ADSG.
As mentioned in Section III-B, the false candidates for G are

filtered out by analyzing the TFI of the candidate gates and
eliminating the gates whose TFI does not include 2n key inputs.
The attack then correctly identifies G in all of the circuits. The
execution time of the SPS attack is in the order of seconds for
most of the circuits. For the largest circuit b19, which has more
than 200K gates, the attack completes within an hour and a
half. Thus, the attack scales well for large circuits.

E. STRUCTURAL/FUNCTIONAL OBFUSCATION IN ANTI-

SAT

A trivial attack could simulate the reverse-engineered netlist
and find the complementary pair of signal outputs of g and �g,

leading to the identification and removal of the Anti-SAT
block [26]. To prevent this, n additional XOR/XNOR key
gates are inserted randomly at the inputs of the Anti-SAT
block, obscuring the complementary relations between sig-
nals, thereby, providing functional obfuscation.
Another simple attack could be in the form of circuit parti-

tioning to identify the isolated Anti-SAT block and remove it
from the netlist [26]. To thwart such attacks, structural obfus-
cation based on MUX-based logic locking was proposed to
increase the inter-connectivity between the logic locked cir-
cuit and the basic Anti-SAT (BA) block [26]. The resultant
obfuscated Anti-SAT (OA) block will have 4n key gates.
Example. Functional and structural obfuscation as applied

to the logic locked circuit in Figure 2(c) is shown in
Figure 10. The outputs of gates G8 and G10 form the output
signals of the functions g and �g, and hence are complemen-
tary signals; an attacker can attempt to find the potential com-
plementary pair of signals, leading to the identification of the
Anti-SAT block. The Anti-SAT block, comprising an addi-
tional set of three key gates fGL1;GL2;GL3g, obfuscates the
pair of complementary signal outputs. Further, the MUXes
M1 and M2 are used to increase the inter-connectivity of the
logic locked circuit and the Anti-SAT block. This structural
obfuscation of Anti-SAT renders the identification of the
Anti-SAT block difficult for the attacker, as the boundary
between the two blocks is obscured.
SPS Attack Effectiveness on Obfuscated Anti-SAT. The

SPS attack is successful against obfuscated Anti-SAT (OA)
as long as ADSG values do not deviate significantly as a con-
seqence of obfuscation. Let us consider an n-input AND gate
that constitutes the function g in the Anti-SAT block. In
Figure 11(a), the XOR key gate is inserted at a net inside the
AND-tree, at the input of final AND gate in this specific
case. Let us assume s1 and s2 denote the skew at the inputs of
the final AND gate. Prior to insertion of the key gate,
s1 ¼ s2 ¼ 0:5

n
2 � 0:5, and sn�AND ¼ 0:5n � 0:5 for the AND-

tree. After the insertion of the key gate, s1 ¼ 0, and hence
the modified skew of the n-input AND becomes
s0n�AND ¼ 0:5

n
2þ1 � 0:5. When the key gate is moved further

to the output of AND gate as shown in Figure 11(b), sY ¼ 0.
The SPS attack, in its original form, would not be able to
identify the gate G in such scenarios. Thus, by carefully
inserting the key gates for functional/structural obfuscation,
a designer can defend against the SPS attack. While one can
develop stronger variants of the SPS attack that rely on better

TABLE 4. ADS values of the gates in the Anti-SAT block in

Figure 10 in descending order.

Gate G11 M1 M2 G8 G10

ADS 0.6875 0.5 0.25 0.25 0.125

TABLE 3. SPS attack on secure integration for p ¼ 1.

n ¼ 16 n ¼ 64

Benchmark # gates HC ADS #cand Exec. time (s) #cand Exec. time (s)

fpu in 1,501 0.8125 1 0.3 1 0.6
lsu rw 1,501 0.8125 1 0.7 1 1.1
lsu excp 1,651 0.81211 1 0.9 1 0.6
s9234 1,677 0.98526 1 0.6 1 0.8
fpu div 2,137 0.8125 1 0.5 1 1.0
lsu stb 2,371 0.93749 1 1 1 0.7
c5315 2,695 0.5616 1 0.6 1 0.8
c7552 2,697 0.58069 1 0.8 1 1.1
ifu ifq 3,663 0.92281 1 2 1 1.9
tlu mmu 5,559 0.98828 1 4.8 1 4.6
s13207 13,371 0.99994 1 18.2 1 20.1
s15850 15,876 0.99999 3 18.3 1 19.1
s35932 16,457 0.60127 1 47.8 1 43.4
s38584 19,511 0.99805 1 55.7 1 56.2
s38417 22,501 0.99644 1 54.4 1 57.7
b18 111,176 0.99512 1 1300.2 1 1351.1
b19 224,511 0.99512 1 5010.3 1 5028.4

HC ADS represents the highest ADS value for the gates in the locked circuit
(excluding the gates in the Anti-SAT block).#cand represents the number of
candidates for gate G.

FIGURE 11. (a) Key gate inserted inside the tree of n-input AND

gate; the change in probability skew assists the SPS attack. (b)

Key gate inserted at the output of n-input AND gate assists the

SAT attack [24].

VOLUME 8, NO. 2, APRIL-JUNE 2020 525

Yasin et al.: Removal Attacks on Logic Locking and Camouflaging Techniques

Authorized licensed use limited to: Texas A M University. Downloaded on October 05,2021 at 00:15:43 UTC from IEEE Xplore. Restrictions apply.

heuristics to guide the attack in the presence of obfuscation,
in this paper, we focus our efforts on developing a strong
removal attack against OA that makes use of the recently
developed attack known as AppSAT [29].

F. APPSAT GUIDED REMOVAL ATTACK (AGR)

We propose AGR attack that integrates AppSAT with a sim-
ple structural analysis of the locked netlist to develop a
strong removal attack on OA. As opposed to the AppSAT
attack, the AGR attack recovers the exact netlist.
Threat Model. The threat model for the AGR attack is same

as the threat model of the SAT attack [24] or ATI [27]. The
attacker has access to a locked netlist and a functional IC.
The attack begins by applying AppSAT to reduce FLL+OA

to OA. As the AppSAT attack terminates, the key bits corre-
sponding to FLL settle; i.e., their values don’t change over
successive attack iterations. The key bit stability serves for
distinguishing the Anti-SAT key bits from the FLL key bits.
Having peeled off the FLL layer, we next target the obfus-

cated Anti-SAT through a simple structural analysis. The
Anti-SAT block has 4n key inputs, all of which converge at
the gate G, the output of Anti-SAT block. We determine the
gate G by tracing the transitive fan out of the Anti-SAT key
inputs; it is the gate where all the 4n key bits converge.
In a real setting, AppSAT can only partially distinguish the

FLL key bits from the Anti-SAT key bits. Similar to the FLL
key bits, certain Anti-SAT key bits (particularly those close
to the AntiSAT output) remain relatively stable over many
iterations. Since the stable key bits could belong to either
Anti-SAT or FLL, we use only the fluctuating key bits for
structural analysis. We expect close to Cg ¼ 4n fluctuating
key bits to converge at the gate G, and about 2n keys bits to
converge at each of its inputs, which are driven by the two
trees that produce the complementary functions in the Anti-
SAT block. At the inputs of gate G, the ratios R1 ¼ Cin1

Cg
and

R2 ¼ Cin2
Cg

are close to 0.5; here Cx represents the number of
fluctuating keys that converge at a given gate. We identify
the candidates for gate G by checking for this property for
each gate in the circuit. If the attack yields multiple candidate
gates, we sort them based on the number of key inputs that
converge at a gate and pick the top-ranking candidate as the
gate G. Algorithm 2 describes the AGR attack. The attack

further demonstrates that simple heuristics could be used to
build powerful attacks even on “provably-secure” hardware
implementations.

Algorithm 2. AppSAT Guided Removal Attack

Input: Cantisat // Locked netlist with Anti-SAT
Input: n // Key size for Anti-SAT
Output: Clock // Locked netlist after removing Anti-SAT
1 #cand num_gates(Cantisat)
2 while (#cand > 1 and !timeout) do
3 launch_appsat(4); // make 4 appsat calls
4 candidates= {}
5 for gj 2 Cantisat do
6 If Cgj � 4n and R1ðgjÞ � R2ðgjÞ � 0:5
7 add gj to candidates
8 end
9 end
10 G find_maximum_key_count (candidates) // sort

candidates by Cg and pick the top-ranking one
11 Clock remove_TFI(Cantisat;G) // Remove the gates that

are exclusively in the TFI of the gate G

G. AGR ATTACK RESULTS

In this section, we present the results for the proposed AGR
attack against obfuscated Anti-SAT. Following the conven-
tion used by [26], the attack results are presented for the
secure integration of OA with FLL, referred to as TOC’13
(5%) + n-bit OA. Apart from the 2n key gates at the inputs
for the Anti-SAT block, n additional XOR/XNOR key gates
and n MUX key gates are inserted at the internal wires of the
Anti-SAT block for functional and structural obfuscation,
respectively. In our implementation, each gate in Anti-SAT
has two inputs.
Key Bit Stability. Figure 12 demonstrates the stability of

the key bits for the circuit c5315 when AppSAT attack is
launched. The figure displays the percentage of consecutive
previous iterations over which the value of a key bit has
remained stable during the attack; as soon as a key bit value
flips, the count for the bit is reset to zero. It can be observed
that most of the Anti-SAT key bits keep fluctuating and are
easily distinguishable.
Attack Success. Table 5 presents the results of the AGR

attack. #cand denotes the number of valid candidates for
gate G. We report #cand upon timeout of one hour to pro-
vide insights into the attack behaviour. In most of the cir-
cuits, there is only one candidate for G, demonstrating the
effectiveness of the AGR attack. In a few cases, the attack
may return more than one candidate for G, since certain FLL
bits may not have settled yet. We observe that these candi-
dates are often the Anti-SAT gates located close to the gate
G. Upon sorting the candidate gates based on the number of
key inputs that converge at the gate (Cg), we identify gate G
at the top of the ranked list of candidates. Gate G was there-
fore identified successfully in 100 percent of the cases.
Execution Time. The attack execution time is dominated

by the time for AppSAT. In our experiments, we set the

FIGURE 12. Stability of key bits during AppSAT attack for the

c5315 TOC’13(5%)+128-bit circuit. The FLL key bits mostly

remain stable and are easily distinguishable from the Anti-SAT

key bits.

526 VOLUME 8, NO. 2, APRIL-JUNE 2020

Yasin et al.: Removal Attacks on Logic Locking and Camouflaging Techniques

Authorized licensed use limited to: Texas A M University. Downloaded on October 05,2021 at 00:15:43 UTC from IEEE Xplore. Restrictions apply.

AGR attack timeout to one hour. This is sufficient for the
attack to terminate successfully since we are not interested in
the values of the key bits. We rather need to classify key bits
as stable or fluctuating based on their activity over successive
attack iterations.
For the smaller circuits such as s5378, the attack termi-

nates successfully within a few seconds with a single candi-
date. Even for the circuit b19 with more than 200K gates, the
attack reduces the valid candidates to 938 within one hour.
These 938 candidates are then sorted to identify gate G
successfully.

IV. REMOVAL ATTACK ON ATI

A. AND TREE INSERTION

As opposed to Anti-SAT [26], SARLock [25], and CamoPer-
turb [23] that integrate external point functions with the

original netlist, ATI identifies and reuses such structures
inside the original netlist in order to decrease the implemen-
tation overhead [27]. Once an AND/OR tree is identified in
the netlist, the inputs of the tree are camouflaged by inserting
INV/BUF camouflaged gates. Alternatively, using the trans-
formations described in Section I-B, the same tree may be
locked by inserting XOR/XNOR key-gates at the inputs,
delivering the same level of security against the SAT
attack [19]. To be consistent with the previous discussion on
SAT attack, we will discuss the security of ATI from a logic
locking perspective. Figure 13 shows a camouflaged AND
tree and its logic locked counterpart.

1) ATI RESILIENCE TO SAT ATTACK

Similar to other SAT attack resilient logic locking techni-
ques, ATI attempts to render the number of DIPs exponential
in the number of key gates by controlling the distinguishing
ability of individual DIPs [27]. This is illustrated in Table 6
for a 3-input AND-tree. It can be noted that exactly one
incorrect key value can be eliminated by any of the input pat-
terns, except for one special input pattern which, if applied,
can identify all incorrect keys. There exists no known algo-
rithm that can identify the special DIP from the analysis of
the logic locked neltist. The number of patterns that an
attacker is expected to try (in a random trial approach) prior
to exercising the special input pattern is 2n�1.

B. SECURITY CHALLENGES FOR ATI

There are multiple aspects that need to be considered prior to
identification/insertion of logic locked AND/OR trees in
order to achieve strong resilience against SAT attack.
Existence of Large Non-Decomposable Trees. The security

of ATI is dictated by the size of the largest non-decompos-
able AND/OR-tree in the circuit, i.e., a tree where all internal
nodes have a fanout of 1. If the internal nodes of an AND/
OR-tree have multiple fanouts, an attacker can partition the
tree into subtrees and attack the sub-trees on an individual
basis. An example non-decomposable AND tree and a
decomposable tree are presented in Figures 14(a) and 14(b),
respectively. For sufficient security against the SAT attack,
large non-decomposable AND/OR trees, e.g., with 64 or 128

TABLE 5. AGR attack on TOC’13(5%) + n-bit OA for

n ¼ 128 and p ¼ 1.

Benchmark #cand Rank of G Exec. time (s)

s5378 1 1 8.5
ifu dcl 1 1 8.9
fpu in 1 1 10.7
lsu rw 1 1 10.7
lsu excp 1 1 8.9
s9234 1 1 9.4
fpu div 1 1 9.4
lsu stb 1 1 10.2
c5315 1 1 11.7
c7552 1 1 10.5
ifu ifq 1 1 1.0
tlu mmu 14 1 3,600.0
s13207 10 1 3,600.0
s15850 28 1 3,600.0
s35932 1 1 57.6
s38584 22 1 3,600.0
b18 710 1 3,600.0
b19 938 1 3,600.0

#cand denotes the number of valid candidates for the gate G
upon a timeout of one hour. Upon sorting the list of candi-
dates based on Cg, the gate G always has the first rank, imply-
ing 100 percent success rate.

FIGURE 13. Examples of AND/OR-tree insertion: a) A camou-

flaged AND-tree with camouflaged INV/BUF gates inserted at its

inputs [27], b) The locked counterpart of the AND-tree with XOR/

XNOR key gates inserted at its inputs, using the transformations

in [19]. Both trees achieve the same level of security against the

SAT attack [17], [24].

TABLE 6. SAT attack resilience of ATI [27] for a 3-input AND gate

with XOR key gates inserted at the inputs.

Key/DIP 0 1 2 3 4 5 6 7

k0 @ @ @ @ @ @ @ @
k1 @ @ @ @ @ @ • •

k2 @ @ @ @ @ • @ •

k3 @ @ @ @ • @ @ •

k4 @ @ @ • @ @ @ •

k5 @ @ • @ @ @ @ •

k6 @ • @ @ @ @ @ •

k7 • @ @ @ @ @ @ •

For any DIP, the SAT attack can eliminate at most one key value: the one
that injects an error at the output. @ denotes correct output; • denotes incor-
rect output.

VOLUME 8, NO. 2, APRIL-JUNE 2020 527

Yasin et al.: Removal Attacks on Logic Locking and Camouflaging Techniques

Authorized licensed use limited to: Texas A M University. Downloaded on October 05,2021 at 00:15:43 UTC from IEEE Xplore. Restrictions apply.

inputs, are required. Such large trees are rare in common
benchmark circuits as will be illustrated in the experimental
results (Section IV-D).
Bias in the Input Distribution. Contrary to the externally

integrated AND/OR trees in Anti-SAT, the inputs of an inter-
nal AND/OR-tree may not be the primary inputs. Conse-
quently, the input distribution of the tree will be biased; not
all input values will be equiprobable at the tree inputs. An
attacker may exploit this bias to reduce the attack effort.
Dummy AND/OR Trees. To ensure the formation of a large

enough non-decomposable AND/OR tree, Li et al. [27] pro-
pose to insert dummy AND/OR trees in the circuit and inte-
grate them with an original tree identified in the circuit, as
illustrated in Figure 15. The dummy AND-tree TdummyðI;K1Þ,
with key input K1, is integrated with the original AND-tree in
the circuit using a camouflaged OR gate. A permanent stuck-
at-0 fault is introduced at the input of the OR gate by manipu-
lating the dopant polarities [27]. With the addition of the
dummy AND-tree, the output of the ATI-locked circuit can be
represented as O ¼ F0ðIÞ � TandðI;KÞ� TdummyðI;K1Þ. How-
ever, since the inserted tree is fake and disconnected function-
ally from the circuit, it is prone to removal attacks. We
elaborate on this in Section IV-C.
Flexibility. Another major drawback of ATI is that it can

only protect the parts of a circuit where the desired AND/OR
trees are present inherently. It does not offer a designer the
flexibility to choose the logic to be protected.

C. SENSITIZATION-GUIDED SAT ATTACK

In this section, we present the sensitization-guided SAT
attack that exploits the security vulnerabilities of ATI to dis-
cover the correct key values using a small number of DIPs
(� 2n). The attack consists of two main stages, sensitization
and the SAT attack as illustrated in Figure 16. The

sensitization stage computes attack patterns that are used to
guide the SAT attack described in [24].
Threat Model. The threat model for the SGS attack is same

as the threat model of the SAT attack [24] or ATI [27]. The
attacker has access to a locked netlist and a functional IC.

1) STAGE 1. SENSITIZATION

The objective of the sensitization stage is to compute attack
patterns that are used as DIPs by the SAT attack. This stage
exploits two observations about the inserted AND(/OR) tree,
as illustrated in Figure 17:
1. Bias in the Input Distribution. The bias in the input dis-

tribution of an n-input AND-tree implies that the tree inputs
take on only a subset of 2n possible values. This reduction is
due to the logic in the transitive fanin (TFI) of the AND-tree,
i.e., the logic between the primary inputs of the circuit and
the AND-tree inputs. This bias in input distribution allows an
attacker to apply only a subset of DIPs, i.e., those that bring
unique values to the AND-tree inputs.
2. Sensitization of the Injected Error. The AND/OR-tree

introduces an error in the tree output for certain incorrect key
values. However, even if an error is injected at tree output, it
may not be sensitized to a primary output of the netlist; the
effect of the error may be masked by the logic in the transi-
tive fanout (TFO) of the AND-tree. In VLSI testing, detec-
tion of a stuck-at-0 (1) fault requires that the fault be a)
activated by assigning a value 1 (0) to the fault location, and
b) propagated to a primary output. Thus, the manifestation of
the effect of an incorrect key at the primary outputs is analo-
gous to the detection of a stuck-at fault at the output of the

FIGURE 14. a) A non-decomposable AND tree, and b) a decom-

posable AND-tree [27]. Attacks on the decomposable tree can

leverage divide-and-conquer strategies.

FIGURE 15. Insertion of dummy AND-tree in the circuit. A stuck-

at-0 fault is introduced at the dummy input of the OR gate [27].

FIGURE 16. Proposed SGS attack on ATI-locked netlist. The sen-

sitization attack computes a reduced set of attack patterns. The

SAT attack uses the computed patterns in conjunction with the

functional IC output to determine the correct key value.

FIGURE 17. An illustration of how the sensitization stage reduces

the number of the required DIPs. The gates in the TFI of the tree

introduce bias and reduce the number of patterns received at

the tree inputs. The gates in the TFO hamper the sensitization of

errors activated at the output of the AND tree and further narrow

down the attack pattern space.

528 VOLUME 8, NO. 2, APRIL-JUNE 2020

Yasin et al.: Removal Attacks on Logic Locking and Camouflaging Techniques

Authorized licensed use limited to: Texas A M University. Downloaded on October 05,2021 at 00:15:43 UTC from IEEE Xplore. Restrictions apply.

AND-tree. If the ATI defense was constrained to identify
AND trees that directly feed a PO, the error would be guaran-
teed to be sensitized; however, there would be further need
for dummy AND-trees as well.
Feasible Input Patterns. Overall, only a subset of total 2n

(n is number of inputs of the AND tree) DIPs are deemed fea-
sible, i.e., they can manifest the error in the circuit output.
The SAT attack uses the error at the output as a hint for iden-
tifying incorrect key values [17], [24]. The smaller the num-
ber of input patterns used by the attack, the lower the
computational effort of the attack. The effectiveness of the
sensitization stage is determined by the reduction in the num-
ber of attack patterns.
Example. For the netlist in Figure 18, the locked AND-tree

has three inputs: g1, g2 and g3. Due to the impact of the TFI
logic, the input values, 001, 010 and 101 cannot be assigned
to the tree inputs. The TFO logic further narrows down the
feasible input space; only two input patterns 011 and 000 are
feasible for the tree inputs. Thus, the SAT attack can be
launched using only two input patterns. While the reduction
ratio is relatively small for this illustrative example, a signifi-
cant reduction is achievable for larger circuits as will be dem-
onstrated in Section IV-D.

2) STAGE 2. SAT ATTACK

The attack patterns computed by the sensitization stage are
used to guide the SAT attack and extract the correct key by
eliminating all the incorrect keys. The set of computed pat-
terns is sufficient for a successful SAT attack since the set
contains all the patterns that introduce observable error(s) in
the circuit. The SAT attack does not need to compute any
further DIPs and completes within a single iteration. The
SAT solvers can inherently leverage the input bias and,
apparently, render the sensitization stage redundant. How-
ever, as explained in the next section, the sensitization stage
helps identify real/dummy AND trees and prevents the SAT
attack from running into long trails.

3) IDENTIFYING DUMMY AND/OR TREES

To tackle the challenge of dummy AND/OR trees, we follow
a simple divide-and-conquer strategy. We assume that
1) The attacker knows the location of the key gates (or

alternatively, the camouflaged gates).

2) The dummy AND tree inputs are the primary inputs of
the circuit (or wires close to the primary inputs) so that
the issues related to the input bias are resolved [27].

3) The dummy AND-tree is large (e.g., 64 or 128) inputs.
4) None of the gates inside the dummy tree fan out to the

gates in the original circuit. Only the output of AND
(OR) tree is connected to a dummy OR (AND) gate;
one input of the connecting OR (AND) gate is stuck-at-
0 (1) [27] as illustrated in Figure 15.

Based on these realistic assumptions, which are in line
with the threat model in [27], we identify a candidate dummy
AND/OR tree in the netlist based on the input bias, and
remove it from the netlist. To quantify the input bias pre-
cisely, we use the notion of feasible input patterns. In the sen-
sitization stage, we compute the number of feasible input
patterns DIPSGS for each tree using sharpSAT solver. The
tree with the higher DIPSGS is assumed to be dummy. Com-
pared to KL divergence, which is an approximate metric [27],
DIPSGS is a precise metric, derived from VLSI test principles,
that can be efficiently computed using the sharpSAT solver.
We could launch the SAT attack directly on a tree without
pre-computation of DIPSGS; but then the SAT attack would
possibly run into long trails. Pre-computation of feasible
input patterns prevents such situations. Upon removal of
the dummy AND-tree, the ATI netlist reduces to
F0ðIÞ � TandðI;KÞ, where Tand denotes the real AND-tree.
Mounting removal attack on the real AND-tree Tand is not
meaningful as it leads to extraction of F0ðIÞ, as opposed to
FðIÞ. We, therefore, proceed with the SGS attack on the tree
that is assumed to be real. A successful SGS attack and the
retrieval of the correct key validates the decision about the
dummy AND-tree.
To verify the correctness of the key, we conduct the fol-

lowing simple test. From the correct key value returned by
the attack, we can determine the input pattern for which the
AND(OR)-tree will output a 1(0). We need to verify the cir-
cuit operation for only one input pattern; the tree output is a
0(1) for the rest of the input patterns. Otherwise, we repeat
the experiment by switching the dummy/real trees.

D. SGS ATTACK RESULTS

In this section, we present the results for the SGS attack on
ISCAS benchmark circuits [36], MCNC circuits [38], and
OpenSPARC microprocessor controllers [37]. The experi-
mental setup is the same as that for the Anti-SAT attack (pre-
sented in Section III-D1). The sensitization stage is launched
using Minisat [39] solver. A miter circuit is constructed to
find a pattern that can detect a stuck-at fault at the output of
the AND/OR tree [40]. The CNF formula for the miter is fed
to the SAT solver to compute the attack patterns.
Size of Typical AND/OR Trees (ST). To evaluate the

effectiveness of ATI, we first report the size of the largest
AND/OR trees in the benchmarks circuits under study.
The AND/OR trees are identified using the algorithm
in [27]. We report only 22 circuits with the largest AND/
OR trees. Table 7 shows that the size of the trees identified

FIGURE 18. An example of pruned input pattern space as identi-

fied by the sensitization stage. The locked AND tree G4 has three

inputs: g1, g2, and g3. The TFI logic prevents the tree inputs

from taking on the values 001, 010, and 101. The TFO logic fur-

ther reduces the number of feasible inputs; overall, only two out

of eight possible input combinations, 011 and 000, are feasible

for the AND tree inputs.

VOLUME 8, NO. 2, APRIL-JUNE 2020 529

Yasin et al.: Removal Attacks on Logic Locking and Camouflaging Techniques

Authorized licensed use limited to: Texas A M University. Downloaded on October 05,2021 at 00:15:43 UTC from IEEE Xplore. Restrictions apply.

in the benchmark circuits is rather small. Only 11 out of
the 22 reported circuits have a tree with 20 or more inputs.
Thus, to attain sufficiently large trees, e.g., with 64 or 128
inputs, it becomes mandatory to add a dummy AND tree.
In all experiments, we assume a target tree size of 64. To
identify and remove the dummy AND tree, we follow the
procedure described in Section IV-C3.
Percentage Reduction in DIPs. Table 7 also shows DIPSGS,

which denotes the number of DIPs computed by the SGS
attack; these patterns are sufficient to retrieve the correct key
for the target circuit. It can be observed that the number of
attack patterns� 2ST , where ST represents the size of the iden-
tified AND/OR tree. The percentage reduction R in DIPSGS

compared toDIPEXP, computed as R ¼ DIPEXP�DIPSGS
DIPEXP

� 100%,
is close to 100 percent for about 50 percent of the circuits.
Only a fraction of the DIPEXP patterns are sufficient to break
circuits, such as k2 and des, with the largest size of identified
AND trees. For the same circuits, the SAT attack alone
requires DIPEXP ¼ 2ST�1 patterns. For example, for the circuit
k2 with ST ¼ 104, DIPSGS ¼ 273, compared to
DIPEXP ¼ 2103. The actual number of attack patterns used by
the SAT attack is almost the same asDIPSGS.
However, there are certain circuits, such as c2670, for

which the SGS attack cannot complete within the allocated
time of 10 hours (and are marked as NA). For these circuits,
the bias in the input distribution of the tree is very small as
most of the tree inputs are either the primary inputs of the cir-
cuit or the wires close to the primary inputs. As we discussed
in Section IV-C1, the sensitization stage leverages the bias in

the input distribution to attain a reduction in the number of
the required DIPs. When there is zero or a very small bias in
the input distribution, the attack effectiveness reduces. Alter-
natively, ATI can be utilized only for those circuits where
large AND/OR trees exist close to the primary inputs. Our
empirical evaluation shows large trees (with larger than 64
inputs) are rather rare; so, the designer has to resort to inser-
tion of dummy AND trees, which can be easily removed
using the proposed attacks.
Execution Time. The execution time of the SGS attack

depends on the circuit size and the number of the iterations
of the attack. Each iteration computes a single attack pattern.
Thus, for the circuit ifu_ifq with 39,680 attack patterns, the
execution time is the highest. For most of the circuits, the
execution time of the attack is in the order of a few seconds.
Even for the circuit k2 with a 104-input AND tree, the attack
completes in 6 seconds as the number of computed attack
patterns is only 273. The timeout was set to 10 hours.

V. REMOVAL ATTACKS ON SARLOCK AND

CAMOPERTURB

A. SECURITY ANALYSIS OF SARLOCK

In SARLock circuit, shown in Figure 4(a), the original logic
cone is implemented intact without any modifications, which
makes it vulnerable to removal attacks. As already mentioned
in Section II-E, in SARLock, O ¼ FðIÞ � ððI ¼¼ KÞ^
ðI ¼¼ ksÞÞ. An attacker has to isolate the protection circuitry
comprising of an XOR, comparator and mask block; he/she
can then remove the protection circuitry and extract/pirate
the original IP. The comparator is functionally composed of
XNOR gates and an AND tree, which can be easily identified
using existing AND-tree identification algorithms [27] or the
k-cut detection used in [26].
SARLock is vulnerable to the proposed SPS attack. The

comparator logic comprises internally of an AND-tree, which
can be identified using the skew values computed by the SPS
attack. Upon the removal of the protection logic, the original
function O ¼ FðIÞ is retrieved.
SARLock, however, is not vulnerable to the SGS attack.

The effectiveness of the SGS attack depends on the bias in
the input distribution. In SARLock, the comparator inputs
are tied to primary inputs that do not exhibit any bias. The
attack fails to achieve any reduction in the number of attack
patterns.

B. SECURITY ANALYSIS OF CAMOPERTURB

As shown in Figure 4(c), the restore circuitry in CamoPer-
turb [23] consists only of a comparator and an XOR gate. In
CamoPerturb, O ¼ F0ðIÞ � ðI ¼¼ csÞ. Although the SPS
attack can identify the comparator logic comprising the
AND-tree, the removal of the protection logic leads to the
retrieval of the perturbed/modified netlist F0ðIÞ, as opposed
to the targeted original netlist FðIÞ. The comparator inputs
are connected to the primary inputs of the circuit; thus, there
is no bias in the input distribution, and the SGS attack is inef-
fective against CamoPerturb.

TABLE 7. SGS attack results.

Benchmark ST DIPEXP DIPSGS Rð%Þ Texec(s)

k2 104 1.01E+31 273 100.0 6.1
s38417 35 1.72E+10 NA NA NA
s15850 28 1.34E+08 NA NA NA
des 27 6.71E+07 28 100.0 1.3
s38584 27 6.71E+07 1,024 100.0 12.4
b18 26 3.35E+07 NA NA NA
b19 26 3.35E+07 NA NA NA
tlu_mmu 25 1.68E+07 NA NA NA
lsu_stb 24 8.39E+06 NA NA NA
s13207 21 1.05E+06 6 100.0 1.3
ifu_ifq 20 5.24E+05 39,680 92.4 6,269.0
c2670 18 1.31E+05 NA NA NA
lsu_excp 18 1.31E+05 2,624 98.0 29.3
c3540 17 65,536 4,096 93.8 100.1
c1908 14 8,192 2 100.0 1.3
c880 14 8,192 3,072 62.5 32.0
c5315 13 4,096 991 75.8 10.3
c432 12 2,048 257 87.5 3.3
fpu_in 10 512 59 88.5 2.5
ifu_dcl 10 512 510 0.4 4.6
lsu_rw 10 512 59 88.5 2.8
i8 9 256 70 72.7 9.9

ST denotes the number of inputs of the largest AND/OR tree in the circuit.
DIPSGS denotes the number of attack patterns returned by the SGS attack.
DIPEXP is the expected number of DIPs required by the SAT attack [17],
[18], [27]. R is the percentage reduction in the number of DIPs. Texec
denotes the execution time in seconds.

530 VOLUME 8, NO. 2, APRIL-JUNE 2020

Yasin et al.: Removal Attacks on Logic Locking and Camouflaging Techniques

Authorized licensed use limited to: Texas A M University. Downloaded on October 05,2021 at 00:15:43 UTC from IEEE Xplore. Restrictions apply.

C. DISCUSSION

Table 8 summarizes the vulnerability of the existing SAT
attack resilient locking techniques to the proposed attacks.
The proposed SPS and SGS attacks are effective for specific
countermeasures, Anti-SAT and ATI, respectively. However,
as the empirical results demonstrate, the execution time of
both attacks is rather small. The attacks together serve as an
evaluation platform that can assist designers in quickly deter-
mining the possible vulnerabilities of their logic locking/
camouflaging solutions.
According to our analysis, CamoPerturb exhibits the best

security properties among all SAT attack resilient counter-
measures. However, CamoPerturb protects the circuit for
only one minterm. Thus, CamoPertub has to be combined
with traditional logic locking/camouflaging techniques.

VI. CONCLUSION

Several countermeasures such as Anti-SAT and ATI have
been developed to thwart the SAT attack, and prevent IP
piracy through reverse engineering. Our security analysis
identifies security vulnerabilities in the existing countermeas-
ures. We present three simple attacks, SPS, AGR, and SGS,
that can break Anti-SAT and ATI, within minutes. The pro-
posed attacks serve as a quick evaluation platform for future
logic locking and camouflaging solutions. We also provide
insights for developing SAT attack resilient solutions that
can withstand the proposed attacks.

ACKNOWLEDGMENTS

This work was supported in part by the Army Research Office
(ARO) under Grant number 65513-CS; the US National
Science Foundation, Division Of Computer and Network
Systems (NSF/CNS), under Grant number 1652842; and the
New York University/New York University Abu Dhabi
(NYU/ NYUAD) Center for Cyber Security (CCS). A prelim-
inary version of this paper was presented at IEEE Asia and
South Pacific Design Automation Conference 2017 [1].

REFERENCES

[1] M. Yasin, B. Mazumdar, O. Sinanoglu, and J. Rajendran, “Security analy-
sis of anti-SAT,” in Proc. IEEE Asia South Pacific Des. Autom. Conf.,
2016, pp. 342–347.

[2] Defense Science Board (DSB) study on High Performance Microchip
Supply, 2005. [Online]. Available: www.acq.osd.mil/dsb/reports/
ADA435563.pdf, Accessed on: Mar. 16, 2015.

[3] SEMI, “Innovation is at risk losses of up to $4 billion annually due to IP
infringement,” 2008. [Online]. Available: www.semi.org/en/Issues/
IntellectualProperty/ssLINK/P043785, Accessed on: Jun. 10, 2015.

[4] M. Rostami, F. Koushanfar, and R. Karri, “A primer on hardware security:
Models, methods, and metrics,” Proc. IEEE, vol. 102, no. 8, pp. 1283–
1295, Aug. 2014.

[5] M. Yasin, S. M. Saeed, J. Rajendran, and O. Sinanoglu, “Activation of
logic encrypted chips: Pre-test or post-test?” in Proc. IEEE Des. Autom.
Test Eur. Conf. Exhib., 2016, pp. 139–144.

[6] R. Torrance and D. James, “The state-of-the-art in semiconductor reverse
engineering,” in Proc. IEEE/ACM Des. Autom. Conf., 2011, pp. 333–338.

[7] J. A. Roy, F. Koushanfar, and I. L. Markov, “Ending piracy of integrated
circuits,” IEEE Comput., vol. 43, no. 10, pp. 30–38, Oct. 2010.

[8] J. Rajendran, M. Sam, O. Sinanoglu, and R. Karri, “Security analysis of
integrated circuit camouflaging,” in Proc. ACM/SIGSAC Conf. Comput.
Commun. Secur., 2013, pp. 709–720.

[9] R. W. Jarvis and M. G. McIntyre, “Split manufacturing method for
advanced semiconductor circuits,” U.S. Patent 7 195 931, 2007.

[10] J. Rajendran, O. Sinanoglu, and R. Karri, “Regaining trust in VLSI design:
Design-for-trust techniques,” Proc. IEEE, vol. 102, no. 8, pp. 1266–1282,
Aug. 2014.

[11] B. Colombier and L. Bossuet, “Survey of hardware protection of design
data for integrated circuits and intellectual properties,” IET Comput. Digit.
Techn., vol. 8, no. 6, pp. 274–287, 2014.

[12] A. Baumgarten, A. Tyagi, and J. Zambreno, “Preventing IC piracy using
reconfigurable logic barriers,” IEEE Des. Test Comput., vol. 27, no. 1,
pp. 66–75, Jan./Feb. 2010.

[13] M. Yasin, J. Rajendran, O. Sinanoglu, and R. Karri, “On improving the
security of logic locking,” IEEE Trans. Comput.-Aided Des. Integr. Cir-
cuits Syst., vol. 35, no. 9, pp. 1411–1424, Sep. 2016.

[14] J. Rajendran, et al., “Fault analysis-based logic encryption,” IEEE Trans.
Comput., vol. 64, no. 2, pp. 410–424, Feb. 2015.

[15] R. S. Chakraborty and S. Bhunia, “HARPOON: An obfuscation-based
SoC design methodology for hardware protection,” IEEE Trans. Comput.-
Aided Des. Integr. Circuits Syst., vol. 28, no. 10, pp. 1493–1502, Oct.
2009.

[16] F. Koushanfar, “Provably secure active IC metering techniques for piracy
avoidance and digital rights management,” IEEE Trans. Inf. Forensics
Secur., vol. 7, no. 1, pp. 51–63, Feb. 2012.

[17] M. E. Massad, S. Garg, and M. V. Tripunitara, “Integrated circuit (IC) dec-
amouflaging: Reverse engineering camouflaged ICs within minutes,” in
Proc. Netw. Distrib. Syst. Secur. Symp., 2015, pp. 1–14.

[18] C. Yu, X. Zhang, D. Liu, M. Ciesielski, and D. Holcomb, “Incremental
SAT-based reverse engineering of camouflaged logic circuits,” IEEE Trans.
Comput.-Aided Des. Integr. Circuits Syst., vol. PP, no. 99, p. 1, 2017.

[19] M. Yasin and O. Sinanoglu, “Transforming between logic locking and IC
camouflaging,” in Proc. IEEE Int. Des. Test Symp., 2015, pp. 1–4.

[20] J. Rajendran, Y. Pino, O. Sinanoglu, and R. Karri, “Security analysis of logic
obfuscation,” in Proc. IEEE/ACMDes. Autom. Conf., 2012, pp. 83–89.

[21] S. M. Plaza and I. L. Markov, “Solving the third-shift problem in IC piracy
with test-aware logic locking,” IEEE Trans. Comput.-Aided Des. Integr.
Circuits Syst., vol. 34, no. 6, pp. 961–971, Jun. 2015.

[22] M. I. M. Collantes, M. El Massad, and S. Garg, “Threshold-dependent
camouflaged cells to secure circuits against reverse engineering attacks,”
in Proc. IEEE Comput. Soc. Annu. Symp. VLSI, 2016, pp. 443–448.

[23] M. Yasin, B. Mazumdar, O. Sinanoglu, and J. Rajendran, “CamoPerturb:
Secure IC camouflaging for minterm protection,” in Proc. IEEE/ACM Int.
Conf. Comput.-Aided Des., 2016, pp. 29:1–29:8.

TABLE 8. Attack/Defense Matrix for SAT Attack Resilient Logic Locking Techniques and the Proposed SPS and SGS Attacks.

SPS+Removal AGR SGS+Removal

SARLock [25] @ @ SARLock inputs are PIs (no bias)
Anti-SAT [26] Obfuscation may impact SPS values @ Anti-SAT inputs are PIs (no bias)
ATI [27] Dummy AND-tree identified and

removed, real AND-tree identified but
removal failed

Dummy AND-tree identified and
removed, real AND-tree
identified but removal failed

@

CamoPerturb [23] Restore signal identified but removal
failed

Restore signal identified but
removal failed

CamoPerturb inputs are PIs (no bias)

@ denotes that a technique is vulnerable to an attack. When a technique is resilient to an attack, we provide a brief explanation. All vulnerability and resiliency
expectations in this table have been experimentally validated by running each attack on each defense for our largest benchmark circuits.

VOLUME 8, NO. 2, APRIL-JUNE 2020 531

Yasin et al.: Removal Attacks on Logic Locking and Camouflaging Techniques

Authorized licensed use limited to: Texas A M University. Downloaded on October 05,2021 at 00:15:43 UTC from IEEE Xplore. Restrictions apply.

www.acq.osd.mil/dsb/reports/ADA435563.pdf
www.acq.osd.mil/dsb/reports/ADA435563.pdf
www.semi.org/en/Issues/IntellectualProperty/ssLINK/P043785
www.semi.org/en/Issues/IntellectualProperty/ssLINK/P043785

[24] P. Subramanyan, S. Ray, and S. Malik, “Evaluating the security of logic
encryption algorithms,” in Proc. IEEE Int. Symp. Hardware Oriented
Secur. Trust, 2015, pp. 137–143.

[25] M. Yasin, B. Mazumdar, J. J. Rajendran, and O. Sinanoglu, “SARlock:
SAT attack resistant logic locking,” in Proc. IEEE Int. Symp. Hardware
Oriented Secur. Trust, 2016, pp. 236–241.

[26] Y. Xie and A. Srivastava, “Mitigating SAT attack on logic locking,” in
Proc. Int. Conf. Cryptographic Hardware Embedded Syst., 2016, pp. 127–
146.

[27] M. Li, et al., “Provably secure camouflaging strategy for IC protection,” in
Proc. IEEE/ACM Int. Conf. Comput.-Aided Des., 2016, pp. 28:1–28:8.

[28] M. Yasin, B. Mazumdar, S. S. Ali, and O. Sinanoglu, “Security analysis of
logic encryption against the most effective side-channel attack: DPA,” in
Proc. IEEE Int. Symp. Defect Fault Tolerance VLSI Nanotechnol. Syst.,
2015, pp. 97–102.

[29] K. Shamsi, M. Li, T. Meade, Z. Zhao, D. Z. Pan, and Y. Jin, “AppSAT:
Approximately deobfuscating integrated circuits,” in Proc. IEEE Int.
Symp. Hardware Oriented Secur. Trust, 2017, pp. 95–100.

[30] F. Koushanfar, “Integrated circuits metering for piracy protection and digi-
tal rights management: An overview,” in Proc. Great Lakes Symp. VLSI,
2011, pp. 449–454.

[31] J. P. Baukus, L. W. Chow, R. P. Cocchi, and B. J. Wang, “Method and
apparatus for camouflaging a standard cell based integrated circuit with
micro circuits and post processing,” U.S. Patent 20 120 139 582, 2012.

[32] G. T. Becker, F. Regazzoni, C. Paar, and W. P. Burleson, “Stealthy
dopant-level hardware trojans,” in Proc. Int. Conf. Cryptographic Hard-
ware Embedded Syst., 2013, pp. 197–214.

[33] S. Malik, G. Becker, C. Paar, and W. Burleson, “Development of a layout-
level hardware obfuscation tool,” in Proc. IEEE Annu. Symp. VLSI, 2015,
pp. 204–209.

[34] A. Vijayakumar, V. C. Patil, D. E. Holcomb, C. Paar, and S. Kundu,
“Physical design obfuscation of hardware: A comprehensive investigation
of device and logic-level techniques,” IEEE Trans. Inf. Forensics Secur.,
vol. 12, no. 1, pp. 64–77, Jan. 2017.

[35] R. P. Cocchi, J. P. Baukus, L. W. Chow, and B. J. Wang, “Circuit camou-
flage integration for hardware ip protection,” in Proc. IEEE/ACM Des.
Autom. Conf., 2014, pp. 1–5.

[36] M. C. Hansen, H. Yalcin, and J. P. Hayes, “Unveiling the ISCAS-85
benchmarks: A case study in reverse engineering,” IEEE Des. Test
Comput., vol. 16, no. 3, pp. 72–80, July 1999.

[37] OpenSPARC T1 Processor, 2015. [Online]. Available: http://www.oracle.
com/technetwork/systems/opensparc/opensparc-t1-page-%1444609.html,
Accessed on: Nov. 1, 2015.

[38] F. Brglez, D. Bryan, and K. Kozminski, “Combinational profiles of
sequential benchmark circuits,” in Proc. IEEE Int. Symp. Circuits Syst.,
1989, pp. 1929–1934.

[39] N. Sorensson and N. Een, “Minisat v1.13- A SAT solver with conflict-
clause minimization,” SAT J., vol. 2005, no. 53, pp. 1–2, 2005.

[40] T. Larrabee, “Test pattern generation using boolean satisfiability,” IEEE
Trans. Comput.-Aided Des. Integr. Circuits Syst., vol. 11, no. 1, pp. 4–15,
Jan. 1992.

MUHAMMAD YASIN (S’13) received the BS
degree in electrical engineering from the University
of Engineering and Technology (UET) Lahore,
Pakistan and the MS degree in microsystems engi-
neering from Masdar Institute of Science and Tech-
nology, UAE. He is working toward the PhD
degree in electrical engineering at New York Uni-
versity, Tandon School of Engineering; and a
Global PhD fellow with New York University Abu
Dhabi, UAE. He has worked as a research officer
with the University Technologi Petronas, Malaysia

and as a lecturer with the COMSATS Institute of IT, Lahore, Pakistan. He
was awarded Dean’s Award for Academic Excellence by Masdar Institute of
Science and Technology. He holds two pending US patents, and has pub-
lished more than 10 journal and conference papers. His research interests
include hardware security and design-for-trust. He is a student member of
the IEEE.

BODHISATWA MAZUMDAR is presently an
Assistant Professor at Indian Institute of Technol-
ogy Indore. Previosuly, he was a Post Doctoral
Researcher at New York University Abu Dhabi. He
earned his PhD at Indian Institute of Technology
Kharagpur. His research interests is in hardware IP
security and the design and construction of crypto-
primitives which have a good trade-off of crypto-
graphic properties with side-channel analysis attack
resilience. He received the Best Student Paper
Award in the 25th IEEE International Conference
on VLSI Design 2012, Hyderabad, India.

OZGUR SINANOGLU (M’10-SM’15) received
the BS degrees, one in electrical and electronics
engineering and one in computer engineering, both
from Bogazici University, Turkey, in 1999, and the
MS and PhD degrees in computer science and engi-
neering from the University of California San
Diego, in 2001 and 2004, respectively. He is an
associate professor of electrical and computer engi-
neering at New York University Abu Dhabi. He
has industry experience at TI, IBM, and Qual-
comm, and has been with NYU Abu Dhabi since

2010. During his PhD, he won the IBM PhD fellowship award twice. He is
also the recipient of the best paper awards at IEEE VLSI Test Symposium
2011 and ACM Conference on Computer and Communication Security
2013. His research interests include design-for-test, design-for-security, and
design-for-trust for VLSI circuits, where he has around 160 conference and
journal papers, and 20 issued and pending US Patents. He has given more
than a dozen tutorials on hardware security and trust in leading CAD and
test conferences, such as DAC, DATE, ITC, VTS, ETS, ICCD, ISQED, etc.
He is serving as track/topic chair or technical program committee member in
about 15 conferences, and as (guest) associate editor for the IEEE Transac-
tions on Information Forensics and Security, the IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, the ACM Jour-
nal on Emerging Technologies in Computing Systems, the IEEE Transac-
tions on Emerging Topics in Computing, the Elsevier Microelectronics
Journal, the Journal of Electronic Testing: Theory and Applications, and the
IET Computers & Digital Techniques journals. He is the director of the
Design-for-Excellence Lab at NYU Abu Dhabi. His recent research in hard-
ware security and trust is being funded by US National Science Foundation,
US Department of Defense, Semiconductor Research Corporation, and
Mubadala Technology. He is a senior member of the IEEE.

JEYAVIJAYAN RAJENDRAN (S’09-M’15)
received the PhD degree in the Electrical and Com-
puter Engineering Department, New York Univer-
sity, in Aug. 2015. He is an assistant professor in
the Department of Electrical and Computer Engi-
neering, University of Texas, Dallas. His research
interests include hardware security and emerging
technologies. His research has won the NSF
CAREER Award in 2017, the ACM SIGDA Out-
standing PhD Dissertation Award in 2017, and the
Alexander Hessel Award for the Best PhD disserta-

tion in the Electrical and Computer Engineering Department, NYU in 2016.
He has won three Student Paper Awards (ACM CCS 2013, IEEE DFTS
2013, and IEEE VLSI Design 2012); four ACM Student Research Competi-
tion Awards (DAC 2012, ICCAD 2013, DAC 2014, and the Grand Finals
2013); Service Recognition Award from Intel; Third place at Kaspersky
American Cup, 2011; and Myron M. Rosenthal Award for Best Academic
Performance in MS from NYU, 2011. He organizes the annual Embedded
Security Challenge, a red-team/blue-team hardware security competition and
has co-founded Hack@DAC, a student security competition co-located with
DAC. He is a member of the IEEE and the ACM.

Yasin et al.: Removal Attacks on Logic Locking and Camouflaging Techniques

532 VOLUME 8, NO. 2, APRIL-JUNE 2020

Authorized licensed use limited to: Texas A M University. Downloaded on October 05,2021 at 00:15:43 UTC from IEEE Xplore. Restrictions apply.

http://www.oracle.com/technetwork/systems/opensparc/opensparc-t1-page-%1444609.html
http://www.oracle.com/technetwork/systems/opensparc/opensparc-t1-page-%1444609.html
http://www.oracle.com/technetwork/systems/opensparc/opensparc-t1-page-%1444609.html

