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Abstract. The traveling salesman problem (TSP) is a fundamental problem in combina-
torial optimization. Several semidefinite programming relaxations have been proposed
recently that exploit a variety of mathematical structures including, for example, algebraic
connectivity, permutation matrices, and association schemes. The main results of this
paper are twofold. First, de Klerk and Sotirov [de Klerk E, Sotirov R (2012) Improved
semidefinite programming bounds for quadratic assignment problems with suitable
symmetry. Math. Programming 133(1):75–91.] present a semidefinite program (SDP) based
on permutation matrices and symmetry reduction; they show that it is incomparable to the
subtour elimination linear program but generally dominates it on small instances. We
provide a family of simplicial TSP instances that shows that the integrality gap of this SDP
is unbounded. Second, we show that these simplicial TSP instances imply the unbounded
integrality gap of every SDP relaxation of the TSP mentioned in the survey on SDP re-
laxations of the TSP in section 2 of Sotirov [Sotirov R (2012) SDP relaxations for some
combinatorial optimization problems. Anjos MF, Lasserre JB, eds., Handbook on Semi-
definite, Conic and Polynomial Optimization (Springer, New York), 795–819.]. In contrast, the
subtour linear program performs perfectly on simplicial instances. The simplicial instances
thus form a natural litmus test for future SDP relaxations of the TSP.

Funding: This work was supported by the Division of Graduate Education [Grant DGE-1650441] and
the National Science Foundation [Grant CCF-1908517], Cornell University.
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1. Introduction
In this paper, we consider relaxations of the traveling salesman problem (TSP) based on semidefinite pro-
grams. The TSP is a fundamental problem in combinatorial optimization, combinatorics, and theoretical
computer science. An input consists of a set [n] :� {1, 2, 3, . . . , n} of n cities and, for each pair of cities i, j ∈ [n],
an associated cost or distance dij ≥ 0 reflecting the cost or distance of traveling from city i to city j. Throughout
this paper, we assume that the edge costs dij are symmetric (so that dij � dji for all i, j ∈ [n]) and metric (so that
dij ≤ dik + dkj for all i, j, k ∈ [n]). The TSP is then to find a minimum-cost tour visiting each city exactly once.
Treating the cities as vertices of the complete, undirected graph Kn and treating an edge {i, j} of Kn as having
cost dij, the TSP is equivalent to finding a minimum-cost Hamiltonian cycle on Kn.

The TSP (with the implicit assumptions that the edge costs are metric and symmetric) is a canonical
nondeterministic polynomial-time-hard (NP-hard) problem; finding a polynomial-time approximation al-
gorithm with as strong a performance guarantee as possible remains a major open question. Currently it is
known to be NP-hard to approximate TSP solutions in polynomial time to within any constant factor α <
123/122 (Karpinski et al. [19]). In contrast, the strongest positive performance guarantee dates back more than
40 years: the Christofides–Serdyukov algorithm (Christofides [3], Serdyukov [24]) finds a Hamiltonian cycle in
polynomial time that is at most a factor of 3

2 away from the optimal TSP solution.
One powerful technique for analyzing TSP approximation algorithms is to relax the discrete set of

Hamiltonian cycles. The prototypical example is the subtour elimination linear program (LP), also referred to
as the Dantzig–Fulkerson–Johnson relaxation (Dantzig et al. [6]) and the Held–Karp bound (Held and Karp
[16]), which we will refer to as the subtour LP. The subtour LP is a relaxation of the TSP because (1) every
Hamiltonian cycle has a corresponding feasible solution to the subtour LP, and (2) the value of the subtour LP for
such a feasible solution equals the cost of the corresponding Hamiltonian cycle. As a result, the optimal value of the
subtour LP is a lower bound on the optimal solution to the TSP. Wolsey [29], Cunningham [4], and Shmoys and
Williamson [26] show that the Christofides–Serdyukov algorithm produces a (not necessarily optimal)
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Hamiltonian cycle that is within a factor of 3/2 of the optimal value of the subtour LP. Combining these two
observations shows that the Christofides–Serdyukov algorithm satisfies the following chain of inequalities:

Optimal TSP solution ≤ Cost of cycle produced by Christofides–Serdyukov algorithm

≤ 3
2

Optimal value of subtour LP

≤ 3
2

Optimal TSP solution.

Hence, the Christofides–Serdyukov algorithm is a 3
2-approximation algorithm for the TSP. Moreover, the

integrality gap of the subtour LP, which measures the worst-case performance of a relaxation relative to the
TSP, is at most 3/2: for any instance, the ratio of the optimal TSP solution to the optimal value of the subtour
LP cannot be more than 3/2. If the subtour LP did not have a constant-factor integrality gap, it would not be
possible to use the LP as before to show that a TSP algorithm was a constant-factor approximation algorithm.
Goemans [12] conjectured that the integrality gap of the subtour LP is 4/3, although the 3/2 bound of Wolsey
[29], Cunningham [4], and Shmoys and Williamson [26] remains state of the art.

More recently, several TSP relaxations based on semidefinite programs (SDPs) have been proposed; see
section 2 of Sotirov [27] for a short survey. Cvetković et al. [5] gives a relaxation based on adjacency matrices
and algebraic connectivity. De Klerk et al. [8] introduce a relaxation based on the theory of association
schemes (see also de Klerk et al. [9]). Zhao et al. [30] introduce a relaxation to the more general quadratic
assignment problem (QAP), a special case of which is the TSP. Their relaxation is based on properties of
permutation matrices; de Klerk et al. [10] show that the optimal value of their SDP coincides with the optimal
value of the SDP introduced by Zhao et al. [30] when specialized to the TSP. Sotirov [27] summarizes two
interpretations of this latter SDP relaxation of the QAP. First, it is equivalent to a similar SDP relaxation of the
QAP also based on permutation matrices from Povh and Rendl [23] (with equivalence shown in Povh and
Rendl [23]). Second, it is equivalent to applying the N+ lift-and-project operator of Lovász and Schrijver [22]
to a QAP polytope; this equivalence is shown in Burer and Vandenbussche [2] and Povh and Rendl [23].
Anstreicher [1] gives another SDP relaxation of the QAP. When specialized to the TSP, it is equivalent to the
projected eigenvalue bound of Hadley et al. [15].

Most recently, de Klerk and Sotirov [8] apply symmetry reduction to strengthen the QAP relaxation of Povh
and Rendl [23] in certain cases. This strengthened QAP relaxation can be applied to the TSP, and de Klerk and
Sotirov [8] evaluate the strengthened QAP relaxation on the 24 classes of facet-defining inequalities for the TSP
on eight vertices. Although solving the SDP is computationally demanding, their results are promising: the
strengthened QAP performs at least as well as the subtour LP on all but one of the 24 instances, and it
generally outperforms the subtour LP.

Although computationally involved, these SDPs are based on a broad variety of rich combinatorial
structures that has led to several theoretical results. Goemans and Rendl [11] show that the SDP relaxation of
Cvetković et al. [5] is weaker than the subtour LP in the following sense: any solution to the subtour LP
implies an equivalent feasible solution for the SDP of Cvetković et al. [5] of the same cost. Both optimization
problems are minimization problems, and the SDP is optimizing over a broader search set, so the optimal
value for the SDP of Cvetković et al. [5] cannot be closer than the optimal value of the subtour LP to the
optimal TSP cost. However, de Klerk et al. [10] show the exciting result that their SDP is incomparable with
the subtour LP: there are instances where the optimal value of their SDP is closer to the optimal TSP cost than
the optimal value of the subtour LP and vice versa. Moreover, de Klerk et al. [10] show that their SDP is
stronger than the earlier SDP of Cvetković et al. [5]: any feasible solution for the SDP of de Klerk et al. [10]
implies a feasible solution for the SDP of Cvetković et al. [5] of the same cost.

Gutekunst and Williamson [14] show that the SDP relaxations of both Cvetković et al. [5] and de Klerk et al. [10],
however, have unbounded integrality gaps. Moreover, they have a counterintuitive nonmonotonicity
property: in certain instances, it is possible to artificially add vertices (in a way that preserves metric and
symmetric edge costs) and arbitrarily lower the cost of the optimal solution to the SDP. Such a property
contrasts with both the TSP and subtour LP, which are known to be monotonic (see Section 4).

The main results of this paper are to complete the characterization of integrality gaps of every SDP re-
laxation of the TSP mentioned in Sotirov [27] and to introduce a family of instances that implies that every
such SDP has an unbounded integrality gap and is nonmonotonic. To do so, we show that the SDP of de Klerk
and Sotirov [10] has an unbounded integrality gap (and, in turn, has the same nonmonotonicity property as
those of Cvetković et al. [5] and de Klerk et al. [10]). Doing so further implies that no SDP relaxation of the TSP
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surveyed in Sotirov [27] can be used in proving approximation guarantees on TSP algorithms in the same way
as the subtour LP. The family of instances we use generalizes those from Gutekunst and Williamson [14] to a
new family of TSP instances, which we call simplicial TSP instances because they can be viewed as placing
groups of vertices at the extreme points of a simplex. This family forms an intriguing set of test instances for
SDP relaxations of the TSP: the vertices of the TSP instance can be embedded into Rd (for a d that grows as the
integrality gap increases), the integrality gap of the subtour LP on these instances is one (i.e., the optimal value
of the subtour LP on any instance in this family matches the cost of the TSP solution), but these instances
imply an unbounded integrality gap for at least the following SDPs:

• The SDP TSP relaxation of Cvetković et al. [5] (based on algebraic connectivity);
• The SDP TSP relaxation of de Klerk et al. [10] based on the theory of association schemes (see also de

Klerk et al. [9]);
• The SDP QAP relaxation of Zhao et al. [30], when specialized to the TSP (based on permutation matrices

and shown by de Klerk et al. [10] to have an optimal value coinciding with the SDP of de Klerk et al. [10]);
• The SDP QAP relaxation of Povh and Rendl [23], when specialized to the TSP (based on permutation

matrices and shown by Povh and Rendl [23] to be equivalent to the SDP of Zhao et al. [30]);
• The SDP QAP relaxation of de Klerk and Sotirov [8], when specialized to the TSP (obtained by performing

symmetry reduction on the SDP of de Klerk et al. [10]); and
• The SDP QAP relaxation of Anstreicher [1], when specialized to the TSP (equivalent to the projected

eigenvalue bound of Hadley et al. [15]).
In Section 2, we introduce the notation we will use and provide background on the SDP of de Klerk and

Sotirov [8]. In Section 3, we show how the instances of Gutekunst and Williamson [14] directly imply that
the integrality gap of the SDP of Povh and Rendl [23] is unbounded but only that the integrality gap of
the SDP of de Klerk and Sotirov [8] is at least two. This result motivates the generalized simplicial instances
we formalize in Section 4. In Section 4, we also prove our main result. We specifically show that for z ∈ N,
the simplicial instances in R2z−1 imply an integrality gap for the SDP of de Klerk and Sotirov [8] of at least z.
We do so by finding a family of instances where the SDP cost can be bounded by 2 + ε for any ε > 0 (with
sufficiently large n), whereas the TSP cost grows arbitrarily. As a corollary, we show that the SDP of de Klerk
and Sotirov [8] is again nonmonotonic. We conclude in Section 5 by discussing two open questions about SDP-
based relaxations of the TSP.

2. SDP Relaxations of the TSP
2.1. Notation and Preliminaries
Throughout this paper, we use Jm and Im to respectively denote the all-ones and identity matrix in Rm×m. We let
e(m)
i denote the ith standard basis vector in Rm and let e(m) :� e(m)

1 + · · · + e(m)
m denote the all-ones vector in Rm. We

let E(m)
ij :� e(m)

i (e(m)
j )T denote the m ×m matrix with a one in the i, jth position and zero elsewhere.

We let Sm×m denote the set of real, symmetric matrices in Rm×m and let Πm be the set of m ×m permutation
matrices. The term Y � 0 denotes that Y is a positive semidefinite matrix; for Y ∈ Sm×m, Y � 0 means that all
eigenvalues of Y are nonnegative. The term Y ≥ 0 denotes that Y is a nonnegative matrix entrywise.

We will use several matrix operations from linear algebra. For a matrix M ∈ Rm×m and S1,S2 ⊂ [m], let
M[S1, S2] denote the submatrix of M with rows in S1 and columns in S2. When S1 � S2, we simplify notation
and write M[S1] :� M[S1,S1]. For a vector x ∈ Rm, let Diag(x) be the m ×m diagonal matrix whose i, ith entry
is xi. For a matrix Y, let trace(Y) denote the trace of Y, that is, the sum of its diagonal entries. For A,B ∈ Sm×m,
note that

trace AB( ) � ∑m
i�1

∑m
j�1

AijBij � 〈A,B〉,

the matrix inner product. For an m ×m matrix Y, let vec(Y) be the vector in Rm2
that stacks the columns of Y.

Finally, for matrices A,B of arbitrary dimension, A ⊗ B denotes the Kronecker product of A and B. The
Kronecker product has particularly nice spectral properties. If A ∈ Ra×a and B ∈ Rb×b have respective eigen-
values λi(A) and λj(B) for i � 1, . . . , a and j � 1, . . . , b, the ab eigenvalues of A ⊗ B are the ab products λi(A)λj(B)
(theorem 4.2.12 of Horn and Johnson [17]).
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We will regularly work with circulant matrices. A circulant matrix in Rm×m has the form

c0 c1 c2 c3 · · · cm−1
cm−1 c0 c1 c2 · · · cm−2

cm−2 cm−1 c0 c1 . .
.

cm−3
..
. ..

. ..
. ..

. . .
. ..

.

c1 c2 c3 c4 · · · c0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
� c t−s( ) mod m

( )m
s,t�1.

Such a matrix is symmetric if ci � cm−i for i � 1, . . . ,m − 1. We use a standard basis of symmetric circulant
matrices in Rm×m consisting of matrices C(m)

0 ,C(m)
1 , . . . ,C(m)

d , where, for i � 1, . . . , d − 1, C(m)
i is the symmetric

circulant m ×m matrix with ci � cm−i � 1 and cj � 0 otherwise. We set Cm
0 � 2I and, when m is even, set C(m)

m/2 to
be the matrix where cm/2 � 2 and cj � 0 otherwise. Following these definitions, each C(m)

i has the property that
all rows sum to two. When clear from context, we will suppress the dependence on the dimension and use, for
example, Ci rather than C(m)

i . We use A(G) to denote the adjacency matrix of a graph G and Cm to denote the
cycle graph on m vertices in lexicographic order. Note that A(Cm) � C(m)

1 .
Throughout the remainder of this paper, we take n to be the number of cities/vertices of a TSP instance. We

will assume that n is even and let d � n/2. We reserve D as the matrix of edge costs or distances (so that for
1 ≤ i ≤ n and 1 ≤ j ≤ n, Dii � 0 and Dij � dij is the cost of traveling between cities i and j). We implicitly assume
that the edge costs dij defining D are symmetric and metric.

Let OPTSDP(D) and OPTTSP(D), respectively, denote the optimal value to an SDP relaxation and the cost of an
optimal TSP solution for a given matrix of costs D. If D is the set of all cost matrices corresponding to metric
and symmetric TSP instances, the integrality gap of the SDP is

sup
D∈D

OPTTSP D( )
OPTSDP D( ) .

This ratio is bounded below by one for any SDP that is a relaxation of the TSP (because the optimal TSP
solution has a corresponding feasible SDP solution of cost OPTTSP(D)). The ratio OPTTSP(D)

OPTSDP(D) for any TSP cost
matrix D ∈ D provides a lower bound on the integrality gap.

2.2. SDP Relaxations
The QAP was introduced in Koopmans and Beckmann [20]. Let matrices A,B ∈ Sn×n, respectively, encode the
pairwise distances between a set of n locations and the pairwise flows between n different facilities. Let
C � (cij) be a matrix of placement costs where cij denotes the cost of placing facility i at location j. The QAP is to
assign each facility to a distinct location to minimize total cost, where the cost depends quadratically on flows
and distances and linearly on placement costs:

min trace AXB + C( )XT( )
: X ∈ Πn

{ }
,

where A,B ∈ Sn×n and C ∈ Rn×n. The TSP for n cities is obtained in the special case where B � D,A � 1
2A(Cn) �

1
2C

(n)
1 , and C � 0 (the all-zeros matrix). In this case, using the cyclic and linear properties of trace, the objective

function becomes

trace
1
2
C n( )
1 XDXT

( )
� 1
2

XTC n( )
1 X,D

〈 〉
,

so the permutation matrix X can interpreted as finding the optimal tour and relabeling the vertices according
to the order of that tour; XTC(n)

1 X is then the adjacency matrix of the relabeled tour.
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The SDP QAP relaxation of Povh and Rendl [23], when specialized to the TSP, is

min
1
2
trace D ⊗ C n( )

1

( )
Y

( )
subject to trace In ⊗ E n( )

jj

( )
Y

( )
� 1 j � 1, . . . ,n,

trace E n( )
jj ⊗ In

( )
Y

( )
� 1 j � 1, . . . ,n,

trace In ⊗ Jn − In( ) + Jn − In( ) ⊗ In( )Y( ) � 0

trace Jn2Y( ) � n2

Y ≥ 0,Y � 0,Y ∈ Sn
2×n2 .

(1)

That this is a valid relaxation can be seen by setting Y � vec(X)vec(X)T for any permutation matrix X ∈ Πn.
Letting X:i � X[[n], {i}] denote the ith column of X, that is,

vec X( ) �

X:1

X:2

..

.

X:n

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠,

we see that Y has the block structure

Y �

Y 11( ) Y 12( ) · · · Y 1n( )

Y 21( ) Y 22( ) · · · Y 2n( )

..

. ..
. . .

. ..
.

Y n1( ) Y n2( ) · · · Y nn( )

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠,
where Y(ij) � X:iXT

:j ∈ Rn×n. If X is a permutation matrix, each Y(ij) � E(n)
st for some s, t. Specifically, Y(ij) � E(n)

st for
the s, t such that Xei � es and Xej � et. That the constraints hold then readily follows: each Y(ii) � E(n)

ss for some s
(so that trace((E(n)

ii ⊗ In)Y) � 1), and because X is a permutation matrix, Y(ii) �� Y(kk) for i �� k (so that
trace((In ⊗ E(n)

jj )Y) � 1). Similarly, each Y(ii) is diagonal, whereas each Y(ij) with i �� j has zero diagonal (so that
trace((In ⊗ ( Jn − In) + (Jn − In) ⊗ In)Y) � 0), and because each of the n2 blocks Y(ij) consists of a single one and
zeros elsewhere, the sum of all entries in Y is n2; that is, trace(Jn2Y) � n2. The factored form Y � vec(X)vec(X)T
implies that Y is a rank-one positive semidefinite matrix, and because Y is 0–1, Y ≥ 0. Finally, (Y(ij))T �
(X:iXT

:j )T � X:jXT
:i � Y(ji), so Y is symmetric. As we show explicitly in Section 3, results from Gutekunst and

Williamson [14] and de Klerk et al. [10] imply that SDP (1) has an unbounded integrality gap.
In de Klerk and Sotirov [8], symmetry reduction is applied to SDP (1) to obtain the following SDP relaxation

of the TSP:

min trace D β
[ ] ⊗ 1

2
C n( )
1 α[ ] +Diag c̄( )

( )
Y

( )
subject to trace In−1 ⊗ E n−1( )

jj

( )
Y

( )
� 1 j � 1, . . . ,n − 1

trace E n−1( )
jj ⊗ In−1

( )
Y

( )
� 1 j � 1, . . . ,n − 1

trace In−1 ⊗ Jn−1 − In−1( ) + Jn−1 − In−1( ) ⊗ In−1( )Y( ) � 0

trace Jn−1 ⊗ Jn−1( )Y( ) � n − 1( )2
Y ≥ 0,Y � 0,Y ∈ S n−1( )2× n−1( )2 ,

(2)

where s, r ∈ [n], α � [n]\r and β � [n]\s, and c̄ � vec(C1[α, {r}]D[{s}, β]). All that matters for the TSP is the order
in which the vertices are visited in the optimal tour; there are (n − 1)!/2 distinct tours but n! permutation
matrices. One way to interpret the symmetry reduction intuitively is that, without loss of generality, one may
assume that an optimal solution X ∈ Πn is such that Xr,s � 1 (i.e., that the sth vertex visited is vertex r): an
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optimal tour includes vertex r and can be reindexed (without changing the cost of the tour) so that vertex r is
the sth vertex visited. Making this assumption leaves the n − 1 vertices α to be visited at the n − 1 positions β,
so one can effectively write a QAP for X[α, β] ∈ Πn−1 (the submatrix of X for which entries are not fixed by
Xr,s � 1). Following through this process results in a QAP on (n − 1) vertices; appropriately adjusting the
objective function and writing the SDP relaxation of the QAP on (n − 1) vertices yield the SDP relaxation (2).
See de Klerk and Sotirov [8] for full details.

We analyze the integrality gap of SDP (2) in Sections 3 (showing that it is at least two) and 4 (showing that it
is unbounded). In both cases, we will find a set of instances on n vertices and an associated feasible Y ∈ Sn

2×n2

that together imply an unbounded integrality gap for SDP (1). We note that up to dimension, the constraints of
SDPs (1) and (2) are exactly the same. Any feasible Y for an instance on n vertices of SDP (1) thus gives a
feasible solution to SDP (2), but in this latter SDP, Y is a feasible solution for instances with one more vertex.
After finding an instance of n vertices and feasible Y for SDP (1), our approach will be to add a single vertex
and then use the same Y to bound the integrality gap of SDP (2) (accounting for the adjusted objective
function). It will thus be convenient to view SDP (2) as an SDP for n + 1 vertex instances (with n still even). The
SDP then becomes

min trace D β
[ ] ⊗ 1

2
C n+1( )
1 α[ ] +Diag c̄( )

( )
Y

( )
subject to trace In ⊗ E n( )

jj

( )
Y

( )
� 1 j � 1, . . . ,n,

trace E n( )
jj ⊗ In

( )
Y

( )
� 1 j � 1, . . . ,n,

trace In ⊗ Jn − In( ) + Jn − In( ) ⊗ In( )Y( ) � 0

trace Jn ⊗ Jn( )Y( ) � n2

Y ≥ 0,Y � 0,Y ∈ Sn
2×n2 ,

where s, r ∈ [n + 1] and α � [n + 1]\r and β � [n + 1]\s and where c̄ � vec(C1[α, {r}]D[{s}, β]). We also refer to
this form of the SDP on n + 1 vertices as SDP (2).

3. An Integrality Gap of at Least Two
We first show how results from Gutekunst and Williamson [14] and de Klerk et al. [10] imply that the
integrality gap of SDP (1) is unbounded, whereas the integrality gap of SDP (2) is at least two. De Klerk et al.
[10, theorem 3] show that the optimal value of SDP (1) coincides with the optimal value of an SDP relaxation of
the TSP based on association schemes; Gutekunst and Williamson [14] give a family of instances that show
that this latter SDP has an unbounded integrality gap. By combining the same family of instances as
Gutekunst and Williamson [14] and the relationship between the SDPs from de Klerk et al. [10, theorem 3], we
obtain that the integrality gap of SDP (1) is unbounded, whereas the integrality gap of SDP (2) is at least two.

Theorem 1. Let d � n
2, where n is even, and define

ai � 2
n − 2

cos
πi
d

( )
+ 1

( )
, i � 1, . . . , d,

and

bi �
2
n 1 − cos πi

d

( )( )
, if i � 1, . . . , d − 1,

2
n , if i � d.

{

Let A � ∑d
i�1 aiCi and B � ∑d

i�1 biCi. Then

Y � 1
2n

I2 ⊗ Jd − In( ) ⊗ A + J2 − I2( ) ⊗ Jd ⊗ B + 2In ⊗ In( )

is feasible for SDP (1).
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Note that Y is an n2 × n2 symmetric matrix that can be partitioned into blocks of size n × n. The n blocks on
the diagonal are scaled copies of the identity matrix. The other blocks are all scaled copies of A or B. For
example, when n � 6, we have

Y � 1
2n

2I A A B B B

A 2I A B B B

A A 2I B B B

B B B 2I A A

B B B A 2I A

B B B A A 2I

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

To prove Theorem 1, we will make use of the following facts from Gutekunst and Williamson [14]. For
completion, we sketch their proofs in the appendix. For k � 0, . . . ,n − 1, define

a k( ) � ∑d
i�1

cos
2πik
n

( )
ai, b k( ) � ∑d

i�1
cos

2πik
n

( )
bi.

Note that

cos
2πi n − k( )

n

( )
� cos 2πi − 2πik

n

( )
� cos

2πik
n

( )
,

so a(k) � a(n−k) and b(k) � b(n−k).

Proposition 1. (a) The ai and bi parameters sum as follows:
∑d

i�1 ai � ∑d
i�1 bi � 1. Equivalently, a(0) � b(0) � 1,

(b) b(k) � −(1 − 2
n)a(k) − 2

n, (c) For k � 1, . . . , d,

a k( ) �
d−2
n−2 , if k � 1,
− 2

n−2 , otherwise.

{

(d) b1 ≤ 4π2

n3 .

To show that Y is positive semidefinite, we also use properties of circulant matrices.

Lemma 1 (Gray [13]). The circulant matrix M � (m(t−s) mod n)ns,t�1 has eigenvalues

λt M( ) �
∑n−1

s�0mse−
2πst

̅̅−1√
n , if t � 1, . . . ,n − 1,∑n−1

s�0ms, if t � n.

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
The eigenvector corresponding to eigenvalue λt is vt � (1,wt,w2

t , . . . ,w
n−1
t ) for t � 0, 1, . . . ,n − 1 with wt � e−2πt

̅̅−1√
n .

To avoid ambiguity with index variables and imaginary numbers, we explicitly write
̅̅̅̅−1√

whenever
working with imaginary numbers and reserve i and j as index variables.

We first show that Y satisfies each of the constraints of SDP (1).

Claim 1. Y satisfies the following SDP constraint: trace((In ⊗ Ejj)Y) � 1 and trace((Ejj ⊗ In)Y) � 1 for j � 1, . . . , n.

Proof. Each of the n2 diagonal entries ofY is 1
n. Both In ⊗ Ejj and Ejj ⊗ In are diagonal matrices with exactly n nonzero

entries, all of which are equal to one. □

Claim 2. Y satisfies the following SDP constraint: trace((In ⊗ (Jn − In) + (Jn − In) ⊗ In)Y) � 0.

Proof. The n × n blocks of Y have sparsity patterns that imply this constraint: I is a diagonal matrix, whereasA and
B have zero diagonal (there is no coefficient of C0 in the sums defining A and B). □

Claim 3. Y satisfies the following SDP constraint: trace(Jn2Y) � n2.

Proof. To show that this constraint holds, we note that Y is expressed in terms of n2 blocks, each of size n × n and
each of which is either 1

2nA,
1
2n B, or

1
n I. In the first row of A, we have that A1,i � ai � an−i for i � 1, . . . , d − 1, whereas

A1,d � 2ad. BecauseA is circulant, each of the n rows ofA then sums to 2
∑d

i�1 ai. Using the first result of Proposition 1,
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the entries in A sum to 2n so that trace(Jn 1
2nA) � 1. Analogously, trace(Jn 1

2n B) � trace(Jn 1
n In) � 1. That is, each of the

n2 blocks defining Y sums to one so that when we sum all the entries in Y,

trace Jn2Y( ) � n2. □

Claim 4. Y satisfies the following SDP constraint: Y ≥ 0.

Proof. The penultimate constraint follows because ai, bi ≥ 0. □

To show feasibility, we thus must finally show the following.

Claim 5. Y satisfies the following SDP constraint: Y � 0.

Proof. From Lemma 1, we have that the eigenvectors of a circulant matrix with first row (m0,m1, . . . ,mn−1) are of
the form vj � (1,wj,w2

j , . . . ,w
n−1
j ) for j � 0, 1, . . . ,n − 1 with wj � e−

2πj
̅̅−1√

n . The eigenvalue corresponding to vj is

λj � m0 +m1wj +m2w2
j + · · · +mn−1wn−1

j .

Hence, vj is a simultaneous eigenvector of A,B, and In. Let λA
j and λB

j , respectively, indicate the eigenvalues of
A and B corresponding to vj. Note that

wi
j + wn−i

j � e−
2πji

̅̅−1√
n + e−

2πj n−i( ) ̅̅−1√
n

� cos − 2πij
n

( )
+ ̅̅̅̅−1√

sin − 2πij
n

( )
+ cos − 2π n − i( )j

n

( )
+ ̅̅̅̅−1√

sin − 2π n − i( )j
n

( )
� 2 cos

2πij
n

( )
.

Then, because A1,i � A1,n−i � ai for i � 1, . . . , d − 1 and A1,d � 2ad,

λA
j � ∑d−1

i�1
ai wi

j + wn−i
j

( )( )
+ 2adwd

j � 2
∑d
i�1

ai cos
2πij
n

( )
� 2a j( ).

Similarly, λB
j � 2b(j).

Recall that

Y � 1
2n

I2 ⊗ Jd( ) − In( ) ⊗ A + J2 − I2( ) ⊗ Jd ⊗ B + 2In ⊗ In( ).

By finding a shared set of eigenvectors of (I2 ⊗ Jd) − In, (J2 − I2) ⊗ Jd, and 2In, we can use properties of the
Kronecker product to explicitly compute the eigenvalues of Y as a function of the a(j) and b(j); the remaining
results from Proposition 1 will suffice to show that they are all nonnegative. We use the following as our
shared set of eigenvectors.1 We first have u1 � e(n) and u2 � (e(2)1 − e(2)2 ) ⊗ e(d). The remaining u3, . . . ,un are the
n − 2 vectors of the form e(2) ⊗ (e(d)1 − e(d)i ) and (e(2)1 − e(2)2 ) ⊗ (e(d)1 − e(d)i ) for i � 2, . . . , d (in any order). Denote by μA

j
and μB

j the respective eigenvalues of (I2 ⊗ Jd) − In and (J2 − I2) ⊗ Jd associated with uj. Then

μA
1 � d − 1, μA

2 � d − 1, μA
j � −1 otherwise

and

μB
1 � d, μB

2 � −d, μB
j � 0 otherwise.

Now note that

I2 ⊗ Jd( ) − In( ) ⊗ A + J2 − I2( ) ⊗ Jd ⊗ B + 2In ⊗ In( ) ui ⊗ vj
( ) � μA

i λ
A
j + μB

i λ
B
j + 2

( )
ui ⊗ vj
( )

,

so the eigenvalues of 2nY must be the values of (μA
i λ

A
j + μB

i λ
B
j + 2) over i � 1, . . . ,n and j � 0, . . . ,n − 1. That is,

2 μA
i a

j( ) + μB
i b

j( ) + 1
( )

, i � 1, . . . ,n; j � 0, . . . , n − 1.
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To show Y � 0, it suffices to show that these are all nonnegative. For j � 0, we have that a(0) � b(0) � 1 and
thus that

μA
i a

0( ) + μB
i b

0( ) + 1 �
d − 1 + d + 1 � 2d ≥ 0, i � 1,
d − 1 − d + 1 � 0 ≥ 0, i � 2,
−1 + 0 + 1 � 0 ≥ 0, i ≥ 3.

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
Otherwise, for j �� 0, we have

μA
i a

j( ) + μB
i b

j( ) + 1 �
d − 1( )a j( ) + db j( ) + 1, i � 1,

d − 1( )a j( ) − db j( ) + 1, i � 2,

−a j( ) + 1, i ≥ 3.

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
Using b k( ) � − 1 − 2

n

( )
a k( ) − 2

n
from Proposition 1:

�
0, i � 1,
n − 2( )a j( ) + 2, i � 2,
−a j( ) + 1, i ≥ 3.

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
By the final case of Proposition 1, for j � 1, . . . , d,

a j( ) �
d−2
n−2 , if j � 1,
− 2

n−2 , otherwise

{

Hence, the eigenvalues are all nonnegative. and Y � 0. □

Proof of Theorem 1. Claims 1–5 imply that Y is feasible for SDP (1). □

Corollary 1. The integrality gap of SDP (1) is unbounded.

To show that the integrality gap is unbounded, we consider the cost matrix

D � 0 1
1 0

( )
⊗ Jd

used in Gutekunst and Williamson [14]. This cost matrix is that of a cut semimetric: there are two equally sized
groups of vertices {1, . . . , d} and {d + 1, . . . ,n}; the cost of traveling between two vertices in the same group is
zero, whereas the cost of traveling between two vertices in different groups (i.e., crossing the cut defined by
{1, . . . , d}) is one.

Proof. The integrality gap of SDP (1) is at least

OPTTSP D( )
OPTSDP D( ) .

Note that OPTTSP(D) ≥ 2, because a minimum-cost Hamiltonian cycle must cross the cut defined by {1, . . . , d}
twice; the tour 1, 2, . . . , d, d + 1, . . . ,n, 1 realizes this cost so that OPTTSP(D) � 2. We then bound OPTSDP(D)
using Y as a feasible solution to SDP (1). When computing the cost, we evaluate trace((D ⊗ C1)Y). The n2 × n2

matrix D ⊗ C1 consists of n × n blocks, either of which is an n × n block of zeros (exactly where Y has a 1
2nA

block or a 1
n I block) or a C1 (exactly in the 2d2 places where Y has a 1

2n B block). Hence,

OPTSDP D( ) ≤ 1
2
trace D ⊗ C1( )Y( )

� 1
2
2d2

1
2n

trace C1B( )

� d2

2n
2nb1

� d2b1

≤ 4π2 d
2

n3
,
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using the final result of Proposition 1. Thus, OPTSDP(D) ≤ c 1
n for some constant c. Hence, the integrality gap is

at least

OPTTSP D( )
OPTSDP D( ) ≥

2
c 1
n

� 2
c
n,

which grows without bound. □

This instance and feasible solution Y do not, however, show that the integrality gap of SDP (2) is un-
bounded. Instead, they imply the following.

Corollary 2. The integrality gap of SDP (2) is at least two.

We consider an instance of SDP (2) on n + 1 vertices. This change of bookkeeping implies that the feasible
solution Y from Theorem 1 is feasible for SDP (2).

Proof. We consider an instance on n + 1 vertices with two groups of vertices, {1, . . . , d, d + 1} and {d + 2, . . . , n + 1}.
As before, we define the cost of traveling between vertices in the same group to be zero and the cost of traveling
between vertices in distinct groups to be one. By taking r � s � 1, we have that

D β
[ ] � 0 1

1 0

( )
⊗ Jd

and C(n+1)
1 [α] ≤ C(n)

1 entrywise. As in Corollary 1, the integrality gap is at least

OPTTSP D( )
OPTSDP D( ) ,

and again OPTTSP(D) � 2. To upper bound the denominator, we note that the feasibility of Y implies that

OPTSDP D( ) ≤ trace D β
[ ] ⊗ 1

2
C n+1( )
1 α[ ] +Diag c̄( )

( )
Y

( )
� trace D β

[ ] ⊗ 1
2
C n+1( )
1 α[ ]

( )
Y

( )
+ trace Diag c̄( )Y( )

.

We can bound the first term by Corollary 1 because

trace D β
[ ] ⊗ 1

2
C n+1( )
1 α[ ]

( )
Y

( )
≤ trace 0 1

1 0

( )
⊗ Jd

( )
⊗ 1
2
C n( )
1

( )
Y

( )
≤ c

1
n
.

We can compute the second term. Note that C1[α, {r}] � e(n)1 + e(n)n and D[{s}, β] � (e(n)d+1 + e(n)d+2 + . . . + e(n)n )T. Thus,
C1[α, {r}]D[{s}, β] is an n × n matrix with exactly n ones and all other entries zero. Hence,

Diag c̄( ) � Diag vec C1 α, r{ }[ ]D s{ }, β[ ]( )( )
is a diagonal matrix with exactly n ones on the diagonal. Because each diagonal entry of Y is 1

n, we have

trace Diag c̄( )Y( ) � 1.

Putting everything together, we get that

OPTSDP D( ) ≤ 1 + c
n
,

so the integrality gap is at least

OPTTSP D( )
OPTSDP D( ) ≥

2
1 + c

n
� 2n
n + c

for some constant c, which gets arbitrarily close to two as n grows. □

The solution Y is not necessarily optimal for SDP (2), and hence, this family of instances may in fact imply an
integrality gap larger than two. Numerical experiments on this family suggest that the optimal solutions to
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SDP (2) have value strictly less than one as n grows sufficiently large but are far less structured than Y. To
show that the integrality gap of SDP (2) is unbounded, we instead modify the family of instances considered.

We will specifically look for instances D where OPTTSP(D) grows arbitrarily large while OPTSDP(D) ≤ a + b
n

for constants a and b; as in the preceding proof, we bound trace(Diag(c̄)Y) by an absolute constant (a) and show
that trace(D[β] ⊗ 1

2C
(n+1)
1 [α])Y decays with 1

n (with a constant b that does not depend on n). We also want to find
feasible (but not necessarily optimal) solutions that retain the structure of Y: a matrix with a simple block
structure that respects that of the cost matrix; that can be decomposed into terms, each of which is the
Kronecker product of a matrix constructed using J and I and a circulant matrix; and that we will thus be able
to explicitly write down their eigenvalues.

4. Unbounded Integrality Gap
We now generalize the results of Section 3 to a more involved set of instances that allow us to prove our
main theorem.

Theorem 2. Let z ∈ N. Then the integrality gap of SDP (2) is at least z.

An immediate corollary is as follows.

Corollary 3. The integrality gap of SDP (2) is unbounded.

As before, we first start by finding feasible solutions to SDP (1). We then modify these solutions so that they
are feasible to SDP (2).

4.1. Feasible Solutions to SDP (1)
To generalize the preceding example, we consider an instance with g equally sized groups of n/g vertices. If
u, v are two vertices in the same group, then the cost of traveling between u and v is zero; otherwise, the cost is
one. Labeling the vertices so that the ith group consists of vertices {(i − 1) ng + 1, . . . , i ng}, the cost matrix is

D � Jg − Ig
( ) ⊗ Jn/g.

The instances in Section 3 are the special case where g � 2. These instances are metric and can be viewed as
Euclidean TSP in Rg−1; we refer to this family of instances as simplicial TSP instances. In a regular g − 1 simplex,
there are g extreme points, each pair of which is a distance one apart. One way to interpret an instance with g
groups is as embedded into a regular g − 1 simplex in Rg−1, where each group of n

g vertices is placed at an
extreme point of the simplex.

To prove Theorem 2, we take g � 2z. To simplify our proofs, we thus assume that g is even throughout.
These instances generalize and extend the results from Section 3, which studied the simpler case with
g � 2 groups.

We use solutions of the form

Y � 1
2n

Jg − Ig
( ) ⊗ Jn/g ⊗ B + Ig ⊗ Jn/g ⊗ A + Ig ⊗ In/g ⊗ 2In − A( )[ ]

, (3)
where

A � ∑d
i�1

aiCi, B � ∑d
i�1

biCi

are symmetric circulant matrices defined in terms of parameters a1, . . . , ad and b1, . . . , bd. We set

ai �
1

n−g 2 + 4
g

∑g−1
j�1 g − j

( )
cos πij

d

( )[ ]
, i < d

1
n−g 1 + 2

g

∑g−1
j�1 g − j

( )
cos πij

d

( )[ ]
, i � d.

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
We also set2

bi �
2g− n−g( )ai
n g−1( ) , i < d

g− n−g( )ai
n g−1( ) , i � d.

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
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We will often take sums of the ai or bi. It will be helpful to note that

ad � 1
n − g

2 + 4
g

∑g−1
j�1

g − j
( )

cos
πdj
d

( )[ ]
− 1
n − g

1 + 2
g

∑g−1
j�1

g − j
( )

cos πj
( )[ ]

and

bd � 2g − n − g
( )

ad
n g − 1
( ) − g

n g − 1
( ) .

Figure 1 provides intuition for how the ai depend on g. The ai can be viewed as uniform samples from a sum of
cosines that places a larger weight on smaller values of i. As g increases, the proportion of the ai that are close
to zero grows. As in Section 3, the only parameter that OPTSDP depends on will be b1, and large a1 implies
small b1.

Note that Y is a large block matrix that respects the symmetry of our cost matrix D in the exact same way
as in Section 3: Each diagonal block is 1

n In; everywhere else that D has a zero, Y places a block 1
2n A; ev-

erywhere that D has a one, Y has a block 1
2n B. In the later proofs, it will help to refer to multiple types

of blocks of Y. Also, Y can be partitioned into larger blocks of size n2
g × n2

g , each of which is either Jn/g ⊗ 1
2n B

or 1
2n ((Jn/g ⊗ A) + In/g ⊗ (2In − A)); we refer to these blocks as major blocks. The former are off-diagonal, so we

refer to them as major off-diagonal blocks, whereas the latter are on the diagonal of Y, so we refer to them
as major diagonal blocks. Each of these major blocks consists of (n/g)2 smaller n × n blocks, each of which is
a 1

2nA,
1
2n B, or

1
n In. We refer to each as a minor block. We refer to each of the n blocks of 1

n In as a minor diagonal
block, and we refer to the remaining n × n blocks (each of which is a single n × n block equal to 1

2n A or 1
2n B) as a

minor off-diagonal blocks.

Figure 1. A plot showing n−g
g ai for g � 2, 5, and 10. For each curve (and any value of n), the values a1, . . . , ad−1 are taken by

sampling the curve at x � 1
d ,

2
d , . . . ,

d−1
d ; the value of ad is half the value at x � 1. The dotted curve shows g � 2, the dashed curve

shows g � 5, and the remaining curve shows g � 10.
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Example 1. Suppose that g � 3 and n � 12. Pictorially, the minor blocks are those blocks proportional to In,A,
and B; the major blocks are those delineated next that each consist of 16 minor blocks:

Y � 1
2n

2In A A A B B B B B B B B

A 2In A A B B B B B B B B

A A 2In A B B B B B B B B

A A A 2In B B B B B B B B

B B B B 2In A A A B B B B

B B B B A 2In A A B B B B

B B B B A A 2In A B B B B

B B B B A A A 2In B B B B

B B B B B B B B 2In A A A

B B B B B B B B A 2In A A

B B B B B B B B A A 2In A

B B B B B B B B A A A 2In

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
We now show that this solution meets each SDP constraint.

Proposition 2. The matrix Y, as given by Equation (3), is feasible for SDP (1).

Claim 6. For each j � 1, . . . ,n, we have

trace In ⊗ Ejj
( )

Y
( ) � 1 and trace Ejj ⊗ In

( )
Y

( ) � 1.

Proof. These constraints only depend on the diagonal entries of Y, each of which is equal to 1
n. The constraint

trace((In ⊗ Ejj)Y) � 1 expands as

Yj,j + Yn+j,n+j + Y2n+j,2n+j + · · · + Y n−1( )n+j, n−1( )n+j � 1.

The constraint trace((Ejj ⊗ In)Y) � 1 expands as

Y j−1( )n+1, j−1( )n+1 + Y j−1( )n+2, j−1( )n+2 + · · · + Y j−1( )n+n, j−1( )n+n � 1.

Both summands consist of n terms, each of which is equal to 1
n, so both hold immediately. □

Claim 7. Y satisfies the following SDP constraint: trace((In ⊗ (Jn − In) + (Jn − In) ⊗ In)Y) � 0.

Proof. This constraint holds because of Y’s sparsity pattern: first note that

trace In ⊗ Jn − In( )( )Y( ) � 0,

because each n × n minor diagonal block of Y is 1
n In, which is diagonal. Second

trace Jn − In( ) ⊗ In( )Y( ) � 0,

because every minor diagonal block is either 1
2nA or 1

2n B; the matrices A and B are a linear combination of
C1, . . . ,Cd, all of which have every diagonal entry zero. □

Claim 8. Y satisfies the following SDP constraint: trace(Jn2Y) � n2.

This proof involves some involved bookkeeping and uses a handful of lemmas. We use 1{◦} to denote the
indicator function that is one if event ◦ happens and zero otherwise.

Lemma 2. Let n be even and 0 < k < n be an integer. Then

∑d
j�1

cos
πjk
d

( )
� −1 + −1( )k

2
.
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This identity is a consequence of Lagrange’s trigonometric identity; see the appendix for a more detailed proof.

Lemma 3. Let g be even. Then

∑g−1
j�1

g − j
( )

1 j odd{ } � g2

4
and

∑g−1
j�1

g − j
( ) −1( ) j� − g

2
.

Proof. The first claim of this lemma readily follows from the fact that the sum of the first m positive odd integers
is m2. Thus,

∑g−1
j�1

g − j
( )

1 j odd{ } � g − 1
( ) + g − 3

( ) + . . . + 1 � g
2

( )2
,

where we note that we added g
2 odd numbers. The second claim follows because

∑g−1
j�1

g − j
( ) −1( )j � − g − 1

( ) + g − 2
( )[ ] + − g − 3

( ) + g − 4
( )[ ] + · · · + −3 + 2[ ] − 1,

� −1 g − 2
2

− 1

� − g
2
. □

Lemma 4. The ai sum to 1:
∑d

i�1 ai � 1.

Proof. This lemma follows by direct computation using the preceding identities:

∑d
i�1

ai �
∑d
i�1

1
n − g

2 + 4
g

∑g−1
j�1

g − j
( )

cos
πij
d

( )[ ]( )
− 1
n − g

1 + 2
g

∑g−1
j�1

g − j
( )

cos πj
( )[ ]

� 1
n − g

2d + 4
g

∑d
i�1

∑g−1
j�1

g − j
( )

cos
πij
d

( )[ ]
− 1 − 2

g

∑g−1
j�1

g − j
( ) −1( ) j

( )

� 1
n − g

2d + 4
g

∑g−1
j�1

g − j
( )∑d

i�1
cos

πij
d

( )[ ]
− 1 − 2

g

∑g−1
j�1

g − j
( ) −1( ) j

( )
.

� 1
n − g

2d + 4
g

∑g−1
j�1

g − j
( ) −1( ) + −1( ) j

2

[ ]
− 1 − 2

g

∑g−1
j�1

g − j
( ) −1( ) j

( )

� 1
n − g

2d − 4
g

∑g−1
j�1

g − j
( )

1 j odd{ }
[ ]

− 1 − 2
g

∑g−1
j�1

g − j
( ) −1( ) j

( )
.

and using that g is even:

� 1
n − g

2d − 4
g

g2

4

[ ]
− 1 + 2

g
g
2

( )
� 1
n − g

2d − g
( )

� 1,

By Lemma 2:

By Lemma 3,

because n � 2d. □

Lemma 5. The bi sum to 1:
∑d

i�1 bi � 1.
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Proof. This lemma readily follows from the definition of the bi in terms of the ai:∑d
i�1

bi �
∑d
i�1

2g − n − g
( )

ai
n g − 1
( )( )

− g
n g − 1
( )

� 2gd
n g − 1
( ) − n − g

n g − 1
( )∑d

i�1
ai − g

n g − 1
( ) .

By Lemma 4:

� 2gd
n g − 1
( ) − n − g

n g − 1
( ) − g

n g − 1
( )

� 1
n g − 1
( ) ng − n + g − g

( )
� 1
n g − 1
( ) n g − 1

( )( )
� 1. □

Proof of Claim 8. To show that trace(Jn2Y) � n2, we want to sum the entries of Y. We mirror the proof of Claim 3
and first compute the sum of the entries in each minor block, which is either a 1

n In,
1
2n A, or

1
2n B. As in Claim 3,

Lemma 4 implies that trace(Jn 1
2nA) � 1

2n 2n
∑d

i�1 ai � 1
2n 2n � 1, and analogously, Lemma 5 implies that trace

(Jn 1
2n B) � 1. Moreover, trace(Jn 1

n In) � 1. Hence, each of the n2 minor blocks of Y sums to one, so the total sum of
entries in Y is

trace Jn2Y( ) � n2. □

Claim 9. Y satisfies the following SDP constraint: Y ≥ 0.

To show that Y ≥ 0, we show that the ai and bi are nonnegative. We will use the following trigonomet-
ric identity.

Lemma 6. We have the following trigonometric identity:

2 cos θ( ) − 2( )∑g−1
j�1

g − j
( )

cos jθ
( ) � cos gθ

( ) − g cos θ( ) + g − 1
( )

.

Proof.

2 cos θ( ) − 2( )∑g−1
j�1

g − j
( )

cos jθ
( )

� 2
∑g−1
j�1

g − j
( )

cos jθ
( )

cos θ( ) − 2
∑g−1
j�1

g − j
( )

cos jθ
( )

.

Applying the product-to-sum identity for cosine :

� ∑g−1
j�1

g − j
( )

cos j + 1
( )

θ
( ) +∑g−1

j�1
g − j
( )

cos j − 1
( )

θ
( ) − 2

∑g−1
j�1

g − j
( )

cos jθ
( )

.

Reindexing to combine terms :

� ∑g
j�2

g − j + 1
( )

cos jθ
( ) +∑g−2

j�0
g − j − 1
( )

cos jθ
( ) − 2

∑g−1
j�1

g − j
( )

cos jθ
( )

� ∑g−1
j�1

g − j + 1
( ) + g − j − 1

( ) − 2 g − j
( )[ ]

cos jθ
( ) + cos gθ

( ) − g cos θ( ) + g − 1
( )

cos 0( ) − 0

� cos gθ
( ) − g cos θ( ) + g − 1

( )
. □
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Proof of Claim 9. We first show that the ai are nonnegative. Recall that

ai ∝ 2 + 4
g

∑g−1
j�1

g − j
( )

cos
πij
d

( )
(where the constant of proportionality is different for a1, . . . , ad−1 and for ad but in both cases is positive). To
show that the ai are nonnegative, we thus want to show that for i � 1, . . . , d,

4
g

∑g−1
j�1

g − j
( )

cos
πij
d

( )
≥ −2,

or, equivalently,

∑g−1
j�1

g − j
( )

cos
πij
d

( )
≥ − g

2
.

We appeal to Lemma 6 with θ � πi
d . For i � 1, . . . , d, cos(θ) �� 1, so we have that

∑g−1
j�1

g − j
( )

cos
πij
d

( )
� cos gθ

( ) − g cos θ( ) + g − 1
2 cos θ( ) − 2

� g 1 − cos θ( )( )
2 cos θ( ) − 1( ) +

cos gθ
( ) − 1

2 cos θ( ) − 2

� − g
2
+ 1 − cos gθ

( )
2 − 2 cos θ( )

≥ − g
2
,

because 1 − cos(gθ) ≥ 0 and 2 − 2 cos(θ) ≥ 0.
We now need only show that the bi ≥ 0. Recall that

bi �
2g− n−g( )ai
n g−1( ) , i < d,

g− n−g( )ai
n g−1( ) , i � d.

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
For i � 1, . . . , d − 1, it suffices to show that 2g ≥ (n − g)ai. In these cases, we have

n − g
( )

ai � 2 + 4
g

∑g−1
j�1

g − j
( )

cos
πij
d

( )
.

Using cos(θ) ≤ 1,

≤ 2 + 4
g

∑g−1
j�1

g − j
( )

� 2 + 4
g

1 + 2 + . . . + g − 1
( )( )

� 2 + 4
g

g − 1
( )

g
2

� 2 + 2 g − 1
( )

� 2g,

as desired.
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For i � d, the situation is analogous. We want (n − g)ad ≤ g, which follows by the previous exact computations:

n − g
( )

ad � 1
2

2 + 4
g

∑g−1
j�1

g − j
( )

cos
πij
d

( )[ ]

≤ 1
2
2g

� g. □

Proposition 3. Y satisfies the following SDP constraint: Y � 0.

As before, define a(k) � ∑d
i�1 ai cos(2πik/n) and b(k) � ∑d

i�1 bi cos(2πik/n). Recall, as in Claim 5, that the ei-
genvectors of a general circulant matrix are of the form vj � (1,wj,w2

j , . . . ,w
n−1
j ) for j � 0, 1, . . . ,n − 1.

Claim 10. Matrices A and B are simultaneously diagonalizable. The eigenvalues of A are

λk A( ) � 2a k( )

for k � 0, . . . , n − 1. The eigenvalues of B are

λk B( ) � 2b k( )

for k � 0, . . . , n − 1, where λk(A) and λk(B) correspond to the same eigenvector vk.

Proof. This is exactly as in Claim 5, because A and B are constructed using the same basis of symmetric circu-
lant matrices. □

Claim 11. The distinct eigenvalues of 2nY are

2 g − 1
( )

n
g b

k( ) + 2 n
g a

k( ) + 2 − 2a k( )( )
,

−2 n
g b

k( ) + 2 n
g a

k( ) + 2 − 2a k( )( )
,

2 − 2a k( ),

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
over k � 0, . . . ,n − 1.

Proof. Note that

2nY � Jg − Ig
( ) ⊗ Jn/g ⊗ B + Ig ⊗ Jn/g ⊗ A + Ig ⊗ In/g ⊗ 2In − A( ).

Claim 10 gives a set of simultaneous eigenvectors/eigenvalues for B and A (and thus also 2In − A), which we
denote by vk, for k � 1, . . . ,n. We can similarly obtain a simultaneous set of eigenvectors/eigenvalues of (Jg −
Ig) ⊗ Jn/g, Ig ⊗ Jn/g and Ig ⊗ In/g, so we will again use properties of the Kronecker product to explicitly compute
the eigenvalues of Y as a function of the a(k) and b(k). Note that (Jg − Ig) ⊗ Jn/g has three distinct eigenvalues:
Jg − Ig has two distinct eigenvalues (g − 1 with associated eigenvector e(g) and −1 with associated eigenvectors
e(g)1 − e(g)i , for i � 2, . . . , g), and Jn/g has two distinct eigenvalues (n/g with associated eigenvector e(n/g) and zero
with associated eigenvectors e(n/g)1 − e(n/g)i , for i � 2, . . . , ng). Hence, spectral products of Kronecker products
imply that the distinct eigenvalues of (Jg − Ig) ⊗ Jn/g are

μB
i :�

g − 1
( ) × n

g , i � 1 using e g( ) ⊗ e n/g( )( )
,

−1 × n
g , i � 2 using e

g( )
1 − e

g( )
i

( )
⊗ e n/g( )

( )
,

g − 1
( ) × 0 � −1 × 0, i � 3 using e g( ) ⊗ e

n/g( )
1 − e

n/g( )
i

( )
or e

g( )
1 − e

g( )
i

( )
⊗ e

n/g( )
1 − e

n/g( )
i

( )( )
.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
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In exactly the same way, the distinct eigenvalues of Ig ⊗ Jn/g are

μA
i :�

1 × n
g , i � 1 using e g( ) ⊗ e n/g( )( )

1 × n
g , i � 2 using e

g( )
1 − e

g( )
i

( )
⊗ e n/g( )

( )
1 × 0, i � 3 using e g( ) ⊗ e

n/g( )
1 − e

n/g( )
i

( )
or e

g( )
1 − e

g( )
i

( )
⊗ e

n/g( )
1 − e

n/g( )
i

( )( )
.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
For 1 ≤ i ≤ 3, let ui be a shared eigenvector of (Jg − Ig) ⊗ Jn/g and Ig ⊗ Jn/g ⊗ A with respective associated ei-
genvalues μB

i and μA
i . Then

Jg − Ig
( ) ⊗ Jn/g ⊗ B + Ig ⊗ Jn/g ⊗ A + Ig ⊗ In/g ⊗ 2In − A( )( )

ui ⊗ vk( ) � μB
i λ

B
k + μA

i λ
A
k + 2 − λA

k

( )( )
ui ⊗ vk( ).

Plugging in for the three cases of μA
i and μB

i , we get that the distinct eigenvalues of 2nY are

2 g − 1
( )

n
g b

k( ) + 2 n
g a

k( ) + 2 − 2a k( )( )
,

−2 n
g b

k( ) + 2 n
g a

k( ) + 2 − 2a k( )( )
,

2 − 2a k( ),

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩ (4)

over k � 0, . . . ., n − 1, as claimed. □

Claim 12. For k � 1, . . . ,n − 1,

b k( ) � − g
n g − 1
( ) − n − g

n g − 1
( ) a k( ).

Proof. We have that

b k( ) � ∑d
i�1

bi cos
2πik
n

( )
� ∑d

i�1

2g − n − g
( )

ai
n g − 1
( ) cos

2πik
n

( )[ ]
− g
n g − 1
( ) cos πk( ).

a k( ) :

� 2g
n g − 1
( ) ∑d

i�1
cos

2πik
n

( )[ ]
− n − g
n g − 1
( ) ∑d

i�1
ai cos

2πik
n

( )[ ]
− g
n g − 1
( ) −1( )k

� g
n g − 1
( ) −1( ) + −1( )k

( )
− n − g
n g − 1
( ) a k( ) − g

n g − 1
( ) −1( )k

� − g
n g − 1
( ) − n − g

n g − 1
( ) a k( ). □

Using Lemma 2 and the definition of

Plugging in for the b(k), we can simplify the eigenvalues of 2nY.

Claim 13. The eigenvalues of 2nY are

0,

2 g
g−1

( )
+ 2 n−g

g−1
( )

a k( ),

2 − 2a k( ),

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
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over k � 1, . . . ,n − 1, and

2n,
0,

{

corresponding to k � 0.

Proof. The k � 0 follows by simplifying Equation (4) using a(0) � b(0) � 1 from Lemmas 4 and 5. Otherwise, no-
tice that

2 g − 1
( ) n

g
b k( ) + 2

n
g
a k( ) + 2 − 2a k( )( ) � −2 g − 1

( ) n
g

g
n g − 1
( ) + n − g

n g − 1
( ) a k( )

( )
+ 2

n
g
a k( ) + 2 − 2a k( )( )

� 2 −1 − n − g
g

a k( ) + n
g
a k( ) + 1 − g

g
a k( )

[ ]
� 0.

Similarly,

−2 n
g
b k( ) + 2

n
g
a k( ) + 2 − 2a k( )( ) � 2

n
g

g
n g − 1
( ) + n − g

n g − 1
( ) a k( )

( )
+ 2

n
g
a k( ) + 2 − 2a k( )( )

� 2
1

g − 1
+ n − g
g g − 1
( ) a k( )

( )
+ 2

n
g
a k( ) + 2 − 2a k( )( )

� 2 1 + 1
g − 1

( )
+ 2

n − g
g g − 1
( ) + n g − 1

( )
g g − 1
( ) − g g − 1

( )
g g − 1
( )( )

a k( )

� 2 1 + 1
g − 1

( )
+ 2

ng − g2

g g − 1
( )( )

a k( )

� 2
g

g − 1

( )
+ 2

n − g
g − 1

( )
a k( ). □

To complete the proof of Proposition 3, we show that the eigenvalues for the cases k � 1, . . . ,n − 1 are
nonnegative. We use two lemmas.

Lemma 7. We have the following trigonometric identity:

∑d
i�1

cos
πij
d

( )
cos

πik
d

( )
≥ −1j−k odd.

Proof. By the product-to-sum identity,

∑d
i�1

cos
πij
d

( )
cos

πik
d

( )
� 1
2

∑d
i�1

cos
πi j + k

( )
d

( )
+ cos

πi j − k
( )
d

( )( )
.
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Applying Lemma 2 and considering separately the cases where we cannot apply it (those that devolve down
to summing cos(θi) over i when θ is an integer multiple of 2π):

�

1
4 −1 + −1( )j+k+ − 1 + −1( )j−k[ ]

, j − k, j + k /∈ 0, n{ },
1
4 −1 + −1( )j+k+2d[ ]

, j − k ∈ 0, n{ }, j + k /∈ 0,n{ },
1
4 2d − 1 + −1( )j−k[ ]

, j − k /∈ 0, n{ }, j + k ∈ 0,n{ },
1
4 2d + 2d[ ], j − k, j + k ∈ 0, n{ }.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
Noting that −1( ) j+k � −1( ) j−k:

≥ 1
2

−1 + −1( )j−k( )
� −1j−k odd.

Note that j − k, j + k ∈ {0,n} requires j − k � 0 and j + k � n, that is, j � k � d. Because j ranges from one to g − 1,
our final case is irrelevant if each group contains at least two vertices. □

Lemma 8. For g even,

∑g−1
j�1

g − j
( )

1j−k odd � 1
4

g g − 1
( ) + g −1( )k( )

.

Proof. We begin by expanding the left-hand side:∑g−1
j�1

g − j
( )

1j−k odd � − 1
2

∑g−1
j�1

−1 + −1( ) j−k( )
g − j
( )

� 1
2

∑g−1
j�1

g − j
( ) − 1

2

∑g−1
j�1

−1( ) j−k g − j
( )

� 1
2

1 + 2 + . . . + g − 1
( )( ) − 1

2
−1( )−k∑g−1

j�1
−1( ) j g − j

( )
.

Using Lemma 3:

� 1
2
g g − 1
( )
2

+ 1
2

−1( )kg
2

� 1
4

g g − 1
( ) + g −1( )k( )

. □

Proof of Proposition 3. To complete the proof of Proposition 3, we need only show that the eigenvalues listed in
Claim 13 are nonnegative. We thus need to show that

2
g

g − 1

( )
+ 2

n − g
g − 1

( )
a k( ) ≥ 0 and 2 − 2a k( ) ≥ 0

for k � 1, . . . , n − 1. The latter is a direct consequence of Claim 9, because ai ≥ 0 implies that

a k( ) � ∑d
i�1

ai cos
2πik
n

( )
≤ ∑d

i�1
ai � 1.

Hence, we need only show that 2( g
g−1) + 2(n−gg−1 ) a(k) ≥ 0. Equivalently, we need to show that

a k( ) ≥ − g
n − g

.
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This result holds because

a k( ) � ∑d
i�1

ai cos
2πik
n

( )
� 1
n − g

∑d
i�1

2 + 4
g

∑g−1
j�1

g − j
( )

cos
πij
d

( )( )
cos

2πik
n

( )[ ]
− 1 + 2

g

∑g−1
j�1

g − j
( )

cos
πdj
d

( )[ ]
cos

2πdk
n

( )[ ]

By Lemma 2:

� 1
n − g

−1( ) + −1( )k+ 4
g

∑g−1
j�1

g − j
( )∑d

i�1
cos

πij
d

( )
cos

2πik
n

( )[ ]
− 1 + 2

g

∑g−1
j�1

g − j
( ) −1( )j

[ ]
−1( )k

[ ]
.

By Lemma 7:

≥ 1
n − g

−1( ) + −1( )k− 4
g

∑g−1
j�1

g − j
( )

1j−k odd

[ ]
− 1 + 2

g

∑g−1
j�1

g − j
( ) −1( ) j

[ ]
−1( )k

[ ]
.

By Lemmas 3 and 8:

� 1
n − g

−1( ) + −1( )k− 1
g

g g − 1
( ) + g −1( )k( )[ ]

− 1 − 2
g
g
2

[ ]
−1( )k

[ ]
� 1
n − g

−1( ) + −1( )k− g − 1
( ) − −1( )k[ ]

� − g
n − g

. □

Proof of Proposition 2. Feasibility of Y follows directly from Claims 6–9 and Proposition 3. □

We can also compute the objective function value of Y.

Theorem 3. For Y, there exists a constant c̃g (depending on g but not n) such that

1
2
trace D ⊗ C1( )Y( ) ≤ c̃g

n
.

Proof. Recalling thatD � (Jg − Ig) ⊗ Jn/g, we see thatD ⊗ C1 has blocks of zeros in each of the gmajor (n2/g) × (n2/g)
diagonal blocks of Y. Hence, the only places whereD ⊗ C1 places a nonzero entry are exactly those where Y has a B
block; on each such block, D ⊗ C1 has a block C1. There are g(g − 1) blocks of B matrices, each containing n2/g2

copies of B. Accounting for the fact that Y is scaled by 1
2n, the value of the objective function is thus

1
2
trace D ⊗ C1( )Y( ) � 1

2
g g − 1
( ) n2

g2
1
2n

trace C1B( ).
Since trace C1B( ) � 2nb1:

� 1
2
g g − 1
( ) n2

g2
b1

� 1
2
g − 1
g

n2b1.

Recall that

cos x( ) ≥ 1 − 1
2
x2.
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Hence,

b1 � 2g − n − g
( )

a1
n g − 1
( )

�
2g − 2 + 4

g
∑g−1

j�1 g − j
( )

cos πj
d

( )[ ]
n g − 1
( )

≤
2g − 2 + 4

g
∑g−1

j�1 g − j
( )

1 − 1
2
π2j2

d2

( )[ ]
n g − 1
( )

� 2 g − 1
( ) − 4

g
∑g−1

j�1 g − j
( ) + 2

g
π2

d2
∑g−1

j�1 g − j
( )

j2

n g − 1
( ) .

Define cg � 2
gπ

2 ∑g−1
j�1 (g − j)j2, a constant depending on g but not n:

� 2 g − 1
( ) − 4

g
g−1( )g
2 + cg

d2

n g − 1
( )

� cg
d2n g − 1

( )
.

Setting ĉg � 4
g−1 cg, a constant depending on g but not n:

� ĉg
n3

.

Putting everything together,

1
2
trace D ⊗ C1( )Y( ) � 1

2
g − 1
g

n2b1 ≤ 1
2
g − 1
g

n2
ĉg
n3

,

from which the result follows. □

We can now prove our main theorem, which we restate as follows.

Theorem (Theorem 2). Let z ∈ N. Then the integrality gap of SDP (2) is at least z.

Proof. We again consider the SDP (2) corresponding to an instance on n + 1 vertices. Let s � r � 1, and consider an
instance of the TSP on n + 1 vertices with g � 2z groups of vertices. Specifically, let groups 2, . . . . , g be equally sized,
each of size n

g ∈ N, and let group one have one extra vertex so that group one is of size n
g + 1. Note also that

OPTTSP � g � 2z

because each group of vertices must be visited at least once. Set

Y � 1
2n

Jg − Ig
( ) ⊗ Jn/g ⊗ B + Ig ⊗ Jn/g ⊗ A + Ig ⊗ In/g ⊗ 2In − A( )[ ]

,

which is feasible for the SDP by our earlier computations. Then the integrality gap is bounded below by

OPTTSP

OPTSDP
≥ 2z

trace D β
[ ] ⊗ 1

2C
n+1( )
1 α[ ] +Diag c̄( )

( )
Y

( ) .
To bound the right-hand side, we note that the linearity of the trace operator implies that

trace D β
[ ] ⊗ 1

2
C n+1( )
1 α[ ] +Diag c̄( )

( )
Y � trace D β

[ ] ⊗ 1
2
C n+1( )
1 α[ ]

( )
Y

( )
+ trace Diag c̄( )Y( )

. (5)
We upper bound each term. First note that

D β
[ ] � D 2, . . . ,n + 1{ }[ ] � Jg − Ig

( ) ⊗ J n/g( ).
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Similarly,

C n+1( )
1 α[ ] � C n( )

1 − e1eTn − eneT1 ≤ C n( )
1 ,

where ≤ is taken entrywise. By nonnegativity,

trace D β
[ ] ⊗ 1

2
C n+1( )
1 α[ ]

( )
Y

( )
≤ 1
2
trace Jg − Ig

( ) ⊗ J n/g( )
( )

⊗ C n( )
1

( )( )
Y

( )
≤ c̃g

n
(6)

by Theorem 3. As in Theorem 3, c̃g remains independent of n.
Second, consider trace(Diag(c̄)Y). We compute

c̄ � vec C n( )
1 α, 1{ }[ ]D 1{ }, β[ ]( )

� vec e n( )
1 + e n( )

n

( )
D 1{ }, β[ ]( )

≤ vec e n( )
1 + e n( )

n

( )
e n( )( )T

.

We note that (e(n)1 + e(n)n )(e(n))T is an n × n matrix with 2n ones and the rest of the entries zero. The vec operator
stacks the columns of this matrix, creating a vector in Rn2 with 2n ones and the remaining entries zero. Finally,
Diag(c̄) creates a diagonal matrix with 2n ones on the diagonal and the remaining entries zero. Because all
diagonal entries of Y are equal to 1/n, we have that

trace Diag c̄( )Y( ) ≤ 2n ∗ 1
n
� 2. (7)

Plugging Equations (6) and (7) into Equation (5), we obtain

trace D β
[ ] ⊗ 1

2
C n+1( )
1 α[ ] +Diag c̄( )

( )
Y

( )
≤ c̃g

n
+ 2.

Hence, the integrality gap is at least

OPTTSP

OPTSDP
≥ 2z

trace D β
[ ] ⊗ 1

2C
n+1( )
1 α[ ] +Diag c̄( )

( )
Y

( )
≥ 2z

2 + c̃g
n

� 2zn
2n + c̃g

→ z,

as n→∞. □

Gutekunst and Williamson [14] show that the SDPs of Cvetković et al. [5] and de Klerk et al. [10] have a
counterintuitive nonmonotonicity property: adding vertices (in a way that retains costs being metric) can
arbitrarily decrease the cost of some solutions to the corresponding SDPs. This property contrasts with both
TSP and subtour LP solutions: monotonicity of the TSP can be seen through shortcutting (see Williamson and
Shmoys [28, section 2.4]), whereas Shmoys and Williamson [26] show that the subtour LP is monotonic.
Corollary 2 shows that in the g � 2 case, the cost of the SDP,

OPTSDP D( ) ≤ 1 + c
n
,

decays arbitrarily close to one as the number of vertices in each group grows. Any g � 2 instance with cost
strictly greater than one thus shows that SDP (2) is nonmonotonic. Moreover, such an instance implies the
nonmontonicity property in R1: the SDP can find a smaller optimal value only by adding more points to visit
on the real line.

Corollary 4. The SDP (2) is nonmonotonic.

Proof (sketch). It suffices to show a single two-group instance with cost strictly greater than one. Consider such an
instance on n + 1 � 3 vertices, where the first group has two vertices and the second has one. Explicitly writing
down the constraints shows that any feasible solution to the SDP has cost two. □
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Anstreicher [1] gives another SDP relaxation of the QAP, and our simplicial instances also show that its
integrality gap is unbounded. In the case where C � 0 and e is an eigenvector of either data matrix in the QAP
objective function, their SDP is equivalent to the projected eigenvalue bound of Hadley et al. [15]. Because
C(n)
1 e(n) � 2e(n), it is equivalent to the projected eigenvalue bound when specialized to the TSP. In this case, the

SDP is in terms of an n2 × n2 matrix, which we give block structure

Y �

Y 11( ) Y 12( ) · · · Y 1n( )

Y 21( ) Y 22( ) · · · Y 2n( )

..

. ..
. . .

. ..
.

Y n1( ) Y n2( ) · · · Y nn( )

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
with Y(ij) ∈ Rn×n. The SDP is

min
1
2
trace D ⊗ C n( )

1

( )
Y

( )
subject to

∑n
i�1

Y ii( ) � In,

trace Y ij( )( )( )n
i,j�1

� In,

trace YFTF
( ) � 2n,

Y − 1
n2

Jn2 � 0,

Y ≥ 0,Y ∈ Sn
2×n2 ,

(8)

where

F � e n( )( )T ⊗ In
In ⊗ e n( )( )T

( )
.

Let Y′ � vec(X)vec(X)T for any X ∈ Πn; that this is a valid relaxation can be seen by showing that

Y′ − 1
n2

Y′Jn2 + Jn2Y
′( ) + 2

n2
Jn2

is feasible and has the same objective value as Y′. See Anstreicher [1, theorem 3.6] for more details.

Corollary 5. SDP (8) has an unbounded integrality gap.

Proof. We show that Y, as defined in Theorem 1, remains feasible. The objective function remains unchanged from
SDP (1), so the analysis in Corollary 1 then implies that SDP (8) has an unbounded integrality gap.

By definition of Y, Y(ii) � 1
n In for i � 1, . . . ,n, so

∑n
i�1 Y(ii) � In. Moreover, trace(Y(ii)) � 1

n trace(In) � 1 for
i � 1, . . . , n, whereas A and B have zero diagonal, so the trace of any minor off-diagonal block is zero.
Hence, (trace(Y(ij)))ni,j�1 � In.

Next, FTF � Jn ⊗ In + In ⊗ Jn. Thus, FTF has a Jn + In on each minor diagonal block and an In on each minor off-
diagonal block. Because A and B have zero diagonal, trace(AIn) � trace(BIn) � 0, and the minor off-diagonal blocks
make no contribution to trace(YFTF). Hence,

trace YFTF
( ) � n × trace

1
n
In Jn + In( )

( )
� trace In Jn + In( )( ) � 2n.

By Claim 4 and the definition of Y, Y is nonnegative and symmetric. Hence, it remains to show that
Y − 1

n2 Jn2 � 0. We note that e(n2) is an eigenvector of Y. In the notation of Claim 5, it is the eigenvector when j � 0
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and i � 1. In Claim 5, we showed that the corresponding eigenvalue of nY was 2d � n, so the corresponding
eigenvalue of Y is one. Then

Y − 1
n2

Jn2
( )

e n2( ) � Ye n2( ) − 1
n2

e n2( ) e n2( )( )T
e n2( ) � e n2( ) − 1

n2
e n2( )n2 � 0e n2( ).

Any other eigenvector v of Y is orthogonal to e(n2). Letting λ denote the corresponding eigenvalue,

Y − 1
n2

Jn2
( )

v � Yv − 1
n2

e n2( ) e n2( )( )T
v � λv − 0v � λv.

Thus, Y − 1
n2 Jn2 has the same spectrum as Y except that one eigenvalue (the eigenvalue one corresponding to

eigenvector e(n2)) is shifted down by one (to eigenvalue zero). Consequently, all eigenvalues of Y − 1
n2 Jn2 are

nonnegative, and Y − 1
n2 Jn2 � 0. □

Remark 1. De Klerk and Sotirov [9] provide a set of linear inequalities that can be added to SDP relaxations where
Y � vec(X)vec(X)T is feasible for any permutationmatrixX ∈ Πn, the triangle inequalities. For all distinct r, s, t, these
are that

0 ≤ Yrs ≤ Yrr, Yrr + Yss − Yrs ≤ 1, −Ytt − Yrs + Yrt + Yst ≤ 0, Ytt + Yrr + Yss − Yrs − Yrt − Yst ≤ 1.

We note that these inequalities do not eliminate the feasible solutions defined in Equation (3):

Yss � Yrr � Ytt � 1
n
,

while

0 ≤ Yrs,Yrt,Yst ≤ 1
2n

.

The upper bound on off-diagonal entries can be seen directly by noting that Yrs,Yrt,Yst ∈ {0, a12n , . . . ,
ad−1
2n , adn ,

b1
2n , . . . ,

bd−1
2n , bdn}; by Lemmas 4 and 5, 0 ≤ ai, bi ≤ 1, and it is straightforward to directly bound ad, bd ≤ 1

2
provided n/g ≥ 3.

5. Conclusions
In this paper, we introduced simplicial TSP instances to show that the integrality gap of an SDP from de Klerk
and Sotirov [8] is unbounded and, moreover, nonmonotonic. The simplicial TSP instances imply the un-
bounded integrality gap of every SDP relaxation of the TSP mentioned in the survey in Sotirov [27, section 2],
as well as the unbounded integrality gap of an SDP from Anstreicher [1]. The simplicial instances thus form a
litmus test for new SDP relaxations of the TSP and motivate two questions.

Question 1. Can one find an SDP relaxation of the TSP with finite integrality gap (without directly adding in the
subtour elimination constraints of the subtour LP).

It would suffice, for example, to find SDP constraints that implied that scaled solutions lie in the minimum-
spanning-tree polytope. It is also known that at some level of the Lasserre, Sherali–Adams, or Lovász–Schrijver
hierarchies (Lasserre [21], Lovász and Schrijver [22], Sherali and Adams [25]), the corresponding SDPs give the
convex hull of tours. It would be of interest to know if a constant integrality gap can be obtained at some constant
level of the hierarchy.

Question 2. What are the integrality gaps of any of the TSP SDP relaxations when the subtour elimination
constraints are added? Can any be shown to beat 3

2?

To our knowledge, the only SDP for which Question 2 has been answered is for the SDP of Cvetković
et al. [5]: Goemans and Rendl [11] show that any feasible solution to the subtour LP gives an equivalent
feasible to their SDP of the same cost; adding the subtour elimination constraints to this SDP thus effectively is
the same as just solving the subtour LP.
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Appendix. Proofs of Trigonometric and Algebraic Identities
In this appendix, we sketch pertinent results from Gutekunst and Williamson [14].

Lemma (Gutekunst and Williamson [14, lemma 4.8]). Let n be even and 0 < k < n be an integer. Then

∑d
j�1

cos
2πjk
n

( )
� −1 + −1( )k

2
.

Proof. Our identity is a consequence of Lagrange’s trigonometric identity (see Jeffrey and Dai [18, identity 14 in section 2.4.1.6]),
which states, for 0 < θ < 2π, that

∑m
j�1

cos jθ
( ) � − 1

2
+ sin m + 1

2

( )
θ

( )
2 sin θ

2

( ) .

Taking θ � 2πk
n and using n � 2d, we obtain ∑d

j�1
cos

2πk
n

j
( )

� − 1
2
+ sin πk + πk

n

( )
2 sin πk

n

� − 1
2
+ −1( )k1

2
,

where we recall that sin(π + θ) � − sin(θ). □

Notice that when k � 0 or k � n, the sum is d.

Proposition (Gutekunst andWilliamson [14, proposition 3.2]). We have that, (a)
∑d

i�1 ai �∑d
i�1 bi � 1. Equivalently, a(0) � b(0) � 1.We

have that: (b) b(k) � −(1− 2
n) a(k) − 2

n. (c) For k � 1, . . . , d,

a k( ) �
d−2
n−2 , if k � 1,
− 2

n−2 , otherwise.

{
We have that: (d) b1 ≤ 4π2

n3 .

Proof. For the first result, we use the identity

∑d
j�1

cos
2πjk
n

( )
� −1 + −1( )k

2

with k � 1. Then

∑d
i�1

ai � 2
n − 2

∑d
i�1

cos
πi
d

( )
+ 1

( )
� 2
n − 2

−1 + d( ) � 1.

Similarly,

∑d
i�1

bi �
∑d−1
i�1

4
n
− 1 − 2

n

( )
ai

( )
+ 2

n
− 1 − 2

n

( )
ai

( )
� d − 1( ) 4

n
+ 2
n
− 1 − 2

n

( )∑d
i�1

ai � 1.

For the second result,

b k( ) � ∑d
i�1

cos
2πik
n

( )
bi

� ∑d−1
i�1

cos
2πik
n

( )
4
n
− 1 − 2

n

( )
ai

( )( )
+ cos

2πdk
n

( )
2
n
− 1 − 2

n

( )
ad

( )

� 4
n

∑d
i�1

cos
2πik
n

( )( )
− 1 − 2

n

( ) ∑d
i�1

cos
2πik
n

( )
ai

( )
− cos πk( ) 2

n

( )
.
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Using Lemma 2:

� 4
n

−1 + −1( )k
2

( )
− 1 − 2

n

( )
a k( ) − −1( )k 2

n

( )
� − 1 − 2

n

( )
a k( ) − 2

n
.

For the third result, we use the product-to-sum identity for cosines and then do casework using Lemma 2. We have

a k( ) � ∑d
i�1

cos
2πik
n

( )
ai,

� 2
n − 2

∑d
i�1

cos
2πik
n

( )
+ cos

2πik
n

( )
cos

πi
d

( )( )
,

� 2
n − 2

∑d
i�1

cos
2πik
n

( )
+ 1
2
cos

2πi k + 1( )
n

( )
+ 1
2
cos

2πi k − 1( )
n

( )( )
.

We cannot apply Lagrange′s trigonometric identity only when k � 1, so

�
2

n−2
−1+ −1( )k

2 + −1+ −1( )k+1
4 + −1+ −1( )k−1

4

( )
, if k > 1

2
n−2 −1 + 0 + 1

2 d
( )

, if k � 1

⎧⎪⎪⎨⎪⎪⎩
� − 2

n−2 , if k > 1
d−2
n−2 , if k � 1.

{
Finally, the fourth result follows from Taylor series with remainder,

cos
π

d

( )
� 1 − π2

2d2
+ 1
4!
π4

d4
cos ξ1/d

( ) ≥ 1 − π2

2d2
,

where ξ1/d ∈ [0, 1d]. Hence,

b1 � 2
n

1 − cos
π

d

( )( )
≤ 2
n
π2

2d2
� 4π2

n3
. □

Endnotes
1To find this shared set of eigenvectors, note that Jm � e(m)(e(m))T is a rank-one matrix and that

Jme m( ) � e m( ) e m( )( )Te m( ) � me m( ).

The only nonzero eigenvector of Jm is thus e(m) with corresponding eigenvalue m. All other eigenvectors have corresponding eigenvalue zero,
and a convenient basis for them is e(m)

1 − e(m)
i for i � 2, . . . ,m. Then

Jm e m( )
1 − e m( )

i

( )
� e m( ) − e m( ) � 0 e m( )

1 − e m( )
i

( )
.

The vectors e(m), e(m)
1 − e(m)

2 , . . . , e(m)
1 − e(m)

m are linearly independent and so form an eigenbasis for Jm. To extend these to find eigenvectors of
(I2 ⊗ Jd) − In, (J2 − I2) ⊗ Jd, and 2In, we use (1) the spectral properties of Kronecker products noted in the Introduction and (2) the fact that if v is an
eigenvector of a matrix M with corresponding eigenvalue λ, then v is also an eigenvector of M − I with corresponding eigenvalue λ − 1:

M − I( )v � λv − v � λ − 1( )v.
2These values come from assuming that

n
g
− 1

( )
ai + g − 1

g
nbi � 2, i < d,

1, i � d.

{
The intuition for choosing these values of bi is to impose an analogue of the degree constraints from Gutekunst and Williamson [14].
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