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Abstract. We consider the integrality gap of the subtour linear program (LP) relaxation of the
traveling salesman problem (TSP) restricted to circulant instances. De Klerk and Dobre [Discrete
Appl. Math., 159 (2011), pp. 1815--1826] conjectured that the value of the optimal solution to the
subtour LP in these instances is equal to an entirely combinatorial lower bound from Van der Veen,
Van Dal, and Sierksma [The Symmetric Circulant Traveling Salesman Problem, Research Memoran-
dum 429, Institute of Economic Research, University of Groningen, 1991]. We prove this conjecture
by giving an explicit optimal solution to the subtour LP. We then show that the integrality gap of
the subtour LP is 2 on circulant instances, making such instances one of the few nontrivial classes
of TSP instances for which the integrality gap of the subtour LP is exactly known. We also show
that the degree constraints do not strengthen the subtour LP on circulant instances, mimicking
the parsimonious property of metric, symmetric TSP instances shown in Goemans and Bertsimas
[Math. Programming, 60 (1993), pp. 145--166] in a distinctly nonmetric set of instances.
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1. Introduction. The traveling salesman problem (TSP) is one of the most
famous problems in combinatorial optimization. An input to the TSP consists of a
set of n cities [n] := \{ 1, 2, . . . , n\} and edge costs cij for each pair of distinct i, j \in [n]
representing the cost of traveling from city i to city j. Given this information, the
TSP is to find a minimum-cost tour visiting every city exactly once. Throughout this
paper, we implicitly assume that the edge costs are symmetric (so that cij = cji for
all distinct i, j \in [n]) and interpret the n cities as vertices of the complete undirected
graph Kn with edge costs ce = cij for edge e = \{ i, j\} . In this setting, the TSP is to
find a minimum-cost Hamiltonian cycle on Kn.

With just this set-up, the TSP is well known to be NP-hard. An algorithm that
could approximate TSP solutions in polynomial time to within any constant factor \alpha 
would imply P = NP (see, e.g., Theorem 2.9 in Williamson and Shmoys [44]). Hence
more restricted assumptions are placed on the edge costs. If one assumes that edge
costs are metric (i.e., cij \leq cik+ ckj for all distinct i, j, k \in [n]), it is known to be NP-
hard to approximate TSP solutions in polynomial time to within any constant factor
\alpha < 123

122 (see Karpinski, Lampis, and Schmied [28]). Conversely, the polynomial-time
Christofides--Serdyukov algorithm [7, 41] outputs a Hamiltonian cycle that is at most
a factor of 3

2 away from the optimal solution to any metric, symmetric instance.
For metric and symmetric edge costs, the Christofides--Serdyukov algorithm re-
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mains the state of the art. Significant work has gone into looking at more restricted
sets of edge costs. For example, the (1, 2)-TSP restricts cij \in \{ 1, 2\} for every edge
\{ i, j\} (see, e.g., Papadimitriou and Yannakakis [39], Berman and Karpinski [2], and
Karpinski and Schmied [29]). In graphic TSP, instead, the input corresponds to a
connected, undirected graph G on vertex set [n], and for i, j \in [n], the cost cij is the
length of the shortest i-j path in G; approximation algorithms with stronger perfor-
mance guarantees than the Christofides--Serdyukov algorithm are known in this case
(see, e.g., Oveis Gharan, Saberi, and Singh [37], M\"omke and Svensson [34], Mucha
[35], and Seb\H o and Vygen [40]). Yet another special case of metric and symmetric edge
costs is Euclidean TSP, where each city i \in [n] corresponds to a point xi \in \BbbR 2, and
the cost cij is given by the Euclidean distance between xi and xj ; a polynomial-time
approximation scheme is known in this case (see, e.g., Arora [1] and Mitchell [33]).

In this paper, we consider a different class of instances: circulant TSP. This class
can be described by circulant matrices, matrices of the form

(1)

\left(        

m0 m1 m2 m3 \cdot \cdot \cdot mn - 1

mn - 1 m0 m1 m2 \cdot \cdot \cdot mn - 2

mn - 2 mn - 1 m0 m1
. . . mn - 3

...
...

...
...

. . .
...

m1 m2 m3 m4 \cdot \cdot \cdot m0

\right)        =
\bigl( 
m(t - s) mod n

\bigr) n
s,t=1

.

In circulant TSP, the matrix of edge costs C = (ci,j)
n
i,j=1 is circulant; the cost of edge

\{ i, j\} only depends on i - j mod n. Our assumption that the edge costs are symmetric
and that Kn is a simple graph implies that we can write our cost matrix in terms of
\lfloor n
2 \rfloor parameters:

(2) C = (c(j - i) mod n)
n
i,j=1 =

\left(        

0 c1 c2 c3 \cdot \cdot \cdot c1
c1 0 c1 c2 \cdot \cdot \cdot c2

c2 c1 0 c1
. . . c3

...
...

...
...

. . .
...

c1 c2 c3 c4 \cdot \cdot \cdot 0

\right)        ,

with c0 = 0 and ci = cn - i for i = 1, . . . , \lfloor n
2 \rfloor . Importantly, in circulant TSP we do not

implicitly assume that the edge costs are also metric. A circulant graph is a graph
whose weighted adjacency matrix is circulant.

Circulant matrices have well-studied structure (see, e.g., Davis [11] and Gray
[22]) and form an intriguing class of instances for combinatorial optimization prob-
lems. They seem to provide just enough structure to make a compelling, ambiguous
set of instances; it is unclear whether or not a given combinatorial optimization prob-
lem should remain hard or become easy when restricted to circulant instances. Some
classic combinatorial optimization problems become easy when restricted to circu-
lant instances: in the late '70s, Garfinkel [16] considered a restricted set of circulant
TSP instances motivated by minimizing wallpaper waste and argued that, for these
instances, the canonical greedy algorithm for TSP (the nearest neighbor heuristic) pro-
vides an optimal solution. In the late '80s, Burkard and Sandholzer [4] showed that the
decidability question for whether or not a symmetric circulant graph is Hamiltonian
can be solved in polynomial time and showed that bottleneck TSP is polynomial-
time solvable on symmetric circulant graphs. Bach, Luby, and Goldwasser (cited in

D
ow

nl
oa

de
d 

10
/0

4/
21

 to
 1

32
.1

74
.2

52
.1

79
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

2454 SAMUEL C. GUTEKUNST AND DAVID P. WILLIAMSON

Gilmore, Lawler, and Shmoys [20]) showed that one could find minimum-cost Hamil-
tonian paths in (not-necessarily-symmetric) circulant graphs in polynomial time. In
contrast, Codenotti, Gerace, and Vigna [8] show that Max Clique and Graph Coloring
remain NP-hard when restricted to circulant graphs and do not admit constant-factor
approximation algorithms unless P = NP.

Because of this ambiguity, the complexity of circulant TSP has often been cited as
an open problem (see, e.g., Burkard [5], Burkard, De\u {\i}neko, Van Dal, Van der Veen, and
Woeginger [6], and Lawler, Lenstra, Rinnooy Kan, and Shmoys [31]). It is not known
if the circulant TSP is solvable in polynomial time or is NP-hard, even when restricted
to instances where only two of the edge costs c1, . . . , c\lfloor n

2 \rfloor are finite: the two-stripe
circulant TSP. See Greco and Gerace [23] and Gerace and Greco [18]. Yang, Burkard,
\c Cela, and Woeginger [46] provide a polynomial-time algorithm for asymmetric TSP
in circulant graphs with only two stripes having finite edge costs. The symmetric
two-stripe circulant TSP is not, however, a special case of the asymmetric two-stripe
version. In addition to questions of minimizing wallpaper waste, circulant TSP has
applications in reconfigurable network design (see Medova [32]).

Motivated by positive results on Hamiltonicity and minimum-cost Hamiltonian
paths, Van der Veen, Van Dal, and Sierksma [43] developed two heuristic algorithms
for circulant TSP. In the case where all costs c1, . . . , c\lfloor n

2 \rfloor are distinct, one heuristic
provides tours within a factor of 2 of the optimal solution. In addition, Van der Veen,
Van Dal, and Sierksma [43] give an explicit combinatorial formula as a lower bound
for circulant TSP. Gerace and Greco [17] give a 2-approximation algorithm for the
general case of circulant TSP when costs may not be distinct. Gerace and Irving [19]
give a 4

3 -approximation algorithm for circulant TSP when edge costs are also metric.
See also Greco and Gerace [24].

De Klerk and Dobre [13] consider several lower bounds for the circulant TSP,
including the subtour elimination linear program (also referred to as the Dantzig--
Fulkerson--Johnson relaxation [10] and the Held--Karp bound [27], and which we will
refer to as the subtour LP). Let V = [n] denote the set of vertices in Kn, and let E
denote the set of edges in Kn. For S \subset V , denote the set of edges with exactly one
endpoint in S by \delta (S) := \{ e = \{ i, j\} : | \{ i, j\} \cap S| = 1\} , and let \delta (v) := \delta (\{ v\} ). The
subtour LP is

(3)

min
\sum 

e\in E cexe

subject to
\sum 

e\in \delta (v) xe = 2, v = 1, . . . , n,\sum 
e\in \delta (S) xe \geq 2, S \subset V : S \not = \emptyset , S \not = V,

0 \leq xe \leq 1, e \in E.

The constraints
\sum 

e\in \delta (v) xe = 2 are known as the degree constraints, while the con-

straints
\sum 

e\in \delta (S) xe \geq 2 are known as the subtour elimination constraints. When edge

costs are metric (but not necessarily circulant), Wolsey [45], Cunningham [9], and
Shmoys and Williamson [42] show that solutions to this linear program are within a
factor of 3

2 of the optimal, integer solution to the TSP.
De Klerk and Dobre [13] show that, in the context of circulant TSP, the subtour

LP is at least as strong as the combinatorial lower bound of Van der Veen, Van Dal,
and Sierksma [43]. They also conjecture that, on any instance of circulant TSP, the
combinatorial lower bound of Van der Veen, Van Dal, and Sierksma [43] exactly equals
the optimal solution to the subtour LP.

Our paper has two main results. First, we prove the conjecture of De Klerk and
Dobre [13]. Second, we show that the integrality gap of the subtour LP is 2 for
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circulant TSP instances, making such instances one of the few nontrivial classes of
TSP instances for which the integrality gap of the subtour LP is exactly known.

We begin, in section 2, by reviewing major results and notation relevant to cir-
culant TSP. In section 3, we then state and prove our main theorem, showing that
the combinatorial lower bound of Van der Veen, Van Dal, and Sierksma [43] exactly
equals the optimal solution to the subtour LP. In proving this result, we provide an
explicit optimal solution to the subtour LP on circulant instances. As a corollary,
we show that the degree constraints do not strengthen the subtour LP on circulant
instances, mimicking the parsimonious property of metric, symmetric TSP instances
shown in Goemans and Bertsimas [21] in a distinctly nonmetric set of instances. In
section 4 we complete our characterization of the integrality gap of the subtour LP
and show that it is exactly 2 on circulant instances. The instances we use to show
that the integrality gap is 2 are the same instances for which the crown inequalities
(a certain class of facet-defining inequalities for the metric, symmetric TSP; see Nad-
def and Rinaldi [36]) were derived. We show that, unfortunately, adding the crown
inequalities to the subtour LP does not reduce the integrality gap when restricted to
circulant TSP instances. This leads us to discuss and conjecture constraints whose
addition to the subtour LP would lower its integrality gap on circulant instances.

Our results serve to motivate circulant TSP as a nontrivial class of TSP instances
for which there is substantial number-theoretic and combinatorial structure. We hope
our results reinvigorate broad interest in the circulant TSP, and thus we conclude by
indicating several compelling open questions.

2. Circulant TSP: Notation and background. Throughout this paper, we
consider circulant TSP instances where V = [n], and we let d := \lfloor n

2 \rfloor . We use \equiv n

to denote the mod-n equivalence relationship and assume all computations on the
vertex set are done mod n. In circulant TSP, all edges \{ i, j\} such that i - j \equiv n k or
i  - j \equiv n (n  - k) have the same cost ck. We refer to such edges as being in the kth
stripe, and we describe k as the length of the stripe. Classic algorithms and bounds
for circulant TSP depend only on the ordering of the stripes with respect to their
costs.

Definition 2.1. Let S \subset \{ 1, . . . , d\} . The circulant graph C\langle S\rangle is the (simple,
undirected, unweighted) graph including exactly the edges associated with the stripes
S, i.e., the graph with adjacency matrix

A = (aij)
n
i,j=1, aij =

\Biggl\{ 
1, (i - j) mod n \in S or (j  - i) mod n \in S,

0 else.

For a set of stripes S, the graph C\langle S\rangle includes exactly the edges associated with
those stripes. Note that the adjacency matrix of a circulant graph is a symmetric
circulant matrix (see (1) and (2)).

Given such an input to circulant TSP, we associate a permutation \phi : [d] \rightarrow [d]
that sorts the stripes in order of nondecreasing cost, as well as a sequence that encodes
the connectivity of C\langle \{ \phi (1), . . . , \phi (k)\} \rangle for 1 \leq k \leq d.

Definition 2.2 (Van der Veen, Van Dal, and Sierksma [43]). Consider an in-
stance of circulant TSP with edge costs c1, . . . , cd. A stripe permutation \phi : [d] \rightarrow [d]
is a permutation such that c\phi (1) \leq c\phi (2) \leq \cdot \cdot \cdot \leq c\phi (d). The g-sequence associated to \phi 
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C2
1 C2
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3

Fig. 1. The graph C\langle \{ 6, 3\} \rangle for n = 12. If \{ \phi (1), \phi (2)\} = \{ 3, 6\} , the three components are
C2

1 , C
2
2 , and C2

3 . Dashed edges are of length 6. In this example, g2 = 3.

is g\phi = (g\phi 0 , g
\phi 
1 , . . . , g

\phi 
d ), recursively defined by

g\phi i =

\Biggl\{ 
n, i = 0,

gcd
\Bigl( 
\phi (i), g\phi i - 1

\Bigr) 
else.

Proposition 2.3 will allow us to interpret g\phi i as the number of components of
C\langle \{ \phi (1), . . . , \phi (i)\} \rangle , the graph of all edges from the cheapest i stripes. See, e.g.,
Figure 1.

Note that if edge costs are not distinct for a given instance of circulant TSP,
there may be multiple associated stripe permutations. In this case, we will take \phi 
to be an arbitrary stripe permutation sorting the costs. In Van der Veen, Van Dal,
and Sierksma [43], the g-sequence is denoted as (\scrG \scrC \scrD (\phi (0)), . . . ,\scrG \scrC \scrD (\phi (d))) with
\phi (0) := n. In Greco and Gerace [23], \phi is referred to as a presentation.

An early result from Burkard and Sandholzer [4] characterizes when Hamiltonian
cycles exist in circulant graphs: Hamiltonian cycles exist whenever the (undirected)
circulant graph is connected.

Proposition 2.3 (Burkard and Sandholzer [4]). Let \{ a1, . . . , at\} \subset [d], and let
\scrG = gcd(n, a1, . . . , at). The circulant graph C\langle \{ a1, . . . , at\} \rangle has \scrG components. The
ith component, for 0 \leq i \leq \scrG  - 1, consists of n/\scrG nodes\biggl\{ 

i+ \lambda \scrG mod n : 0 \leq \lambda \leq n

\scrG 
 - 1

\biggr\} 
.

C\langle \{ a1, . . . , at\} \rangle is Hamiltonian if and only if \scrG = 1.

Set
\ell := min\{ i : 1 \leq i \leq d, g\phi i = 1\} .

By Proposition 2.3, the graph C\langle \{ \phi (1), . . . , \phi (\ell  - 1)\} \rangle is not Hamiltonian, while
C\langle \{ \phi (1), . . . , \phi (\ell )\} \rangle is. Hence any Hamiltonian tour uses an edge of cost at least
c\phi (\ell ), and tours can be constructed where c\phi (\ell ) is the most expensive edge. Thus
this proposition not only resolves Hamiltonicity in circulant graphs, but it also re-
solves bottleneck TSP in circulant graphs. In bottleneck TSP, the objective is to
find a Hamiltonian tour for which the cost of the most expensive edge is minimized.
Burkard and Sandholzer [4] use Proposition 2.3 to give a constructive algorithm for
bottleneck TSP on circulant instances. We will use Proposition 2.3 to partition the
vertices of circulant graphs.
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Moreover, Proposition 2.3 immediately gives rise to an easily solvable case of
circulant TSP: if there exists a stripe permutation \phi such that g\phi 1 = 1, or equivalently,
the length \phi (1) of a cheapest stripe is relatively prime to n. For example, if n is prime,
circulant TSP is easily solvable: you obtain a Hamiltonian tour by following edges of
the cheapest stripe; after n edges you will have visited every node and returned to
the start. These observations were first made in Garfinkel [16].

Proposition 2.3 can be used to solve the minimum-cost Hamiltonian path problem
on circulant instances.

Proposition 2.4 (Bach, Luby, and Goldwasser, cited in Gilmore, Lawler, and
Shmoys [20]). Let c1, . . . , cd be the edge costs of a circulant instance, and let \phi be an
associated stripe permutation. The minimum-cost Hamiltonian path has cost

\ell \sum 
i=1

(g\phi i - 1  - g\phi i )c\phi (i).

We sketch the proof in Appendix A.1.
Proposition 2.4 yields a natural lower bound on the optimal solution to circulant

TSP instances: delete the most expensive edge of a Hamiltonian tour (of cost at least
c\phi (\ell )), and compare the resultant Hamiltonian path to a minimum-cost Hamiltonian
path.

Proposition 2.5 (Van der Veen, Van Dal, and Sierksma [43]). Let c1, . . . , cd be
the edge costs of a circulant instance, and let \phi be an associated stripe permutation.
Any Hamiltonian tour costs at least

VDV :=

\Biggl( 
\ell \sum 

i=1

(g\phi i - 1  - g\phi i )c\phi (i)

\Biggr) 
+ c\phi (\ell ).

VDV is the aforementioned combinatorial lower bound for circulant TSP.
If there are multiple stripe permutations associated with an instance (i.e., the

ci are not all distinct), the lower bound is independent of the stripe permutation
chosen. The lower bound is, moreover, tight, as can be shown by considering any
instance where the cheapest stripe has length relatively prime to n. For example, the
lower bound is tight for any instance where \phi (1) = 1.

De Klerk and Dobre [13] compare the VDV lower bound to several other well-
known TSP bounds. In a series of numerical experiments, they provide evidence to
conjecture that the VDV lower bound is exactly equal to the value of the optimal
solution to the subtour LP (see (3)).

Conjecture 2.6 (de Klerk and Dobre [13]). Let c1, . . . , cd be the edge costs of a
circulant instance, and let \phi be an associated stripe permutation. Let OPTLP denote
the optimal value of the subtour LP, and let VDV denote the value of the lower bound
in Proposition 2.5. Then

VDV = OPTLP.

Our first main result will be to prove this conjecture.
De Klerk and Dobre [13] provide further evidence for this conjecture by showing

the following.

Theorem 2.7 (de Klerk and Dobre [13]). Let c1, . . . , cd be the edge costs of a
circulant instance, and let \phi be an associated stripe permutation. Let OPTLP denote
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2458 SAMUEL C. GUTEKUNST AND DAVID P. WILLIAMSON

the optimal value of the subtour LP, and let VDV denote the value of the lower bound
in Proposition 2.5. Then

VDV \leq OPTLP.

To prove this result, de Klerk and Dobre [13] relax the subtour LP by dropping
the degree constraints. Denote by OPTRelaxed the value of an optimal solution to this
LP, so that

OPTRelaxed = min
\sum 

e\in E cexe

subject to
\sum 

e\in \delta (S) xe \geq 2, S \subset V : S \not = \emptyset , S \not = V,

0 \leq xe \leq 1, e \in E,

and
OPTRelaxed \leq OPTLP.

Any feasible solution to the dual of this relaxed LP thus also provides a lower bound
on OPTLP. De Klerk and Dobre [13] provide a feasible solution to this dual of value
equal to VDV, thus showing that

VDV \leq OPTRelaxed \leq OPTLP.

Theorem 2.7 leads to a bound on the integrality gap of the subtour LP on circulant
instances. The integrality gap represents the worst-case ratio of the original problem's
optimal solution to the relaxation's optimal solution.

Definition 2.8. Let OPTTSP(c1, . . . , cd) denote the value of the optimal solu-
tion to the TSP for a circulant TSP instance with stripe costs c1, . . . , cd, and let
OPTLP(c1, . . . , cd) denote the value of the optimal solution of the subtour LP for the
same circulant instance. The integrality gap for the subtour LP on circulant instances
is

sup
(c1,...,cd)\in \BbbR d

\geq 0

OPTTSP(c1, . . . , cd)

OPTLP(c1, . . . , cd)
.

This ratio is bounded below by 1, since the subtour LP is a relaxation of the
TSP. For metric (but not necessarily circulant) instances, Wolsey [45], Cunningham
[9], and Shmoys and Williamson [42] show that the integrality gap of the subtour
LP is at most 3

2 . Theorem 2.7 can also be used to show that, on circulant (but not
necessarily metric) instances, the subtour LP also has a bounded integrality gap.

Theorem 2.9. The integrality gap of the subtour LP restricted to circulant TSP
instances is at most 2. That is,

sup
(c1,...,cd)\in \BbbR d

\geq 0

OPTTSP(c1, . . . , cd)

OPTLP(c1, . . . , cd)
\leq 2.

Proof. Consider any circulant instance. Let OPTTSP denote the value of the
optimal solution to the TSP on this instance, let OPTLP denote the value of the
optimal solution to the subtour LP on this instance, and let VDV denote the value
of the Van der Veen, Van Dal, and Sierksma [43] lower bound on this instance. By
Theorem 2.7,

OPTTSP

OPTLP
\leq OPTTSP

VDV
.

Theorem 6.3 in Gerace and Greco [17] argues that OPTTSP

VDV \leq 2, by constructing
Hamiltonian tours of cost at most 2 \cdot VDV. See Appendix A.2 for details on this
construction.
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3. A combinatorial interpretation of the subtour LP. In this section, we
prove our first main result, answering Conjecture 2.6. Recall that

\ell = min\{ i : 1 \leq i \leq d, g\phi i = 1\} .

Theorem 3.1. Let c1, . . . , cd be the edge costs of a circulant instance, and let \phi be
an associated stripe permutation. Let OPTLP denote the optimal value of the subtour
LP, and let VDV denote the value of the lower bound in Proposition 2.5. Then

VDV = OPTLP.

Moreover, an optimal solution to the subtour LP is achieved by setting, for 1 \leq i \leq d,
the weight on every edge e of length \phi (i) to be

xe =

\left\{             

g\phi 
i - 1 - g\phi 

i

n , i \not = \ell , \phi (i) \not = n
2 ,

2
g\phi 
i - 1 - g\phi 

i

n , i \not = \ell , \phi (i) = n
2 ,

g\phi 
i - 1

n , i = \ell , \phi (i) \not = n
2 ,

2
g\phi 
i - 1

n , i = \ell , \phi (i) = n
2 .

The explicit xe values given in Theorem 3.1 spread out the weight placed by the
Van der Veen, Van Dal, and Sierksma [43] bound,

VDV =

\Biggl( 
\ell \sum 

i=1

(g\phi i - 1  - g\phi i )c\phi (i)

\Biggr) 
+ c\phi (\ell ).

The coefficient of c\phi (i) is spread uniformly over all edges of length \phi (i). For n even
and \phi (i) = d = n/2, there are only n

2 such edges; otherwise there are n edges. As a
result, we note the following.

Remark 3.2. Let x be defined as in Theorem 3.1. Then\sum 
e\in E

cexe = VDV.

Note also that the solution places zero weight on edges of length \phi (\ell +1), . . . , \phi (d)

as well as zero weight on edges of any length \phi (i) such that g\phi i = g\phi i - 1. The optimal
solution x therefore depends only on the relative ordering of edge costs \phi , and specif-
ically, those stripes \phi (i) for which C\langle \{ \phi (1), . . . , \phi (i)\} \rangle has fewer components than
C\langle \{ \phi (1), . . . , \phi (i - 1)\} \rangle .

To simplify our work that follows, we assume that the edges are ordered so that

(4) g\phi 0 > g\phi 1 > \cdot \cdot \cdot > g\phi \ell = 1.

We can make this assumption without loss of generality: If g\phi i = g\phi i - 1 for i < \ell ,
then zero weight is placed on any edge of length \phi (i) both by the Van der Veen,
Van Dal, and Sierksma [43] bound and in the edge weights in Theorem 3.1. Both
the Van der Veen, Van Dal, and Sierksma [43] bound and the subtour LP solution
we find in Theorem 3.1 thus remain the same on an instance where c\phi (i) is increased
beyond c\phi (\ell ). By applying this argument iteratively, we can obtain an instance of
circulant TSP for which the g-sequence is strictly decreasing until it reaches 1, and
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2460 SAMUEL C. GUTEKUNST AND DAVID P. WILLIAMSON

which the Van der Veen, Van Dal, and Sierksma [43] bound and the subtour LP treat
equivalently.

For 0 \leq i \leq \ell  - 1 and 1 \leq k \leq gi, we use Ci
k to denote the vertex set of the

kth connected component of the graph C\langle \{ \phi (1), . . . , \phi (i)\} \rangle . Note that Ci
k and Ci

k\prime are
isomorphic. See Figure 1. We let Ci denote an arbitrary representative of Ci

1, . . . , C
i
gi .

Our proof of Theorem 3.1 involves several steps. In Lemma 3.3, we show that the
solution x posited satisfies the degree constraints. We then characterize the compo-
nents Ci for 1 \leq i \leq \ell  - 1 as maximally dense: in Lemma 3.5 we show they satisfy
the subtour elimination constraints with equality. To complete the proof, we look at
arbitrary subsets S \subset V in Proposition 3.8.

Throughout the proof, we suppress the dependence of g\phi on \phi to simplify notation.
It will be helpful to treat our graph as a directed graph. Each edge from the ith stripe,
i \not = n/2, is directed (v, v + i) (with the convention that v + i is taken mod n). If n is
even, we treat each edge of length n/2 incident to v as two directed edges, (v, v+(n/2))
and (v+(n/2), v), each of which is assigned half the weight of an edge with length n/2.
Thinking of our graph in this way means that every vertex v is incident to exactly
two edges from each stripe i = 1, . . . , d, with one edge directed into v and one edge
directed out of v. That is, the edges of stripe \phi (i) form a cycle cover on V . Moreover,
this simplifies the number of cases for xe since, if n is even and \phi (i) = n/2, we still
spread the weight over n edges; the weight on every edge e of length \phi (i) is then

xe =

\Biggl\{ 
gi - 1 - gi

n , i \not = \ell ,
gi - 1

n , i = \ell .

We fix x \in \BbbR E to be the edge-weight vector with these weights.
For a set of edges F \subset E, x(F ) denotes the total weight of edges in F :

\sum 
e\in F xe.

We treat \delta (S) as the set of all edges with exactly one endpoint in S, whether that
edge is directed into or out of S. Similarly, we treat E(S) as the set of edges with
both endpoints in S, i.e., E(S) := \{ (i, j) : i, j \in S\} . For A,B \subset V , let \delta +(A,B) :=
\{ e = (u, v) : u \in A, v \in B\} denote the set of edges starting in A and ending in B. We
use \sqcup to denote a disjoint union (i.e., a partition): A = B \sqcup C means A = B \cup C and
B \cap C = \emptyset . Finally, we use \setminus for set-minus so that A\setminus B = \{ a \in A : a /\in B\} .

Lemma 3.3. For any vertex v \in V , x(\delta (v)) = 2.

Proof. Let i < \ell , and consider edges of length \phi (i) incident to v. There are two
edges of weight gi - 1 - gi

n : (v, v+ \phi (i)) and (v, v - \phi (i)), so the total weight of edges of

length \phi (i) incident to v is 2 gi - 1 - gi
n . Analogously, the weight of edges of length \phi (\ell )

incident to v is 2g\ell  - 1

n . Thus

x(\delta (v)) =

\ell \sum 
i=1

\sum 
e\in \delta (v):

length(e)=\phi (i)

xe =
2

n

\Biggl( \Biggl( 
\ell  - 1\sum 
i=1

(gi - 1  - gi)

\Biggr) 
+ g\ell  - 1

\Biggr) 
=

2

n
g0 = 2,

since g0 = n.

We next argue that, for a set of vertices S = Ci
k, the only edges within E(S) that

have nonzero weight are those of length \phi (1), . . . , \phi (i).

Lemma 3.4. Let S = Ci
k, where 0 \leq i \leq \ell  - 1 and 1 \leq k \leq gi. Let e \in E(S).

Then xe > 0 implies e is an edge in stripes \phi (1), . . . , \phi (i).
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Proof. By Proposition 2.3, S = \{ v : v \equiv gi j\} for some 0 \leq j \leq gi  - 1. Consider
an edge of e = (v, v + \phi (t)) \in E(S) of length \phi (t) with t > i. Then, since e has
both endpoints in Ci

k, \phi (t) = c \cdot gi for some c \in \BbbN . Hence gt = gcd(gt - 1, \phi (t)) =
gcd(gt - 1, c \cdot gi) = gt - 1, since gt - 1 divides gi, and so xe = 0.

Lemma 3.4 lets us now show that the Ci
k are maximally dense.

Lemma 3.5. Let S = Ci
k for 0 \leq i \leq \ell  - 1 and 1 \leq k \leq gi. Then x(\delta (S)) = 2.

Proof. By Lemma 3.4, we can compute x(E(S)) by only summing up the weights
of edges in the cheapest i stripes. Consider any fixed j with j \leq i < \ell . There are n
total edges of length \phi (j) and, since j \leq i, none of these edges is in any \delta (Ci). Thus
each isomorphic component Ci \in \{ Ci

1, . . . , C
i
gi\} has n

gi
edges of length \phi (j) in E(Ci),

and each edge has weight
gj - 1 - gj

n . Hence\sum 
e\in E(S):

length(e)=\phi (j)

xe =
n

gi

gj - 1  - gj
n

=
gj - 1  - gj

gi
.

We can now compute

x(E(S)) =

i\sum 
j=1

\sum 
e\in E(S):

length(e)=\phi (j)

xe

=
1

gi

i\sum 
j=1

(gj - 1  - gj)

=
g0  - gi

gi

=
n

gi
 - 1

= | Ci
k|  - 1.

The lemma then follows because the degree constraints imply that x(\delta (S)) +
2x(E(S)) = 2| S| , so that x(\delta (S)) = 2.

We now want to extend Lemma 3.5 to show that x(\delta (S)) \geq 2 for any S \subset V , not
just those corresponding to components connected by a set of cheapest stripes. We
will consider any set S\ast and partition it into its intersections with certain Cj , where
S\ast \subset 

\bigcup s
i=1 C

j
i . Expanding

x(E(S\ast )) =

s\sum 
i=1

x(E(S\ast \cap Cj
i )) +

\sum 
1\leq i1,i2\leq s

i1 \not =i2

x(\delta +(S\ast \cap Cj
i1
, S\ast \cap Cj

i2
)),

we will bound each term of the sum. To do so, we will bound x(\delta +(S\ast \cap Cj
i1
, S\ast \cap Cj

i2
))

by x(\delta +(Cj
i1
, Cj

i2
)). Our first step is thus to understand the edges between distinct Cj .

Proposition 2.3 implies that the vertices in a component Cj are defined as \{ v :
v mod gj = i\} for some fixed 1 \leq i \leq n

gj
. Because gj+1 divides gj , u \equiv gj v means that

u \equiv gj+1
v: if u, v are in the same Cj , then u, v are in the same Cj+1. Consequently,

the edges of stripe \phi (j + 1) merge Cj into a smaller number of Cj+1. The facts that
the Ci are all isomorphic and that Ci has gi components imply that

gj
gj+1

components
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Cj+1

Cj
1Cj

2

Cj
3 Cj

4

Fig. 2. The structure of edges from stripe \phi (j +1) (marked by arrows) from Lemma 3.6. Here
gj

gj+1
= 4.

Cj get merged into each Cj+1. See, for example, Figure 2. Our next lemma describes
the role of the edges from stripe \phi (j + 1) in this merging process. It says that the
subgraph of Cj+1 obtained by contracting each Cj \subset Cj+1 into a single vertex is a
cycle.

Lemma 3.6. Suppose that Cj+1 = Cj
1 \sqcup \cdot \cdot \cdot \sqcup Cj

gj
gj+1

. Consider the directed graph

G\prime on V \prime =
\bigl[ gj
gj+1

\bigr] 
, where (u, v) \in E\prime if and only if there is an edge of stripe \phi (j + 1)

in \delta +(Cj
u, C

j
v). Then G\prime is a directed cycle.

Proof. First, suppose that u \in V is such that u \in Cj
i (so that i \in V \prime ). For any

other v \in V with v \in Cj
i , we have u \equiv gj v and so u+\phi (j+1) \equiv gj v+\phi (j+1). Hence,

the vertex i \in V \prime has a single outgoing edge. Analogously, u - \phi (j+1) \equiv gj v - \phi (j+1)
so that the vertex i \in V \prime has a single incoming edge. These facts establish that every
vertex of G\prime has a single outgoing edge and a single incoming edge and G\prime is a directed
cycle cover. However, G\prime must also be connected: Cj+1 is a connected component
of the graph C\langle \{ \phi (1), . . . , \phi (j + 1)\} \rangle . The only connected, directed cycle cover is a
directed cycle.

Lemma 3.6 allows us to bound the total weight of edges of stripe \phi (j + 1) going
between some Cj in a Cj+1.

Lemma 3.7. Suppose that Cj
1 , . . . , C

j
s \subset Cj+1 with 1 < s \leq gj

gj+1
and j < \ell .

Provided j < \ell  - 1 or s <
gj

gj+1
,\sum 

1\leq i1,i2\leq s
i1 \not =i2

x(\delta +(Cj
i1
, Cj

i2
)) \leq s - 1.

Proof. By Lemma 3.4, the only edges with both endpoints in Cj+1 with non-
zero weight are those in stripes \phi (1), . . . , \phi (j + 1). Moreover, any edge of stripe \phi (i)
with i < j + 1 has both endpoints in the same Cj : i \leq j implies that \phi (i) di-
vides gj , so u + \phi (i) \equiv gj u; Proposition 2.3 implies that u + \phi (i) and u are in the
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same component of C\langle \{ \phi (1), . . . , \phi (j)\} \rangle . Hence the only edges contributing to the sum\sum 
1\leq i1<i2\leq s x(\delta 

+(Cj
i1
, Cj

i2
)) are those from stripe \phi (j + 1).

Consider the graph G\prime from Lemma 3.6, a cycle with vertices corresponding to
Cj

1 , . . . , C
j
gj

gj+1

. A subset of s vertices of a cycle on
gj

gj+1
vertices contains at most

s  - 1 + 1\{ s=
gj

gj+1
\} edges, where 1\{ \circ \} denotes the indicator function that is 1 if \circ is

true and 0 otherwise.
Hence at most s - 1+1\{ s=

gj
gj+1

\} terms in the sum
\sum 

1\leq i1,i2\leq s
i1 \not =i2

x(\delta +(Cj
i1
, Cj

i2
)) are

nonzero. Now consider any nonzero term x(\delta +(Cj
i1
, Cj

i2
)) \not = 0. Since the only edges

contributing to this term are from stripe \phi (j + 1), we need only count the number of
edges of stripe \phi (j+1) starting in Cj

i1
and ending in Cj

i2
. There are n

gj
vertices in Cj

i1
,

each of which has one outgoing edge of length \phi (j + 1) ending in Cj
i2
. If j < \ell  - 1,

each of these has weight
gj - gj+1

n . Thus

\sum 
1\leq i1,i2\leq s

i1 \not =i2

x(\delta +(Cj
i1
, Cj

i2
)) \leq 

\biggl( 
s - 1 + 1\{ s=

gj
gj+1

\} 

\biggr) 
n

gj

gj  - gj+1

n

=

\biggl( 
s - 1 + 1\{ s=

gj
gj+1

\} 

\biggr) \biggl( 
1 - gj+1

gj

\biggr) 
.

If s \not = gj
gj+1

, then the result follows because
\bigl( 
1 - gj+1

gj

\bigr) 
\leq 1. Otherwise, when s =

gj
gj+1

,

the right-hand side is

gj
gj+1

\biggl( 
1 - gj+1

gj

\biggr) 
=

gj
gj+1

 - 1 = s - 1.

The final case we must consider is when j = \ell  - 1 but s <
gj

gj+1
. In this case every

edge of length \phi (j + 1) has weight g\ell  - 1

n so that

\sum 
1\leq i1<i2\leq s

x(\delta +(Cj
i1
, Cj

i2
)) \leq 

\biggl( 
s - 1 + 1\{ s=

gj
gj+1

\} 

\biggr) 
n

g\ell  - 1

g\ell  - 1

n

= (s - 1)
n

g\ell  - 1

g\ell  - 1

n

= s - 1.

Proposition 3.8. Let S \subset V (2 \leq | S| \leq n - 2). Then x(\delta (S)) \geq 2.

Proof. Using the fact that x(\delta (S)) + 2x(E(S)) = 2| S| , it suffices to show that
x(E(S)) \leq | S|  - 1 for all S (with 2 \leq | S| \leq n - 2). Suppose towards a contradiction
that there is some S\ast with x(E(S\ast )) > | S\ast |  - 1. We consider three cases.
Case 1: Suppose there exists an S\ast that is disjoint from at least one C\ell  - 1. Then
consider any such S\ast that is minimal by inclusion. By Lemma 3.5, S\ast \not = Ci

k for any
0 \leq i \leq \ell  - 1 and 1 \leq k \leq gi. Since S\ast \subset C\ell = V and the Ci nest within the Ci+1,
there are some j and k such that S\ast \subset Cj+1

k , but S\ast is not contained in any single

Cj
1 , . . . , C

j
gj (i.e., j + 1 is the smallest value such that S\ast is properly contained in a

Cj+1 which we denote Cj+1
k ). See Figure 3.

Without loss of generality, suppose that the Cj
i are labeled so that Cj

1 , . . . , C
j
s

have nonempty intersections with S\ast , while Cj
s+1, . . . , C

j
gj have empty intersections
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S\ast 

Cj

Cj Cj

Cj+1
k

Fig. 3. S\ast and choice of j in Proposition 3.8. In this example, s = 2 of the Cj have nonempty
intersections with S\ast .

with S\ast . Note that, by choice of j, Cj
1 , . . . , C

j
s \subset Cj+1

k so that s \leq gj
gj+1 . We partition

S\ast =
\bigl( 
S\ast \cap Cj

1

\bigr) 
\sqcup \cdot \cdot \cdot \sqcup 

\bigl( 
S\ast \cap Cj

s

\bigr) 
, so that

x(E(S\ast )) =

s\sum 
i=1

x(E(S\ast \cap Cj
i )) +

\sum 
1\leq i1,i2\leq s

i1 \not =i2

x(\delta +(S\ast \cap Cj
i1
, S\ast \cap Cj

i2
)).

By minimality of S\ast 

x(E(S\ast )) \leq 
s\sum 

i=1

\Bigl( 
| S\ast \cap Cj

i |  - 1
\Bigr) 
+

\sum 
1\leq i1,i2\leq s

i1 \not =i2

x(\delta +(S\ast \cap Cj
i1
, S\ast \cap Cj

i2
))

= | S\ast |  - s+
\sum 

1\leq i1,i2\leq s
i1 \not =i2

x(\delta +(S\ast \cap Cj
i1
, S\ast \cap Cj

i2
)).

Expanding sets in the rightmost term,

x(E(S\ast )) \leq | S\ast |  - s+
\sum 

1\leq i1,i2\leq s
i1 \not =i2

x(\delta +(Cj
i1
, Cj

i2
)).

Note that our assumption that S\ast doesn't intersect with every single C\ell  - 1 means that
Lemma 3.7 applies, so that

x(E(S\ast )) \leq | S\ast |  - s+ (s - 1)

= | S\ast |  - 1.

This contradicts our choice of S\ast as a counterexample.
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S\ast 

C\ell  - 1

C\ell  - 1 C\ell  - 1

Fig. 4. Case 3 in the proof of Proposition 3.8. S\ast intersects with every C\ell  - 1 but does not fully
contain any of the C\ell  - 1.

The cases that remain are those where every single S\ast with x(E(S\ast )) > | S\ast |  - 1
has j = \ell  - 1 (so that the smallest Cj+1 fully containing S\ast is C\ell = V ) and s = g\ell  - 1

g\ell 
.

This case means that S\ast has a nonempty intersection with every C\ell  - 1.
Case 2: Suppose that there is some C\ell  - 1 fully contained in S\ast . Then 2x(E(S\ast )) +
x(\delta (S\ast )) = 2| S\ast | , so x(E(S\ast )) > | S\ast |  - 1 implies x(\delta (S\ast )) < 2. Applying the same
argument to S\ast c

:= V \setminus S\ast , we get x(E(S\ast c

)) > | S\ast c |  - 1. But S\ast c

is entirely disjoint
from at least one C\ell  - 1, contradicting the assumption that Case 1 does not apply.
Case 3: The only remaining case is that 1 \leq | S\ast \cap C\ell  - 1| < | C\ell  - 1| for every C\ell  - 1;
see Figure 4. For this case, we contradict that x(E(S\ast )) > | S\ast |  - 1 by showing that
x(\delta (S\ast )) \geq 2. Since g\ell  - 1 > g\ell = 1, there are at least two C\ell  - 1 and they are disjoint.
We will use the following claim to argue that each of them contributes at least 1 to
x(\delta (S\ast )).

Claim 3.9. Let C be a set such that x(\delta (C)) = 2. Suppose that C = A\sqcup B, where
x(\delta (A)) \geq 2 and x(\delta (B)) \geq 2. Then x(\delta +(A,B)) + x(\delta +(B,A)) \geq 1.

This claim follows by expanding \delta (A) and \delta (B) and rearranging:

4 \leq x(\delta (A)) + x(\delta (B))

=
\bigl( 
x(\delta +(A, V \setminus C)) + x(\delta +(V \setminus C,A)) + x(\delta +(A,B)) + x(\delta +(B,A))

\bigr) 
+
\bigl( 
x(\delta +(B, V \setminus C)) + x(\delta +(V \setminus C,B)) + x(\delta +(A,B)) + x(\delta +(B,A))

\bigr) 
= x(\delta (C)) + 2

\bigl( 
x(\delta +(A,B)) + x(\delta +(B,A))

\bigr) 
= 2 + 2

\bigl( 
x(\delta +(A,B)) + x(\delta +(B,A))

\bigr) 
,

from which the claim follows.
We now apply Claim 3.9. Let C\ell  - 1

i take the role of C, since by Lemma 3.5
x(\delta (C\ell  - 1

i )) = 2. We partition C\ell  - 1
i = A\sqcup B, where A = S\ast \cap C\ell  - 1

i and B = C\ell  - 1
i \setminus A.

Then A,B \subset C\ell  - 1
i and the fact that we are not in Case 1 imply that x(\delta (A)) \geq 2

and x(\delta (B)) \geq 2, and the claim yields

x(\delta +(S\ast \cap C\ell  - 1
i , C\ell  - 1

i \setminus A)) + x(\delta +(C\ell  - 1
i \setminus A,S\ast \cap C\ell  - 1

i )) \geq 1.
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In summary,

x(\delta (S\ast )) \geq 
g\ell  - 1\sum 
i=1

x(\delta +(S\ast \cap C\ell  - 1
i , C\ell  - 1

i \setminus A)) + x(\delta +(C\ell  - 1
i \setminus A,S\ast \cap C\ell  - 1

i ))

\geq 
g\ell  - 1\sum 
i=1

1

= g\ell  - 1 \geq 2.

Hence we contradict that x(E(S\ast )) > | S\ast |  - 1, and we have handled all cases.

Proof of Theorem 3.1. This proof follows immediately from Lemma 3.3 and Propo-
sition 3.8.

We note that Theorem 3.1, together with the proof of Theorem 2.7 in de Klerk
and Dobre [13], indicates the following result.

Corollary 3.10. The degree constraints do not strengthen the subtour elimina-
tion LP for circulant TSP. That is, letting OPTRelaxed denote the value of an optimal
solution to the subtour LP relaxation obtained by dropping the degree constraints,

OPTRelaxed = OPTLP = VDV.

Proof. Our proof of Theorem 3.1 shows that OPTRelaxed \leq VDV, while the proof
of Theorem 2.7 shows that VDV \leq OPTRelaxed.

4. The integrality gap of the subtour LP. Theorem 3.1 allows us to exactly
characterize the integrality gap of the subtour LP on circulant instances by considering
the Van der Veen, Van Dal, and Sierksma [43] bound. In this section we provide an
example showing that this bound can be off by a factor of 2 asymptotically. This,
together with Theorem 2.9, will imply our second main theorem.

Theorem 4.1. The integrality gap of the subtour LP restricted to circulant in-
stances is exactly 2.

The example we use to prove this theorem is intimately related to the crown
inequalities for the TSP, as we discuss in section 5.

Proof. Theorem 2.9 implies that the integrality gap is at most 2. To prove the
theorem it thus suffices to demonstrate an example where the Van der Veen, Van Dal,
and Sierksma [43] bound is a factor of 2 away from the optimal TSP solution. For such
an example, we take n = 2k+1 so that d = n/2 = 2k. Suppose that c1 = 1, cd = 0,

and ci > 2k+1 otherwise. Then \phi (1) = d and \phi (2) = 1, so that g\phi 1 = d, g\phi i = 1 for
i \geq 2, and \ell = 1. By Theorem 3.1, the optimal solution to the subtour LP has cost

VDV =

\Biggl( 
\ell \sum 

i=1

(g\phi i - 1  - g\phi i )c\phi (i)

\Biggr) 
+ c\phi (\ell ) = d \cdot 0 + d \cdot 1 = d = 2k.

See Figure 5 for a picture of the corresponding subtour LP solution.
Now consider an optimal solution to the TSP. It cannot use any edges other

than those of lengths 1 or d: we can find a tour of cost 2k+1 by just taking edges
of length 1 (i.e., \{ 1, 2\} , \{ 2, 3\} , . . . , \{ n - 1, n\} , \{ n, 1\} ), while edges of any length other
than 1 or d cost strictly more than 2k+1. Now consider any Hamiltonian cycle using
only edges from these cheapest two stripes, and consider it as a directed cycle as
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Fig. 5. An example of a class of instances showing that the integrality gap of the subtour LP
restricted to circulant instances is at least 2. The dashed edges have weight 1/2 and cost 1, while
the full edges have weight 1 and cost 0.

in Proposition 3.8. Suppose that it uses s1 edges of length 1 (where we interpret
a directed edge (u, u + 1) as having length 1), s - 1 edges of length  - 1 (where we
interpret a directed edge (u, u  - 1) as having length  - 1), and n  - s1  - s - 1 edges of
length d = 2k. Because n is even, there is no difference between an edge of length d
and one of length  - d: v + d \equiv n v  - d.

Claim 4.2. Any Hamiltonian cycle satisfies

s1  - s - 1 \equiv n 0.

With the notation above, a Hamiltonian tour uses n  - s1  - s - 1 edges of length
d. Since it starts and ends at the same vertex,

(5) 2k(n - s1  - s - 1) + s1  - s - 1 \equiv n 0 =\Rightarrow s1  - s - 1 \equiv n 2k(s1 + s - 1).

Since n and 2k are even, (2k(s1 + s - 1)) mod n is even; for the left and right sides to
have the same parity, s1  - s - 1 must therefore also be even. Moreover,

s1 + s - 1 = s1  - s - 1 + 2s - 1

so that s1+s - 1 is the sum of two even numbers and is therefore even. Consider again
(5). Since s1 + s - 1 is even and 2k = n

2 ,

2k(s1 + s - 1) \equiv n 0.

Thus (5) implies
s1  - s - 1 \equiv n 0,

and Claim 4.2 follows.
Since s1, s - 1 \in [n], we have that

s1  - s - 1 \in \{  - n, 0, n\} .

The cases where | s1  - s - 1| = n imply a tour only using edges of length 1, i.e., a
tour of cost n = 2k+1. Thus we need only consider the case where s1 = s - 1. Here we
analogize an argument from Theorem 5.2 in Greco and Gerace [23].
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Claim 4.3. A tour using just edges of lengths 1, - 1, and d visits max\{ s1, s - 1\} +1
components of C\langle \{ 2k\} \rangle . Hence, a Hamiltonian tour requires that max\{ s1, s - 1\} +1 \geq 
n
2 = 2k.

We note that the graph C\langle \{ 2k\} \rangle using just edges of length 2k has 2k connected
components C1

1 , C
1
2 , . . . , C

1
2k .We identify C1

i as consisting of the two vertices \{ i, 2k+i\} 
connected by a single edge of length 2k.

Let L = (e1, . . . , en) be a list of edges in any Hamiltonian tour using just edges
of lengths 1, - 1, and d, so that ei \in \{  - 1, 1, d\} for i = 1, . . . , n. From this list, we can
bound the number of components of C\langle \{ 2k\} \rangle visited. First, we can delete any edges
of length d as they do not cause us to change components of C\langle \{ 2k\} \rangle ; any length 1
edge connects C1

i to C1
i+1, while any length  - 1 edge connects C1

i to C1
i - 1 (regardless

of whether or not any length d edges are used). Hence we need only consider the
subsequence L\prime of L just consisting of edges of lengths 1 and  - 1 obtained by deleting
the edges of length d. Formally,

L\prime = (ei1 , . . . , eik) : i1 < i2 < \cdot \cdot \cdot < ik, eij \in \{ \pm 1\} .

Then we upper bound the number of components of C\langle \{ 2k\} \rangle visited directly from
L\prime as follows: set U = 1, corresponding to starting at some component. Until L\prime is
either all 1's or all  - 1's, find an occurrence of a 1 followed by a  - 1 in L\prime (or a  - 1
followed by a 1); delete these two elements and increment U by 1. Once this process
terminates, increment U by | L\prime | (the number of 1's or  - 1's remaining when L\prime is
either all 1's or all  - 1's). Note that, at the end, U = max\{ s1, s - 1\} + 1. U provides
an upper bound on the number of components of C\langle \{ 2k\} \rangle visited: any time a 1 is
followed by a  - 1 in L, the effect is to move from C1

i to C1
i+1, then back to C1

i . Hence
we visit at most one new component, C1

i+1. It is analogous any time a  - 1 is followed
by a 1. Thus Claim 4.3 holds.

Since any Hamiltonian cycle must visit every component of C\langle \{ 2k\} \rangle , we need

max\{ s1, s - 1\} + 1 \geq n

2
= 2k.

That is, we need at least 2k  - 1 length 1 edges, or 2k  - 1 length  - 1 edges, to connect
all components.

Putting Claims 4.2 and 4.3 together, we find that we need

s1, s - 1 \geq 2k  - 1,

so that OPTTSP \geq 2k+1  - 2. We can find such a tour to establish equality:

\{ 1, 2\} , \{ 2, 3\} , . . . , \{ 2k  - 1, 2k\} , \{ 2k, n\} , \{ n, n - 1\} , . . . , \{ 2k + 2, 2k + 1\} , \{ 2k + 1, 1\} .

See, for example, Figure 6. Thus

OPTTSP

VDV
=

2k+1  - 2

2k
\rightarrow 2.

5. Conclusions. Theorems 3.1 and 4.1 characterize the subtour LP when re-
stricted to circulant instances: its optimal solution has an explicit combinatorial for-
mulation given in Theorem 3.1 and is based entirely on how connectivity changes from
C\langle \{ \phi (1), . . . , \phi (i  - 1)\} \rangle to C\langle \{ \phi (1), . . . , \phi (i)\} \rangle for stripes i = 1, . . . , \ell . Moreover, the
integrality gap of the subtour LP on circulant instances is exactly two.
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Fig. 6. An optimal TSP solution for the instance in Theorem 4.1. Thick edges have cost 0
while thin edges have cost 1 so that this solution has cost 23  - 2 = 6.

Our hope is also that this paper reinvigorates interest in several compelling open
questions: What inequalities can be added to the subtour LP to strengthen its inte-
grality gap on circulant instances? Are there stronger linear programs for circulant
instances, and do they translate to metric, symmetric TSP? For example, de Klerk,
Pasechnik, and Sotirov [14] introduce a semidefinite programming (SDP) relaxation
for the TSP based on the theory of association schemes (see also de Klerk, de Oliveira
Filho, and Pasechnik [12]). De Klerk and Dobre [13] show that, for circulant in-
stances, this SDP can be written as an LP; Gutekunst and Williamson [25] show
that the general SDP has an unbounded integrality gap, but the integrality gap of
the SDP (and equivalent LP) on circulant instances remains open. Numerical exper-
iments suggest that the integrality gap on circulant instances is at least 2, using the
same instances as in section 4. Similarly, de Klerk and Sotirov [15] present an SDP
that uses symmetry reduction to strengthen the SDP of de Klerk, Pasechnik, and
Sotirov [14]; Gutekunst and Williamson [26] show that integrality gap of this SDP
is also unbounded in general, but the gap is unknown when restricted to circulant
instances.

With respect to adding inequalities to remove our bad instances (see Figure 5
for an example), we note that our instance achieving the worst-case integrality gap
also appears in Naddef and Rinaldi [36], where they construct explicit facet-defining
inequalities that remove it from the subtour LP in a noncirculant setting. These
inequalities are the crown inequalities and take the form

\alpha Tx \geq \alpha 0 := 12s(s - 1) - 2, n = 4s,

where the weight \alpha e that \alpha places on edge e is based only on the length of edge e:

\alpha (v, v + j) =

\Biggl\{ 
4s - 6 + j, j < d,

2(s - 1), j = d.

Here, for example, the crown inequalities place a weight of 2(s - 1) on each of the d
edges from the dth stripe, and a weight of 4s - 5 on each edge in the first stripe. The
subtour LP solution places a weight of 1 on each of the d edges of length d, and 1/2
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2470 SAMUEL C. GUTEKUNST AND DAVID P. WILLIAMSON

on each of the n length 1 edges. Since d = 2s,

\alpha Tx = 2s(2s - 2) +
1

2
4s(4s - 5) = 2s(6s - 7) = 12s2  - 14s < \alpha 0 = 12s2  - 12s - 2

so that they are violated for any example where n = 4s and s > 1.
Unfortunately, adding these constraints does not reduce the integrality gap from

2. We can instead consider solutions to the subtour LP that place marginally less
weight on the d-edges and marginally more weight on the 1-edges. If we let \lambda be
the weight on the n edges of length 1 (on which \alpha places weight 4s  - 5 = n  - 5),
then 2  - 2\lambda is the weight on on each of the d = n

2 edges of length d (on which \alpha 
places a weight of 2s  - 2 = n

2  - 2). The right-hand side of the crown inequalities is
12n

4

\bigl( 
n
4  - 1

\bigr) 
 - 2 = 3

4n
2  - 3n - 2, so we can solve for

\lambda n(n - 5)+(2 - 2\lambda )
n

2

\Bigl( n
2
 - 2
\Bigr) 
\geq 3

4
n2 - 3n - 2 \rightarrow \lambda \geq n2  - 4n - 8

2n2  - 12n
=

1

2
+

2

3n
+

1

3(n - 6)

(assuming that n > 6). Hence, setting

\lambda =
n2  - 4n - 8

2n2  - 12n
=

1

2
+

2

3n
+

1

3(n - 6)

suffices to find a solution that satisfies the subtour elimination constraints and the
crown inequalities, but does not reduce the integrality gap.

Proposition 5.1. Adding the crown inequalities does not change the integrality
gap of the subtour LP when restricted to circulant instances.

Proof. We take our solution above, setting

\lambda =
n2  - 4n - 8

2n2  - 12n
=

1

2
+

2

3n
+

1

3(n - 6)

and placing a weight \lambda on the 1-edges (the dashed edges in Figure 5) and 2  - 2\lambda 
on the edges of length d (the full edges in Figure 5). Note that this solution is still
feasible for the subtour LP: we are taking a convex combination of the instance in
Theorem 4.1 and the Hamiltonian cycle using just 1-edges. This thus lower-bounds
the integrality gap as

OPTTSP

OPTLP
=

n - 2

n\lambda 
\rightarrow 2

as n \rightarrow \infty , where n = 2k+1.

We note that the ladder and chain inequalities (see Boyd and Cunningham [3] and
Padberg and Hong [38]) can similarly be added to remove the solutions constructed
in Theorem 4.1 but do not reduce the integrality gap from 2.

We conjecture that the following inequality is valid.

Conjecture 5.2. The following inequality, if valid, would strengthen the subtour
LP in the symmetric circulant case. If 4| n, then

n - 1\sum 
i=1

\alpha i

\left(    \sum 
e\in E:

length(e)=i

xe

\right)    \geq n - 2, \alpha i =

\Biggl\{ 
i if i odd,

d - i if i even.
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Finally, as noted earlier, it is a major open question whether or not circulant TSP
is polynomial-time solvable. The answer is not known even in the case where only
two stripes have finite cost. It would be interesting to see whether some of the tools
developed recently for the metric TSP might be able to resolve this decades-long open
question.

Appendix A. Previous results on circulant TSP. In this appendix, we first
sketch the proof of Proposition 2.4. We then sketch the 2-approximation algorithm
for circulant TSP given in Gerace and Greco [17].

A.1. Proof of Proposition 2.4. We recall Proposition 2.4.

Proposition 2.4 (from Bach, Luby, and Goldwasser, cited in Gilmore, Lawler,
and Shmoys [20]). Let c1, . . . , cd be the edge costs of a circulant instance, and let \phi be
an associated stripe permutation. The minimum-cost Hamiltonian path has cost

\ell \sum 
i=1

(g\phi i - 1  - g\phi i )c\phi (i).

1

7

3

9

5

11

8

2

6

12

4

10

Fig. 7. Constructing a minimum-cost Hamiltonian path via the nearest neighbor heuristic. In
this case, n = 12, \phi (1) = 6 (thin edges), \phi (2) = 2 (thick edges), and \phi (3) = 3 (dotted edges). This
process fully connects a component of C\langle \{ \phi (1), . . . , \phi (i)\} \rangle , uses an edge of length \phi (i + 1) to move
to the new component of C\langle \{ \phi (1), . . . , \phi (i)\} \rangle , and recursively fully connects that component. When
all possible edges of length \phi (1), . . . , \phi (i), \phi (i + 1) have been added, the path connects a component
of C\langle \{ \phi (1), . . . , \phi (i+ 1)\} \rangle , and the process repeats using edges of length \phi (i+ 2).

Sketch of proof. Van der Veen, Van Dal, and Sierksma [43] argue that the nearest

neighbor heuristic1 constructs a Hamiltonian path using exactly g\phi i - 1 - g\phi i edges from
the ith cheapest stripe (see Figure 7). This path thus has cost

\ell \sum 
i=1

(g\phi i - 1  - g\phi i )c\phi (i).

The optimality of such a path can be seen by applying Kruskal's algorithm [30] for
minimum-cost spanning trees: for 1 \leq i \leq \ell , Proposition 2.3 indicates that the graph
C\langle \{ \phi (1), \phi (2), . . . , \phi (i)\} \rangle has g\phi i components. Hence, at most n  - g\phi i edges can be
used from the cheapest i stripes without creating a cycle. Kruskal's algorithm will
find a minimum-cost spanning tree using n  - g\phi 1 = g\phi 0  - g\phi 1 edges from the cheapest

stripe, g\phi 1  - g\phi 2 edges from the second cheapest stripe, and in general g\phi i - 1  - g\phi i edges

from the ith cheapest stripe. This spanning tree thus also costs
\sum \ell 

i=1(g
\phi 
i - 1 - g\phi i )c\phi (i).

1Start at some vertex and and follow a cheapest edge from that vertex. Then, recursively grow
a Hamiltonian path by adding a cheapest edge from the most recently added vertex to a vertex that
has not yet been visited.
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Fig. 8. Constructing a Hamiltonian path when g\ell  - 1 is even. In this case, n = 24, \phi (1) = 12,
\phi (2) = 6, and \phi (3) = 5. We pick \{ u, v\} = \{ 1, 13\} .

Since any Hamiltonian path is itself a spanning tree, any Hamiltonian path must cost
at least this much; the constructed Hamiltonian path achieves this lower bound and
is therefore optimal.

A.2. 2-approximation for circulant TSP. This 2-approximation algorithm
is motivated by a heuristic that Van der Veen, Van Dal, and Sierksma [43] developed
for the case where every stripe has distinct cost. The algorithm only adds edges of
length \phi (i) if g\phi i < g\phi i - 1. For simplicity of exposition, we'll suppress the dependence
on \phi and assume that

n = g0 < g1 < g2 < \cdot \cdot \cdot < g\ell = 1

as in section 3.

A.2.1. Case 1: \bfitg \ell  - \bfone is even. This algorithm is most straightforward when
g\ell  - 1 is even: first, it builds Hamiltonian paths on each component of C\langle \{ \phi (1), . . . ,
\phi (\ell  - 1)\} \rangle . It then deletes one edge from g\ell  - 1  - 1 of these paths. Finally, it adds
2(g\ell  - 1  - 1) edges of length \phi (\ell ). See Figure 8.

More specifically, construct a Hamiltonian path on the vertices in the component
of C\langle \{ \phi (1), . . . , \phi (\ell  - 1)\} \rangle containing vertex 1 using the nearest neighbor rule starting
at vertex 1. Call this path P1, and let z be the other endpoint of P1. Let C\ell  - 1

i be
the component of C\langle \{ \phi (1), . . . , \phi (\ell  - 1)\} \rangle containing vertex 1 + (i - 1)\phi (\ell ) (as usual,
here and throughout we implicitly consider all vertices mod n). Translate P1 to a
Hamiltonian path Pi on the vertices in C\ell  - 1

i : add (i  - 1)\phi (\ell ) to the label of every
vertex in P1. See Figure 9.

If g\ell  - 1 is even, the algorithm deletes g\ell  - 1  - 2 edges: pick some edge \{ u, v\} 
in P1. Delete the corresponding edge in each P2, P3, . . . , Pg\ell  - 1 - 1: delete the edge
\{ u + (i  - 1)\phi (\ell ), v + (i  - 1)\phi (\ell )\} from Pi. Form a Hamiltonian cycle on the entire
vertex set by adding 2(g\ell  - 1  - 1) edges of length \phi (\ell ) as in Figure 8.2

2Specifically, add the following edges:
\bullet Add the edges \{ 1, 1+\phi (\ell )\} , \{ 1+2\phi (\ell ), 1+3\phi (\ell )\} , . . . , \{ 1+(g\ell  - 1 - 2)\phi (\ell ), 1+(g\ell  - 1 - 1)\phi (\ell )\} .

Also add the edges \{ z, z+\phi (\ell )\} , \{ z+2\phi (\ell ), z+3\phi (\ell )\} , . . . , \{ z+(g\ell  - 1  - 2)\phi (\ell ), z+(g\ell  - 1  - 
1)\phi (\ell )\} . This adds g\ell  - 1 edges of length \phi (\ell ).

\bullet Add the edges \{ u + \phi (\ell ), u + 2\phi (\ell )\} , \{ u + 3\phi (\ell ), u + 4\phi (\ell )\} , . . . , \{ u + (g\ell  - 1  - 3)\phi (\ell ), u +
(g\ell  - 1  - 2)\phi (\ell )\} . Also add the edges\{ v + \phi (\ell ), v + 2\phi (\ell )\} , \{ v + 3\phi (\ell ), v + 4\phi (\ell )\} , . . . , \{ v +
(g\ell  - 1  - 3)\phi (\ell ), v + (g\ell  - 1  - 2)\phi (\ell )\} . This adds g\ell  - 1  - 2 edges of length \phi (\ell ).
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Fig. 9. Translations of a Hamiltonian path P1 to other components of C\langle \{ 12, 6\} \rangle for a graph
where n = 24, \phi (1) = 12, \phi (2) = 6, and \phi (3) = 5. In this example, z = 7.

Proposition A.1. Consider any circulant instance where g\ell  - 1 is even. Let OPTTSP

denote the optimal cost of a Hamiltonian tour on the circulant instance. Then the
above algorithm produces a Hamiltonian tour of cost at most 2OPTTSP.

Sketch of proof. By construction, the above algorithm produces a Hamiltonian
tour. We can analyze its cost in three steps:

1. When we start with g\ell  - 1 paths (each Hamiltonian on a component of C\langle \{ \phi (1),
. . . , \phi (\ell  - 1)\} \rangle ), we have used all of the edges in a minimum-cost Hamiltonian
path on [n] except those of length \phi (\ell ). In total, these edges cost

\ell  - 1\sum 
i=1

(g\phi i - 1  - g\phi i )c\phi (i).

2. We then delete some edges (translates of \{ u, v\} ), which cannot increase the
cost.

3. Finally, we add 2(g\ell  - 1  - 1) = 2(g\ell  - 1  - g\ell ) edges of cost \phi (\ell ).
Hence, we end with a tour costing at most

\ell  - 1\sum 
i=1

(g\phi i - 1  - g\phi i )c\phi (i) + 2(g\ell  - 1  - g\ell )c\phi (\ell ) \leq 2

\ell \sum 
i=1

(g\phi i - 1  - g\phi i )c\phi (i) \leq 2OPTTSP.

The second inequality follows because
\sum \ell 

i=1(g
\phi 
i - 1 - g\phi i )c\phi (i) is the cost of a minimum-

cost Hamiltonian path, which lower-bounds the cost of a Hamiltonian tour.

A.2.2. Case 2: \bfitg \ell  - \bfone is odd. If g\ell  - 1 is odd, the algorithm of Gerace and
Greco [17] proceeds similarly, but the analysis is more involved because the paths
P1, . . . , Pg\ell  - 1

cannot be connected into a Hamiltonian cycle as before. Instead, the
algorithm recursively calls itself to produce a Hamiltonian cycle H in component
C\ell  - 1

1 , as explained below. As before, we take P1, . . . , Pg\ell  - 1
to be Hamiltonian paths

on the components of C\langle \{ \phi (1), . . . , \phi (\ell  - 1)\} \rangle , where the endpoints of P1 are vertex
1 and vertex z, and every other Pi is a translate of P1. We take edge \{ u, v\} of length
\phi (\ell  - 1) in path P1. Without loss of generality, we can assume H contains edge \{ u, v\} :
H contains some edge of length \phi (\ell  - 1), and we can shift all the vertices in H (adding
some multiple of g\ell  - 1 to each vertex) until that edge is \{ u, v\} .
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Fig. 10. The 2-approximation algorithm for circulant TSP when g\ell  - 1 is odd. In this case,
n = 30, \phi (1) = 15, \phi (2) = 5, and \phi (3) = 2. We find the Hamiltonian path P1 = \{ 1, 16\} , \{ 16, 21\} ,
\{ 21, 6\} , \{ 6, 11\} , \{ 11, 26\} so that, e.g., P2 = \{ 3, 18\} , \{ 18, 23\} , \{ 23, 8\} , \{ 8, 13\} , \{ 13, 28\} is the path trans-
lated by 1\times \phi (2) = 2. We pick \{ u, v\} = \{ 18, 23\} , and edge of length \phi (2) = 5. Since g\ell  - 1 = g2 = 5
is odd, we apply the recursive algorithm to find a Hamiltonian cycle on the vertices in P1 (i.e., C2

1 ).
This yields the cycle \{ 1, 6\} , \{ 6, 11\} , \{ 11, 26\} , \{ 26, 21\} , \{ 21, 16\} , \{ 16, 1\} , including the edge \{ u, v\} , so
we don't need to shift it. We then delete the \{ u, v\} and its translates from H,P2, P3, and P4 and
reconnect using the thick edges (of length \phi (3) = 2). Bold edges are of length \phi (\ell ), while the dotted
edges correspond to the edges from H (after \{ u, v\} is removed).

We then delete edge \{ u, v\} and its translates from H,P2, P3, . . . , Pg\ell  - 1 - 1 and add
2(g\ell  - 1  - 1) edges of length \phi (\ell ) as in Figure 10.3

This recursive process will eventually reach one of two halting conditions:
1. It is called to find a Hamiltonian cycle on a component of C\langle \{ \phi (1), . . . , \phi (t)\} \rangle 

where gt - 1

gt
is even, in which case it proceeds as in Case 1. This cycle

is then recursively used to create a Hamiltonian cycle on a component of
C\langle \{ \phi (1), . . . , \phi (t+1)\} \rangle , and then on a component of C\langle \{ \phi (1), . . . , \phi (t+2)\} \rangle ,
and so on, until it creates a Hamiltonian cycle on C\langle \{ \phi (1), . . . , \phi (\ell  - 1)\} \rangle 
(following the process described above). Note that gt - 1

gt
counts the number

of components of C\langle \{ \phi (1), . . . , \phi (t  - 1)\} \rangle that get merged into a component
of C\langle \{ \phi (1), . . . , \phi (t)\} \rangle .

3Specifically, add the following edges:
\bullet Add the edges \{ 1 + \phi (\ell ), 1 + 2\phi (\ell )\} , \{ 1 + 3\phi (\ell ), 1 + 4\phi (\ell )\} , . . . , \{ 1 + (g\ell  - 1  - 2)\phi (\ell ), 1 +

(g\ell  - 1  - 1)\phi (\ell )\} . Also add the edges \{ z + \phi (\ell ), z + 2\phi (\ell )\} , \{ z + 3\phi (\ell ), z + 4\phi (\ell )\} , . . . , \{ z +
(g\ell  - 1  - 2)\phi (\ell ), z + (g\ell  - 1  - 1)\phi (\ell )\} . This adds g\ell  - 1  - 1 edges of length \phi (\ell ).

\bullet Add the edges \{ u + \phi (\ell ), u + 2\phi (\ell )\} , \{ u + 3\phi (\ell ), u + 4\phi (\ell )\} , . . . , \{ u + (g\ell  - 1  - 3)\phi (\ell ), u +
(g\ell  - 1  - 2)\phi (\ell )\} . Also add the edges\{ v + \phi (\ell ), v + 2\phi (\ell )\} , \{ v + 3\phi (\ell ), v + 4\phi (\ell )\} , . . . , \{ v +
(g\ell  - 1  - 3)\phi (\ell ), v + (g\ell  - 1  - 2)\phi (\ell )\} . This adds g\ell  - 1  - 1 edges of length \phi (\ell ).
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2. Otherwise, we recursively call the algorithm until it attempts to produce a
Hamiltonian cycle on a component of C\langle \{ \phi (1)\} \rangle , in which case the Hamilton-
ian cycle on C\langle \{ \phi (1)\} \rangle can be found by following edges of length \phi (1) until
a cycle is created. In the case where \phi (1) = n/2, we treat \{ 1, 1 + n/2\} as a
cycle on C\langle \{ \phi (1)\} \rangle consisting of two length d edges.

Proposition A.2. Consider any circulant instance where g\ell  - 1 is odd. Let OPTTSP

denote the optimal cost of a Hamiltonian tour on the circulant instance. Then the
above algorithm produces a Hamiltonian tour of cost at most 2OPTTSP.

Sketch. By construction, the above algorithm produces a Hamiltonian tour. We
analyze its cost inductively at each stage of the recursion.

Suppose the algorithm recurses until it finds a Hamiltonian cycle on a compo-
nent of C\langle \{ \phi (1), . . . , \phi (t)\} \rangle (where possibly t = 1). We claim that the cost of the
Hamiltonian cycle produced on this component is at most

2

gt

t\sum 
i=1

(gi - 1  - gi)c\phi (i).

Indeed, if the algorithm halts because t = 1, it produces a Hamiltonian cycle consisting
of n

g1
edges of cost c\phi (1) and

n

g1
c\phi (1) \leq 2

\biggl( 
n

g1
 - 1

\biggr) 
c\phi (1) =

2

g1

1\sum 
i=1

(gi - 1  - gi)c\phi (i).

If instead t > 1, we view the component of C\langle \{ \phi (1), . . . , \phi (t)\} \rangle as the graph C\langle \{ \phi (1)
gt

,
\phi (2)
gt

, . . . , \phi (t)
gt

\} \rangle with n
gt

vertices where edges of length \phi (i)
gt

have cost c\phi (i); since gt =

gcd(n, \phi (1), . . . , \phi (t)), this is a well-defined circulant graph.4 Moreover, the algorithm
reaching a base case of the recursion and t > 1 implies that gt - 1

gt
is even, so that the

graph C\langle \{ \phi (1)
gt

, \phi (2)
gt

, . . . , \phi (t - 1)
gt

\} \rangle with n
gt

vertices has an even number of components.

Thus we can appeal to the analysis of the algorithm introduced in Appendix A.2.1,
and at the base case of recursion, the algorithm will produce a Hamiltonian tour on
a component of C\langle \{ \phi (1), . . . , \phi (t)\} \rangle of cost at most

2

t\sum 
i=1

gi - 1  - gi
gt

c\phi (i) =
2

gt

t\sum 
i=1

(gi - 1  - gi)c\phi (i).

We now analyze the algorithm inductively, claiming that at each subsequent iter-
ation of the algorithm, it extends a Hamiltonian cycle on a component of C\langle \{ \phi (1), . . . ,
\phi (k)\} \rangle of cost at most 2

gk

\sum k
i=1(gi - 1 - gi)c\phi (i) to a Hamiltonian cycle on a component

of C\langle \{ \phi (1), . . . , \phi (k + 1)\} \rangle of cost at most 2
gk+1

\sum k
i=1(gi - 1  - gi)c\phi (i). We do so in the

following steps:
1. By assumption, the Hamiltonian cycle on a component of C\langle \{ \phi (1), . . . , \phi (k)\} \rangle 

costs at most

2

gk

k\sum 
i=1

(gi - 1  - gi)c\phi (i).

4Consider a component of C\langle \{ \phi (1), . . . , \phi (t)\} \rangle whose smallest vertex is labeled i. Any vertex
in this component with label v can be relabeled with v - i

gt
, which is an integer: v, i in the same

component of C\langle \{ \phi (1), . . . , \phi (t)\} \rangle implies v \equiv gt i. Any edge in this component is of length \phi (i) for

1 \leq i \leq t, and u - v = \phi (t) if and only if u - i
gt

 - v - i
gt

=
\phi (t)
gt

.
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2. There are gk
gk+1

components of C\langle \{ \phi (1), . . . , \phi (k)\} \rangle that get joined into a com-

ponent of C\langle \{ \phi (1), . . . , \phi (k+1)\} \rangle . The algorithm produces a minimum Hamil-
tonian path on the other gk

gk+1
 - 1 components of C\langle \{ \phi (1), . . . , \phi (k)\} \rangle that

merge into C\langle \{ \phi (1), . . . , \phi (k+ 1)\} \rangle . As in bounding the cost of the base case
of the recursion, each of these components is equivalent to the circulant graph

C\langle \{ \phi (1)
gk

, \phi (2)
gk

, . . . , \phi (k)
gk

\} \rangle on n
gk

vertices so that the Hamiltonian path on each
of these components will cost

k\sum 
i=1

gi - 1  - gi
gk

c\phi (i).

These paths, with our Hamiltonian cycle, together cost at most

2

gk

k\sum 
i=1

(gi - 1  - gi)c\phi (i) +

\biggl( 
gk

gk+1
 - 1

\biggr) k\sum 
i=1

gi - 1  - gi
gk

c\phi (i)

=

\biggl( 
2

gk
+

1

gk+1
 - 1

gk

\biggr) k\sum 
i=1

(gi - 1  - gi)c\phi (i)

=
1

gk+1

\biggl( 
gk+1

gk
+ 1

\biggr) k\sum 
i=1

(gi - 1  - gi)c\phi (i)

\leq 2

gk+1

k\sum 
i=1

(gi - 1  - gi)c\phi (i),

since gk+1 \leq gk.
3. We then delete some edges, which cannot increase the cost.
4. Finally, we add 2

\bigl( 
gk

gk+1
 - 1
\bigr) 
edges of length \phi (k+1) to form the Hamiltonian

cycle on a component of C\langle \{ \phi (1), . . . , \phi (k + 1)\} \rangle . In total, these edges cost

2

\biggl( 
gk

gk+1
 - 1

\biggr) 
c\phi (k+1) =

2

gk+1
(gk  - gk+1)c\phi (k+1).

Hence, we end with a Hamiltonian cycle on a component of C\langle \{ \phi (1), . . . , \phi (k + 1)\} \rangle 
costing at most

2

gk+1

k\sum 
i=1

(gi - 1  - gi)c\phi (i) +
2

gk+1
(gk  - gk+1)c\phi (k+1) =

2

gk+1

k+1\sum 
i=1

(gi - 1  - gi)c\phi (i),

completing an inductive step.
Applying iteratively until we have a Hamiltonian cycle on the full instance, the

total cost of this is at most

2

\ell \sum 
i=1

(g\phi i - 1  - g\phi i )c\phi (i) \leq 2OPTTSP.

The inequality again follows because
\sum \ell 

i=1(g
\phi 
i - 1  - g\phi i )c\phi (i) is the cost of a minimum-

cost Hamiltonian path, which lower-bounds the cost of a Hamiltonian tour.

Acknowledgments. We thank Etienne de Klerk for pointing us to reference
[13]. We thank the anonymous referees for valuable comments and particularly thank
the referee who suggested a cleaner proof of Proposition 3.8.
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