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Optimal interpolation of global dissolved oxygen: 1965-2015 1	
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Oxygen	inventory	of	the	global	ocean	has	declined	in	recent	decades	potentially	due	to	the	3	
warming-induced	reduction	in	solubility	as	well	as	the	circulation	and	biogeochemical	4	
changes	associated	with	ocean	warming	and	increasing	stratification.	Earth	System	Models	5	
predict	continued	oxygen	decline	for	this	century	with	profound	impacts	on	marine	6	
ecosystem	and	fisheries.	Observational	constraint	on	the	rate	of	oxygen	loss	is	crucial	for	7	
assessing	the	ability	of	models	to	accurately	simulate	these	changes.	There	are	only	a	few	8	
observational	assessments	of	the	global	oceanic	oxygen	inventory	reporting	a	range	of	9	
oxygen	loss.	This	study	develops	a	gridded	dataset	of	dissolved	oxygen	for	the	global	10	
oceans	using	optimal	interpolation	method.	The	resulting	gridded	product	includes	full-11	
depth	map	of	dissolved	oxygen	as	5-year	moving	average	from	1965	to	2015	with	12	
uncertainty	estimates.	The	uncertainty	can	come	from	unresolved	small-scale	and	high	13	
frequency	variability	and	mapping	errors.	The	multi-decadal	trend	of	global	dissolved	14	
oxygen	is	in	the	range	of	-281	to	-373	Tmol/decade.	This	estimate	is	more	conservative	15	
than	previous	works.	In	this	study	the	grid	points	far	from	the	observations	are	essentially	16	
set	equal	to	zero	anomaly	from	the	climatology.	Calculating global inventory with this 17	
approach produces a relatively conservative estimate, thus the results from this study likely 18	
provide a useful lower bound estimate of the global oxygen loss.  	19	
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1. Introduction 1	

There	is	a	growing	consensus	that	the	global	oxygen	inventory	has	declined	over	the	past	2	
several	decades	(Bindoff	et	al.	2019).	Distribution	of	oceanic	oxygen	(O2)	reflects	the	3	
interplay	between	ocean	circulation,	biological	respiration	and	air-sea	gas	exchange.	Long-4	
term	loss	of	O2	is	ultimately	caused	by	the	imbalance	between	the	O2	supply	and	biological	5	
consumption,	likely	driven	by	the	ocean	heat	uptake	(Keeling	et	al.	2010;	Oschlies	et	al.	6	
2018).	In	coastal	waters,	excess	nutrient	input	from	land	also	plays	a	major	role	(Gilbert	et	7	
al.	2010;	Rabalais	et	al.	2010).		8	

Many	physical	and	biochemical	processes	are	involved	with	the	ocean	O2	cycling.	Relatively	9	
efficient	surface	gas	exchange	maintains	the	surface	ocean	close	to	saturation	with	the	10	
overlying	atmosphere	for	most	of	ice-free	regions.	Decomposition	of	organic	matter	in	the	11	
interior	ocean	consumes	oxygen	below	the	surface.	At	steady	state,	the	biological	12	
consumption	must	be	balanced	by	the	supply	via	ocean	ventilation.	The	terminology,	13	
ventilation,	refers	to	the	vertical	exchange	of	waters	between	the	surface	layer	and	the	14	
ocean	interior	(Talley	et	al.	2011).	As	the	seawater	warms	up,	its	ability	to	hold	O2	15	
decreases	due	to	the	temperature-solubility	relationship.	In	addition,	ocean	ventilation	and	16	
biogeochemical	processes	can	change	in	response	to	the	warming	and	increasing	upper-17	
ocean	stratification.	Ocean	ventilation	covers	a	wide	range	of	transport	processes	including	18	
wind-driven	shallow	overturning	circulation	(Brandt	et	al.	2015;	Duteil	et	al.	2014;	19	
Eddebbar	et	al.	2019),	the	formation	of	mode	and	intermediate	waters	(Claret	et	al.	2018;	20	
Gnanadesikan	et	al.	2012;	Sallée	et	al.	2010),	the	lateral	eddy	stirring	(Gnanadesikan	et	al.	21	
2013;	Gnanadesikan	et	al.	2015;	Rudnickas	et	al.	2019)	and	the	deep	meridional	22	
overturning	circulations	(Gnanadesikan	et	al.	2007;	Gordon	1966;	Palter	and	Trossman	23	
2018;	van	Aken	et	al.	2011).	These	circulation	systems	are	driven	by	atmospheric	winds	24	
and	buoyancy	fluxes	with	significant	interannual,	decadal	and	multi-decadal	variability,	25	
which	then	causes	fluctuations	in	the	rate	of	O2	supply	into	the	ocean	interior	(Duteil	et	al.	26	
2018;	Kwon	et	al.	2016;	McKinley	et	al.	2003;	Ridder	and	England	2014).		27	

Earth	System	Models	have	become	powerful	tool	to	simulate	the	complex	interplay	of	these	28	
processes	behind	the	long-term	trend	and	interannual	variability	of	O2.	These	models	29	
predict	that	the	loss	of	oxygen	continues	throughout	this	century	under	unabated	emission	30	
of	greenhouse	gases	(Bopp	et	al.	2013;	Cocco	et	al.	2013).	These	changes	will	have	31	
profound	influences	on	marine	ecosystem	and	nutrient	cycling	(Breitburg	et	al.	2018;	Levin	32	
2018).	In	order	to	assess	the	ability	of	the	models	to	reproduce	these	processes,	it	is	33	
necessary	to	validate	the	model	against	observations.	Observational estimates of the past 34	
oxygen loss over the last several decades is therefore crucial for assessing the model skill.	35	
However,	there	are	only	a	few	assessments	of	the	global	oceanic	oxygen	inventory,	36	
reporting	a	range	of	oxygen	loss	over	the	last	several	decades.	Schmidtko	et	al.,	(2017)	37	
estimated	the	linear	trend	of	961±429	Tmol/decade	since	1960,	which	is	approximately	38	
2±1%	loss	of	global	oxygen	inventory	over	last	past	50	years.		39	

The	objective	of	this	study	is	to	develop	the	three-dimensional,	time-varying	dataset	of	40	
dissolved	oxygen	for	the	global	oceans	including	uncertainty	estimates.	Optimal	41	
interpolation	is	applied	to	quality-controlled	bottle	O2	data	provided	by	the	World	Ocean	42	
Database	2018	(hereafter,	WOD18)	(Boyer	et	al.	2018).		In	order	to	control	the	source	of	43	
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uncertainty,	this	study	uses	the	bottle	O2	data	only,	unlike	the	previous	studies	of	1	
Schmidtko	et	al.	(2017)	and	Ito	et	al.	(2017,	hereafter	I17)	who	blended	the	bottle	and	CTD	2	
measurements.	Because	of	the	limited	number	of	source	data,	there	will	be	large	data	gaps,	3	
and	optimal	interpolation	method	is	used	to	fill	data	gaps.	The	resulting	dataset	compared	4	
to	the	earlier	works	of	I17.	Below	is	the	structure	of	this	paper.	Section	2	introduces	the	5	
method.	Section	3	is	the	analysis	of	the	data,	including	comparison	to	prior	study.	Section	4	6	
briefly	describes	data	access,	and	the	section	5	concludes	this	paper.		7	

2. Method 8	

Dissolved	oxygen	is	one	of	the	most	frequently	measured	chemical	tracers	in	the	ocean.	9	
There	are	approximately	2.8	million	temperature,	2.4	million	salinity,	and	0.9	million	10	
oxygen	vertical	profiles	in	the	Ocean	Station	Data	(OSD)	reported	to	the	World	Ocean	11	
Database	2018	(hereafter,	WOD18)	(Boyer	et	al.	2018).	WOD18	is	a	compilation	of	quality	12	
controlled	oceanographic	dataset	contributed	by	the	international	scientific	community.	13	
Dissolved	oxygen	concentrations	in	the	OSD	profile	are	typically	measured	by	modified	14	
“Winkler	titration”	method	(Carpenter	1965;	Winkler	1888).	Most	modern	oxygen	15	
chemical	titration	measurements	are	based	on	Carpenter’s	whole	bottle	titration	method	16	
and	an	amperometric	or	photometric	end-detection	with	uncertainty	of	about	1µM.	There	17	
are	other	data	sources	such	as	Conductivity-Temperature-Depth	instruments	(CTD)	and	18	
profiling	floats,	but	the	majority	of	the	existing	oxygen	measurements	are	in	the	Winkler	19	
titration	data,	which	will	be	used	in	this	study.			20	

While	the	number	of	OSD	measurement	is	the	largest	among	all	historical	observational	21	
platforms,	the	CTD	measurements	has	increased	after	1990s	and	that	of	profiling	floats	are	22	
rapidly	increasing	in	recent	years.	It	is	beyond	the	scope	of	this	paper	to	discuss	how	best	23	
data	from	these	different	platforms	can	be	integrated	into	the	dataset,	and	it	is	left	for	the	24	
future	studies.		25	

2.1. Preprocessing 26	

The	preprocessing	of	the	data	is	necessary	to	prepare	the	WOD18	data	before	mapping.	27	
This	step	also	includes	additional	checks	for	data	quality.	The	original	WOD18	profiles	are	28	
placed	into	bins	which	are	the	1°x1°	longitude-latitude	grid	cells	with	102	vertical	depth	29	
levels	referenced	to	the	standard	depths	of	WOD18.	Basin	mask	is	used	to	include	data	30	
points	only	from	the	four	major	ocean	basins	including	Atlantic,	Pacific,	Indian	and	31	
Southern	Oceans.	Other	ocean	basins	and	marginal	seas	are	excluded	from	this	analysis.	32	
The	target	analysis	period	is	after	1965	when	the	modern	oxygen	titration	method	is	33	
established	by	Carpenter	as	referenced	above.	Some	of	the	data	from	most	recent	years	are	34	
not	yet	included	in	the	database,	so	the	analysis	ends	in	2015.		35	

First,	questionable	or	unrepresentative	data	marked	by	the	WOD18	quality	flags	are	36	
excluded	and	only	acceptable	data	is	retained	for	the	analysis.	Additional	quality	control	is	37	
applied	similar	to	I17.	Each	Winkler	titration	data	is	compared	to	the	monthly	38	
climatological	oxygen	concentration	from	the	World	Ocean	Atlas	2018	(WOA18)	(Garcia	et	39	
al.	2018)	and	the	outliers	are	identified	and 40	



Manuscript	in	submitted	to	Geoscience	Data	Journal	

	 4	

	1	

excluded	from	the	binned	data.	The	outliers	are	identified	with	above	or	below	three	times	2	
the	standard	deviation	relative	to	the	monthly	climatological	mean.	The	monthly	3	
climatology	is	available	for	the	upper	1,000m	of	the	water	column,	and	the	annual	mean	is	4	
used	for	the	deep	waters	below	1,000m.		There	are	some	notable	differences	from	I17.	First	5	
the	I17	calculated	its	own	climatological	mean	value	whereas	this	study	uses	the	widely	6	
used	WOA18.		7	

Second,	the	quality-controlled	data	points	are	averaged	for	each	bin	at	1°x1°	and	monthly	8	
resolution	where	statistical	mean,	sample-variance	and	sample	size	are	recorded	from	9	
1962	to	2017.	Sample	variance	can	reflect	small-scale	variability	within	the	1°x1°	10	
longitude-latitude	bins	and	sampling	noise,	which	is	used	as	a	measure	of	background	11	
noise	in	the	later	analysis.	While	the	target	period	is	from	1965	to	2015,	additional	two	12	

1962-1969 1970-1979

1980-1989 1990-1999

2000-2009 2010-2017

Figure	1.	Number	of	Winkler	oxygen	measurements	aggregated	into	1°x1°	longitude-latitude	
bins	for	four	decades	from	1962	to	2017.	The	color	scale	indicates	the	number	of	
measurements	in	units	of	thousands	(1k	=	1,000	measurements).		
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years	are	included	in	preparation	for	the	pentadal	analysis.	The	averaged	oxygen	1	
concentrations	are	recorded	as	the	anomalies	from	the	monthly	climatological	mean.	Fig	1	2	
shows	the	sampling	pattern	for	each	decade.	The	number	of	bottle	data	itself	is	higher	3	
during	1970s	and	80s	but	the	sampling	density	is	skewed	towards	North	Atlantic	and	4	
North	Pacific	basins.	The	global	ocean	is	more	evenly	sampled	during	1990s	and	2000s.		5	

Finally,	the	monthly	anomalies	are	averaged	into	yearly	anomalies.	The	binned	data	is	very	6	
sparse	at	the	monthly	timescale.		For	each	year,	the	monthly	anomaly	data	is	averaged	into	7	
yearly	anomaly	neglecting	the	months	with	missing	data.	The	yearly	averaged	anomalies	8	
and	its	yearly	variance	are	recorded.	This	step	increases	data	coverage	significantly	while	9	
averaging	out	high-frequency	variability	in	the	data.	The	variance	field	is	retained	and	will	10	
be	used	to	estimate	the	high-frequency	variability	and	will	be	used	for	the	uncertainty	11	
analysis.	In	addition,	a	5-year	moving	window	averaging	is	applied	to	the	yearly	anomaly	12	
neglecting	the	years	with	missing	data.	This	further	increases	the	data	coverage	while	13	
averaging	out	variability	on	the	timescale	shorter	than	5	year.	Its	variance	is	recorded	as	a	14	
part	of	high-frequency	variability.	The	resulting	yearly	binned	data	covers	the	50-year	15	
period	from	1965	to	2015.		16	

2.2. Optimal interpolation 17	

Once	the	preprocessing	step	is	complete,	an	objective	map	is	assembled	to	estimate	oxygen	18	
anomalies	for	all	1°x1°	grid	cells	following	Breatherton	et	al.,	[1976].	This	is	based	on	19	
optimal	interpolation	providing	the	least-square	estimate	of	oxygen	anomaly	field	on	a	20	
regularly	spaced	grid	cells.	This	process	minimizes	the	mean	square	error	of	the	mapped	21	
data	for	given	observational	data	points.	The	binned	oxygen	anomaly,	X(t),	is	expressed	as	22	
a	(N	x	1)	vector	where	N	is	the	number	of	binned	data.	The	objective	map	of	oxygen	23	
anomaly,	Y(t),	is	a	(M	x	1)	vector,	where	M	is	the	number	of	grid	cells.		24	

	 	 (1)	25	

There	are	two	covariance	matrices;	D	is	the	M	x	N	data-grid	covariance	and	C	is	the	N	x	N	26	
data-data	covariance	matrix.	𝜖	is	the	noise-to-signal	variance	ratio.	Since	the	time	series	in	27	
each	bin	is	too	sparse	to	compute	the	autocovariance	matrices,	the	autocovariance	function	28	
between	the	two	points	denoted	by	indices	m	and	n,	separated	by	a	distance	Lmn,	is	29	
prescribed	using	isotropic	Gaussian	function	with	the	e-folding	length	scale	of	Lref	where	30	
Cmn=exp(-Lmn2/2Lref2).	Matrix	D	follows	the	same	definition	but	for	data-grid	covariance.	The	31	
reference	e-folding	length	scale	(Lref)	is	set	to	1,000km.	The	value	of	𝜖	is	estimated	from	the	32	
noise-to-signal	variance	ratio	of	the	binned	anomaly	data.	Optimal	interpolation	(Eq	1)	33	
minimizes	the	mean	square	error,	and	Y	approaches	to	0	with	a	strong	noise	(𝜖 ≫ 1)	or	34	
when	the	data-grid	covariance	is	small.	The	latter	would	be	the	case	for	grid	points	far	from	35	
observations.	Conversely	a	smaller	noise	level	tends	to	increase	the	sensitivity.	In	some	36	
cases	where	the	estimated	𝜖	falls	below	a	certain	threshold,	its	magnitude	is	prescribed	to	37	
the	minimum	value	of	0.1.	This	calculation	is	applied	to	four	basins	separately	where	all	38	
observational	data	points	are	used	to	map	each	of	the	four	basins	except	for	the	Atlantic	39	
map	excluding	the	data	points	from	the	Pacific	basin	and	for	the	Pacific	map	excluding	the	40	
data	points	from	the	Atlantic	basin.	The	calculation	is	repeated	for	all	depth	levels	and	the	41	
50-year	period	annually	(1965	to	2015).	Fig	2	shows	an	example	of	the	output	from	the	42	
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objective	map	(Eq	1).	It	also	shows	the	distribution	of	the	binned	data.	The	mapped	field	1	
generally	reflects	the	binned	anomaly	data.	Data	density	varies	significantly.	Uncertainty	2	
analysis	is	therefore	important	and	necessary	to	correctly	interpret	the	mapped	data.		3	

	4	

 5	

3. Analysis 6	

3.1. Error analysis 7	
Using	the	Gaussian	autocovariance	matrices	from	the	previous	section,	the	mean	square	8	
error	of	the	objective	mapping	is	calculated	following	Breatherton	et	al.,	[1976].	The	9	
coefficient	of	determination	(R2)	for	the	least	square	fit	(Ym)	is	calculated	as	R2=Dm	(C+	𝜖I)-1	10	
DmT	where	Dm	is	the	m-th	row	vector	of	the	matrix	D.	Thus,	the	mean	square	error	for	Ym	11	
can	be	calculated	as	sY2(1-R2)	where	sY2	is	the	total	variance	of	Y.	This	represents	the	12	
mapping	error	and	its	example	from	2005	is	shown	as	Fig	3a.	The	mapping	error	is	13	
elevated	away	from	the	cruise	track	and	is	the	dominant	source	of	uncertainty	in	the	14	
tropical	and	the	southern	hemisphere	oceans.		15	

150°W 100°W 50°W 0 50°E 100°E 150°E

60°S

40°S

20°S

0

20°N

40°N

60°N

-20 -10 0 +10 +20-20 -10 0 +10 +20-20 -10 0 +10 +20

Objective map of O2 anomaly (2005, 350m), μM

Figure	2.	Objective	map	
of	oxygen	anomaly	for	
Year	2005	at	350m	
depth.	The	plotted	values	
are	anomalies	from	the	
WOA18	climatology.	
Color	shading	simply	
plots	Y	as	calculated	
from	Equation	(1).	Circle	
dots	represent	the	
location	and	magnitude	
of	the	binned	data	(X).		
Arctic	Ocean	and	
marginal	basins	are	not	
included	in	this	
calculation.		
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	1	

There	are	small-scale	and	high	2	
frequency	variability	that	have	been	3	
averaged	out	in	the	preprocessing	4	
step.	The	general	formula	for	error	5	
propagation	can	be	applied	to	6	
estimate	uncertainties	from	these	7	
fluctuations		[Taylor,	1997].		Eq	1	can	8	
be	re-written	such	that	each	element	9	
of	Y	can	be	expressed	as	the	weighted	10	
sum	of	the	elements	in	X;	Ym=wmnXn	11	
using	Einstein	summation	convention.	12	
If	the	unresolved	“noise”	is	random	13	
and	uncorrelated,	the	standard	error	14	
(sm)	can	be	calculated	as	(wmn2sn2)0.5	15	
where	sn2	represents	the	noise	16	
variance	of	the	binned	data.	This	17	

formula	is	used	to	map	the	standard	error	due	to	unresolved	sub-grid	scale	variance	within	18	
1°x1°	monthly	bins,	and	its	example	is	shown	as	Fig	3b.	This	noise	variance	is	calculated	19	
including	all	years,	and	it	does	not	vary	over	time.	The	overall	amplitude	is	relatively	small	20	
(<5µM).	Its	spatial	pattern	reflects	regions	of	increased	climatological	gradients	such	as	21	
near	the	edges	of	the	tropical	Pacific	oxygen	minimum	zones	(OMZs)	and	frontal	regions	in	22	
the	Southern	Ocean.	The	preprocessing	step	also	excluded	high-frequency	variability	from	23	
monthly	to	5-year	timescale	in	order	to	increase	the	spatial	coverage.	Potential	drivers	of	24	
such	high-frequency	variability	can	be	influenced	by	regional	or	large-scale	atmospheric	25	
and	oceanic	circulation.		Thus	the	assumption	of	uncorrelated	noise	is	not	applicable	for	26	
this	type	of	variability.	A	more	conservative	estimate	of	the	uncertainty	can	be	given	by	the	27	
arithmetic	sum	of	the	weighted	standard	deviation,	sm=wmnsn,	which	is	an	upper	bound	for	28	
the	uncertainty	estimate,	and	this	is	adopted	for	the	unresolved	high-frequency	variability	29	
(Fig	3c).	Similar	to	the	sub-grid	scale	noise,	the	statistics	is	calculated	for	all	years	and	it	30	

0 +5 +10 +15 +200 +5 +10 +15 +200 +5 +10 +15 +20

Standard error, μM

a. 

b. 

c. 
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Figure	3.	Uncertainty	estimates	for	
oxygen	anomaly	for	2005	at	350m	depth.	
(a)	Root	mean	square	error	(RMSE)	of	
objective	map,	calculated	from	Gaussian	
covariance	matrices.	The	black	circles	
indicate	the	location	of	measurements.		
(b)	Standard	error	due	to	small-scale	
fluctuations	which	may	represent	ocean	
eddies,	waves,	and	other	small-scale	
processes	that	are	assumed	random	and	
uncorrelated.		(c)	Standard	error	due	to	
unresolved	high-frequency	variability	
covering	the	timescales	shorter	than	5	
years.		
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does	not	vary	over	time.	The	regions	of	intense	high-frequency	variability	include	frontal	1	
regions,	western	boundary	currents,	eastern	boundary	upwelling	regions,	edges	of	tropical	2	
OMZs	and	in	the	Southern	Ocean	fronts.	These	regions	have	strong	climatological	oxygen	3	
gradients	and/or	are	the	region	of	elevated	physical	variability	such	as	wind-driven	4	
upwelling,	subduction,	and	ocean	eddies	and	jets	(Cabré	et	al.	2015;	Claret	et	al.	2018;	5	
Deutsch	et	al.	2011;	Kwon	et	al.	2016;	Rudnickas	et	al.	2019;	Sasano	et	al.	2015;	Stramma	et	6	
al.	2010).		7	

3.2. Global loss of oxygen from 1965 to 2015 8	

The	new	results	include	quantitative	estimates	of	uncertainty	for	each	grid	cell,	thus	it	is	9	
more	straightforward	to	compute	the	uncertainty	of	the	global	inventory	(Taylor	1997).	10	
The	small-scale	noises	are	assumed	to	be	random	and	uncorrelated.	Gaussian	11	
autocovariance	functions	are	used	to	assemble	the	uncertainty	associated	with	mapping	12	
errors	and	high-frequency	variability.	The	e-folding	scale	of	1,000km	is	used	for	horizontal	13	
directions,	and	in	the	vertical	direction,	the	e-folding	scale	is	set	to	300m.	First,	the	14	
anomalies	are	calculated	for	the	vertically-integrated	column	inventory	as	a	function	of	15	
longitude	and	latitude,	and	then	they	are	integrated	horizontally	to	yield	the	global	integral.	16	
The	95%	confidence	intervals	are	calculated	as	two	times	the	standard	error	of	the	17	
combined	uncertainty.	In	conclusion,	while	the	new	gridded	results	are	consistent	with	the	18	
earlier	gridded	product	of	I17,	the	treatment	of	missing	values	in	the	global	integration	of	19	
I17	resulted	in	significantly	stronger	estimate	of	oxygen	loss.	Fig	4	shows	the	global	oxygen	20	
inventory	time	series	from	1965	to	2015	with	uncertainty	estimates	as	95%	confidence	21	
interval.		22	

	23	

Based	on	this	analysis,	it	is	virtually	certain	that	global	oxygen	inventory	has	declined	in	24	
the	last	50	years.	The	estimate	from	this	study	is	significantly	more	conservative	than	the	25	
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Figure	4.	Globally	integrated	oxygen	inventory	timeseries	for	(a)	upper	700m	and	(b)	full	
water	column.	The	inventory	anomaly	is	referenced	to	the	1965-1974	mean	condition.	Gray	
shading	indicates	the	95%	confidence	interval.	The	histogram	within	each	panel	shows	the	
statistical	distribution	of	linear	trend	from	the	Monte-Carlo	calculation	with	10,000	
randomized	ensembles.	Note	that	the	range	of	y-axis	is	different	between	the	two	panels.			
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previous	work,	and	even	so,	the	99-percentile	linear	trend	is	negative	for	both	0-700m	1	
depth	range	(-54	TmolO2	per	decade)	and	full	water	column	(-273	TmolO2	per	decade).		2	

For	the	full	water	depth,	the	multi-decadal	trend	of	global	dissolved	oxygen	is	in	the	range	3	
of	-281	to	-373	Tmol	per	decade	(95%	confidence	interval)	with	the	median	of	-328	Tmol	4	
per	decade,	which	is	equivalent	of	0.7±0.1%	loss	of	global	oxygen	inventory	over	the	last	50	5	
years.	This	estimate	is	more	conservative	than	previous	works.	Schmidtko	et	al.,	(2017)	6	
estimated	the	linear	trend	of	-961±429	Tmol	per	decade	since	1960.	While	the	temporal	7	
window	is	slightly	different,	their	estimate	is	much	stronger.		8	

	 	9	
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	1	

3.3 Comparison with an earlier version 2	

In	this	section,	the	optimal	interpolation	of	oxygen	anomaly	field	is	compared	to	an	earlier	3	
product	by	Ito	et	al	(2017,	hereafter	I17).	Fig	5	shows	the	comparison	for	the	upper	4	
thermocline	at	350m	depth	from	a	specific	year	(2005).		The	result	from	this	study	is	5	
shown	in	Fig	5a.	The	uncertainty	due	to	mapping	error	is	calculated	for	each	grid	point,	6	
which	can	be	used	as	a	mask	for	optimally	interpolated	oxygen	field.		Grid	cells	with	7	
significant	mapping	error	(R2<0.3)	are	marked	with	hatch	.		8	

	9	

The	results	from	this	study	is	10	
compared	to	an	early	study	if	11	
I17	(Fig	5b).		Comparing	Fig	12	
5a	and	5b,	the	two	maps	are	13	
similar	in	terms	of	general	14	
patterns	and	locations	of	15	
positive	and	negative	16	
anomalies.	However,	there	are	17	
some	notable	differences.		18	

For	example,	the	negative	19	
anomalies	in	the	Sea	of	Okhotsk	have	larger	amplitude	in	I17	than	this	study.	In	contrast,	20	
this	study	and	I17	show	similar	values	in	the	tropical	Atlantic.	There	are	a	number	of	21	
technical	changes	in	the	data	processing	and	analysis.		This	study	generally	makes	more	22	
smoothed	estimates	than	the	previous	version.		23	

There	are	three	major	factors	that	this	study	is	different	from	I17.	First,	the	parameters	24	
used	to	map	oxygen	anomalies	are	different.		Zonally	elongated	features	of	oxygen	25	
anomalies	are	evident	in	I17	(Fig	5b)	because	of	the	different	Gaussian	functions	used	in	26	
the	mapping.	I17	used	longer	length	scale	for	the	east-west	direction	than	the	north-south	27	
direction	by	a	factor	of	2,	causing	zonally	elongated	patterns.	Secondly,	the	data	source	is	28	
updated.		I17	used	WOD13,	and	this	study	updated	to	WOD18	with	some	addition	of	newer	29	
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Figure	5.	Comparison	of	oxygen	
anomaly	maps	between	(a)	this	
study	and	(b)	the	earlier	study	by	
Ito	et	al.,	[2017].	This	comparison	
for	the	Year	2005	at	the	depth	of	
350m.	The	top	panel	is	identical	to	
Fig	2	except	that	the	region	with	
relatively	high	mapping	uncertainty	
is	indicated	with	hatch	(R2<0.3).	In	
order	to	make	a	comparison,	5-year	
moving	window	average	is	applied	
to	I17	in	panel	(b).			
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data.	I17	included	both	Winkler	O2	and	CTD	measurements,	whereas	this	study	uses	1	
Winkler	O2	only.	There	is	a	trade-off	between	including	more	data	points	and	introducing	2	
potential	biases	with	CTD-O2.	Fewer	data	points	may	result	in	more	conservative	estimates.	3	
Finally,	the	treatment	of	data	gaps	is	different.	This	study	assigns	smoothly	varying	values	4	
to	all	grid	cells	but	I17	does	not	assign	values	to	a	grid	cell	if	there	is	no	observation	within	5	
the	radius	of	influence.	As	a	result,	the	oxygen	anomaly	field	in	this	study	has	more	6	
smoothed	appearance	while	spatial	patterns	are	similar.	In	practical	terms,	optimal	7	
interpolation	essentially	assigns	zero	anomaly	to	the	grid	cells	far	from	observational	8	
constraints	based	on	the	Gaussian	autocovariance	function.		This	has	implication	for	the	9	
calculation	of	global	inventory	as	discussed	below.		10	

The	global	oxygen	inventory	is	compared	between	this	study	and	I17	(Fig	6).	The	earlier	11	
product	of	I17	only	covers	to	1,000m	depth	so	this	comparison	is	focused	on	this	depth	12	
range.	The	two	cases	are	calculated	from	the	I17	dataset	according	to	the	treatment	of	13	
missing	data.	The	first	case	integrates	oxygen	anomalies	while	missing	data	points	are	14	
replaced	with	zeros	(red	line	in	Fig	6).	In	any	given	year,	more	than	40%	of	the	ocean	grid	15	
cells	in	I17	are	missing	values	because	there	is	no	measurements	within	the	radius	of	16	
influence.		This	has	led	to	a	concern	about	the	amplitude	of	large-scale	change	if	missing	17	
grid	cells	are	set	to	zero	anomaly.	The	second	case	(gold	line	in	Fig	6)	attempts	to	address	18	

this	issue	by	essentially	replacing	missing	values	with	the	global	mean	concentration	from	19	
the	same	year.	This	increases	the	amplitude	of	the	signal	significantly	as	seen	in	Fig	6.	For	20	
example,	if	70%	of	grid	cells	are	missing,	the	missing	grid	points	are	assigned	to	the 21	
average	of	the	grid	cells	filled	with	the	data	(30%),	effectively	amplifying	the	signal	by	a	22	
factor	of	3	(=100/30).	This	can	generate	significant	amplification	of	the	signal	especially	for	23	
the	years	when	sampling	density	is	low.			24	

New	results	from	this	study	(the	black	line	in	Fig	6)	overlaps	with	the	conservative	version	25	
of	I17	replacing	the	missing	value	with	zeros,	but	it	clearly	does	not	overlap	with	the	26	
version	replacing	the	missing	data	with	the	global	mean.	The	conservative	version	of	I17	is	27	
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essentially	similar	to	the	optimal	interpolation	generating	a	more	conservative	estimate	of	1	
the	globally	integrated	oxygen	loss.	For	grid	cells	far	from	observational	constraints,	the	2	
signal	decays	and	anomalies	are	close	to	zero,	producing	a	more	conservative	global	3	
inventory	change.		Thus,	the	treatment	of	data	gaps	plays	a	crucial	role	for	the	assessment	4	
of	the	global	inventory.		5	

4. Dataset Access 6	

This	dataset	is	available	from	Biological	&	Chemical	Oceanography	Data	Management	Office	7	
(BCO-DMO)	with	the	Digital	Object	Identifier	(DOI)	of	10.26008/1912/bco-dmo.816978.2.		8	
This	dataset	includes	the	gridded	oxygen	anomaly	at	yearly	resolution	including	its	9	
uncertainty	estimates.	The	dataset	is	gridded	in	1°	x	1°	longitude	latitude	grid	with	102	10	
vertical	levels.	The	gridded	data	as	well	as	metadata	are	contained	in	a	single	netCDF	file.	11	
The	data	are	freely	open	and	available	with	no	restrictions.		12	

5. Conclusions 13	

The	loss	of	oxygen	from	the	global	ocean	is	expected	under	the	greenhouse	gas	emissions	14	
and	the	resultant	ocean	heat	uptake.	It	is	crucial	to	develop	observationally	derived	15	
gridded	data	product	to	evaluate	the	patterns	and	magnitudes	of	the	past	oxygen	loss	from	16	
recent	decades.	In	this	study,	a	new	full-depth	gridded	oxygen	product	is	generated	using	17	
Winkler	titration	measurements	only.	The	results	are	broadly	consistent	with	the	previous	18	
work	of	Ito	et	al	(2017)	in	terms	of	the	spatial	patterns.	The	new	product	has	more	19	
smoothed	horizontal	structure	and	conservative	amplitudes	and	it	includes	uncertainty	20	
estimates	from	mapping	errors,	unresolved	small-scale	and	high-frequency	variability.		21	

The	calculation	of	global	inventory	depends	on	the	treatment	of	missing	data.	In	this	study,	22	
grid	cells	far	from	the	observational	constraints	are	essentially	filled	with	zero	anomaly.	23	
This	study	calculates	the	global	inventory	smaller	than	previous	estimates	(Ito	et	al.	2017;	24	
Schmidtko	et	al.	2017),	and	the	results	from	this	work	should	be	considered	as	a	lower	25	
bound	estimate	of	the	global	oxygen	loss.	It	is	beyond	the	scope	of	this	work	to	reconcile	26	
the	difference	with	different	global	inventory	estimates	and	it	is	left	for	the	future	study.	27	
This	issue	may	be	related	to	the	fact	that	current	Earth	System	Model	simulations	forced	by	28	
the	historical	greenhouse	gas	emissions	tend	to	underestimate	the	rate	of	oxygen	(Oschlies	29	
et	al.	2018).	This	underestimation	is	not	only	in	inventories	but	also	in	terms	of	the	mean	30	
concentrations	(see	Fig	4.13	of	Long	et	al.,	2019).	It	is	again	beyond	the	scope	of	this	paper	31	
to	reconcile	observed	and	modeled	oxygen	changes,	and	future	studies	are	warranted.	The	32	
dataset	developed	in	this	study	is	freely	available	from	Biological	&	Chemical	33	
Oceanography	Data	Management	Office,	and	it	is	hoped	to	stimulate	further	discussion	and	34	
research.		35	
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