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Optimal interpolation of global dissolved oxygen: 1965-2015

Takamitsu Ito

Oxygen inventory of the global ocean has declined in recent decades potentially due to the
warming-induced reduction in solubility as well as the circulation and biogeochemical
changes associated with ocean warming and increasing stratification. Earth System Models
predict continued oxygen decline for this century with profound impacts on marine
ecosystem and fisheries. Observational constraint on the rate of oxygen loss is crucial for
assessing the ability of models to accurately simulate these changes. There are only a few
observational assessments of the global oceanic oxygen inventory reporting a range of
oxygen loss. This study develops a gridded dataset of dissolved oxygen for the global
oceans using optimal interpolation method. The resulting gridded product includes full-
depth map of dissolved oxygen as 5-year moving average from 1965 to 2015 with
uncertainty estimates. The uncertainty can come from unresolved small-scale and high
frequency variability and mapping errors. The multi-decadal trend of global dissolved
oxygen is in the range of -281 to -373 Tmol/decade. This estimate is more conservative
than previous works. In this study the grid points far from the observations are essentially
set equal to zero anomaly from the climatology. Calculating global inventory with this
approach produces a relatively conservative estimate, thus the results from this study likely
provide a useful lower bound estimate of the global oxygen loss.
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1. Introduction

There is a growing consensus that the global oxygen inventory has declined over the past
several decades (Bindoff et al. 2019). Distribution of oceanic oxygen (0O2) reflects the
interplay between ocean circulation, biological respiration and air-sea gas exchange. Long-
term loss of Oz is ultimately caused by the imbalance between the Oz supply and biological
consumption, likely driven by the ocean heat uptake (Keeling et al. 2010; Oschlies et al.
2018). In coastal waters, excess nutrient input from land also plays a major role (Gilbert et
al. 2010; Rabalais et al. 2010).

Many physical and biochemical processes are involved with the ocean O; cycling. Relatively
efficient surface gas exchange maintains the surface ocean close to saturation with the
overlying atmosphere for most of ice-free regions. Decomposition of organic matter in the
interior ocean consumes oxygen below the surface. At steady state, the biological
consumption must be balanced by the supply via ocean ventilation. The terminology,
ventilation, refers to the vertical exchange of waters between the surface layer and the
ocean interior (Talley et al. 2011). As the seawater warms up, its ability to hold O
decreases due to the temperature-solubility relationship. In addition, ocean ventilation and
biogeochemical processes can change in response to the warming and increasing upper-
ocean stratification. Ocean ventilation covers a wide range of transport processes including
wind-driven shallow overturning circulation (Brandt et al. 2015; Duteil et al. 2014;
Eddebbar et al. 2019), the formation of mode and intermediate waters (Claret et al. 2018;
Gnanadesikan et al. 2012; Sallée et al. 2010), the lateral eddy stirring (Gnanadesikan et al.
2013; Gnanadesikan et al. 2015; Rudnickas et al. 2019) and the deep meridional
overturning circulations (Gnanadesikan et al. 2007; Gordon 1966; Palter and Trossman
2018; van Aken et al. 2011). These circulation systems are driven by atmospheric winds
and buoyancy fluxes with significant interannual, decadal and multi-decadal variability,
which then causes fluctuations in the rate of Oz supply into the ocean interior (Duteil et al.
2018; Kwon et al. 2016; McKinley et al. 2003; Ridder and England 2014).

Earth System Models have become powerful tool to simulate the complex interplay of these
processes behind the long-term trend and interannual variability of O2. These models
predict that the loss of oxygen continues throughout this century under unabated emission
of greenhouse gases (Bopp et al. 2013; Cocco et al. 2013). These changes will have
profound influences on marine ecosystem and nutrient cycling (Breitburg et al. 2018; Levin
2018). In order to assess the ability of the models to reproduce these processes, it is
necessary to validate the model against observations. Observational estimates of the past
oxygen loss over the last several decades is therefore crucial for assessing the model skill.
However, there are only a few assessments of the global oceanic oxygen inventory,
reporting a range of oxygen loss over the last several decades. Schmidtko et al., (2017)
estimated the linear trend of 961+429 Tmol/decade since 1960, which is approximately
2+1% loss of global oxygen inventory over last past 50 years.

The objective of this study is to develop the three-dimensional, time-varying dataset of
dissolved oxygen for the global oceans including uncertainty estimates. Optimal
interpolation is applied to quality-controlled bottle O; data provided by the World Ocean
Database 2018 (hereafter, WOD18) (Boyer et al. 2018). In order to control the source of
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uncertainty, this study uses the bottle O; data only, unlike the previous studies of
Schmidtko et al. (2017) and Ito et al. (2017, hereafter [17) who blended the bottle and CTD
measurements. Because of the limited number of source data, there will be large data gaps,
and optimal interpolation method is used to fill data gaps. The resulting dataset compared
to the earlier works of [17. Below is the structure of this paper. Section 2 introduces the
method. Section 3 is the analysis of the data, including comparison to prior study. Section 4
briefly describes data access, and the section 5 concludes this paper.

2. Method

Dissolved oxygen is one of the most frequently measured chemical tracers in the ocean.
There are approximately 2.8 million temperature, 2.4 million salinity, and 0.9 million
oxygen vertical profiles in the Ocean Station Data (OSD) reported to the World Ocean
Database 2018 (hereafter, WOD18) (Boyer et al. 2018). WOD18 is a compilation of quality
controlled oceanographic dataset contributed by the international scientific community.
Dissolved oxygen concentrations in the OSD profile are typically measured by modified
“Winkler titration” method (Carpenter 1965; Winkler 1888). Most modern oxygen
chemical titration measurements are based on Carpenter’s whole bottle titration method
and an amperometric or photometric end-detection with uncertainty of about 1uM. There
are other data sources such as Conductivity-Temperature-Depth instruments (CTD) and
profiling floats, but the majority of the existing oxygen measurements are in the Winkler
titration data, which will be used in this study.

While the number of OSD measurement is the largest among all historical observational
platforms, the CTD measurements has increased after 1990s and that of profiling floats are
rapidly increasing in recent years. It is beyond the scope of this paper to discuss how best
data from these different platforms can be integrated into the dataset, and it is left for the
future studies.

2.1. Preprocessing

The preprocessing of the data is necessary to prepare the WOD18 data before mapping.
This step also includes additional checks for data quality. The original WOD18 profiles are
placed into bins which are the 1°x1° longitude-latitude grid cells with 102 vertical depth
levels referenced to the standard depths of WOD18. Basin mask is used to include data
points only from the four major ocean basins including Atlantic, Pacific, Indian and
Southern Oceans. Other ocean basins and marginal seas are excluded from this analysis.
The target analysis period is after 1965 when the modern oxygen titration method is
established by Carpenter as referenced above. Some of the data from most recent years are
not yet included in the database, so the analysis ends in 2015.

First, questionable or unrepresentative data marked by the WOD18 quality flags are
excluded and only acceptable data is retained for the analysis. Additional quality control is
applied similar to I17. Each Winkler titration data is compared to the monthly
climatological oxygen concentration from the World Ocean Atlas 2018 (WOA18) (Garcia et
al. 2018) and the outliers are identified and
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Figure 1. Number of Winkler oxygen measurements aggregated into 1°x1° longitude-latitude
bins for four decades from 1962 to 2017. The color scale indicates the number of
measurements in units of thousands (1k = 1,000 measurements).

excluded from the binned data. The outliers are identified with above or below three times

the standard deviation relative to the monthly climatological mean. The monthly

climatology is available for the upper 1,000m of the water column, and the annual mean is

the [17 calculated its own climatological mean value whereas this study uses the widely

2

3

4

5 used for the deep waters below 1,000m. There are some notable differences from [17. First
6

7  used WOA1S8.

8

Second, the quality-controlled data points are averaged for each bin at 1°x1° and monthly
9  resolution where statistical mean, sample-variance and sample size are recorded from
10 1962 to 2017. Sample variance can reflect small-scale variability within the 1°x1°
11  longitude-latitude bins and sampling noise, which is used as a measure of background
12 noise in the later analysis. While the target period is from 1965 to 2015, additional two
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years are included in preparation for the pentadal analysis. The averaged oxygen
concentrations are recorded as the anomalies from the monthly climatological mean. Fig 1
shows the sampling pattern for each decade. The number of bottle data itself is higher
during 1970s and 80s but the sampling density is skewed towards North Atlantic and
North Pacific basins. The global ocean is more evenly sampled during 1990s and 2000s.

Finally, the monthly anomalies are averaged into yearly anomalies. The binned data is very
sparse at the monthly timescale. For each year, the monthly anomaly data is averaged into
yearly anomaly neglecting the months with missing data. The yearly averaged anomalies
and its yearly variance are recorded. This step increases data coverage significantly while
averaging out high-frequency variability in the data. The variance field is retained and will
be used to estimate the high-frequency variability and will be used for the uncertainty
analysis. In addition, a 5-year moving window averaging is applied to the yearly anomaly
neglecting the years with missing data. This further increases the data coverage while
averaging out variability on the timescale shorter than 5 year. Its variance is recorded as a
part of high-frequency variability. The resulting yearly binned data covers the 50-year
period from 1965 to 2015.

2.2. Optimal interpolation

Once the preprocessing step is complete, an objective map is assembled to estimate oxygen
anomalies for all 1°x1° grid cells following Breatherton et al,, [1976]. This is based on
optimal interpolation providing the least-square estimate of oxygen anomaly field on a
regularly spaced grid cells. This process minimizes the mean square error of the mapped
data for given observational data points. The binned oxygen anomaly, X(t), is expressed as
a (N x 1) vector where N is the number of binned data. The objective map of oxygen
anomaly, Y(t), is a (M x 1) vector, where M is the number of grid cells.

Y=D(C+e) 'X 1)

There are two covariance matrices; D is the M x N data-grid covariance and C is the N x N
data-data covariance matrix. € is the noise-to-signal variance ratio. Since the time series in
each bin is too sparse to compute the autocovariance matrices, the autocovariance function
between the two points denoted by indices m and n, separated by a distance Ly, is
prescribed using isotropic Gaussian function with the e-folding length scale of Lyes where
Cmn=exp(-Lmn?/2Lref?). Matrix D follows the same definition but for data-grid covariance. The
reference e-folding length scale (L) is set to 1,000km. The value of € is estimated from the
noise-to-signal variance ratio of the binned anomaly data. Optimal interpolation (Eq 1)
minimizes the mean square error, and Y approaches to 0 with a strong noise (¢ > 1) or
when the data-grid covariance is small. The latter would be the case for grid points far from
observations. Conversely a smaller noise level tends to increase the sensitivity. In some
cases where the estimated € falls below a certain threshold, its magnitude is prescribed to
the minimum value of 0.1. This calculation is applied to four basins separately where all
observational data points are used to map each of the four basins except for the Atlantic
map excluding the data points from the Pacific basin and for the Pacific map excluding the
data points from the Atlantic basin. The calculation is repeated for all depth levels and the
50-year period annually (1965 to 2015). Fig 2 shows an example of the output from the
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objective map (Eq 1). It also shows the distribution of the binned data. The mapped field
generally reflects the binned anomaly data. Data density varies significantly. Uncertainty
analysis is therefore important and necessary to correctly interpret the mapped data.

Figure 2. Objective map
of oxygen anomaly for
Year 2005 at 350m
depth. The plotted values
are anomalies from the
WOA18 climatology.
Color shading simply
plots Y as calculated
from Equation (1). Circle
dots represent the
location and magnitude
of the binned data (X).
Arctic Ocean and

60°N ¢
40°N

20°N

20°S
40°S

60°S

150°W  100°W  50°W 0 50°E 100°E  150°E

marginal basins are not
Objective map of 02 anomaly (2005, 350m), uM included in this
L S S i iR AR AN AN AN EN NN NN RN NN NN R RNRNRNAR N RRRRR R s ] 1
-20 -10 0 +10 +20 calculation.

3. Analysis

3.1. Error analysis

Using the Gaussian autocovariance matrices from the previous section, the mean square
error of the objective mapping is calculated following Breatherton et al, [1976]. The
coefficient of determination (R?) for the least square fit (Yn) is calculated as R2=Dy, (C+ €)1
Dm" where Dm is the m-th row vector of the matrix D. Thus, the mean square error for Y
can be calculated as oy?(1-R?) where cy?is the total variance of Y. This represents the
mapping error and its example from 2005 is shown as Fig 3a. The mapping error is
elevated away from the cruise track and is the dominant source of uncertainty in the
tropical and the southern hemisphere oceans.
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Figure 3. Uncertainty estimates for
oxygen anomaly for 2005 at 350m depth.
(a) Root mean square error (RMSE) of
objective map, calculated from Gaussian
covariance matrices. The black circles
indicate the location of measurements.
(b) Standard error due to small-scale
fluctuations which may represent ocean
eddies, waves, and other small-scale
processes that are assumed random and
uncorrelated. (c) Standard error due to
unresolved high-frequency variability
covering the timescales shorter than 5
years.

There are small-scale and high
frequency variability that have been
averaged out in the preprocessing
step. The general formula for error
propagation can be applied to
estimate uncertainties from these
fluctuations [Taylor, 1997]. Eq 1 can
be re-written such that each element
of Y can be expressed as the weighted
sum of the elements in X; Ym=WmnXn
using Einstein summation convention.
[f the unresolved “noise” is random
o 100w o st 14 and uncorrelated, the standard error

Standard error, uM 15 (om) can be calculated as (Wmn2sn2)%-5

5 +10 +15 6  where sn? represents the noise
17  variance of the binned data. This

formula is used to map the standard error due to unresolved sub-grid scale variance within
1°x1° monthly bins, and its example is shown as Fig 3b. This noise variance is calculated
including all years, and it does not vary over time. The overall amplitude is relatively small
(<5uM). Its spatial pattern reflects regions of increased climatological gradients such as
near the edges of the tropical Pacific oxygen minimum zones (OMZs) and frontal regions in
the Southern Ocean. The preprocessing step also excluded high-frequency variability from
monthly to 5-year timescale in order to increase the spatial coverage. Potential drivers of
such high-frequency variability can be influenced by regional or large-scale atmospheric
and oceanic circulation. Thus the assumption of uncorrelated noise is not applicable for
this type of variability. A more conservative estimate of the uncertainty can be given by the
arithmetic sum of the weighted standard deviation, Gm=WmnSn, which is an upper bound for
the uncertainty estimate, and this is adopted for the unresolved high-frequency variability
(Fig 3c). Similar to the sub-grid scale noise, the statistics is calculated for all years and it

‘
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does not vary over time. The regions of intense high-frequency variability include frontal
regions, western boundary currents, eastern boundary upwelling regions, edges of tropical
OMZs and in the Southern Ocean fronts. These regions have strong climatological oxygen
gradients and/or are the region of elevated physical variability such as wind-driven
upwelling, subduction, and ocean eddies and jets (Cabré et al. 2015; Claret et al. 2018;
Deutsch et al. 2011; Kwon et al. 2016; Rudnickas et al. 2019; Sasano et al. 2015; Stramma et
al. 2010).

3.2. Global loss of oxygen from 1965 to 2015

The new results include quantitative estimates of uncertainty for each grid cell, thus it is
more straightforward to compute the uncertainty of the global inventory (Taylor 1997).
The small-scale noises are assumed to be random and uncorrelated. Gaussian
autocovariance functions are used to assemble the uncertainty associated with mapping
errors and high-frequency variability. The e-folding scale of 1,000km is used for horizontal
directions, and in the vertical direction, the e-folding scale is set to 300m. First, the
anomalies are calculated for the vertically-integrated column inventory as a function of
longitude and latitude, and then they are integrated horizontally to yield the global integral.
The 95% confidence intervals are calculated as two times the standard error of the
combined uncertainty. In conclusion, while the new gridded results are consistent with the
earlier gridded product of [17, the treatment of missing values in the global integration of
[17 resulted in significantly stronger estimate of oxygen loss. Fig 4 shows the global oxygen
inventory time series from 1965 to 2015 with uncertainty estimates as 95% confidence
interval.

a.0-700m b. full water column
0.5 1.5
1 3
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Figure 4. Globally integrated oxygen inventory timeseries for (a) upper 700m and (b) full
water column. The inventory anomaly is referenced to the 1965-1974 mean condition. Gray
shading indicates the 95% confidence interval. The histogram within each panel shows the
statistical distribution of linear trend from the Monte-Carlo calculation with 10,000

randomized ensembles. Note that the range of y-axis is different between the two panels.

Based on this analysis, it is virtually certain that global oxygen inventory has declined in
the last 50 years. The estimate from this study is significantly more conservative than the
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previous work, and even so, the 99-percentile linear trend is negative for both 0-700m
depth range (-54 TmolO; per decade) and full water column (-273 TmolO2 per decade).

For the full water depth, the multi-decadal trend of global dissolved oxygen is in the range
of -281 to -373 Tmol per decade (95% confidence interval) with the median of -328 Tmol
per decade, which is equivalent of 0.7£0.1% loss of global oxygen inventory over the last 50
years. This estimate is more conservative than previous works. Schmidtko et al., (2017)
estimated the linear trend of -961+429 Tmol per decade since 1960. While the temporal
window is slightly different, their estimate is much stronger.
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3.3 Comparison with an earlier version

In this section, the optimal interpolation of oxygen anomaly field is compared to an earlier
product by Ito et al (2017, hereafter 117). Fig 5 shows the comparison for the upper
thermocline at 350m depth from a specific year (2005). The result from this study is
shown in Fig 5a. The uncertainty due to mapping error is calculated for each grid point,
which can be used as a mask for optimally interpolated oxygen field. Grid cells with
significant mapping error (R?<0.3) are marked with hatch .

Figure 5. Comparison of oxygen
anomaly maps between (a) this
study and (b) the earlier study by
Ito et al, [2017]. This comparison
for the Year 2005 at the depth of
350m. The top panel is identical to
Fig 2 except that the region with
relatively high mapping uncertainty
is indicated with hatch (R2<0.3). In
order to make a comparison, 5-year
moving window average is applied
to [17 in panel (b).

1 10  The results from this study is
1 11  compared to an early study if
.| 12 117 (Fig 5b). Comparing Fig
13  5aand 5b, the two maps are
#1 14  similar in terms of general
{ 15 patterns and locations of
16  positive and negative
150°W - 100°W - S0°W 0 S0°E 100°E 180°E 917 3pomalies. However, there are

Objective map of 02 anomaly (2005, 350m), .
_J]EI’IJIHHHHHHHH)\l[ \|||||)d~8 some notable differences.

-20 -10 0 +10 +20

19  For example, the negative
anomalies in the Sea of Okhotsk have larger amplitude in 117 than this study. In contrast,
this study and 117 show similar values in the tropical Atlantic. There are a number of
technical changes in the data processing and analysis. This study generally makes more
smoothed estimates than the previous version.

There are three major factors that this study is different from 117. First, the parameters
used to map oxygen anomalies are different. Zonally elongated features of oxygen
anomalies are evident in [17 (Fig 5b) because of the different Gaussian functions used in
the mapping. [17 used longer length scale for the east-west direction than the north-south
direction by a factor of 2, causing zonally elongated patterns. Secondly, the data source is
updated. 117 used WOD13, and this study updated to WOD18 with some addition of newer

10
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data. I17 included both Winkler Oz and CTD measurements, whereas this study uses
Winkler Oz only. There is a trade-off between including more data points and introducing
potential biases with CTD-0». Fewer data points may result in more conservative estimates.
Finally, the treatment of data gaps is different. This study assigns smoothly varying values
to all grid cells but [17 does not assign values to a grid cell if there is no observation within
the radius of influence. As a result, the oxygen anomaly field in this study has more
smoothed appearance while spatial patterns are similar. In practical terms, optimal
interpolation essentially assigns zero anomaly to the grid cells far from observational
constraints based on the Gaussian autocovariance function. This has implication for the
calculation of global inventory as discussed below.

The global oxygen inventory is compared between this study and 117 (Fig 6). The earlier
product of I17 only covers to 1,000m depth so this comparison is focused on this depth
range. The two cases are calculated from the 117 dataset according to the treatment of
missing data. The first case integrates oxygen anomalies while missing data points are
replaced with zeros (red line in Fig 6). In any given year, more than 40% of the ocean grid
cells in [17 are missing values because there is no measurements within the radius of
influence. This has led to a concern about the amplitude of large-scale change if missing
grid cells are set to zero anomaly. The second case (gold line in Fig 6) attempts to address

osr Figure 6. The time series of
global oxygen inventory in the
ob v upper 1,000m; (black) this study
with 95% confidence interval as
o5 gray shading, (red) 117 data with

“no correction” meaning no
correction is applied for data
gaps. Missing data points are set
to zero anomaly. (gold) I17 data.
This is the published version

ggl/s Séfdy with missing data points being
—— 117 "no correct’ replaced with the global mean.

il This results in large amplitudes.

'
-y
T

-
4
T

g
N
T

upper 1000m o2 inventory anomaly, 10 "5 mol

1965 1970 1975 1980 1985 1990 1995 2000 2005 2010
time

this issue by essentially replacing missing values with the global mean concentration from
the same year. This increases the amplitude of the signal significantly as seen in Fig 6. For
example, if 70% of grid cells are missing, the missing grid points are assigned to the
average of the grid cells filled with the data (30%), effectively amplifying the signal by a
factor of 3 (=100/30). This can generate significant amplification of the signal especially for
the years when sampling density is low.

New results from this study (the black line in Fig 6) overlaps with the conservative version
of I117 replacing the missing value with zeros, but it clearly does not overlap with the
version replacing the missing data with the global mean. The conservative version of [17 is

11
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essentially similar to the optimal interpolation generating a more conservative estimate of
the globally integrated oxygen loss. For grid cells far from observational constraints, the
signal decays and anomalies are close to zero, producing a more conservative global
inventory change. Thus, the treatment of data gaps plays a crucial role for the assessment
of the global inventory.

4. Dataset Access

This dataset is available from Biological & Chemical Oceanography Data Management Office
(BCO-DMO) with the Digital Object Identifier (DOI) of 10.26008/1912/bco-dmo.816978.2.
This dataset includes the gridded oxygen anomaly at yearly resolution including its
uncertainty estimates. The dataset is gridded in 1° x 1° longitude latitude grid with 102
vertical levels. The gridded data as well as metadata are contained in a single netCDF file.
The data are freely open and available with no restrictions.

5. Conclusions

The loss of oxygen from the global ocean is expected under the greenhouse gas emissions
and the resultant ocean heat uptake. It is crucial to develop observationally derived
gridded data product to evaluate the patterns and magnitudes of the past oxygen loss from
recent decades. In this study, a new full-depth gridded oxygen product is generated using
Winkler titration measurements only. The results are broadly consistent with the previous
work of Ito et al (2017) in terms of the spatial patterns. The new product has more
smoothed horizontal structure and conservative amplitudes and it includes uncertainty
estimates from mapping errors, unresolved small-scale and high-frequency variability.

The calculation of global inventory depends on the treatment of missing data. In this study,
grid cells far from the observational constraints are essentially filled with zero anomaly.
This study calculates the global inventory smaller than previous estimates (Ito et al. 2017;
Schmidtko et al. 2017), and the results from this work should be considered as a lower
bound estimate of the global oxygen loss. It is beyond the scope of this work to reconcile
the difference with different global inventory estimates and it is left for the future study.
This issue may be related to the fact that current Earth System Model simulations forced by
the historical greenhouse gas emissions tend to underestimate the rate of oxygen (Oschlies
et al. 2018). This underestimation is not only in inventories but also in terms of the mean
concentrations (see Fig 4.13 of Long et al,, 2019). It is again beyond the scope of this paper
to reconcile observed and modeled oxygen changes, and future studies are warranted. The
dataset developed in this study is freely available from Biological & Chemical
Oceanography Data Management Office, and it is hoped to stimulate further discussion and
research.

12
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