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Abstract. We study a semidefinite programming relaxation of the traveling salesman problem
introduced by de Klerk, Pasechnik, and Sotirov [SIAM J. Optim., 19 (2008), pp. 1559-1573] and show
that their relaxation has an unbounded integrality gap. In particular, we give a family of instances
such that the gap increases linearly with n. To obtain this result, we search for feasible solutions
within a highly structured class of matrices; the problem of finding such solutions reduces to finding
feasible solutions for a related linear program, which we do analytically. The solutions we find imply
the unbounded integrality gap. Further, these solutions imply several corollaries that help us better
understand the semidefinite program and its relationship to other TSP relaxations. Using the same
technique, we show that a more general semidefinite program introduced by de Klerk, de Oliveira
Filho, and Pasechnik [Handbook on Semidefinite, Conic and Polynomial Optimization, Springer,
New York, 2012, pp. 171-199.] for the k-cycle cover problem also has an unbounded integrality gap.
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1. Introduction. The traveling salesman problem (TSP) is one of the most
famous problems in combinatorial optimization. An input to the TSP consists of a
set of n cities [n] := {1,2,...,n} and edge costs ¢;; for each pair of distinct i,j € [n]
representing the cost of traveling from city ¢ to city j. Given this information, the
TSP is to find a minimum-cost tour visiting every city exactly once. Throughout this
paper, we implicitly assume that the edge costs are symmetric (so that ¢;; = ¢;; for
all distinct ¢, j € [n]) and metric (so that ¢;; < ¢ + cx; for all distinct 4, j, k € [n]).
Hence, we interpret the n cities as vertices of the complete undirected graph K,
with edge costs ¢, = ¢;; for edge e = {4,j}. In this setting, the TSP is to find a
minimum-cost Hamiltonian cycle on K.

The TSP is well known to be NP-hard. It is even NP-hard to approximate TSP
solutions in polynomial time to within any constant factor a < % (see Karpinski,
Lampis, and Schmied [22]). For the general TSP (without any assumptions beyond
metric and symmetric edge costs), the state-of-the-art approximation algorithm re-
mains Christofides’ 1976 algorithm [4]. The output of Christofides’ algorithm is at
most a factor of % away from the optimal solution to any TSP instance.

A broad class of approximation algorithms begin by relaxing the set of Hamil-
tonian cycles. The prototypical example is the subtour elimination linear program
(also referred to as the Dantzig—Fulkerson-Johnson relaxation [6] and the Held-Karp

bound [19], and which we will refer to as the subtour LP). Let V' = [n] denote the
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set of vertices in K, and let F denote the set of edges in K,,. For S C V, denote the
set of edges with exactly one endpoint in S by 6(5) := {e = {4,4} : [{i,4} N S| =1}
and let 6(v) := §({v}). The subtour elimination linear programming relaxation of the
TSP is
min Y eck Cele
subject to Zceé(v) Te=2, v=1,...,n,
Decss)Te =2, SCV:iS#D, S#£V,
0<z. <1, e=1,...,n.

The constraints »_ .5,
straints ) o 5(s) Te = 2 are known as the subtour elimination constraints. Wolsey
[33] and Shmoys and Williamson [30] show that solutions to this linear program are
also within a factor of % of the optimal, integer solution to the T'SP.

Instead of linear programming relaxations, another approach is to consider relax-
ations that are semidefinite programs (SDPs). This avenue is considered by Cvetkovié,
Cangalovi¢, and Kovacevié-Vujéié [5]. They introduce an SDP relaxation that searches
for solutions that meet the degree constraints and that are at least as connected as
a cycle with respect to algebraic connectivity (see section 4.4). Goemans and Rendl
[13], however, show that the SDP relaxation of Cvetkovi¢, Cangalovi¢, and Kovacevié-
Vujcié [5] is weaker than the subtour LP in the following sense: any solution to the
subtour LP implies an equivalent feasible solution for the SDP of Cvetkovié¢ et al.
of the same cost. Since both optimization problems are minimization problems, the
optimal value for the SDP of Cvetkovi¢, Cangalovi¢, and Kovacevié-Vujéié cannot be
closer than the optimal solution of the subtour LP to the optimal solution to the TSP.

More recently, de Klerk, Pasechnik, and Sotirov [9] introduced another SDP re-
laxation of the TSP. This SDP can be motivated and derived through a general
framework for SDP relaxations based on the theory of association schemes (see de
Klerk, de Oliveira Filho, and Pasechnik [7]). Moreover, de Klerk, Pasechnik, and
Sotirov [9] show computationally that this new SDP is incomparable to the subtour
LP: there are cases for which their SDP provides a closer approximation to the TSP
than the subtour LP and vice versa!l Moreover, de Klerk, Pasechnik, and Sotirov
[9] show that their SDP is stronger than the earlier SDP of Cvetkovi¢, Cangalovié,
and Kovacevié-Vujci¢ [5]: any feasible solution for the SDP of de Klerk, Pasechnik,
and Sotirov [9] implies a feasible solution for the SDP of Cvetkovié, Cangalovi¢, and
Kovacevié-Vujéié [5] of the same cost.

We analyze the SDP relaxation of de Klerk, Pasechnik, and Sotirov [9]; our main
result is that the integrality gap of this SDP is unbounded. To show this result, we
introduce a family of instances corresponding to a cut semimetric: a subset S C V
such that c¢;; = 1if {4,j} € 0(5) and ¢;; = 0 otherwise. We will take |S| = 5.
Equivalently, n/2 of the cities are located at the point (0) € R!, the remaining n/2
cities are located at (1) € R!, and the cost ¢;; is the Euclidean distance between the
locations of city ¢ and city j. We show that for these instances the integrality gap
grows linearly in n. The feasible solutions we introduce to bound the integrality gap,
moreover, have the same algebraic connectivity as a Hamiltonian cycle on n vertices,
even though their cost becomes arbitrarily far from that of a Hamiltonian cycle (see
section 4.4) as n grows.

We introduce the SDP of de Klerk, Pasechnik, and Sotirov [9] in section 2. In
section 3 we discuss our motivations and prove our result. The crux of our argument
involves exploiting the symmetry of the instances we introduce. We consider a candi-
date class of solutions to the SDP respecting this symmetry and show that members

) Te = 2 are known as the degree constraints, while the con-
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of this class are feasible solutions to the SDP if and only if they are feasible solutions
for a simpler linear program, whose constraints enforce certain positive semidefinite
inequalities. We then analytically find solutions to this linear program and show that
these solutions imply the unbounded integrality gap. Next, in section 4, we discuss
several corollaries of our main result. These corollaries shed new light on how the
SDP relates to the subtour LP as well as to the earlier SDP of Cvetkovié, Cangalovié,
and Kovac¢evié-Vujcié [5]. In section 5, we apply our technique for showing that the
integrality gap is unbounded to a generalization of the SDP of de Klerk, Pasechnik,
and Sotirov [9] for the minimum-cost k-cycle cover problem; when k = 1, this problem
is exactly the same as the TSP. This more general SDP was introduced in de Klerk,
de Oliveira Filho, and Pasechnik [7], and we show that it also has an unbounded
integrality gap.

This work is related in spirit to Goemans and Rendl [14] and to de Klerk and
Dobre [8]. Goemans and Rendl [14] study how to solve SDPs arising from association
schemes using a linear program. Specifically, they show that an SDP of the form

max(My, X) subject to (M;, X)=0b; for j=1,...,m, X =0,

where the M are fixed input matrices forming an association scheme, can be solved
using a linear program. Like Goemans and Rendl [14], the SDP we study is related
to an association scheme and we obtain a result using a linear program. In contrast,
however, to having input matrices that form an association scheme, the SDP we
analyze seeks solutions that satisfy many properties of a certain, fixed association
scheme (in particular, de Klerk, de Oliveira Filho, and Pasechnik [7] shows that the
constraints of the SDP are satisfied by the association scheme corresponding to cycles;
see section 2). Moreover, we only use a linear program to find feasible solutions to
this SDP that are sufficient to imply an unbounded integrality gap: this SDP does
not in general reduce to the LP we use.

De Klerk and Dobre [8] study the SDP of de Klerk, Pasechnik, and Sotirov [9] in
a different context: that of the symmetric circulant TSP (SCTSP). In this setting, the
matrix of edge costs (c;;)f';—; (with ¢;; = 0) is required to be a symmetric, circulant
matrix (see section 2.2). The symmetry of such matrices allows de Klerk and Dobre
[8] to write the SDP of de Klerk, Pasechnik, and Sotirov [9] as a linear program. In
contrast, the specific instance we present does not have a circulant cost matrix and
we use linear programming to find a single feasible solution.

2. A semidefinite programming relaxation of the TSP.

2.1. Notation and preliminaries. Throughout this paper we will use stan-
dard notation from linear algebra. We use J,, and I, to denote the all-ones and
identity matrices in R™*™ respectively. When clear from context, we suppress the
dependency on the dimension and just write J and I. We denote by e the column
vector of all ones, so that J = ee”. Also, we use S™ for the set of real, symmetric
matrices in R™*™ and ® to denote the Kronecker product of matrices. A = B de-
notes that A — B is a positive semidefinite (PSD) matrix (we will generally have A, B
symmetric, in which case positive semidefiniteness is equivalent to all eigenvalues of
A — B being nonnegative). The trace of a matrix A, denoted trace(A), is the sum of
its diagonal entries so that for A, B € S™, trace(AB) = >2/%, 3770, AjjBij. A >0
means that each entry of matrix A is nonnegative.

Our main result addresses the integrality gap of a relaxation, which represents
the worst-case ratio of the original problem’s optimal solution to the relaxation’s
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optimal solution. We are specifically interested in the gap of the SDP of de Klerk,
Pasechnik, and Sotirov [9]; we will refer to this SDP as simply “the SDP” throughout.
Let C denote a matrix of edge costs, so that C = (¢;;) is a symmetric matrix with
diagonal entries equal to zero. Let OPTspp(C) and OPTrgp(C) respectively denote
the optimal solutions to the SDP and to the TSP for a given matrix of costs C'. The
integrality gap is then
OPTrgp(C)
SUp ——————~,

where we take the supremum over all valid cost matrices C' (those whose constituent
costs are metric and symmetric). This ratio is bounded below by 1, since the SDP is
a relaxation of the TSP; we rederive this fact in section 2.2. We will show that the
ratio cannot be bounded above by any constant. In contrast, the results we noted
previously about the subtour LP imply that its integrality gap is bounded above by %

Throughout the remainder of this paper we will take n to be even and let d = 3.
We use A\B for set minus notation, so that A\B = {a € A : a ¢ B}. We take
2 € R(2) to mean that x is a vector whose entries are indexed by the edges of K.

2.2. Facts about the SDP. The SDP introduced by de Klerk, Pasechnik, and
Sotirov [9] uses d matrix variables X1, ... X4 ¢ R"*" with the cost of a solution
depending only on X, Tt is

min %trace (CX(U)
subject to X *) >0, k=1,...,d,
(1) Y XD =g -1,
I+Y% ) cos (%)X@ 0, k=1,....d,
X k) ¢ gn k=1,...,d

Both de Klerk, Pasechnik, and Sotirov [9] and de Klerk, de Oliveira Filho, and Pasech-
nik [7] show that this is a relaxation of the TSP by showing that the following solution
is feasible. For a simple, undirected graph G, let Ai(G) be the kth distance matriz:
the matrix with ¢, jth entry equal to 1 if and only if the shortest path between ver-
tices 7 and j in G is of distance k, and equal to 0 otherwise. Let C, be a cycle of
length n (i.e., any Hamiltonian cycle on [n]). The solution where X*) = A(C,) for
k=1,...,d is feasible for the SDP (see Proposition 2.1). Hence, the optimal inte-
ger solution to the TSP has a corresponding feasible solution to the SDP. That SDP
solution has the same value as the optimal integer solution to the TSP: each edge
e = {i,j} is represented twice in X*) as both Xl-(jl) and XJ(-Z-U, but this is accounted
for by the factor % in the objective function.

These solutions are shown to be feasible in de Klerk, Pasechnik, and Sotirov [9] by
noting that the Ax(C,) form an association scheme and are therefore simultaneously
diagonalizable. This allows for the positive semidefinite inequalities to be verified
after computing the eigenvalues of each Aj(C,). A more systematic approach is taken
in de Klerk, de Oliveira Filho, and Pasechnik [7], where they introduce general results
about association schemes. The constraints of the SDP then represent an application
of these results to a specific association scheme: that of the distance matrices Ay (Cy,).
We begin by providing a new, direct proof that the SDP is a relaxation of the TSP.

PROPOSITION 2.1 (de Klerk, Pasechnik, and Sotirov [9]). Setting X0 = A;(C,,)
forj=1,...,d yields a feasible solution to the SDP (1).
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We will use two lemmas in our proof. First, the main work in our proof involves
showing that the positive semidefinite inequalities from (1) hold. We do so by noticing
that I—i—Z?:l cos(%)AJ— (Cy) has a very specific structure: that of a circulant matrix.
A circulant matrix is a matrix of the form

mo mq mg M3 -+ Mp-1
Mp—1 mo mp MMz o Mp_2
. n
M= |my_2 mp_1 Mg My - Mp_3 | = (m(s—t) mod ")s t=1"
mq mo m3 MMy - mo

The eigenvalues of circulant matrices are well understood, which will allow us to
show that I + Z;l:l COS(@)AJ- (Cy) is a positive semidefinite matrix for each k by
computing the eigenvalues of that linear combination. In particular, we have the
following lemma.

LeEMMA 2.2 (Gray [16]).  The circulant matric M = (M(s—t) mod n)ei=1 has
eigenvalues

S mee TN ift=1,...,n—1,
At(M) = n—1 . o
Y oao Ms if t =n.

This is the only section where we will work with imaginary numbers, and to avoid
ambiguity with index variables, we explicitly write v/—1 and reserve i and j as index
variables.

Our second lemma is a trigonometric identity that we will use repeatedly in later
proofs.

LEMMA 2.3. Let n be even and 0 < k < n be an integer. Then
¢ 2mik\  —1+ (1)
E cos ( ) = .
° n 2
Jj=1

Proof. Our identity is a consequence of Lagrange’s trigonometric identity (see,
e.g., Identity 14 in section 2.4.1.6 of Jeffrey and Dai [21]), which states, for 0 < 6 < 27,
that

i ) 1 sin((m+3)6
;COSUH) =3 + (Q(Sin (9)) )

2

Taking 0 = % and using n = 2d, we obtain

4 2k 1 sin(7k + %)

E cos| —jg | =—%+ %

, n 2 2sin I

Jj=1 n
1 1
= — 4 (—1kZ
L+ (D

where we recall that sin(7 + 6) = —sin(9). 0

Notice that when k = 0 or k = n, the sum is d.

Proof of Proposition 2.1. We first remark that each A;(C,) is a nonnegative sym-
metric matrix. Moreover, ijl A;(C,) =J —I. This follows because, in C,, the
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shortest path between any pair of distinct vertices u,v € [n] is a unique element s of
the set [d]. Hence, exactly one of the terms in the sum Z?Zl A;(Cy) has a one in its
u,v entry, and all other terms have a zero. The diagonals of each A;(C,) consist of
all zeros, since the shortest path from vertex 7 to itself has length 0 ¢ [d].

Now for any fixed k € [d] we compute the eigenvalues of the matrix

- 1+Z (2 Jk) A;(Cp).

First, suppose the vertices are labeled so that the cycle C,, is 1,2,3,...,n—1,n,1. We
will later note why this is without loss of generality.

Then M is circulant with, for j = 1,...,d, entries m; and m,_; given exactly by
the coefficient of the jth term in the sum. Namely,

2mkd 2mjk
mo =1, md—cos(tl), mj—mnj—cos<7;f>,j—1,...,d—1.

We can directly compute the tth eigenvalue of M using Lemma 2.2. Our later proofs
will include similar computations, so we pay particular emphasis to the details of our
algebraic manipulation. For t = 1,...,n — 1, the tth eigenvalue of M is

n—1
27sty/—1
M):E mge  n

s=0

2mkd\ _ 2mdty=T =l 2msk  amsty/—T 2m(n—s)ty/—T
=1+4+cos| —— e n +Zcos (e n e n ) ,
n n

s=1

where we have first written the terms when s = 0 and s = d. We rewrite terms so
that our sum is to d and simplify exponentials:

M(M) =1— cos (27T:d) 2mdty/—1 ZCOb ( > (e_ 2msty T n emmﬂﬁ)

=1— (DDt + 2;cos (27;;Sk> cos (22‘%) .

Recalling the product-to-sum identity for cosines (that 2 cos(6) cos(¢) = cos(6 + ¢) +
cos(f — ¢)), we get

M(M)=1— (- k+t+ZCOS( k+t>+§:cos<2zs(k—t)>.

Using Lemma 2.3 and (—1)**! = (—=1)*~%  we have

1—(=1)*+2d ifk=t=d,

M(M) = —1 4 (~1)F+1 1 g itk #dte {kn—k},
1—(=Dk+t — L (—pk+td — 14 (—1)k~t1 otherwise
20d ifk=t=d,

d ifk#dte{kn—k}

0  otherwise.
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The eigenvalue A, is
n—1
An(M) = Z me
s=0
orkd ¢ 2msk
=1- 2
cos( " >—|— Zcos( " )

s=1

=1—(-DF—14 (-1
=0.

The matrix M thus has all nonnegative eigenvalues, so the positive semidefinite con-
straints hold for each k € {1,...,d}.

Finally, we note that our assumption that the cycle C,, is 1,2,3,...,n—1,n,1 was
without loss of generality: we can replace the 4;(C,,) with PTA;(C,)P = P~*4;(C,)P
for a permutation matrix P that permutes the labels of the vertices so that the cycle
is 1,2,3,...,n — 1,n,1. Then M and P~'MP are similar matrices and share the
same spectrum. Thus M is positive semidefinite if and only if P~'MP is positive
semidefinite; P~!M P is the circulant matrix above, with

2nkd 2njk
mo =1, md:cos(ﬂ;l), mj:mnj:cos<7;j),jzl,...7d—1,

and thus both P~'M P and M are positive semidefinite. 0

We briefly remark that de Klerk, Pasechnik, and Sotirov [9] also use the eigenvalue
properties of circulant matrices in proving that the SDP is a relaxation of the TSP.
They use the fact that each individual Ax(C,,) is circulant to compute the eigenvalues
of each Ay (C,), while we use the fact that the linear combination of those matrices
denoted above by M is circulant.

3. The unbounded integrality gap. To show that the SDP has an arbitrarily
bad integrality gap, we demonstrate a family of instances of edge costs for which we
can upper bound the SDP’s objective value. We consider an instance with two groups
of n/2 vertices. The costs associated with intergroup edges will be expensive (1), while
the costs of intragroup edges will be negligible (0). As noted in the introduction, this
instance is equivalent to both a cut semimetric and an instance where the costs are
given by Euclidean distances in R'. Explicitly, we will use the cost matrix

0 -«- 0 1 --- 1

R 0O -~ 0 1 --- 1 0 1

C .= L cvi 1.0 - 0 (1 O>®Jd.
1 ««. 1.0 --- 0

Notice that the edge costs embedded in this matrix are metric.

Throughout this paper, we reserve U and W to refer to the two groups of vertices,
so that |[U| = |[W|=d and V = UUW. In a Hamiltonian cycle §(U) > 2, so that any
feasible solution to the TSP must use the expensive intergroup edges at least twice.
We can achieve a tour costing 2 with a tour that starts in U, goes through all the
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vertices in U, crosses to W, goes through the vertices in W, and then returns to U.

Hence OPTpgp(C) = 2.
We state our main result, the proof of which culminates in section 3.3.

THEOREM 3.1. )
~ T ~
OPTSDP(C> < %OPTTSP(C).
As a consequence, we have the following corollary.

COROLLARY 3.2. The SDP (1) has an unbounded integrality gap. That is, there
exists no constant o > 0 such that

OPTTSP(C)

OPTspp(C)

IA

«

for all cost matrices C.

To prove Theorem 3.1, we construct a family of feasible SDP solutions whose
cost becomes arbitrarily small as n grows. We will specifically search for solutions
respecting the symmetry of C: matrices X that place a weight of a; on each
intragroup edge and a weight of b; on each intergroup edge. Moreover, we choose!
the b; so as to enforce that the row sums of the X match those of the distance
matrices A;(C,) introduced earlier: XWe = A;(Cp)e = 2¢ for j = 1,...,d — 1 and
X@e = Ay(C,)e = e. Since every vertex is incident to d — 1 edges in its group (with

weight a;) and d edges in the other group (with weight b;), we have
2 ifi=1,...,d—1
d—1)a; + db; = T ’

(@=La:+ {1 if i = d.

Rearranging for the b; lets us express the jth solution matrix of this form as

(2) XU) = ((Zj Zj) ®Jd> —ajl,, b= {

where we subtract a;1,, so that the diagonal is zero. The cost of such a solution is
entirely determined by the (n/2)? intergroup edges, each of cost b;. Each edge is
accounted for twice in trace(CX (1)), but the objective scales by 1/2, so the cost of
this solution is
na 2
(3) b

Theorem 3.1 will then follow from the claim below.

-(1=2)q; ifj=1,...,d—1,
-(1-2)a; ifj=d,

n

EAISISAPN

CrLAIM 3.3. Choosing the parameters

9 .
ai:n—2 <cos<7§>+1>, i=1,...,d,

{2(1—(:05(’”')) ifi=1,...,d—1,
bi=14%

so that

ifi=d, i=1,....d,
leads to a feasible solution for the SDP (1) with matrices XU) as given in (2).

INote that de Klerk, Pasechnik, and Sotirov [9] actually show that every feasible solution must
satisfy X(Me=2efori=1,...,d—1and XWe=efori=d (when n is even). The fact that every
feasible solution matches these row sums is not something we will need, though we implicitly use it to
inform the solutions we search for. We provide an alternative, direct proof that all feasible solutions
must satisfy these row sums in the extended version of this paper Gutekunst and Williamson [18].
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In particular by = 2(1 — cos(%)). Basic facts from calculus will show that this is
roughly 2 —3, 0 that the cost of our solution is (n/2)2by, which is roughly 1 -, which
gets arbltrarlly small with n.

The main work in proving this claim involves showing that the X ) satisfy the
PSD constraints. We first characterize the choices of the a; that lead to feasible
SDP solutions of the form in (2); this is done in section 3.1. There we exploit the
structure of matrices in the form of (2) to write the PSD constraints on the X as
linear constraints on the a;; these linear constraints will imply that all eigenvalues
of the term I + Z?:l cos(QWT““)X(i) are nonnegative. To finish proving the claim, in
section 3.2 we show that the claimed a; are indeed feasible.

3.1. Finding structured solutions to the SDP via linear programming.
In this section we prove the following proposition.

PROPOSITION 3.4. For the SDP (1), finding a minimum-cost feasible solution of
the form

: b 2_(1-2)a; ifj=1,...,d—1
X(J)_<<aj >®J)a , where b, = 4 ™ n) % ’ ’ y
b ag) ) 0D ii=d

for 5 =1,....d is equivalent to solving the following linear program:

mazx ay
subject to Zf 1cos(2 ”C)aZ > f% k=1,....d,
Zd | cos (222
Z?Zl a; =1,

m
=
SN—
Q
&
IN
=
o
I
=
S

4 .

a; Sm, ’L::I.7...,d_:|~7
2

aq < s

a; >0, i=1,....d

Proof. First we notice that maximizing a; is equivalent to minimizing by, which
is in turn equivalent to minimizing the cost (%)2b; of the SDP solution. The X@ are
nonnegative if and only if a; > 0, b; > 0 for i = 1,...,d. The constraints a; > 0 are
explicit in the linear program, and b; > 0 is equivalent to a; < n%, i=1,...,d—-1
and aqg < n% Fmally, the constraint that the X (@) sum to J — I is equivalent to
Zf 1a; =1 and Zl 1 b; = 1. However, ZZ 1 b; = 1 follows from requiring that

Z?:l a; = 1:
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It remains to show that the kth SDP constraint is equivalent to

d .
os<2mk>ai<1, k=1,...,d.

The kth SDP constraint is

I—i—Zcos( )X(’)>O

Using properties of the Kronecker product (see Chapter 4 of Horn and Johnson [20])
and the structure of our X @), we simplify this:

I, + Z cos - X

i=1

(k) pk)
a
_ (1 a,(k))fn + (b(k) (k)) ® Jq4,
where J 4
2mik X 2mik
a®) = Zcos ( m ) a;, pF) = Zcos ( Uk ) b;
i=1 n i=1 n
depend on the full sequences ay,...,aq,b1,...,b5 and on k.

To explicitly write the eigenvalues of the kth SDP constraint, we use several
helpful facts from linear algebra.

e The pq eigenvalues of A ® B with A € RP*? and B € R9*? are \;(A)\;(B)

fori=1,...;,pand j = 1,...,q. See Theorem 4.2.12 in Chapter 4 of Horn
and Johnson [20].

The rank one matrix Jg; = ee”, with e of dimension d, has one eigenvalue d
corresponding to eigenvector e, and all other eigenvalues are zero. (Choose,
e.g., any d — 1 linearly independent vectors that are orthogonal to e.)

A(A) is an eigenvalue of A with eigenvector v if and only if A(A) + ¢ is an
eigenvalue of A + ¢l with eigenvector v. This follows by direct computation.
The eigenvalues of (¢ °) are a + b and a — b with respective eigenvectors (})
and ( 1)

T

From these facts, we obtain that the eigenvalues of I + Z _ cos(ZZE) X @) are

1—a®, 1-a® 4 g (a(k) + b(k)> , and1—a® 4 = 5 (a(k) — b(k)) .

For example, 1—a®) has multiplicity n—2. It corresponds to the d—1 zero eigenvalues
of Jg, each of which gives rise to 2 zero eigenvalues of

o )
pk) k) ) © Ja
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Therefore, for the kth PSD constraint of the SDP (1) to hold, it suffices that the
following three linear inequalities hold:

(3) 1- a® >0, 1—a® + g (a(k) + b(k)> >0, 1—a® + g (a(k) — b(k)> >0
We have thus derived a system of inequalities on the a;, b; that, if satisfied, imply
a set of feasible solutions to the SDP. We can further simplify these by writing the b;

in terms of the a;. As in Proposition 2.1, we begin by writing the sum so that we can
use Lemma 2.3. We compute

o ()
(o () (- 2)0)) o (59) (-2
_1 ( o () = (1 2) S () ) o (2).

Using Lemma 2.3, we have

o4 (2o ()
_ (1_ i) k) _ %

We use this relationship to simplify the second and third inequalities in (3) by writing
them only in terms of a(*). We obtain

1= a® £ P (a® 4 p®) 21 g 4 (aac) _ <1 _ 2> 4 _ 2) _0
2 2 n n

and
n N 2 2

1_a(k)+f(a(k) _b(k)) — 1_a(k)_|_f a(k) +(1—-= a(k) + =) = 2_|_(n_2)a(k).
2 2 n n

Hence, the three inequalities in (3) become

<a® <1,

n—2

and these inequalities are equivalent to ensuring that the kth PSD constraint of the
SDP in (1) holds. d

COROLLARY 3.5. Consider a possible solution to the SDP (1) of the form

, b 2 _(1-2)a; ifj=1,...,d—1
X(J):(G)LJ b]>®Jd)—ajIn, where by = { 7 ( 721)% Zf] R ’
i aj Tzi(liﬁ)a’j ’Lf_]:d

The kth PSD constraint I+Z;.l=1 COS(#)XU) = 0 is equivalent to — 25 < a®) < 1.
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3.2. Analytically finding solutions to the linear program. We now show
that the following choice of the a; leads to XU) that are feasible for the SDP (1):

2 e
R s — 1 , =1,...,d.
a; n—2(005(d>+>’ i ooy d

As argued above, to show feasibility we need only verify that the constraints of the
linear program in Proposition 3.4 hold. Notice that —1 < cos(wi/d) < 1 so that, for
i=1,...,d—1, we have 0 < a; < ﬁ. Moreover, ag = 0. Hence we need only show
that Z?:l a; = 1 and that the a(®) live in the appropriate range.

CLAIM 3.6. For a; = —25(cos(Z}) + 1),

d
Zai =1.
i=1

Proof. We directly compute Zle a; using Lemma 2.3 with £ = 1. Then we have

d 2 & i 2
> n_2z(cos<d)+> )

=1

CrAmM 3.7. For a; = % (Cos (%) + 1) ,

=2 jfk=1
G0 _ Jna k=1

—==  otherwise.
n—2

w“’

Proof. As in Proposition 2.1, we use the product-to-sum identity for cosines and
then do casework using Lemma 2.3. We have

d

2mik
(k) — .
a ;:1 cos ( - ) a;
d . . .
2 ( (27rzk> <2mk’) (m))
= E cos + cos cos | —
n—2 pt n n d

d . . .
2 2mik 1 2mi(k + 1) 1 2mi(k — 1)
n2;=1(cos( " >+2cos( o >+2cos( i .

We can apply Lagrange’s trigonometric identity except for when k& = 1, so that

k k+1 k-1

25 (-1+0+ 3d) if k=1
-2 ifk>1,

T2 k=1 .
n—2 -

Claim 3.7 and Corollary 3.5 now show that the claimed a; imply feasible solutions
satisfying the PSD constraints. Taken with Claim 3.6 and Proposition 3.4, we have

that ) _
i
R s | — 1 ,=1,...
a; n_2<cos(d)+>, i ey d,
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is feasible for the linear program in Proposition 3.4 and therefore implies feasible
solutions for the SDP (1) of the form

: i b 4_(1-2)q, ifj=1,...,d—1
X0 = ((Z] bj) ®Jd) —ajl,, whereb; =<7 ( g)aJ 1 ] v ’
E—(l—ﬁ)a]’ 1f]=d.

i aj
3.3. The unbounded integrality gap. We are now able to prove our main
theorem.

THEOREM 3.1. )
~ T ~
OPTspp(C) < %OPTTSP(C).

Proof. Earlier we saw that a feasible solution of the form in (2) had cost %le

and OPTrgp(C) = 2. Hence, assuming a feasible solution, we can bound

OPTSDP(C) < n2b1
OPTrsp(C) = 8

We have found a feasible solution with parameter

() )
= (1-2) g () ) =2 - ()

Using a Taylor series with remainder,

a; =

so that

s w2 174 w2
cos(3) =1 5@+ ga s &) 21— 55
where £, /4 € [0, é}
Hence, we bound as follows:

<
OPTTSP( ) 8
2

n22 [ w2
< 2 L
— 8 n \2d?
72

=_—. O
2n
We note that, at best, the SDP (1) is an O(n)-approximation algorithm. We also
notice the following.

OPTSDP (é) n2b1
C

REMARK 3.8. Several hierarchies exist that strengthen convex relaxations of com-
binatorial optimization problems, including those of Sherali and Adams [29], Lovdsz
and Schrijver [24], and Lasserre [23]. These hierarchies iteratively add constraints to
the relazation; after sufficiently many iterations, the surviving feasible solutions corre-
spond exactly to convex combinations of integer solutions. See Chlamtac and Tulsiani
[3] for a detailed survey.

Cheung [2], for example, applies hierarchies to show that certain feasible solu-
tions for the subtour LP survive applying the Lovdsz and Schrijver hierarchy any
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constant number of times. In particular, those solutions violated certain constraints
(2-matching inequalities) satisfied by Hamiltonian cycles. One might analogously won-
der how long our solution survives iteratively adding constraints to an appropriate
linear program. X is not feasible for the subtour LP for sufficiently large n, so that
it trivially doesn’t survive any rounds of these hierarchies applied to the subtour LP.
In contrast, it can be shown that the feasible X we found is in the convex hull of
cycle covers. Hence our solution would survive arbitrarily many rounds of any of these
hierarchies applied to a linear program obtained by using only the degree constraints
of the subtour LP.

4. Corollaries of Theorem 3.1. Theorem 3.1 and its proof imply several corol-
laries that help us better understand the SDP (1) and its relationship to other relax-
ations of the TSP. We list several corollaries in this section, first relating the SDP to
the subtour LP (sections 4.1 through 4.3), and then relating the SDP to another SDP
for the TSP in section 4.4.

4.1. Nonmonotonicity of solution costs. We begin with the counterintuitive
result that adding vertices (in a way that retains costs being metric) can arbitrarily
decrease the cost of some solutions to the SDP (1). We state this as a nonmonotonicity
property that contrasts with both TSP and subtour LP solutions.

Consider an optimization problem whose variables correspond to edges of the
complete graph K, and whose input consists of edge costs and a size n. Let S C [n]
be a subset of the vertices. Let OPT denote the cost of the optimal solution to the
optimization problem on the full set of vertices, and let OPT[S] denote the cost of
the optimal solution to the optimization problem induced on the set S. Formally, if C'
denotes the matrix of edge costs corresponding to the original input, then the induced
problem on S uses the edge cost matrix C[S] defined to be the principle submatrix
of C obtained by deleting the rows and columns in [n]\S. If OPT[S] < OPT for all
possible input costs, values of n, and subsets .S, we say that the optimization property
has a monotonicity property.

The TSP (as usual, assuming metric and symmetric edge costs) is well known
to be monotonic (this can be seen as an application of shortcutting; see section 2.4
of Williamson and Shmoys [32] for details of shortcutting.) Moreover, Shmoys and
Williamson [30] show that the subtour LP is also monotonic. Our example shows
that the SDP of de Klerk, Pasechnik, and Sotirov [9], however, is not: the cost of our
SDP solutions get arbitrarily small as n grows, and our instance on n’ vertices can be
viewed as induced from a larger instance on n > n’ vertices.?

COROLLARY 4.1. The SDP (1) is not monotonic.

4.2. The relationship of our SDP solutions to the minimum spanning
tree polytope. The minimum spanning tree (MST) polytope is

{ZERG):er:n—L Z ze <|S]=1forall S CV, zZO}.

ecE e€E(S)

2As a technical point, the lack of monotonicity requires showing that, given cost matrix C, the
SDP (1) does not admit solutions of nonpositive cost (this is to rule out the case in which, for all n,
the optimal solution to the SDP given cost matrix C' is zero and hence does not arbitrarily decrease).
One way to see that there cannot be solutions of cost zero is to use methods from spectral graph
theory. As we will discuss in detail in section 4.4, for any feasible SDP solution, X (1) can be viewed
as the weighted adjacency matrix of a graph that must have strictly positive algebraic connectivity.
Hence, Cheeger’s inequality can be used to get a strictly positive lower bound on 6(U), the weight
of edges of cost 1 in any feasible SDP solution. See Spielman [31].
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One nice, well-known property of the subtour LP is that any feasible solution to it,
when appropriately scaled, is also feasible for the MST polytope (see, e.g., Gao [11]
for a very similar argument). Conversely, solutions to the SDP cannot in general be
scaled to be in the MST polytope. We show this directly using our feasible solutions.?

COROLLARY 4.2. Let z € R(2) pe defined by x. = XZ-(;) = XJ(Z-l) and denote by E
the set of all edges in the complete graph on n vertices. There is no suitable scaling
factor ¢ such that cx is in the minimum spanning tree polytope (where ¢ is allowed to
be a function of n).

Proof Notice that X(Me = 2¢ implies that 3. _, 2z, = n so that we must set

eckE
. Again let U correspond to the set of vertices in one group. Then there are

C =
( ) edges in E(U), each of which has an assigned weight of a1 in our solution. Hence,

n;l Z z, n—1 Z a1

n
e€BE(U) e€E(U)

= ()i o () +)
(s (§)+)

S = 1 ) LQ
- 4 2d?
1 1
—d—-+0(=
-0 ()
>|U| -1
for all n sufficiently large. ]

4.3. The SDP and subtour elimination linear program when n is small.
When n = 6, our solution is

W (3/4 1/6 3
X _(1/6 3/4) © 73 7l

Letting U = {1, 2,3} denote one of the two groups of vertices, we see that 6(U) has
9 edges in it, each of which is assigned a weight of 1/6, so that the total weight
crossing §(U) in this solution is 9 * % = % < 2. This violates the subtour elimination
constraint for U. Hence, we see that the subtour LP and SDP have distinct feasible
regions when n = 6. We can show, in contrast, that they are the same for n <
5. Doing so involves computations that are of a different spirit than what we have
done so far; we defer this proof to the extended version of this paper (Gutekunst
and Williamson [18]). We emphasize this result because, when n < 5, it is known
that the feasible region of the subtour LP consists exactly of convex combinations
of Hamiltonian cycles (see, for example, Grotschel and Padberg [17]). Hence this
result lets us characterize the feasible region of the SDP when n < 5 as corresponding

3We briefly note that, if we could appropriately scale the SDP solutions to be in the MST
polytope, we would be able to bound the integrality gap by a factor of 2 by using the standard
tree-doubling approximation algorithm (see, e.g., section 2.4 of Williamson and Shmoys [32]); from
this observation, and the fact that we have shown that the integrality gap is unbounded, it follows
that our solutions cannot be scaled to lie in the MST polytope. Here we instead choose to provide
a direct proof that reveals how far our solutions are outside of the MST polytope.
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exactly to convex combinations of Hamiltonian cycles. We formalize and prove these
results in Gutekunst and Williamson [18].

4.4. The relationship of our solution to an earlier TSP SDP. Previously
we mentioned an earlier SDP relaxation for the TSP from Cvetkovi¢, Cangalovié, and
Kovagevié-Vujcié [5] which was shown to be weaker than the subtour LP in Goemans
and Rendl [13]. This relaxation has a single matrix variable X and takes the form

min Ltrace (CX)

subject to Xe = 2e,
Xi; =0, i=1,...,n,
X;; <1, ij=1,...,n,
2] — X + (2 —2cos (22)) (J — 1) = 0,
X esn.

The variable X can be interpreted as a weighted adjacency matrix, and the constraint
that Xe = 2e ensures that e is an eigenvector of X with corresponding eigenvalue 2.
The term 21 — X in the PSD constraint can be interpreted as the Laplacian of X:
let G be a weighted, undirected graph on n vertices with weighted adjacency matrix
A. Let D be the degree matrix of G (i.e., D is diagonal with Dj; = >7_, A;;). The
Laplacian of G is defined as

L:=D— A.

With the interpretation of X as a weighted adjacency matrix, the constraint Xe = 2e
implies that the Laplacian corresponding to X is

L(X) =2 — X,

where we make the dependence on X explicit. This observation, and machinery
from spectral graph theory, motivates the positive semidefinite constraint in the SDP
of Cvetkovi¢, Cangalovié, and Kovacevié-Vujcié [5]. (See Spielman [31] for a nice
introduction to spectral graph theory.)
In more detail, let h,, := 2 — 2 cos(2Z

n

) so that the positive semidefinite constraint
is

LX)+ hy(J=1)>=0.
The value of h,, is known to be the second smallest eigenvalue of the Laplacian of a
cycle on n vertices.* The second smallest eigenvalue of the Laplacian is known as the
algebraic connectivity of a graph.

The Laplacian of a weighted graph is known to be positive semidefinite (see Spiel-
man [31], which represents the Laplacian as a quadratic form), so we can write the
eigenvalues of L(X) as 0 < A\ < Ay < -+- < \,. Since X is symmetric, we fur-
ther assume that these eigenvalues correspond to an orthogonal basis of eigenvectors
V1,...,Un, Where v; corresponds to eigenvalue \;. Moreover, we can choose to let
v; = e and A; = 0, since Xe = 2e. The eigenvalues of L(X) + h,(J — I) are then

)\1—|-(’I’L—1)hn:(n—l)hn,/\g—hn,...,)\n—hn.

These follow by right-multiplying L(X) + h,(J — I) by v; and noting that Jv; =
eeTv, = 0if i # 1, and Jv; = eeTe = ne. Since h,, > 0, the positive semidefinite

4The Laplacian of a cycle graph is also a circulant matrix, with mo = 2, m1 = m,_1 = —1, and

m; = 0 otherwise. Its eigenvalues can be directly computed using Lemma 2.2.
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constraint ensures that

Ai—h,>0, i=1,....,n—1,
or equivalently that
() Ay > By

Hence, the PSD constraint introduced by Cvetkovi¢, Cangalovié¢, and Kovacevié-
Vujéié¢ [5] ensures that the algebraic connectivity of X is at least h,, the algebraic
connectivity of a cycle on n vertices.

One might wonder if our solution X is also feasible for the SDP of Cvetkovié,
Cangalovi¢, and Kovacevié-Vujéié [5]. The answer is yes because, as mentioned earlier,
de Klerk, Pasechnik, and Sotirov [9] showed that any solution of (1) is feasible for the
SDP of Cvetkovi¢, Cangalovi¢, and Kovacevié-Vujéié [5] in (4). Hence, Theorem 3.1
implies that the SDP (4) also has an unbounded integrality gap.

Here we show the result directly for our feasible solutions, as it turns out that our
solution corresponds to an instance where (5) is tight. Thus our X(») instance and
cost matrix C' provide an explicit example of a weighted graph that has exactly the
same algebraic connectivity as a cycle and in which every vertex has degree 2, but
has cost arbitrarily far from a minimum-cost Hamiltonian cycle.

ProroSITION 4.3. Taking

with a; = 25 (cos(%) + 1) and by = 2(1 — cos(%)) yields a feasible solution for the

SDP (4). Moreover, the algebraic connectivity of X is exactly that of an n-cycle.
Proof. By construction, X(1) satisfies all conditions of (4) except possibly that

2I, — XU 4 h,(J, — 1,,) = 0.

By the argument above, it suffices to compute the second smallest eigenvalue of 21,, —
XM and show that it is at least h,. The eigenvalues of

oI, — XU = (2 + a1, — (<Zl b1> ® Jd)
1 01

are 2 4 ap, with multiplicity n — 2, and 2 + a1 — d(a; £ b1), each with multiplicity 1.
Simplifying these later eigenvalues, we have the two eigenvalues

24 a1 —d(ay +b1) =0, 2+a;—d(ag —b1) = hy,.

Hence, the second smallest eigenvalue of L(X (1)) is indeed h,,. 0
COROLLARY 4.4. The SDP (4) has an unbounded integrality gap.
COROLLARY 4.5. The algebraic connectivity of XV is equal to the algebraic con-
nectivity of cycle.

5. The k-cycle cover problem. In the TSP, we try to find a minimum-cost
cycle that covers all vertices. This problem is generalized in the k-cycle cover problem,
which involves finding k equally sized cycles that cover all of the vertices (and assumes
n is divisible by k). Just as in the TSP, the goal is to do so with minimum cost. As
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for the TSP, there are algorithms for finding approximate solutions with a bounded
integrality gap. Goemans and Williamson [15] give a 4-approximation algorithm for
this problem.

De Klerk, de Oliveira Filho, and Pasechnik [7] notice that the SDP (1) can be
modified to become a relaxation of the k-cycle problem by changing only the objective
function. They prove the following result.

PROPOSITION 5.1. The following SDP is a relazation of the minimum-cost k-cycle
cover problem:

min %trace (CX(k))
subject to XU >0, 7=1,...,d,
(6) 25:1 X0 =J-1,
I+39 cos(Z) XU =0, i=1,....4d
X ¢ gn, i=1,...,d.

Proof (from de Klerk, de Oliveira Filho, and Pasechnik [7]). The proof uses ex-
actly the same feasible solutions as Proposition 2.1. The key observation is that the
kth distance matrix Ay (C,,) represents a partition of the vertices into k equally sized
cycles. In particular, if C, is the cycle v1,va,...,v,,v1, then Ax(C,) consists of the
cycles Vi, Vigk, Vigak, - -+ Vig(n—k), Vi for i = 1,2,... k (see, for example, Figure 1).
Any k-cycle cover of the vertices can similarly be represented as the kth distance
matrix of some Hamiltonian cycle. 0

Fic. 1. The graphs corresponding to A1(Crn) and A3(Cn) when n = 12. Notice that the right-
hand graph is a 3-cycle cover, and each cycle is drawn with a different edge style.

Since the SDP for the TSP is a special case of this SDP obtained by setting k = 1,
it is natural to wonder if our technique also shows that this more general SDP has an
unbounded integrality gap. Again the answer is in the affirmative. Let OPTgpp(C)
and OPTj._cyc1e(C) respectively denote the optimal solutions to the SDP (6) and to
the k-cycle cover problem for a given matrix of costs C and fixed k > 2. Our earlier
result generalizes as follows.
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THEOREM 5.2. There ezist cost matrices C' with metric and symmetric edge costs

such that
OPTepp(C) < ™ OPTycve(€)
SDP = k+1 k-cycle .
COROLLARY 5.3. The SDP (6) for the k-cycle cover problem has an unbounded

integrality gap. That is, there exists no constant o > 0 such that

OPTk-cycle (C)

<«
OPTspp (C) -

for all cost matrices C.

The full proof of Theorem 5.2 uses almost exactly the same ideas as in the proof
of Theorem 3.1: for sufficiently structured solutions, finding a feasible SDP solution is
equivalent to finding a feasible solution to a related linear program. We find feasible
solutions to such a linear program and use a Taylor series with remainder to obtain
the stated bounds. Because the ideas are so similar, we only highlight the main steps
of the proof. A more detailed sketch can be found in the appendix of the extended
version of this paper, Gutekunst and Williamson [18].

We modify our example from the proof of Theorem 3.1 and consider cost matrices
reflecting k + 1 equally sized groups of vertices. Hence, we let n = ck(k + 1) and will
scale n by scaling ¢ € N (to reduce casework, we also take ¢ to be even when k is
even). As before, the costs associated with intergroup edges will be 1, while the costs
of intragroup edges will be 0. Our cost matrix is

C = (Jrs1 — Tos1) @ Jok.

Notice that any integer solution to the k-cycle problem will use cycles of length
c(k + 1), while each group is of size ck. Hence, any cycle in any integer solu-
tion will need to use at least two expensive edges. This lower bounds the cost of
OPTk_Cycle(é) as 2k. We can also achieve this cost by labeling the groups of ck
vertices as G1,...,Gry1. For i = 1,... )k, we create a cycle C; that visits all ver-
tices in group G;, then visits ¢ vertices in Gg41, and then returns to G; for each
i=1,..., k. Each cycle C; costs 2, so that the cost is indeed 2k. Hence, regardless of
n, OPTk—cycle(C) = 2k.

Our proof of Theorem 5.2 now proceeds as in the proof of Theorem 3.1. We find
solutions whose structure respects the symmetry of C: solutions that place a weight
a; on each intragroup edge, a weight b; on each intergroup edge, and zeros on the
diagonal. That is,

X = ((bJpgr + (@i — b))y 1) @ Jek) — ailn.

Also, note that in each of the n rows of X*) there are n — ck = ck? entries that are by,
(occurring exactly where C' has ones), and ck entries that are aj (occurring exactly
where C has zeros). Hence the cost of such a solution is now based entirely on by:

1 1 2
(0. XD) = Zn(n — ck)by = %(k +1)E3 b

The structure of these matrices (and their linear combinations) allows us to again
explicitly write down the eigenvalues of each semidefinite constraint. We also enforce
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the same constraints on the row sums of the X9 which now become

1 fe—(ck-Da) ifi<d,
Cck? | (1= (ck —1)a;) ifi=d.

By only considering solutions with this structure, we obtain the following counterpart
of Proposition 3.4.

PROPOSITION 5.4. Finding a minimum-cost feasible solution to the SDP (6) of
the form

XD = ((biJggr + (a; — bi)Tgy1) @ Je) — ailn,

fori=1,... d with

1@ (ck-1a) ifi<d,
YT k2 (1—(ck—1)a;) ifi=d,

is equivalent to solving the following optimization problem:

maz a
subject to E?Zl cos (2Zij) ai>—-=, j=1,....d,
S cos () a; < 1, i=1,....d,
(7) E?:1 a; =1,
a; <25, i=1l,...,d-1,
aq < Tlfl’
a; >0, i=1,...,d.

To prove Theorem 5.2, it suffices to show that the following choice of a;, for
i=1,...,d, leads to a feasible SDP solution:

0 if i # k,
n—i—l ) + k) if 4 =k k, 7 7£ d,

(%
n7i7 (cos (%’) + k) if 1 =d.

=

To verify that this choice of the a; leads to a feasible solution for the linear pro-
gram (7), we again use Lagrange’s trigonometric identity and the product-to-sum
identity for cosines. The computations requiring Lagrange’s identity involve more
bookkeeping (there are more cases involving summing cosines whose arguments are
all integer multiples of 27), but are otherwise in the same spirit as in Claims 3.6
and 3.7. These calculations are sketched in the appendix of the extended version of
this paper, Gutekunst and Williamson [18].
Such feasible solutions bound the cost of the optimal SDP solution as

2

OPTSDp(é) < %(k + l)k‘gbk.
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. 2_2
Using cos(&F) > 1 — £ we have

b = cl% (1 — (ck — l)ﬁ (cos <7rdk) +l<;))

2 ck—1 k22

B I A 1>

ck2< n—k—1<k+ 2d2>>
2

cd?(k+1)

For any fixed k, the denominator is again O(n?). Recall also that

OPTjcyere(C) = 2k.

Hence,
~ 2
OPTSDP( ) < %(/ﬂ + 1)k3bk
OPTk—cycle(O) N 2k
4 d?-
Using 4d? = n? and n = ck(k + 1),
OPTspp(C) _ 5 1
OPTk—cycle(é) C(k‘ + 1)2
ko1
— 2 -
T kfin

In the last line, we used that ¢ = n/(k(k + 1)). Again, the SDP’s integrality gap is
unbounded; as n increases, solutions to the SDP become arbitrarily small. This is
sufficient, as it will imply

7T2

< —.
b < cd?(k+1)

For these solutions, it can then be shown that

~ 2

OPTgspp(C) < %(k‘—Fl)kak
OPT}cycte(C) ~ 2%k
k1
<mi——_.
=7 k+1n

6. Conclusion and open questions. In this paper, we have shown that an
SDP for the TSP introduced in de Klerk, Pasechnik, and Sotirov [9] has an unbounded
integrality gap. To do so, we considered instances when n was even and used highly
structured feasible solutions that could be expressed as the Kronecker product of
simple matrices. Such structure is not preserved for n odd, and we are unable to
analyze this case without a significantly more complicated analysis. The solutions
we found for n even implied several corollaries, and we used the same techniques to
show that a related SDP, for the k-cycle cover problem and introduced in de Klerk,
de Oliveira Filho, and Pasechnik [7], also has an unbounded integrality gap.
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One open question relates to the relationship between the SDP of de Klerk,
Pasechnik, and Sotirov [9] and the subtour LP. For the instance we constructed,
the subtour LP outputs the exact cost of a solution tour. Is it the case that an ap-
proximation algorithm that runs both the SDP and subtour LP, then takes the best
solution, has an integrality gap of 1.5 — € for € > 07

A second open question relates to the performance of the SDP on special types of
TSP instances. One example is the Euclidean TSP, where each city ¢ € [n] corresponds
to a point z; € R?, and the cost ¢ij is given by the Euclidean distance between x;
and z;. While no algorithm for the general TSP (with metric and symmetric edge
costs) has been shown to have an integrality gap strictly less than 1.5, Arora [1] and
Mitchell [25] give a polynomial time approximation scheme for the Euclidean TSP.
Moreover, one can solve the Euclidean TSP in R! exactly: if z,, € min;ep,) ; and
Ty € MaX;e[y) ¥4, then any optimal tour will cost 2(xn — 2.,); such a tour can be
achieved by starting at x,,, iteratively visiting vertices in increasing order of x; until
reaching xj,s, and returning to x,,. We noted that our instance corresponds to an
instance of Euclidean TSP in R! (and hence in R? by lifting the points (0) and (1) in
R to (0,0)T and (1,0)7, respectively), so that the SDP has an unbounded integrality
gap even when restricted to the Euclidean TSP (or the Euclidean TSP in R!).

Another class of instances that has received considerable attention is that of
graphic TSP: here the input corresponds to a connected, undirected graph G on
vertex set [n], and for 4, j € [n] the cost ¢;; is the length of the shortest i-j path in G.
Several recent papers have bounded the integrality gap on graphic TSP instances as
strictly less than 1.5. (See, for example, Gharan, Saberi, and Singh [12] for a 1.5 — ¢
bound, Momke and Svensson [26] for a 1.461 bound, Mucha [27] for a ¥ ~ 1.444
bound, and Seb& and Vygen [28] for a 1.4 bound.) It is not hard to show that the
SDP has at most an integrality gap of 2 when restricted to graphic TSP instances.
This follows because the minimum-cost Hamiltonian cycle is at most twice the cost of
an MST (see section 2.4 of Williamson and Shmoys [32], for example), and the cost of
an MST in a connected graph with unit edge weights is n — 1. Conversely, in graphic
TSP the minimum-cost of an edge is 1. This means that C' > J —1I (entrywise). Thus,

E(C’,X(l)> > 1<J _ I,X(l)) - 1<J,X(1)> = n.

2 2 2
Above, the first inequality follows from the fact that XY is nonnegative, the first
equality follows from the fact that the diagonal of X () is zero, and the final equality
follows from X(Me = 2e. An open question is to exactly compute the integrality gap
of the SDP on graphic TSP; we conjecture that the integrality gap is at least 1.5 and
is asymptotically achieved when G is a path.

Finally, de Klerk and Sotirov [10] present a stronger version of the SDP (1). It

remains open to compute the integrality gap of this SDP relaxation of the TSP.
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