
2327-4662 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2021.3075681, IEEE Internet of
Things Journal

1

Fault-Tolerant Mechanism for Edge-Based IoT
Networks with Demand Uncertainty

Amit Samanta, Flavio Esposito, Member, IEEE and Tri Gia Nguyen, Member, IEEE

Abstract—Due to ubiquitous increase of mobile services and
powerful Internet-of-Things (IoT) devices, the interest for Mobile
Edge Computing (MEC) solutions has grown both in industry
and academia. One of the fundamental mechanisms of MEC
is offloading, i.e., delegation of a computation from the user
to a server (set) placed near to the edge. Edge servers may
have poor incentives to run a delegated service, for example
for the temporary limited resources. In this paper, we dissect
the incentive mechanisms within a MEC ecosystem with the
aim of ensuring a fault-tolerant edge service under unreliable
scenarios. In particular, we design an auction mechanism to
model the interaction between the MEC players, and model the
edge users’ probability of successful offloading, assuming that the
cost of executing each offloading request is private. Scrutinizing
the demand uncertainty of edge users, the main motive of our
auction method is to optimize the offloading cost to engage more
edge users in this process, while imposing probabilistic guarantees
of offloading service execution. Our offloading cost minimization
problem is considered to be a NP-hard. For the solution, we use a
heuristic methodology to get the optimal approximation ratio and
provide economical fairness. We provide exhaustive simulation
results to show the excellent performance of our scheme.

Index Terms—Fault-tolerant, Internet of Things, IoT, Edge
computing, Social-welfare.

I. INTRODUCTION

Mobile Edge Computing (MEC) has evolved from cloud
computing and is today a vital paradigm for several services
and applications. The fundamental objective of MEC [1]–[4]
is to deploy small computational capabilities at the edge of
the network, where IoT devices run several computational-
intensive services to support heterogeneous applications [5].
While such paradigm brought many advantages, several chal-
lenges still hinder the edge cloud ecosystem: (i) the highly
dynamic and uncertain network condition, causing in turn,
high overhead due to intermittent connectivity and node fail-
ures; (ii) the often constrained resources and capacity of
edge devices, (iii) the variability in resource execution and
unknown performance utilization.

Because of such limitations, edge infrastructure processes
may fail to execute their assigned computation. These un-
certainties lead to Service Level Agreement violations for
edge users and revenue loss for the service and infrastructure
provider. Hence, it is important to identify such resource

Amit Samanta is with the School of Computing, University of Utah, USA.
(amit.samanta049@gmail.com)

Flavio Esposito is with the Department of Computer Science, Saint Louis
University, USA. (flavio.esposito@slu.edu)

Tri Gia Nguyen (corresponding author) is with the Department of Informa-
tion Technology, FPT University, Da Nang 50509, Vietnam. (tri@ieee.org)

uncertainties and prevent suboptimalities. In this paper, we
examine service offloading under demand uncertainty. We
assume that each IoT device is permitted to offload a com-
putational service with a given probability, and design a
strategy-proof mechanism whose aim is to optimize the total
execution cost of the services executed at the edge, while
providing higher probability of success during the offloading
process. Designing such mechanism entails solving several
challenges. The classical offloading model assumes that IoT
devices choose which server to use to outsource their excessive
computations. To make such decisions, all players need to
estimate the amount of resources available. As in any other
phenomena modeled as a game, the objective of selfish and
rational edge users is to optimize the respective net utility. IoT
devices may have incentive to report false demand response
in order to increase their net utilities or lower their cost. Our
cost captures infrastructure computational costs or resource
demand, including monetary cost. Computing some of these
costs, e.g., the service executing cost, is however, a challenge.
We show that minimizing the offloading cost of edge services,
while not examining the tactical behavior of edge users is NP-
hard. This in turn, motivates us to explore for an efficient and
optimal algorithm. Existing approximation methods, e.g., [6]
do not provide any assured and robust economic properties.
Therefore, to continuously attain such higher approximation
ratio and robust economic performances in mechanism design
while considering the demand uncertainty is the challenge that
we explore in this paper. In particular, our contributions are
summarized as follows:

(1) We design a strategy-optimal and economical mecha-
nism design for edge users in MEC platform while consid-
ering demand uncertainty in service execution. Our aim is
to optimize the offloading cost providing guaranteed service
execution with higher probability. (2) We propose DECADE*,
a mechanism that estimates the demand response of edge
users to minimize the services delay using a demand service
approximation profile. (3) We design an optimal payment (i.e.
utility) scheme for IoT devices that functions with demand
unpredictability. We mathematically show that such payment
method is computationally effective, and it assures optimal
strategy. (4) Finally, we conduct an extensive simulation
campaign to evaluate our fault-tolerant mechanism based on
two types of services, delay-tolerant and delay-sensitive. Our
simulation results depicts that our mechanism outruns the
existing solutions. Our mechanism also provide probabilistic

*DECADE: Fault-Tolerant Mechanism Design for Edge Computing IoT
Networks with DEmand uncertainty.

Authorized licensed use limited to: SAINT LOUIS UNIVERSITY. Downloaded on October 05,2021 at 03:32:41 UTC from IEEE Xplore. Restrictions apply.

2327-4662 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2021.3075681, IEEE Internet of
Things Journal

2

bounds on the execution of the offloaded task even with
challenged network scenarios.

The rest of the paper is organized as follows. In Section II,
we provide the related work. We present a model for fault-
tolerant mechanism design in Section III and presents a de-
mand approximation model to estimate the demand uncertainty
of edge computing users. In Section IV, we formulate an
auction to capture the interaction between the edge infrastruc-
ture and the set of edge users. Our results are presented in
Section V and in Section VI we conclude the paper.

II. RELATED WORK

A. Resource optimization and offloading for MEC

In [7], Samanta et al. propose a service offloading ap-
proach considering the revenue maximization problem in MEC
platform. The aims of the work are to efficiently perform
service offloading proposing a utility maximization approach.
A distributed multi-channel computation offloading algorithm
is proposed by Chu et al. [8]. The authors first formulated
computation offloading problems consider the game-theoretic
analysis and Nash equilibrium possessing. The authors then
proposed a game-theoretic algorithm for multi-channel com-
putation offloading to get a Nash equilibrium point. In [9],
Wang et al. focuses on solving the resource allocation scheme
by developing an edge node resource management framework
for fog computing. Hu et al. [10] proposed a heterogeneous
offloading mechanism without knowing the complete informa-
tion. In [11], Xia et al. focuses on the task scheduling problem
at the edge that considers Quality of Experience (QoE). The
authors formulate a mixed-integer non-linear programming
problem as a model of the task scheduling problem. The
authors then propose a scheduling approach to optimize task
allocation based on QoE. These solutions mainly focuses on
the resource provisioning and sharing among multiple edge
applications. However, they did not consider the demand of
available and required resources of edge cloud platform and
applications. Hence, in this paper, we propose a demand
approximation method by which accurately identify available
and required resources of edge cloud platform.

B. IoT Networks

Work on mechanism design for IoT networks also ex-
ists [12]–[17]. For example, Xiong et al. [12] aim at reducing
communication overhead and computation cost, while the
authentication protocol ensures security and privacy. In [13],
Liao et al. focus on addressing joint optimization problem
in MEC for IoT. The authors formulate a dynamic pricing
approach based on Markov decision process. The authors then
address the decision-making problem by using a Q-learning
algorithm. In [14], Fantacci and Picano focus on minimizing
the average system response time and the number of dropping
requests in edge-cloud computing for IoT. The authors first
formulate a matching game based on the application requested
by the edge-computing servers and the IIoT devices, then
propose a virtual machine placement solution to solve the
matching game minimizing the average system response time.
A formalization approach of the cloud-edge allocation problem

for IIoT is presented by Casola et al. [15]; the authors for-
malize the cloud-edge allocation problem considering security,
cost, and performance aspects. Similarly, Zhou [18] proposed
a cost-effective edge resource provisioning mechanism for IoT
applications. All these solutions mainly focuses on optimizing
the resources and delay for heterogeneous edge applications.
However, there is a need of a system that aims at maximizing
profits of both edge platforms and IoT devices. Along with
it, none of the existing work considered a fault-tolerant mech-
anism that deals with resource uncertainly of edge platform.
Our design fills this gap adding value to edge ecosystem.
Synthesis. Most of the existing literature in edge comput-
ing focuses on the computational offloading techniques and
minimization of service delay in MEC [7]–[11], [19], [20].
None of the existing literature considers the resource-agnostic
property of the IoT devices and moreover have not proposed
any optimal and flexible resource distribution scheme for IoT
devices to optimize the execution cost and fault-tolerance.
Though in the existing literature have many resource dis-
tribution techniques, but mainly they are limited to general
wireless and cellular networks. However, these are techniques
not deemed to fit for edge computing.

III. SYSTEM MODEL AND DEMAND APPROXIMATION

System Model. As in prior work [21], [22] we model an
edge network considering several “offloaders” or edge users, a
centralized orchestrator (or broker), and several edge servers.
Using such model, we design a fault-tolerant mechanism
to provide the optimal latency and the service completion
time (SCT) under demand uncertainty of IoT devices. The
centralized platform collects a set of edge service offloading
requests S = {1, 2, · · · , S} from different edge users, and
aims at offloading such requests to the optimal edge server set.
Each edge service i ∈ S is associated with a probability Pi of
being chosen by the centralized orchestrator. Each edge user
executes its services with probability Pi. The edge network
also consists of a set of edge users E = {1, 2, · · · , E}
equipped with modern IoT devices. Each edge user j ∈ E, has
a set of services Hi ∈ S to offload and execute successfully;
each service has an application type and other features and
constraints (i.e., execution time, requested quality-of-service
and priority level). The edge user j ∈ E has a probability of
successful offloading λij for each service i ∈ Sj , and a total
execution cost C to execute all the services Sj . We can measure
the Probability of Execution (PoE) under circumstances of
different situations. As an example, in service offloading, the
PoE of service of an edge user is defined as the probability of
offloading and executing the services opportunistically.

Edge users try to execute all their services despite a proba-
bility of failure to complete some of them (e.g., due to under
demand uncertainty or link-failure). We assume that each edge
user can approximate such values using their previous data
records. We model this information to be, however private
to each user. The execution cost is derived from an edge
user executing their services and depends on factors such as
offloading cost, migration cost, and data collection cost. To
design our mechanism, we model the profile Υj of an edge

Authorized licensed use limited to: SAINT LOUIS UNIVERSITY. Downloaded on October 05,2021 at 03:32:41 UTC from IEEE Xplore. Restrictions apply.

2327-4662 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2021.3075681, IEEE Internet of
Things Journal

3

user j ∈ E with three tuples: service set, execution cost, and
PoE’s, that are:

Υj = (Sj , Cj , {λij |i ∈ Sj}).

We consider −j in subscript to identify all edge users ex-
cluding j, e.g., Υ−j shows the types of all users excluding
j, and Υ = (Υj ; Υ−j) shows the aggregated trace of edge
users. For each user j ∈ E, the net utility Uj is defined as the
reward Hj received, deducting the execution cost of existing
services, Uj = Hj − Cj . We design a scenario where each
edge user maximizes their net utility and may misreport its
demand response to gain additional benefits or merely due to
a system misconfiguration.
Demand Approximation. We now describe how to approxi-
mate the demand of all the edge IoT devices simultaneously
active at any given time, given the network traffic and work-
load observed by each edge cloud process. We assumed that
different IoT devices have different demands and they intend
to misguide all other users to prevent them from executing
their services. This assumption is important to approximate
the demands of IoT devices and to allocate the resources
optimally, as edge platform are generally resource-constrained.

To estimate such offloading demand of each edge user asso-
ciated with each IoT device, the orchestrator needs to sustain
a global feedback trace of each edge user in a time frame
τ̄ = {τ1, τ2, · · · , τn}. Note how here, n illustrates the count
of samples considered for the approximation mechanism. We
denote this quantity as:

F = {Fτ11 ,F
τ2
2 , · · · ,Fτnn }. (1)

As demands are dynamic, we aim at quantifying the rate of
demand change for a particular time period τ̄ . We denote such
rate as ζj = δW(Fj , τn), where τn is offloaded time of edge
user Ej . Mathematically:

ζj = δW(Fj , τn) = δ

(
Fτnj − F(τn−1)

j

Fτnj

)
, (2)

where Fτnj and F(τn−1)
j signifies the demand specification of

edge user Ej in time-slot τn and τn − 1, respectively. This
equation captures the demand change rate of IoT devices at τ̄ .
Further, we get an optimal demand specification, Gj(τ + 1) of
edge user Ej in time-slot τ + 1 using the following formula.

Gj(τ + 1) = Gj(τ) +
n∑
k=1

ηj(τ)ζj(i)f
t
j (x
′)

ζj(i) + ηji (k)ζj(i)
, (3)

where Gj(τ) denotes the total demand response of edge user
Ej in time-slot τ and ηj(τ) denotes the resource efficiency
constant of edge user Bj . f tj (x

′) denotes the unit service flow
of edge user Ej in time-slot τ . The resource efficiency constant
ηj(τ) of edge user Ej in time-slot τ is discussed:

ηj(τ) =

{
1, ςth(τ) > 0;

0, ςth(τ) < 0; ,
(4)

where ηth(τ) signifies the threshold resource efficiency con-
stant. The service flow f tj (x

′) of edge user Ej in time-slot τ
can be formulated based on the edge service flow and mean

time length of service flow. We get,

f tj (x
′) =

{Qt
j

τ̄ , if ηj(t) ≥ 1;
Qt

j

τ̄ (1− γj), if ηj(t) < 0,
(5)

where Qtj denotes the unit service flow. τ̄ signifies the entire
time duration of demand approximation. γj illustrates the
retribution cost of service flow. It is imposed, if the resource
efficiency constant is closer to ηj(τ) = 0. This is because with
the decrease in efficiency constant, the demand of IoT device
suffers performance degradation. The unit service flow from
each edge user Ej in time-slot τ is represented as:

Qτj = Vj
Pjtra(τ)O
τtra + ∆τ

, (6)

where Vj illustrates the unit service flow rate of edge user
Ej and τtra + ∆τ illustrates the total execution duration of
service flow. Pjtra(τ) illustrates the total count of unit service
flow executed and O illustrates the flow size. The service
flow of edge users can be formulated based on the traffic
description and it’s type. We consider three types of traffic -
high class, moderate class and low class. Depending on traffic
descriptions, the service flow of edge users is formatted as:

Qτi =


Qτl , if Vj ≥ 0.9;

Qτm, if Vj ≥ 0.5;

Qτh, if Vj ≥ 0.1;

0, if Vj = 0,

(7)

where Qτl , Qτm, and Qτh defines the lower class service
flow, moderate class service flow, and higher class service
flow. The accurate resource necessity νtj

(
ηj(τ)ζj(i)(1− µ) +

ηj(τ)ζj(i)σj(1 − µ)
)

should be higher than the minimal
resource necessity, νm of edge users. We have,
E∑
j=1

T∑
τ=1

ντj

[
ηj(τ)ζj(i)(1− µ) + ηj(τ)ζj(i)σj(1− µ)

]
≥ νm,

where ν and νm signifies the accurate resource necessity and
minimal resource necessity of edge user Ej in time-slot τ . µ
signifies the loss probability. σ signifies the service priority
of edge users (Ej ∈ [0, 1]). Depending on accurate demand
of edge users, the platform analyzes the workload of each
edge user in order to execute their services. With consideration
the demand feedback of edge users, the platform offloads the
services and schedules them to a particular edge user to fulfill
their accurate demand. We define the optimization problem for
demand approximation of IoT devices. We have,

Maximize Gj(t+ 1) = Gj(t) +
n∑
k=1

ηj(t)ζj(i)f
t
j (x
′)

ζj(i) + ηji (k)ζj(i)
, (8)

Subject to Qtj ≤ Qtth,∀j (9)

γj > γth,∀j (10)
Fj ≥ Fth,∀j (11)
f tj (x

′), ηj(t) ∈ {0, 1},∀j (12)

Equation (8) describes the objective function for our IoT
demand approximation. Equation (9) constraints the service

Authorized licensed use limited to: SAINT LOUIS UNIVERSITY. Downloaded on October 05,2021 at 03:32:41 UTC from IEEE Xplore. Restrictions apply.

2327-4662 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2021.3075681, IEEE Internet of
Things Journal

4

flow rate Qtj to a value greater than the threshold service flow
rate Qtth. The penalty cost γj is imposed to be lower than the
threshold penalty cost γyth as shown in Equation (10). The
required demand Fj to be greater than the threshold demand
Fth of IoT devices as in Equation (11).

DECADE Architecture

Mobile Edge Computing Platform

 Optimal

 Edge Servers

 IIoT devices

Demand
Approximation

Mechanism
Design

D
em

an
d

Pr
o

fi
le

Se
rv

ic
es

R
eq

ue
st

s

B
id

s

P
ay

m
en

ts

Se
rv

er
Pr

o
fi

ci
en

cy

Se
rv

ic
e

Se
t

B
id

s

Pa
ym

en
ts

(2)

(1)

(3)

(6)

Demand
Uncertainty

Platform

(7)

(4) (5)

(9)

(8)

Radio Access
Network

Demand
Uncertainty

Machanism
Design

Computational
Service Execution

DECADE

Datacenter

IIoT Devices

MEC

Gateway

MEC

Server

Figure 1: Architectural overview of DECADE, where the
numbers define the occurrence of corresponding events.

IV. FAULT-TOLERANT MECHANISM DESIGN

This section introduces our DECADE system architecture
(Figure 1). DECADE estimates the demand of edge services
and then implements the problem defined in Equation (19)
with a fully distributed auction. Each edge service is aware
just of the portion of solution under its demand uncertainty
and responsibility.

In our auction mechanism, each IoT device Ej provides a
service Sj to the designed platform for efficient execution.
Our architecture then reports the set of services S̄ to edge
servers. Each edge server Kl collects and runs such services.
The edge servers also submit a bid zi to execute the services
efficiently. After receiving the bids, the incentive module
clears the device/edge server allocation; the remittance cEj
is charged from each auction winner IoT device Ej , and a
payment cKl is submitted to each winner edge server Kl.
Thereafter, the designed platform accumulates the executed
services submitted by the IoT devices and collects the accu-
mulated results. Then, the accumulated results are sent to the
successful IoT devices for further processing. Here, we con-
sider two different bidding profile for IoT devices and servers
denoted as y = {y1, y2, · · · yN} and z = {z1, z2, · · · zL},
respectively. Further, we also consider two payment profiles
for IoT devices and servers denoted as cE = {cE1 , cE2 , · · · cEN}
and cK = {cK1 , cK2 , · · · cKL }.

Definition 1. In an auction mechanism for MEC, IoT device
Ej gets a value Mj if the service Si is successfully execution,
and bids to the designed platform yj , the amount the IoT
device is willing to pay for the successful execution of its
service. Similarly, each server Kl is interested in execution
of one subset of the services Si ∈ S̄, and bids to the designed
platform zl the edge server bidding price for executing all the
services. The real execution cost for executing all the servers

Kl is denoted as Cl. Both the IoT devices’ and servers’ bids
are private.

Next, we define the utility functions for IoT devices and
servers and the profit level.

Definition 2. The utility function UEj for an IoT device Ej is
defined as:

UEj =

{
Mj − cEj , Ej ∈ LE,

0, otherwise,
(13)

Definition 3. The utility function UKi for an edge server Kl

is defined as:

UKl =

{
cKl − Cl, Kl ∈ LK,

0, otherwise,
(14)

Definition 4. The profit level is defined as:

Ple =
∑

j:Ej∈LE

cEj −
∑

l:Kl∈LK

cKl (15)

Based on definitions 2, 3, and 4, we formulate the social
welfare of the MEC platform, as the summation of the de-
signed platform’s profit levels and all IoT devices’ and servers’
utility values, that is:

Definition 5. The social welfare is defined as:

Swel = Ple +
∑

j:Ej∈LE

UEj +
∑

l:Kl∈LK

UKl (16)

=
∑

j:Ej∈LE

Mj −
∑

l:Kl∈LK

Cl (17)

The fault-tolerant metric £j is designed to capture the
effect of demand uncertainty in MEC platform. It depends on
the approximated demand and actual demand of IoT devices.
Formally we have:

£j =

{
1, Gj(t+ 1) ≈ νm,
<, otherwise,

(18)

where < is a small value designed to provide if approximated
demand Gj(t + 1) is not close to actual demand νm. The
incentive mechanism for MEC is described in Definition 1.
Here, we envision to model an optimal double auction mech-
anism, which maximizes the social-welfare and also provides
satisfactory demands for all IoT devices.
Social-Welfare† Maximization. We define a winner selection
scheme through a double-auction social-welfare maximization
approach using integer linear programming (ILP). Formally:

Maximize £jGj(t)
[∑
j:Ej∈LE

yjΩj −
∑

l:Kl∈LK

zlΘl

]
, (19)

Subject to Gj ≤ Gth, Ej ∈ E (20)
SCTi > SCTth,∀i (21)
Cl ≥ Cth,Kl ∈ K (22)
Θl,Ωj ∈ {0, 1},∀j (23)

†The social welfare is defined as the summation of the designed platform’s
profit levels and all IoT devices’ and servers’ utility values.

Authorized licensed use limited to: SAINT LOUIS UNIVERSITY. Downloaded on October 05,2021 at 03:32:41 UTC from IEEE Xplore. Restrictions apply.

2327-4662 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2021.3075681, IEEE Internet of
Things Journal

5

Constants. The platform captures several parameters as in-
puts: set of services S̄, set of edge servers K, bidding profile
of IoT devices’ and servers’ y and z, concerned service profile
set of edge servers’ S = {S1, S2, · · · , SN}, probability of
successful execution λij .
Variables. Here, Ω = (Ω1,Ω2, · · · ,ΩL) denotes the binary
factors for incentive mechanism. Here Ωl = 1 denotes that
service Si will be executed, and thus, IoT device Ej is a
winning IoT device (i.e., Ej ∈ YE), whereas Ωi = 0 denotes
Ej 6∈ YE . Similarly, the mechanism considers another vector
of K binary variables, Θ = (Θ1,Θ2, · · · ,ΘK), where Θl = 1
indicates that edge server Kl is a winning edge server (i.e.,
Kl ∈ YK), and Θl = 0 means Kl 6∈ YK .
Objective. The designed objective function satisfies the fol-
lowing

∑
j:Ej∈LE

yjΩj−
∑
l:Kl∈LK

zlΘl =
∑
j:Ej∈YE

yjΩj−∑
l:Kl∈YK

zlΘl which is exactly the social welfare defined in
Definition 5 based on the IoT devices’ and servers’ bids.
Constraints. Equation (19) describes the objective function
and Equation (20) represents that the demand response of an
IoT device Gj is to be greater than the threshold demand
response Gth. The service completion time SCTi should be
higher than the threshold service completion time SCTth
as in Equation (21). The total execution cost Cl should be
higher than the threshold execution cost Cth as represented
in equations (20), (21), and (22). We get the solution of
optimization problem using the Lagrangian method [23].

Algorithm 1 Demand Approximation: A Heuristic Approach
Inputs: IoT devices (E), services S and time period τ̄ .
Output: Optimal demand ¯Gj(τ + 1) and waiting time τwait.

1: Initialize τwait = 0.
2: Initialize E = E and S = S.
3: for each edge user associated with IoT device Ej do
4: if τ̄ < τwait then
5: First, quantify the demand response profile F .
6: Estimate the rate of change in demand response
ζj .

7: Predict the optimal demand response, Gj(τ + 1).
8: if Gj(τ + 1) ≥ Gth then
9: Calculate resource utilization factor ηj(τ).

10: Estimate the service flow f tj (x
′).

11: Get the actual resource requirement νtj .
12: Update waiting time τwait = τwait.
13: else
14: Updated set of IoT devices E = E.
15: Non-optimal resource requirement ν̂τj .
16: Update waiting time τwait = τwait + 1.
17: end if
18: end if
19: end for
20: Return ¯Gj(τ), ν̄τj and τwait.

A. Algorithm Design

We attribute our approach DECADE, as in: fault-tolerant
mechanism Design for Edge Computing IoT Networks with

DEmand uncertainty. It comprised of two algorithms: Fault-
Tolerant Mechanism Design and Heuristic Service Scheduling.

Proposition 1. The DECADE scheme, formalized with prob-
lem (19) is NP-hard.

Proof. We show the NP-hardness of DECADE from the
Uncapacitated Facility Location (UFL) problem [24], con-
sidered as a NP-hard problem using polynomial-time reduc-
tion. The recreation of the UFL problem should be designed
while considering the unit price and demand of edge users.
The demand approximation and fault-tolerant mechanism of
DECADE should be mapped with the UFL problem and can
be defined as a NP-hard problem. For this, we set the other
parameters in DECADE to 0.

Equation (8) represents the main optimization problem and
hence we can get the solution by applying the interior point al-
gorithm (IPA). The main motive is to optimize Gj(t) applying
the Lagrangian multipliers (LM). The gradient decent method
has been used for the solution of DECADE. Thereafter, we
model a heuristic method to find the optimal solution globally
observing local values in each step. Small and moderate-
sized sample values of the ILP in (19) should be solved in
polynomial time, applying existing solvers like Gurobi [25]. In
this process, with higher values, the ILP can attain reasonably
higher time to get into converge point, it is not suitable for
fault-tolerant mechanism design under demand uncertainty.
Therefore, we present a heuristic solution to design a fault-
tolerant mechanism.

Algorithm 2 Fault-Tolerant Mechanism Design

Inputs: IoT devices (E), services S, ¯Gj(t), ν̄tj and τwait.
Output: Optimized fault-tolerant value £̄j .

1: Define τwa = τwait.
2: Define Z = n, A = m.
3: Consider the fault-tolerant metric.
4: for IoT devices Ej do
5: if τwait < τwa then
6: Design utility function UEj for IoT device Ej .
7: Design utility function UKi for an edge server Kl.
8: Calculate profit level Ple for the designed platform.
9: Estimate fault-tolerant metric £j .

10: if UEj ≥ Uth and UKi ≥ Uth then
11: Updated set of IoT devices Ē = E ∩ Ej .
12: Optimized fault-tolerant value £̄j .
13: Revise τwa = τwa.
14: else
15: Updated set of IoT devices E = E.
16: Compute SCT (£̂j) (non-optimal).
17: Revise τwa = τwa + 1.
18: end if
19: end if
20: end for
21: Return £̄j .

We discuss the heuristic algorithm for demand approxima-
tion of IoT devices. In Algorithm 1, we first quantify the
demand response profile F and estimate the rate of change

Authorized licensed use limited to: SAINT LOUIS UNIVERSITY. Downloaded on October 05,2021 at 03:32:41 UTC from IEEE Xplore. Restrictions apply.

2327-4662 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2021.3075681, IEEE Internet of
Things Journal

6

in demand response ζj . Thereafter, we quantify the optimal
demand, Gj(τ + 1). If the predicted value Gj(τ + 1) ≥ Gth
is higher than the threshold, then we calculate the resource
utilization factor ηj(τ) and estimate the service flow fτj (x′).
Also, we get the actual resource requirement ντj . As depicted
in Algorithm 2, initially, we should fed the required inputs, i.e.,
IoT devices (E), services S and τwait. Since, the optimization
problem is considered to be NP-hard, hence we provide a fault-
tolerant heuristic method to minimize the SCT and price. First,
we define τwait = 0. Then, we operate the algorithm for each
IoT device Ej . If the waiting time τwait is lower than the
average time τwa, i.e., τwait < τwa, then the utility function
UEj for IoT device Ej and utility function UKi for an edge
server Kl should be computed. Afterward, we estimate profit
level Ple for the designed platform and calculate the fault-
tolerant metric £j . If the utility functions UEj and UKj are
higher than the mean threshold utility Uth, then the set of IoT
devices Ē = E∩Ej should be updated. The average time τwa
should also be updated. Then, we get the optimal fault-tolerant
value £̄j using ILP. The algorithm should be stop compiling
if the waiting time surpasses the maximum time τmaxwa .

Table I: Experimental Parameters

Parameter Value
Bandwidth capacity 20 MHz
CPU cycles count for each task 1,000 Megacycles
Deadline for each service [4000, 6000] ms
Resource demand of each service [10, 20] MHz
Transmit power of IoT device 100 mWatts
Capability of IoT device 0.85 GHz
Capability of the MEC server 100 GHz
Arrival rate following Poisson process [0, 10] unit/sec
IoT traffic flow size 100 Mbits
Service arrival distribution [0, 10],

Proposition 2. The time complexity of DECADE can be
O(Kn2), n represents the count of IoT devices.

Proof. In the beginning, IoT devices approximate their optimal
demand response to minimize the overall SCT. The demand
approximation method is computed for n rounds with com-
plexity O(Bn2). Thereafter, we proceed for the fault-tolerant
mechanism, in which, the IoT devices optimizes the fault-
tolerant rate using a fault-tolerant auction mechanism. The
proposed fault-tolerant mechanism is computed for n rounds
in the presence of multiple IoT devices. The complexity of
fault-tolerant algorithm is computed as O(Rn). Both these
methods provide us the total computational complexity, we
get, T (n) = L1{BT (n2) + RT (n)} + L2T (1). After joining
both the methods, we can compute the total complexity as
O(Kn), where K = B + J. Thus, the proposed DECADE
algorithm has complexity of O(Kn2).

V. DECADE EVALUATION

In this section, we analyze the performance of DECADE,
while varying different networking parameters. Our evaluation
metrics are cost, latency, service execution, SCT, overhead,
and fault-tolerance.

A. Simulation Settings

We enumerated all the experimental parameters in this
section as depicted in Table I. With align to previous paper
[26], we use an Arduino kit and an Intel i5 CPU to represent
the IoT device to get the practical usefulness of computational
capabilities. We consider a set up, where we have 100 edge
users dispersed over a region of 5.5 km × 5.5 km. Each
edge user has 10 tasks, and each task of an edge user can
only select one edge server for computational execution. The
deadline of a task is considered to be within 150ms to 10s.
We consider that each edge user is trying to execute an
application of machine learning inference, the size needed
for each task to be varied in between 500 KB to 5 MB,
and the number of CPU cycles to be computed is 1 GHz.
Similarly, we consider that there are 20 edge servers, the
system bandwidth of the edge server is 25 MHz. To configure
an edge server, we consider the mean processing operation is
15 Million Instructions Per Second (MIPS) and the capacity
of a general cloud provider is considered to be 1500 MIPS.
The MEC servers are situated close to a base station (BS).
The compute potential of MEC server is assigned to 130
GHz and the computational potential of IoT device is assigned
to 0.85 GHz. The communication backhaul latency factor is
set to 0.0005 sec/KB [27], [28]. The offloading duration of
services to IoT devices are chosen within 7− 14 ms. The size
of services are considered to be within the scale 500 − 950
KB. The latency demand of IoT devices is set to be within
the scale 0.8− 1.2 s. The IoT devices communicates to edge
servers following wireless communication (i.e., 5G, WiFi and
ZigBee). On the other hand, the edge servers communicates
to cloud through broadband connection. We consider that the
number of tasks that an edge server can compute is 5−7, and
that the transmit power of IoT device is 300 Mw. To consider
the topological connection, we contemplated AttMpls topology
borrowed from the Internet Topology Zoo [29]. Besides that, to
generate the IoT traffic flow, we considered the D-ITG traffic
generator [30] from the real-time traces as discussed in [31].
For our method, we generally allocate the resources to tasks
in an edge server with priority based on their applications, and
redirect the other tasks to the cloud if the edge platform failed
to provide required resource to other tasks within its deadline.
Evaluation Metrics. The first metric that we consider is the
average service delay, defined as the average time needed
to process and execute the edge services generated by IoT
devices. The second metric that we consider is the service
utilization or service completion time (SCT), calculated using
the count of successful execution of services and the count of
available services.

SCT =
Count of successful execution of services

Count of available services
An higher value of SCT implies better performance. Other
performance metrics that we consider are fault-tolerance and
execution cost.
Benchmarks. To evaluate the performance of our approach,
we compared it against two benchmark algorithms –
JONSSPE [32] and SDENTO [33]. JONSSPE [32] considered
a joint optimization of network and service placement in

Authorized licensed use limited to: SAINT LOUIS UNIVERSITY. Downloaded on October 05,2021 at 03:32:41 UTC from IEEE Xplore. Restrictions apply.

2327-4662 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2021.3075681, IEEE Internet of
Things Journal

7

Table II: Experimental Settings

Settings No. of Users No. of Services Mean Cost Prob. of Exe. (PoE)
I 100 15 15 0.6
II 100 [10− 50] 15 0.6

 0

 40

 80

 120

 20 40 60 80 100

E
xe

cu
tio

n
C

os
t

Number of IIoT Devices

DECADE

SDENTO

JONSSPE

(a) Execution Cost (Single-Service)

 0

 20

 40

 60

 20 40 60 80 100

E
xe

cu
tio

n
C

os
t

Number of IIoT Devices

DECADE

SDENTO

JONSSPE

(b) Execution Cost (Multi Service)

 0

 40

 80

 120

 160

 10 20 30 40 50 60

E
xe

cu
tio

n
C

os
t

Number of Services

DECADE

SDENTO

JONSSPE

(c) Total Execution Cost

Figure 2: (a)-(c) Analysis of execution costs of single-service and multi-service mechanisms. The single-service means the IoT
device has only one task to execute and multi-service means the IoT device has multiple tasks to execute.

 0

 40

 80

 120

20 40 60 80 100

L
at

en
cy

 (
m

s)

Number of IIoT Devices

JONSSPE

SDENTO

DECADE

(a) Service Latency

 0

 0.2

 0.4

 0.6

 0.8

 1

 20 40 60 80 100

Pr
ob

ab
ili

ty
 o

f
E

xe
cu

tio
n

Number of IIoT Devices

SDENTO

DECADE

JONSSPE

(b) Prob. of Successful Execution

 0

 2

 4

 6

 8

 10

20 40 60 80 100
Se

rv
ic

e
O

ve
rh

ea
d

Number of IIoT Devices

DECADE

JONSSPE

SDENTO

(c) System Overhead

Figure 3: (a) Performance analysis of latency with the varying number of IoT devices. (b)-(c) Analysis of probability of
successful execution and service overhead with varying numbers of IoT devices.

 0

 0.4

 0.8

 1.2

 1.6

 2

20 40 60 80 100

N
o
rm

a
li

z
e
d

 S
C

T

Number of IIoT Devices

DECADE

JONSSPE

SDENTO

(a) Normalized SCT

 0

 20

 40

 60

 20 40 60 80 100

D
em

an
d

R
es

po
ns

e

Number of IIoT Devices

SDENTO

DECADE

JONSSPE

(b) Demand Response

 0

 20

 40

 60

 80

 100

20 40 60 80 100

A
llo

ca
te

d
R

es
ou

rc
e

(%
)

Number of IIoT Devices

DECADE

JONSSPE

SDENTO

(c) Allocated Resource

Figure 4: (a) Analysis of SCT with the varying number of IoT devices. (b) Analysis of demand response with varying numbers
of IoT devices. (c) Analysis of allocated resource with varying numbers of IoT devices.

MEC to minimize the switching latency and maximize the
QoS. Initially, the authors design an online algorithm to
solve the proposed NP-Hard optimization problem. SDENTO
[33] instead investigates the task offloading algorithm for
SDN-enabled ultra-dense network. The basic motive of this
algorithm is to optimize the average latency and energy
efficiency of user devices. To do so, the authors design
an optimal task offloading algorithm using an NP-Hard
mixed integer non-linear program (MINLP). They problem

is split into a task assignment and a resource distribution
sub-problem. By searching for an optimal values from these
two parts, they get the increased performance. Similarly to
our benchmark approaches, our fault-tolerant mechanism,
detailed in Algorithms 1 and 2 considers demand uncertainty
takes into account delay, offloading priority, completion time
and mobility.

Authorized licensed use limited to: SAINT LOUIS UNIVERSITY. Downloaded on October 05,2021 at 03:32:41 UTC from IEEE Xplore. Restrictions apply.

2327-4662 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2021.3075681, IEEE Internet of
Things Journal

8

B. Results and Discussion
In this section we present our evaluation results. The pa-

rameters of our simulations are shown in Table II.
1) Cost Analysis: First, we study the execution cost derived

from the execution of single and multiple services. From
Figure 2(a), we observe that the execution cost degrades
sharply, as the count of edge users increases and then changes
steadily. As the costs follow the same kind of probabilistic
distribution, hence newly joined edge users may not help
in getting optimal average execution cost. We can observe
that DECADE optimally approximates the demand response
of edge users, thus our mechanism works better than both
the SDENTO and JONSSPE scheme. Next, we evaluate the
execution cost for multiple services defining different count of
edge users and services using the experiment settings in Table
II and depicts in Figure 2(b) and Figure 2(c). We notice that the
execution cost degrades as the count of edge users increases in
Figure 2(b). As the count of edge users can be large enough
in a time period, hence the execution cost should converge
and minimal overtime. If we consider an optimal economical
market, the platform can lure more edge users providing
optimal prices, and lower the execution cost to provide a
stringent delay to users. In Figure 2(c), the execution cost
increases as the count of executed services increases, as we
need to accommodate a higher number of edge users. As the
approximation ratio of DECADE is large, hence the execution
costs are considered to be optimal. DECADE provides better
resource distributions among available tasks, which help them
to execute within their deadlines. Hence, the cost is optimal
for DECADE.

2) Latency Analysis: Figure 3(a) represents the latency
incurred by the available services at the edge. We notice
that the delay of the network increases as the count of edge
users increases. As the number of edge users increases, then
the edge users contending for executing their services may
face congestion, which automatically increases the latency. We
compare DECADE with the existing solutions and DECADE
outperforms the other schemes by 17% and 24%, respectively.
The existing schemes SDENTO and JONSSPE failed to pro-
vide optimal resources to tasks based on their demand profile,
which in turn increases the end-to-end latency and violates
service-level agreements. Whereas DECADE optimally ap-
proximates the resource demand of tasks and execute them
within their prescribed deadlines. Hence, DECADE incurs
relatively lesser delay than SDENTO and JONSSPE.

3) Execution Analysis: Figure 3(b) represents the PoE
associated to edge services. We notice that the PoE increases
with the number of edge users. As we approximate the demand
response of edge users, we can associate the execution values
optimally to edge users, which inherently increases the exe-
cution probability. However, we also compare DECADE with
the existing solution, and found that DECADE outperforms
them, although only by 4% and 5%, respectively.

4) Overhead Analysis: In our work, the overhead is defined
as an amalgamation of excess resources required to execute
the tasks at the edge. Figure 3(c) depicts the system overhead
while differing the number of edge users. Using the figure,
we can notice that the system overhead of DECADE increases

 0

 200

 400

 600

 800

 100 200 300 400 500 600

Fa
ul

t-
T

ol
er

an
ce

Times (minutes)

DECADE

SDENTO

JONSSPE

(a) Fault Tolerance

 0

 200

 400

 600

 800

 20 40 60 80 100

M
ea

n
Sq

ua
re

 E
rr

or
 (

m
s)

Number of IIoT Devices

DECADE

SDENTO

JONSSPE

(b) MSE

Figure 5: (a) Fault-tolerance of DECADE with respect to time.
(b) Analysis of mean square error (MSE).

while differing the number of edge users. However, we observe
that DECADE is able to provide a better system overhead to
edge users with respect to other existing methods. Therefore,
the scalability of the platform increases. On the other hand,
the existing solutions failed to come up with optimal overhead
to edge users. However, DECADE outperforms the existing
solutions JONSSPE and SDENTO by 14% and 21%.

5) SCT Analysis: Figure 4(a) shows that the service ex-
ecution time for a varying number of edge users. Due to
expansion in the count of edge users, the services at the
edge also multiply, hence the service execution time also
increases naturally. Even in this case, DECADE outperforms
the benchmark, as it can able to execute a large number of
tasks within their deadlines. Whereas the existing solutions
failed to provide such guarantees, which in turn provides lesser
SCT. Hence, the service execution time using DECADE is
lesser than other approaches by 12-27%.

6) Demand Analysis: Figure 4(b) shows that the demand
response of edge users. Due to an increase in users, the count
of existing services that can be simultaneously supported also
expands at the edge, it explicitly grows the demand response.
DECADE outperforms the existing JONSSPE and SDENTO
scheme, as our demand approximation scheme can accurately
identify the required resources of IoT devices and thereafter
we provide a fault-tolerant mechanism by which they can
increase their bid. The demand response of IoT devices using
DECADE is higher than other approaches by 15-23%.

7) Allocated Resource Analysis: Figure 4(c) shows that the
allocated resources for a varying number of IoT devices. Due
to the increase in IoT devices, the count of generated and
executed services also increases, therefore resource exigency
of services also increases. Even in this case, DECADE outper-
forms the benchmark. Hence, the service execution time using
DECADE is lesser than other approaches by 32-47%.

8) Fault-Tolerance Analysis: Figure 5(a) presents the fault-
tolerance ability of DECADE. We observe from the figure that
DECADE provides better services and adaptive to network
failures, demand uncertainty, link cuts, and device hetero-
geneity than the other approaches JONSSPE and SDENTO.
Due to the auction mechanism used by DECADE, the fault-
tolerant capacity of MEC expands with demand uncertainty.
To evaluate this property, we compared our schema under
a fault-tolerance metric. In particular, we observe the fault-
tolerant calculated as the MSE. Figure 5(b) shows such MSE

Authorized licensed use limited to: SAINT LOUIS UNIVERSITY. Downloaded on October 05,2021 at 03:32:41 UTC from IEEE Xplore. Restrictions apply.

2327-4662 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2021.3075681, IEEE Internet of
Things Journal

9

of the DECADE, and illustrates that the MSE of the DECADE
approach is lower compared to JONSSPE and SDENTO by
12% and 15%, respectively.

VI. CONCLUSION

In this paper, we presented DECADE, a novel incentive
mechanism design for edge-based IoT networks to maximum
social-welfare to edge users. Our approach uses a demand-
approximation scheme, efficiently estimates the demand re-
quirements of edge users, and minimizes the service execution
cost. Furthermore, our scheme minimizes the execution cost
of users. Extensive simulation results show that DECADE
achieves better PoE and service delay than the existing
approaches, such as JONSSPE and SDENTO. The service
execution time using DECADE is lower than JONSSPE and
SDENTO by 12-27%. Also, DECADE outperforms JONSSPE
and SDENTO in terms of overhead by 14% and 21%. We
believe that our solution opens other research in optimal and
dynamic energy-efficient mechanisms for fault-tolerance in
MEC-based IoT networks.

ACKNOWLEDGMENT

This research is funded by Vietnam National Foundation for
Science and Technology Development (NAFOSTED) under
grant number 102.01-2019.322.

REFERENCES

[1] L. Gu, D. Zeng, S. Guo, A. Barnawi, and Y. Xiang, “Cost-Efficient
Resource Management in Fog Computing Supported Medical CPS,”
IEEE Transactions on Emerging Topics in Computing, vol. PP, no. 99,
pp. 1–1, 2016.

[2] A. Samanta and J. Tang, “Dyme: Dynamic microservice scheduling in
edge computing enabled iot,” IEEE Internet of Things Journal, vol. 7,
no. 7, pp. 6164–6174, 2020.

[3] X. Chen, L. Jiao, W. Li, and X. Fu, “Efficient Multi-User Computation
Offloading for Mobile-Edge Cloud Computing,” IEEE/ACM Transac-
tions on Networking, vol. 24, no. 5, pp. 2795–2808, 2016.

[4] P. Zhang, Y. Zhang, H. Dong, and H. Jin, “Mobility and dependence-
aware qos monitoring in mobile edge computing,” IEEE Transactions
on Cloud Computing, pp. 1–1, 2021.

[5] T. G. Nguyen, T. V. Phan, B. T. Nguyen, C. So-In, Z. A. Baig,
and S. Sanguanpong, “Search: A collaborative and intelligent nids
architecture for sdn-based cloud iot networks,” IEEE access, vol. 7, pp.
107 678–107 694, 2019.

[6] A. Samanta, L. Jiao, M. Mühlhäuser, and L. Wang, “Incentivizing
microservices for online resource sharing in edge clouds,” in IEEE
ICDCS, 2019.

[7] A. Samanta and Z. Chang, “Adaptive service offloading for revenue
maximization in mobile edge computing with delay-constraint,” IEEE
Internet of Things Journal, vol. 6, no. 2, pp. 3864–3872, 2019.

[8] S. Chu, Z. Fang, S. Song, Z. Zhang, C. Gao, and C. Xu, “Efficient
multi-channel computation offloading for mobile edge computing: A
game-theoretic approach,” IEEE Transactions on Cloud Computing, pp.
1–1, 2020.

[9] N. Wang, B. Varghese, M. Matthaiou, and D. S. Nikolopoulos, “Enorm:
A framework for edge node resource management,” IEEE Transactions
on Services Computing, pp. 1–1, 2017.

[10] M. Hu, Z. Xie, D. Wu, Y. Zhou, X. Chen, and L. Xiao, “Heterogeneous
edge offloading with incomplete information: A minority game ap-
proach,” IEEE Transactions on Parallel and Distributed Systems, vol. 31,
no. 9, pp. 2139–2154, 2020.

[11] J. Xia, G. Cheng, D. Guo, and X. Zhou, “A qoe-aware service enhance-
ment strategy for edge artificial intelligence applications,” IEEE Internet
of Things Journal, pp. 1–1, 2020.

[12] H. Xiong, Y. Wu, C. Jin, and S. Kumari, “Efficient and privacy-
preserving authentication protocol for heterogeneous systems in iiot,”
IEEE Internet of Things Journal, pp. 1–1, 2020.

[13] Y. Liao, L. Shou, Q. Yu, Q. Ai, and Q. Liu, “An intelligent computation
demand response framework for iiot-mec interactive networks,” IEEE
Networking Letters, pp. 1–1, 2020.

[14] R. Fantacci and B. Picano, “A matching game with discard policy
for virtual machines placement in hybrid cloud-edge architecture for
industrial iot systems,” IEEE Transactions on Industrial Informatics,
pp. 1–1, 2020.

[15] V. Casola, A. De Benedictis, S. Di Martino, N. Mazzocca, and L. L. L.
Starace, “Security-aware deployment optimization of cloud-edge sys-
tems in industrial iot,” IEEE Internet of Things Journal, pp. 1–1, 2020.

[16] Z. Zhao, Y. Shi, B. Diao, and B. Wu, “Optimal data caching and for-
warding in industrial iot with diverse connectivity,” IEEE Transactions
on Industrial Informatics, vol. 15, no. 4, pp. 2288–2296, 2019.

[17] X. Lai, Q. Hu, W. Wang, L. Fei, and Y. Huang, “Adaptive resource
allocation method based on deep q network for industrial internet of
things,” IEEE Access, vol. 8, pp. 27 426–27 434, 2020.

[18] Z. Zhou, S. Yu, W. Chen, and X. Chen, “Ce-iot: Cost-effective cloud-
edge resource provisioning for heterogeneous iot applications,” IEEE
Internet of Things Journal, vol. 7, no. 9, pp. 8600–8614, 2020.

[19] Q. Yuan, J. Li, H. Zhou, T. Lin, G. Luo, and X. Shen, “A joint
service migration and mobility optimization approach for vehicular edge
computing,” IEEE Transactions on Vehicular Technology, pp. 1–1, 2020.

[20] A. A. Al-Habob, O. A. Dobre, A. G. Armada, and S. Muhaidat, “Task
scheduling for mobile edge computing using genetic algorithm and
conflict graphs,” IEEE Transactions on Vehicular Technology, pp. 1–1,
2020.

[21] D. Xu, A. Samanta, Y. Li, M. Ahmed, J. Li, and P. Hui, “Network coding
for data delivery in caching at edge: Concept, model, and algorithms,”
IEEE Transactions on Vehicular Technology, 2019.

[22] A. Samanta, Y. Li, and F. Esposito, “Battle of microservices: Towards
Latency-Optimal heuristic scheduling for edge computing,” in IEEE
NetSoft, 2019.

[23] O. Du Merle, J.-L. Goffin, C. Trouiller, and J.-P. Vial, “A Lagrangian
Relaxation of the Capacitated Multi-item Lot Sizing Problem Solved
with an Interior Point Cutting Plane Algorithm,” in Approximation and
Complexity in Numerical Optimization. Springer, 2000, pp. 380–405.

[24] J. Krarup and P. M. Pruzan, “The Simple Plant Location Problem: Sur-
vey and Synthesis,” European journal of operational research, vol. 12,
no. 1, pp. 36–81, 1983.

[25] I. G. Optimization, “Gurobi optimizer reference manual,” Available:
http://www.gurobi.com, 2016.

[26] A. Yousefpour, G. Ishigaki, R. Gour, and J. P. Jue, “On reducing iot
service delay via fog offloading,” IEEE Internet of Things Journal,
vol. 5, no. 2, pp. 998–1010, 2018.

[27] K. Zhang, Y. Mao, S. Leng, Q. Zhao, L. Li, X. Peng, L. Pan,
S. Maharjan, and Y. Zhang, “Energy-Efficient Offloading for Mobile
Edge Computing in 5G Heterogeneous Networks,” IEEE Access, 2016.

[28] A. Samanta, Z. Chang, and Z. Han, “Latency-Oblivious Distributed Task
Scheduling for Mobile Edge Computing,” in IEEE GLOBECOM, 2018,
pp. 1–7.

[29] S. Knight, H. X. Nguyen, N. Falkner, R. Bowden, and M. Roughan,
“The internet topology zoo,” IEEE Journal on Selected Areas in Com-
munications, vol. 29, no. 9, pp. 1765–1775, 2011.

[30] A. Botta, A. Dainotti, and A. Pescapé, “A tool for the generation
of realistic network workload for emerging networking scenarios,”
Computer Networks, vol. 56, no. 15, pp. 3531–3547, 2012.

[31] A. Sivanathan, D. Sherratt, H. H. Gharakheili, A. Radford, C. Wije-
nayake, A. Vishwanath, and V. Sivaraman, “Characterizing and clas-
sifying iot traffic in smart cities and campuses,” in IEEE INFOCOM
Workshops, 2017, pp. 559–564.

[32] B. Gao, Z. Zhou, F. Liu, and F. Xu, “Winning at the starting line: Joint
network selection and service placement for mobile edge computing,”
in IEEE INFOCOM, 2019, pp. 1459–1467.

[33] M. Chen and Y. Hao, “Task offloading for mobile edge computing in
software defined ultra-dense network,” IEEE Journal on Selected Areas
in Communications, vol. 36, no. 3, pp. 587–597, 2018.

Authorized licensed use limited to: SAINT LOUIS UNIVERSITY. Downloaded on October 05,2021 at 03:32:41 UTC from IEEE Xplore. Restrictions apply.

