2021 IEEE 7th International Conference on Network Softwarization (NetSoft) | 978-1-6654-0522-5/21/$31.00 ©2021 IEEE | DOI: 10.1109/NetSoft51509.2021.9492660

OctoMap: Supporting Service Function Chaining via
Supervised Learning and Online Contextual Bandit

Aziza Alzadjali* Maria Mushtaq® Flavio Esposito’ Claudio Fiandrino* Jitender Deogun*

*University of Nebraska-Lincoln, USA

Abstract—Network Function Virtualization (NFV) replaces
physical middleboxes with elastic Virtual Network Functions
(VNFs). Those VNFs need to be instantiated, and their resources
dynamically scaled to meet application and traffic fluctuation
requirements. Despite recent extensive research, deciding how to
map virtual resources optimally to the underlying infrastructure
remains practically a challenge. Existing approaches mostly
assign fixed resources to each VNF instance, and transfer virtual
flows using a single physical path, without prior knowledge of
traffic patterns and available bandwidth. Such resource binding
strategies lead to suboptimal physical link utilization. We advance
the state of the art in this regard by presenting OctoMap, a system
designed to support with learning theory any chain embedding
algorithm. OctoMap utilizes a Convolution Neural Network for
traffic prediction and provisioning, and a contextual multi-armed
bandit algorithm to solve the online VNF chain embedding
problem. We show the performance benefits of OctoMap with
a trace-driven simulation campaign using publicly available
datasets. In particular, we show how OctoMap reduces the costs
of provisioning network services under node and link constraints,
comparing different predictors and different multi-armed bandit
policies.

I. INTRODUCTION

Processing network traffic requires different network function
services such as firewalls, load balancing, and deep packet
inspection. These operations can be performed by routing
packets through several middleboxes. Network Function Vir-
tualization (NFV) allows an agile deployment of network
functions on general platforms using virtualization techniques,
often replacing traditional dedicated hardware. Virtual Network
Functions (VNFs) are chained by virtual links in a predefined
sequence, forming a Service Function Chain (SFC). Many
elements of such chains (virtual nodes, or VNFs) are deployed
on data center nodes. The chain is then mapped to those servers
through the data center physical links to deliver the required
traffic flow services [1]. The VNF chain mapping is an NP-hard
problem of finding a hosting physical node for each virtual
network function, and at least one loop-free physical path for
every virtual link connecting the VNF nodes [2]. A Software-
Defined Network (SDN) controller is often integrated with the
NFV system to control and steer traffic. The dynamic nature
of traffic loads hinders the efficiency of both instantiation and
maintenance of such chain mappings, resulting in a suboptimal
data center and network resource utilization.

The need for better chain embedding prediction systems.
Several solutions have been proposed to handle such chain

978-1-6654-0522-5/21/$31.00 ©2021 IEEE

TSaint Louis University, USA

IMDEA Networks Institute, Spain

(re)mapping under dynamic traffic loads. Some recent ex-
amples include [3]-[6]. Most of these solutions considered
fixed resource requirements and assumed a (restrictive) linear
relation between VNFs and the allocations of the underlying
resources [7], [8]. However, both the complexity and the
dynamics of data center traffic call for a higher degree of
automation and an efficient decision making process [9]. To
this aim, a proactive i.e., online virtual resource optimization
strategy could prove very effective for chain embedding
decisions, meeting the fluctuating network and service demands
while minimizing costs and maximizing the utility.

The decision of how to map chain requests to underlying
resources can have a significant performance impact on network
utilization and data center maintenance costs. When traffic loads
are dynamic, optimizing the chain mapping is challenging
without looking at traffic patterns ahead [10], [11]. Fortunately,
modern advances in machine learning have enabled accurate
predictions of short-term network requests given sufficient
historical data [12]. Moreover, deep reinforcement learning
has widely demonstrated its effectiveness on several network
management problems, including chain mapping [13]-[15].
However, these algorithms are often expensive to train, and
their convergence is slow. The reason is that they do not
efficiently minimize the regret, i.e., the long term difference in
total reward between the exploitation and exploration phases.
All the approaches that use deep reinforcement learning to solve
the chain mapping problem have inherently this drawback.

Aside from the drawback of using a plain deep reinforcement
learning, two critical challenges in solving the chain mapping
problem are (¢) the dynamic nature of future traffic demands
that need to be processed by the chain, and (ii) the partial
knowledge of the traffic demands currently flowing in the data
center network fabric.

Our Contributions. In this paper, we design and implement
a system able to handle the above-explained challenges in
an efficient online framework, using learning theory yet
minimizing regrets. Specifically, we first propose a geometric
program [16] to model the optimization of a set of service
chain embedding variables. To minimize the total cost of
provisioning all chain requests, we propose OctoMap, a system
whose design is based around two subsequent prediction steps:
first, to handle the dynamic nature of future traffic demands
we use supervised learning; second, to address the lack of
accurate knowledge of the current states, we use an online
contextual bandit algorithm. OctoMap exploits the available

Authorized licensed use limited to: SAINT LOUIS UNIVERSITY. Downloade@@h October 05,2021 at 03:36:09 UTC from IEEE Xplore. Restrictions apply.

network information collected from experience while exploring
knowledge about the network bandwidth and CPU utilization.
Our system can efficiently handle higher dimensional features,
extract traffic features, and collect updated network utilization
from a logically centralized controller. OctoMap decides on
the embedding of interconnected NFV chains using states
from the underlying network infrastructure: CPU and links
bandwidth. Our data-driven simulations are based on real data
center traffic and show how OctoMap can cope with the traffic
dynamics. In our performance evaluation, we used a harm-
based approach [17] to quantify the throughput harm caused to
the system due to the suboptimal chain allocation and traffic
peaks. Harm matrix is more practical and handles a wider range
of quality metrics than the traditional Jain’s fairness index. Our
experiments showed that OctoMap did not exceed 50% harm
compared to the baseline algorithms.

Paper Organization. The rest of this paper is organized as
follows. Our contribution with respect to the most relevant
work is discussed in Section II. Section III covers details of
the problem formulation while in Section IV we present our
system. The performance evaluation is reported in Section V
and finally, in Section VI we draw our conclusions.

II. RELATED WORK

Service Function Chain Mapping Algorithms. In the past
few years, many studies have tackled the NP-hard [18] chain
mapping problem, in data centers or wide area networks.
Several heuristics have been proposed to cope with the large
scale nature of this problem [19]. Some studies addressed this
graph matching problem by utilizing multiple links and multiple
VNFs to balance the load on the underlying infrastructure [20],
[21]. The authors in [22] instead designed an online scaling
chain deployment algorithm across data centers to minimize
delays. Moreover, G. Sun et al. [23] proposed a heuristic
algorithm to effectively deploy SFCs in parallel by dividing
dynamic arrival service requests into multiple subflows and
instantiating the same number of chains for data centers. None
of those studies consider the continuous network load variations
in their solutions, and the efficiency that contextual bandit
algorithms have.

The problem of chain mapping is closely related to the
Virtual Network Embedding (VNE) problem which involves
mapping virtual nodes and links to physical nodes and links
in the given substrate network [19], [24]. As our approach,
several heuristics and approximation algorithms address the
online virtual network embedding problem. Some, e.g. [25]
propose to do so with an integer linear program whose objective
is to minimize the resource consumption and load balancing.
Similar to our contribution, NeuroViNE [26] aims to improve
VNE algorithms by leveraging the artificial neural network.
Machine learning for Service Function Chaining. Ap-
proaches that share similarities with ours are those applying
reinforcement learning for the chain mapping problem. Chen
et al. [27] proposed a QoS/QoE-aware SFC framework using
reinforcement learning. They included a lightweight QoS over
LLDP scheme to collect QoS Information from underlying

switches and a Deep Q Network-based chain algorithm for
maximizing the reinforcement learning rewards. The actions
in deep reinforcement learning algorithms change the state
of the environment to achieve an optimal final target; this
is not required for addressing the chain mapping decisions,
where the taken actions does not affect the network state and
the “contexts", ¢.e., the states. Surprisingly, very few research
studies are centered on the dynamic mapping of chains with
variable network traffic flows. The closest to our work was
proposed by Wang et al. [28], which employs a multi-armed
bandit (MAB) for VNF placement. They first used an online
algorithm called ski-rental to compute the NFV instances
to be deployed. By contrast, we use a CNN predictor for
this purpose. They then used a traditional MAB algorithm to
decide the VNF placement instead of the contextual bandit
and do not account for the variation of traffic flows and
physical network constraints, which OctoMap does. Unlike
prior work in this area, we exploit the online contextual bandit
algorithm to support embedding decisions for dynamic SFCs
onto a substrate network. Schneider et al. [12] proposed a
machine learning approach to allocate virtual resources in NFV
systems dynamically. Nevertheless, the authors represented
temporal dynamics that updates the environment only if there
are changes in network topology and flow on the network,
whereas we employ predicted traffic flows to compute required
resources to be mapped to each requested chain. The use of
a CNN to forecast future traffic load is key to our design
since previous traffic conditions are likely to have a significant
impact on future service traffic. This is known as long-range
dependence (LRD), which can be quantified by correlation
among network traffic sequences [29]. Statistical methods
are unable to capture the LRD and non-linearity of network
traffic due to strong theoretical assumptions and the simplistic
implementation of the conventional network traffic prediction.
Although Support Vector Machine models are robust, large-
scale network traffic prediction is slow and requires powerful
computational machines [30]. Deep learning models such as
Recurrent Neural Network (RNN) have gained superiority over
traditional machine learning models, especially in the context
of time-series data. Specifically, Long Short Term Memory
(LSTM), a class of RNN, have been proven successful in
i) accurately predicting LTE uplink throughput to promote
sophisticated video rate adaptation techniques that significantly
improve user experience [31] and ii) dynamically predicting
traffic load to optimize the resource allocation in network
slicing context [32] and 5G core functions [33].

III. MODEL AND PROBLEM DEFINITION

In this section, we define the online (service function) chain
embedding problem using geometric programming. Our design
predicts the network load to obtain future knowledge of the
chain demands. We model our problem as an online network
utility maximization, where the unknown inputs are the number
and size of the chain service requests as shown in Figure 1.

We consider a set of packets arriving over a time horizon 7.
We assume that such traffic demands need to be routed across

Authorized licensed use limited to: SAINT LOUIS UNIVERSITY. Downloadk@éh October 05,2021 at 03:36:09 UTC from IEEE Xplore. Restrictions apply.

Datacenter control plane features
from substrate edge mirrioring >
server

PR\
0
CNN Contextual Bang
Predictor Policy Maker

dit)
OctoMap / —>

Assignin% physical services
to virtual nodes efficiently

Service Function Chain

.-..-. SFC 2

Connecting the virtual links to
one or more physical path

Substrate Network

O 'VNF Node

===+ VNF Link
— Physical Link
D Physical Machine

@

Fig. 1. The proposed supervised online Service Function Chain embedding
system: OctoMap. A Convolutional Neural Network predicts the incoming
packets length and converts them to chain demands; the contextual bandit
policy maker decides the chain embedding and connects virtual functions
(nodes) to the physical machines using multiple links.

at least one chain of network functions. We model the number
of chain requests R from the incoming traffic volume. The
optimization problem seeks an optimal allocation of physical

hosting nodes and bandwidth link resources to map to a chain.

From R, we then extract information about the service types
along with CPU and bandwidth demands. We then determine
the embedding for virtual nodes (virtual network function
instances) and virtual links. For the nodes, we map the requests
to the underlying physical machines so that the node resources
are allocated. For the links, we attempt to find the number of
physical links to be used for transmitting all service demands
in R. As typical for these problems [19], we consider the
consumption on the virtual CPU as the node (computing)
resource constraint and the residual link bandwidth capacity
as transmission resource constraint.

We assume that the set of P packets at time ¢ € T is
proportional to the chain request demand, as in [5]. We model
the chain in a k-port fat-tree topology, for ease of notation
denoted as a directed graph G = (V, E), where V is the set
of physical hosting machines, and E denotes the physical link
set in the network topology. Elements in GG are associated with
a capacity constraint C = (C,, Ce), where C, specifies the
hardware capacity of the physical nodes and C, the bandwidth
resource capacity of the physical links. Among the subset of
all physical resources potentially available to map a node of
the chain, we seek a non-empty subset of all available hosting
source and destination nodes, along with traffic transmission
links, if available. The time to probe the search space for
this problem may have polynomial or exponential complexity,

depending on the number of physical nodes and links [34]-[36].

Let ; € R be a subset of ¢ service chain requests. From r;,
we can extract the service types along with CPU and bandwidth
demands of r;. Each set of packets P used to form the chain
mapping requests in I? generate a utility level denoted as Up,.,
it represents the translation of packet sets mapped to requested

services in the chain. We denote x,,, as the binary variable,
set to one if the incoming flows/packets is bound to chain
request 7, and zero otherwise. nY. and [Z. are binary variables
that are unitary if virtual node v or virtual link e, respectively,
have been assigned to chain request r, and zero otherwise. The
overall objective function is then, for each period 7

§ § : VE
maxp 'rp”'nvrler UPT"

peEP reR (D
1E € {0,1}.

l’pr, Nyrs ber

Note that equation (1) is a posynomial function [37], i.e., it
contains a product of decision variables. We assume a fixed
number of chain requests common to each request type. Each
request r is associated with resource usage over the data center.
If a chain request is mapped to the physical machines s and
d, then this embedding generates costs of CPU load on those
machines and packet processing load on the network elements
(e.g., network interface cards, switches) along the paths between
s and d. Such CPU and processing costs should be considered
to determine the optimal SFC embedding decisions.

We denote the CPU usage as ¢;,., and the total CPU capacity
of machine v as C,. This ensures that for each v € V at each
time ¢ € 7, the following constraint is imposed:

Z Z TprCpp < Cyy YU ?)

peEP(t) TER

The second constraint set of the mapping process concerns
the link usage, i.e., the cost of processing the traffic that request
r generates across each portion of the network that intercon-
nects the single SFC instances allocated to specific machines.
Each packet p belonging to r consumes the bandwidth available
over the set of links £. We denote this cost as ¢}, and the
total bandwidth as C.. For each link e € FE and at each time
t € T, the following constraint must hold:

Z Z TprCpp < Ce, Ve 3)

pEP(t) TER

The embedding is optimal if the utility U, in equation (1)
is maximized, subject to the resource constraints (2) and (3).
Our goal is to map the chain online in a cost-efficient way and
evaluate our performance on the optimization problem. In our
online learning approach, at each time ¢ € 7T, the system reads
a subset of dynamically predicted P and optimize accordingly.
Finding such optimal chain mapping is NP-hard [38]. The NFV
chain mapping can indeed be re-conducted to a graph matching
problem where the hosting graph is a physical network with
constraints and the NFV is a virtual network with linear
topology. OctoMap uses an efficient heuristic algorithm to
balance the tradeoff between the predefined metrics: CPU and
link bandwidth costs of the deployed VNF instances.

IV. OCTOMAP FOR SERVICE FUNCTION CHAIN
EMBEDDING DECISION

In this section, we present OctoMap, an online machine
learning-based chain embedding algorithm to assist in NFVs
mapping. Our design principle is based on the simultaneous

Authorized licensed use limited to: SAINT LOUIS UNIVERSITY. Downloade@&h October 05,2021 at 03:36:09 UTC from IEEE Xplore. Restrictions apply.

Algorithm 1: OctoMap: Optimal nodes and links
selection for users SFC requests using contextual multi-
armed bandit based on softmax explorer policy.

Input: The predicted network demand, the A
hyperparameters to control exploration

Output: The SFC mapping of nodes and path for each

set of SFC requests R

repeat

Collecting the contexts x data: SFC requests demand

obtained from predictor,

for each successive set of SFC mapping requests R

within time t, with contexts z!, do
L Sample action a with softmax policy function

Update A

Until obtained reward 7}, update observation {zf,r}}
to the history for arm k, update learning oracle

return The optimal nodes and links number for every
R based on an online trained and updated data.

optimization of both node and link assignments. Our system
uses first supervised learning on the network data statistics
to train, predict, and map live traffic to chain requests. Then
we use a multi-armed bandit to converge on the embedding
decisions for nodes and links. Figure 1 shows the workflow of
the proposed solution.

OctoMap solves the online chain embedding problem by
predicting the number of chain requests to be deployed
on the substrate network in advance. OctoMap uses the
predicted normalized traffic volume to generate the chain
requests and assign the corresponding resources for each
chain. Section V covers the details of this process. With
the forecasts of the future chain requests, OctoMap maps
the request onto source and destination servers and selects
multiple physical links from source to destination for each
virtual link. Such embedding fulfills all resource capacity
constraints: each physical link should have enough bandwidth,
and each physical machine enough computing resources to
satisfy the chain request demands. Being an online algorithm,
OctoMap acquires CPU and bandwidth usage statistics from the
network controller in (tunable) one-minute batches, 7. Then, it
applies the sequential multi-armed bandit. Algorithm 1 details
the operational workflow of OctoMap.

The goal of OctoMap is to use machine learning to support
the SFC embedding in NFV systems optimally. We first use a
CNN-trained model to predict and model the VNF resource
requirements. The prediction is then passed to the contextual

bandit policy to improve the dynamic chain embedding decision.

The learning strategy is essential to solve the SFC nodes and
links selection problem defined in Section III and to properly
provision resources to VNFs tailored to scale dynamically.

A. Convolutional Neural Network for traffic Load Prediction

For efficient service function chain embedding decision,
we introduced a traffic load predictor to enhance the online

multi-armed contextual bandit algorithm decisions. Instead of
developing a new SFC mapping algorithm, we focus on how
to model the embedding, deciding the required resources per
SFC request based on the predicted traffic volume. A range of
ML predictors exists for network traffic prediction. Specifically,
OctoMap uses CNN [39] to forecast the incoming data center
traffic load. Although CNNs are commonly used for 2D inputs
(e.g., images), they are successfully employed in 1D function
predictions, too. The alternating convolutional structure of CNN
allows recognition of specific repeating patterns in the data,
which makes it a good candidate to forecast time series values
based on historic observation. CNN models can effectively
exploit the temporal nature of the data [40] [41] and easily
capture structures of non-linearity present in time series data.
Moreover, retraining CNN models for network traffic forecast
becomes feasible with the introduction of modern GPUs. These
factors make CNN models suitable for real-time scenarios.
This predicted traffic load is then used to modulate the SFC
requests and their resource demands. The true VNF resource
requirements linearly increase with traffic load, assigning fixed
resources based on maximum expected traffic leads to over
allocation. OctoMap uses a real Facebook data center dataset
to train the CNN and approximates the SFC requests based on
the traffic load.

To train the CNN model, we used the available dataset of
Facebook traffic obtained from the Altoona data center [9]. The
traces belong to three production unit deployment clusters, each
cluster consists of three types of requests: database, web, and
big data requests types in cluster-A, B, and C respectively. To
estimate the service function chain demands, we extracted and
aggregated the packet length and service types. The network
traffic traces have temporal structure reflecting patterns in
time series data. We approached the network traffic prediction
as a supervised learning problem by transforming data into
sequences to predict the next minute packet length p;;; one
step ahead. Choosing the best number of consecutive packet
sizes py—i,...,Pt—1,Pt, known as lag, is a hyperparameter
tuning step. We applied the auto-correlation function (ACF)
to measure the degree of similarity between observations of
the time series over successive ¢ lags for each cluster (see
Figure 2). Large spikes above the 95% confidence band indicate
a significant correlation among the observations at a given lag.
For OctoMap predictor training, lag values 70, 40, and 60 for
clusters A, B, and C were selected respectively. Note that the
Facebook dataset does not incorporate network functions, it
just predicts traffic load and thus improves the NFV resource
allocation process.

CNN Prediction Evaluation: The CNN model was trained on
the normalized packet length feature of data from each cluster
to predict the data center network traffic load one minute ahead
of actual traffic. The trained model was tested over 100 minutes
and the trained inference model was used to predict the packet
length of the next minute. Figure 3 plots the testing residual
error of actual and predicted packet length values for each
cluster. For clusters A and C, 97% of the testing errors are
below 0.1, and for cluster B around 90% of the testing, the

Authorized licensed use limited to: SAINT LOUIS UNIVERSITY. Downloadk@&h October 05,2021 at 03:36:09 UTC from IEEE Xplore. Restrictions apply.

1.01 1.0 1.0
2 g g
Bos1 Z o8 5 08
= = =
£ i3 o 06
EG‘G- E 0.6 E
g g 04 g 0.4
£041 £ £ o2
; j* i]
[a v
%02‘ % %l' 0.0 S “?-‘T.T T"ll-" T.T“T.ru.f. ?l s _.n.“r_
: £ ool : e e
=i 2 2 -02
-0.2
0 10 20 30 40 50 60 70 80 0 10 20 30 40 50 60 70 80 0 10 20 30 40 50 60 70 80
Lag Lag Lag

(a) Facebook Cluster A — Database Queries

(b) Facebook Cluster B — Web Traffic

(c) Facebook Cluster C — Hadoop based Traffic

Fig. 2. Autocorrelation function applied on packet length time series of network traces of Facebook data center clusters with band of 95% confidence: (a)
cluster-A, (b) cluster-B, and (c) cluster-C. This analysis suggest best lag value to consider for the prediction model (CNN) for supervised training based on

highest correlation for each clusters

1.0

0.8 1
0.6 1
w
o
O
0.4
0.2
—o— Cluster A
Cluster B
0.0 —4— Cluster C

0.0 01 02 03 0.4 05
Testing Error
Fig. 3. The residual error for the testing dataset of actual and predicted packet
length values for each cluster of Facebook Data center. The error is 90% below
0.2 for all clusters. The predicted values used to modulate the SFC nodes and
links requirement and resource demand to assist contextual bandit algorithm
in decision making

1004

10-14

Softmax
Explore-First
Bagging

Cover
Epsilon-Greedy

Cummulative Reward

b

1072

00 1ot 10? 10° 10°

Iterations
Fig. 4. Contextual bandit cumulative rewards calculated for each policy over
10k iterations. The Softmax policy reaches good cumulative reward values
faster than others.

error is below 0.2.
B. Contextual Multi-Armed Bandits for SFC Embedding

Since OctoMap uses contextual Multi-Armed Bandits (MAB)
[42], [43] approach to VNF mapping decisions, in this Section
we give some background of this approach. Multi-armed
bandits is a simple and powerful framework for algorithms that
make decisions overtime in unstable network conditions. The
algorithm can choose from K possible actions (arms) during
T rounds. The algorithm chooses an arm in each round and
collects a reward. After each round, the algorithm only observes
the reward for the arm it chose but have no reward knowledge

about the other arms that could have been chosen. Thus, the
algorithm needs to acquire new information by trying out
different arms, this process is called exploration. If an algorithm
always chooses one arm, it would not know if any other arm
is better. Therefore, the exploration and exploitation tradeoff is
key to make optimal impending decisions based on the available
information. In a nutshell, the objective of the algorithm is to
learn which is the best arms while not spending too much time
exploring [43]. The MAB problem can be formulated as a semi
Markov decision process. At each round 7', it selects an action
i € {1, k}, then observes the reward r; that the world chose
during the learning process. The reward is independently picked
from a fixed distribution depending on the chosen arm, but not
known to the algorithm. The contextual MAB also observes
context information x used to determine which action to select.
This property helps in making decisions under uncertainty by
balancing between the exploration and exploitation of several
agents with the help of a greedy policy 7 that only takes into
account short term effects. In the exploration stage, the policy
tries different actions to learn the given reward for each of them.
While in exploitation, it takes decisions based on collected and
learned information in each period to maximize an immediate
reward. The context affects how a reward is associated with
each action: as contexts change, the model learns to adapt
its action choices accordingly. A good policy efficiently maps
the best actions with varying contexts. In contextual bandits,
the learner observes some contexts repeatedly, then it picks
one action and observes the reward or cost associated with
the chosen action. Contextual MAB uses some contexts to aid
online decision making, which makes it a good candidate for
dynamic environments with rapidly changing statistics and a
limited set of available actions. We adopt the contextual bandit
to find the optimal physical nodes and links mapping for SFC
requests under data center networks as an active online learner.
In the following, we explain how typical contextual bandit
concepts of context, agent, arm (action), and reward are used
for the SFC mapping problem.

Contexts: The contexts module is responsible for parsing
network status information from the data center controller
server, obtaining the contextual features that are continuously
observed by the agent. In OctoMap, the contexts zf : t =

Authorized licensed use limited to: SAINT LOUIS UNIVERSITY. Downloaded@dh October 05,2021 at 03:36:09 UTC from IEEE Xplore. Restrictions apply.

rounds, k = arms represent the dynamic data center traffic
load, CPU consumption, and link bandwidth utilization of the
physical network topology.

Agent: The agent performs the learning and recommends
the actions. In OctoMap, the agent is responsible for making
decisions of physical nodes assignment and number of links
to be used for packets transmission, picked based on the
online collection of substrate links status data from the edge
monitoring server. In a contextual bandit algorithm, the policy
entity makes those decisions by taking contexts as input and
returning an action. The goal is to find a policy that maximizes
the average reward over a sequence of interactions. Arms or
Actions: The arms in the bandit setting indicate how an agent
responds to the observed context. OctoMap defines two sets of
arms, one for the number of physical machines, and one for the
number of physical links. Such a setting fulfills the mapping
demand of incoming SFC requests. Therefore, there are two
sequential arm selection processes based on the same observed
context. Specifically, in each round T, the agent must choose
the best arm az for node assignment, and the best arm alT
for the number of links selection. Given this output, OctoMap
finds the most adequate candidate set sizes among all feasible
physical nodes and links for hosting the VNFs which reduce
the rejection of the SFC placement requests within a given
execution time and directly affects the quality of service and
experience.

Reward: The reward is the overall benefit that an agent wants
to maximize in the long term. OctoMap assigns stochastic
binary rewards 7}, € {0,1}, which evolves linearly for each
arm selection over time, and measures cumulative rewards
throughout the rounds. If the agent tries to deploy an SFC
request in a server with insufficient resources, the reward is
equal to zero. When the SFC request is accepted and all VFNs
required are allocated, the reward is equal to one. OctoMap
enforces the agent to take those actions that provide the highest

rewards. T
Cumulative Reward = Z Tk (@)

t=1
Contextual Bandit Policies Evaluation: The policy maker
is implemented in the agent, and it defines a mapping
from the observed contexts of the network environment
to the action to be taken in those contexts setup, policy
7 (context x) +— (action a) . The policy helps the agent
to choose actions based on contexts by finding a good decision
rule for selecting the action. We use policies that involve
machine learning algorithm as an oracle to learn from past
information and choose optimal actions based on learned
response patterns. In OctoMap, this oracle is a Stochastic
Gradient Descent (SGD) optimizer. To determine which policy
to use, we compare five different contextual bandit exploration
policies: softmax explorer (Boltzmann), explore-first, bagging
explorer, online cover, and epsilon-greedy. Figure 4 illustrates
the cumulative reward behavior for all policies concerning the
training time. We found that the contextual softmax explorer
is the overall best policy in terms of performance and learning
speed. In softmax explorer, the probability of choosing an arm

is proportional to an exponential function of the empirical mean
of the reward of that arm. It predicts an action along with a
prediction score reporting the quality of the selected action,
then creates a distribution proportional to exp(A - score(x, a)).
Actions with higher average rewards are picked with higher
probability. To provide controlled exploration based on the
uncertainty during learning, we follow a similar approach
of [44] by separating the learning rates of each arm. The
algorithm for softmax explorer is defined as follows: Given

initial empirical mean rewards 71 (0), ..., 7 (0), then
wi(t)/T
€ .
pilt+1) = ', i=1,..K, (5)

(o)

where p;(t + 1) is the probability of choosing arm 4 in round
(t+1), and 7 controls the choice; as 7 — oco. Softmax explorer
algorithm can guarantee a distribution-independent regret bound
of order v K'T-log K [44]. Figure 4 also shows that the softmax
explorer policy learns and converges faster. Therefore, the rest
of the evaluation experiments are carried out using the softmax
explorer policy.

V. OCTOMAP PERFORMANCE EVALUATION
A. Simulation Setup

To evaluate and quantify the performance of OctoMap,
we setup k-port fat-trees data center topology as the sub-
strate network with scale k = [4,16]. Fat-tree topologies
are commonly used in data centers for their properties of
low diameter and high bisection bandwidth (respectively the
maximum distance between any pair of servers - in several
hops, - and the maximum bandwidth that can be supported
when the topology is cut in exactly two parts) [45]. OctoMap
uses dynamic flow scheduling to handle the cost of the chain
which is particularly effective with topologies like fat-tree
with high bisection bandwidth, i.e., multiple links available
between any given pair of hosts allowing for such dynamic flow
scheduling. Therefore, although we assess the performance of
OctoMap in fat-tree topologies, we expect OctoMap to provide
comparable results with other network topologies designed to
support high bisection bandwidth like Jupiter from Google [46].
The nodes CPU capacity C, is set to 90% per node, and the
links bandwidth capacity C. is set to 10 GB per link. SFC
requests & were modulated bi-linearly based on predicted
network load. Actual simulated chain requests R = Y 21 Yk,

where x is the predicted traffic, k is the number of nofies and
links, and y is a fixed approximated constant for each requested
service type given in our dataset: database, web request, and
big data processing services. Based on this bi-linear mapping
assumption, we calculated R between [50,400] in the 4-port fat-
tree, and [200, 1600] in the 16-port topology. The nodes CPU
usage ¢, and link bandwidth usage ¢, were calculated based
on R with values falling within [1,90] and [1, 10] respectively.
Based on this setup, the contextual bandit algorithm calculates
the costs and assign rewards to each action accordingly. Our
simulations are implemented using Vowpal Wabbit [47] toolkit
as a cost-sensitive contextual bandit algorithm trained with

Authorized licensed use limited to: SAINT LOUIS UNIVERSITY. Downloade@& October 05,2021 at 03:36:09 UTC from IEEE Xplore. Restrictions apply.

2007 —¢— OctoMap + 2501 _4— OcotMap + 400, ¥ OctoMap ¥
No Predictor *) No Predictor ’ No Predictor "
§ & 2001 .. : s :
150] 1 MAB + g 1 MAB + + o f- MAB _—
2 §150 + 8
S 100 H L %
al 2 5 W
-
0 0
50 100 150 200 250 300 350 400 50 100 150 200 250 300 350 400 50 100 150 200 250 300 350 400

SFC Request
(a) VNF Cost

SFC Request
(b) Link Bandwidth Cost

SFC Request
(c) Total Cost

Fig. 5. 4-k fat-tree data center simulations of full OctoMap framework, OctoMap without the predictor module, and MAB algorithm without contexts (a) CPU
cost for mapping the SFC virtual nodes to the physical machines. (b) Links Bandwidth cost for transmitting the SFC requested service through the physical
links. (c) Total cost of VNF and link bandwidth. All costs calculated up to 95% confidence level. OctoMap achieves less overall cost compared to the baseline.

3001 —% OctoMap —4— OcotMap 7004 —4— OctoMap &
No Predictor + i 400 No Predictor No Predictor o
2501 -~ MAB g 4 MAB 6001 -y mAB f
! 500 1
= 200 £ 300 : =
¥ g * g f
o z | | Y 400
> 150 ° b I
a < 200 P S B
“ 100 3 £ ¥ 300 .
: *J—i—o——o—o—‘ ao] Al o1 3
50 5 100 - , — 11 1 1
f 1001 |
0 0

200 400 600 800 1000 1200 1400 1600
SFC Request

(a) VNF Cost

200 400 600 800 1000 1200 1400 1600
SFC Request

(b) Link Bandwidth Cost

0
200 400 600 800 1000 1200 1400 1600
SFC Request

(c) Total Cost

Fig. 6. 16-k fat-tree data center simulations of full OctoMap framework, OctoMap without the predictor module, and MAB algorithm without contexts (a) CPU
cost for mapping the SFC virtual nodes to the required physical machines. (b) Links Bandwidth cost for transmitting the SFC requested service through the
physical links. (c) Total cost of VNF and link bandwidth. All costs calculated up to 95% confidence level. OctoMap achieves less overall cost compared to the

baseline.

online updates. It has several powerful features, including online
learning speed and execution time, scalability to a big dataset,
and features the pairing option to allow learning based on
correlated features. We set the softmax policy hyperparameter
A = 0.5 for our evaluation purpose, this allows equal amount
of exploration and exploitation.

B. Baseline Algorithms

We compare the performance of OctoMap with and without
the prediction model using the contextual bandit with the active
learning softmax policy. We compare our approach with the
most similar online SFC mapping work [28], where the authors
used an online algorithm to predict the requested service chains,
and then used Multi-Armed Bandits (MAB) to map the VNF
instances and thus minimize the congestion in a data center
network.

C. SFC Embedding Decisions Evaluation

We evaluate the SFC embedding decision through cost
generated if we want to map R chain requests, the overall
cost contains the physical machines CPU cost and physical
links bandwidth cost. The no-prediction baseline is simulated
within the same framework and optimization objective as given
in equation (1) but with disabling the CNN predictor to show
the effect if we do not consider the dynamic traffic load and

SFC requests incoming the data center network. The MAB
baseline is simulated using the same OctoMap framework and
topologies except with using contexts-less learning.

We evaluated the amount of throughput harm done by
embedding selected network links for SFC requests. Unlike
Jain’s fairness index, the harm matrix handles a wider range of
quality metrics than the traditional. To measure the throughput
harm, we exploit the definition of [17] that defines the harm as
Y=% Tn our setting, x is the total throughput capacity, and y is
the capacity that a given resource mapping algorithm utilizes
for SFC requests. The amount of harm reflects how well the
algorithm distributes the SFC demands within the available
data center links. The normal values should be placed on a
[0,1] scale, where 1 is the maximum value of harm and 0
represents no harm.

CPU cost: Figures 5(a) and 6(a) depict the physical machines
CPU cost with various SFC requests on both 4-port and 16-
port fat-tree topologies, respectively. The trend of the CPU
cost vs. SFC requests proves that OctoMap managed to map
all the 400 SFC requests in small scale data center situation
while keeping the cost below the overall CPU cost limit of 100.
The no-predictor baseline exceeded that limit after 300 and
800 concurrent SFC requests on 4-port and 16-port networks.
This implies that the network’s capability to handle more SFC

Authorized licensed use limited to: SAINT LOUIS UNIVERSITY. Downloade@&h October 05,2021 at 03:36:09 UTC from IEEE Xplore. Restrictions apply.

requests efficiently is limited if no traffic prediction is made
in advance. The MAB baseline performed comparably similar
to the no-predictor scenario since it does not consider the
network context - nodes and links utilization from the data
center network - when making decisions. Using MAP, this
network could handle 250 requests at a time on the 4-port
network and around 800 on the 16-port network. After that
amount of requests, it starts a dramatic increase of CPU cost for
the utilized servers. This is because the network contexts are
not considered during the MAB embedding decision, causing
non-optimal results. OctoMap manages to map more chain
requests in small scale data center situation optimally in a
more distributed and cost-effective way. However, OctoMap
results in higher costs than the rest of the algorithms for a low
number of SFC requests since it does not yet have enough
data to take the best decision.

Link bandwidth cost: Figures 5(b) and 6(b) depict the
physical link bandwidth cost with various SFC requests on
both 4-port and 16-port fat-tree topologies, respectively. It is
conspicuous that both no-predictor and MAB baselines map
up to 200 and 800 concurrent SFCs in 4-port and 16-port
based data center networks, respectively. After that limit, those
approaches exceeded the bandwidth cost above 100, leading
to higher unnecessary bandwidth consumption. OctoMap uses
about 50% less bandwidth cost compared to both baselines
in 4-port fat-tree topology and around 30% less bandwidth
consumption on the larger topology. This effect is due to
the active learning in the contextual bandit algorithm for the
selection of links during the mapping process.

Total cost: Figures 5(c) and 6(c) shows the total cost of
4-port and 16-port fat-tree topologies, respectively. It is the sum
of CPU and link bandwidth cost. Clearly, OctoMap consumes
less overall cost compared with the baselines; approximately
42% less cost on smaller data center, and about 33% less cost
on the larger 16-port data center topology.

Our approach achieves less cost, even for a larger scale data
center topology since it had advanced knowledge of the required
chain types and amount of resources. The objective of this work
is not to optimize the SFC mapping but to implement a suitable
platform to assist the mapping decisions. The simulation costs
results presented are compared with existing work [48], [49],
confirming the validity of OcfoMap in providing chain mapping
decisions.

Throughput Harm: Figure 7 compares the amount of

throughput harm done by OctoMap and the baseline algorithms.

Some of the no predictor baseline harm values are dropping
beyond 0. This reflects an under-utilization of the network
resources during SFC mapping decisions. This fact is due to
the SFC demands unawareness when the predictor module
is excluded from the MAP decision framework. The MAB
baseline keeps the harm level between O and 1 on the smaller
simulated topology while it lies between 0.5 and 1 (harmful) on
the larger simulated network topology. This is because although
the MAB algorithm learns from past decisions, it does not
consider the current network status while deciding the SFC
mapping actions. In the case of OctoMap, the amount of harm

=
o

1.0
=
=

0.0

m Index
© o
o wu

x

[

el

£
E E
-0.5

£-05 £

2-1.0 2
g 15 g1
(S £ -2.0

-2.0

MAB MAB

(b) 16-port data center topology

OctoMap No-Predictor OctoMap No-Predictor

(a) 4-port data center topology

Fig. 7. Throughput harm caused by OctoMap, no-predictor baseline, and MAB
baseline on (a) the 4-port data center topology, and (b) the 16-port data center
topology. OctoMap caused less harm to the throughput of the small and larger
data center networks.

lay between O (harmless) and did not exceed 0.5 for both the
4-port and 16-port data center topologies. This implies that
OctoMap distributed the SFC requests among all the available
data center links optimally by taking both the future predicted
traffic and the current network load into consideration during
the SFC mapping decisions.

VI. CONCLUSION

Service function chain mapping facilitates the complex vir-
tual network function process by assisting in embedding virtual
to physical nodes and links of all users’ requested services.
Dealing with the network uncertainties and with the nature of
highly fluctuating traffic, it is important to provide a smooth
flow of data while avoiding over or under-utilization of network
resources. This can be achieved through bandwidth prediction
of future traffic and active online consideration of network
utilization to aid in traffic mapping using machine learning
models. In this paper, we proposed OctoMap, a framework to
provide cost-efficient chain embedding decisions. To utilize
all the available network resources, OctoMap facilitates the
embedding of SFC by selecting the best number of nodes and
links based on future expected VNF and SFCs requests. It
has two main components: the predictor and the contextual
bandit policymaker modules. The predictor employs traces from
the Facebook data center to predict future traffic loads. The
contextual bandit module considers both predicted traffic along
with other network constraints, including CPU capacity and
link bandwidth, to make optimal embedding decisions for the
requested SFC services. Those decisions support the parallel
transmission of packets in data centers and improve throughput
and network utilization. The simulation results indicated the
effectiveness of the proposed learning approach. Our evaluation
showed that OctoMap can serve the maximum amount of SFC
requests and yet managed to save around 50% and 30% of
total incurred costs of small 4-port and larger 16-port data
center topologies, respectively.

VII. ACKNOWLEDGMENT

This work has been supported by NSF under Award Numbers
CNS1647084, CNS1836906, and CNS1908574, and by an
international travel grant from the GENI Project Office and
Boston University, under NSF collaborative agreement CNS-
1536090. The work of Aziza Alzadjali was conducted while
at Saint Louis University. Dr. Fiandrino’s work is supported
by the Juan de la Cierva grant (IJC2019-039885-I).

Authorized licensed use limited to: SAINT LOUIS UNIVERSITY. Downloade@&h October 05,2021 at 03:36:09 UTC from IEEE Xplore. Restrictions apply.

[1]
[2]

[3

=

[4

=

[5

=

[6

=

[7]

[8]

[9]

[10]

(1]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]
[21]

[22]

[23]

[24]

[25]

REFERENCES

J. Halpern, C. Pignataro et al., “Service function chaining (SFC)
architecture,” in RFC 7665, 2015.

A. Laghrissi and T. Taleb, “A survey on the placement of virtual resources
and virtual network functions,” IEEE Communications Surveys Tutorials,
vol. 21, no. 2, pp. 1409-1434, 2019.

J. Fan, C. Guan, Y. Zhao, and C. Qiao, “Availability-aware mapping of
service function chains,” in Proc. of IEEE INFOCOM, 2017, pp. 1-9.
A. AbdelSalam, F. Clad, C. Filsfils, S. Salsano, G. Siracusano, and
L. Veltri, “Implementation of virtual network function chaining through
segment routing in a linux-based nfv infrastructure,” in Proc. of IEEE
NetSoft, 2017, pp. 1-5.

S. Lange, H.-G. Kim, S.-Y. Jeong, H. Choi, J.-H. Yoo, and J. W.-
K. Hong, “Predicting VNF deployment decisions under dynamically
changing network conditions,” in Proc. of IEEE CNSM, 2019, pp. 1-9.
F. Esposito, M. Mushtaq, M. Berno, G. Davoli, D. Borsatti, W. Cerroni,
and M. Rossi, “Necklace: An architecture for distributed and robust
service function chains with guarantees,” IEEE Transactions on Network
and Service Management, pp. 1-1, 2020.

M. C. Luizelli, L. R. Bays, L. S. Buriol, M. P. Barcellos, and L. P. Gaspary,
“Piecing together the NFV provisioning puzzle: Efficient placement and
chaining of virtual network functions,” in Proc. of IFIP/IEEE IM, 2015,
pp- 98-106.

R. Gau, “Optimal traffic engineering and placement of virtual machines
in SDNs with service chaining,” in Proc. of NetSoft, 2017, pp. 1-9.

A. Roy, H. Zeng, J. Bagga, G. Porter, and A. C. Snoeren, “Inside the
social network’s (datacenter) network,” in Proc. of ACM SIGCOMM,
2015, pp. 123-137.

T. Benson, A. Anand, A. Akella, and M. Zhang, “Understanding data
center traffic characteristics,” ACM SIGCOMM Computer Communication
Review, vol. 40, no. 1, pp. 92-99, 2010.

T. Benson, A. Anand, A. Akella, and M. Zhang, “MicroTE: Fine grained
traffic engineering for data centers,” in Proc. of ACM CoNEXT, 2011,
pp. 1-12.

S. B. Schneider, N. P. Satheeschandran, M. Peuster, and H. Karl,
“Machine learning for dynamic resource allocation in network function
virtualization,” in Proc. of NetSoft, 2020.

R. Chen, H. Lu, Y. Lu, and J. Liu, “MSDF: A deep reinforcement
learning framework for service function chain migration,” in Proc. of
IEEE WCNC, 2020, pp. 1-6.

P. T. A. Quang, Y. Hadjadj-Aoul, and A. Outtagarts, “A deep reinforce-
ment learning approach for vnf forwarding graph embedding,” /IEEE
Transactions on Network and Service Management, vol. 16, no. 4, pp.
1318-1331, 2019.

N. Jalodia, S. Henna, and A. Davy, “Deep reinforcement learning for
topology-aware VNF resource prediction in nfv environments,” in Proc. of
IEEE NFV-SDN, 11 2019, pp. 1-5.

E. L. Peterson, “Geometric programming,” in Advances in Geometric
Programming. Springer, 1980, pp. 31-94.

R. Ware, M. K. Mukerjee, S. Seshan, and J. Sherry, “Beyond Jain’s
fairness index: Setting the bar for the deployment of congestion control
algorithms,” in Proc. of ACM HotNets, 2019, pp. 17-24.

B. N. Chun and A. Vahdat, “Workload and failure characterization on a
large-scale federated testbed,” 2003.

F. Esposito, I. Matta, and V. Ishakian, “Slice embedding solutions for
distributed service architectures,” ACM Comput. Surv., vol. 46, no. 1,
Jul. 2013. [Online]. Available: https://doi.org/10.1145/2522968.2522974
A. Engelmann and A. Jukan, “A reliability study of parallelized VNF
chaining,” in Proc. of IEEE ICC, 2018, pp. 1-6.

T.-M. Pham, S. Fdida, H. T. T. Binh et al., “Online load balancing for
network functions virtualization,” in Proc. of IEEE ICC, 2017, pp. 1-6.
Y. Jia, C. Wu, Z. Li, F. Le, and A. Liu, “Online scaling of NFV service
chains across geo-distributed datacenters,” IEEE/ACM Transactions on
Networking, vol. 26, no. 2, pp. 699-710, 2018.

G. Sun, Z. Chen, H. Yu, X. Du, and M. Guizani, “Online parallelized
service function chain orchestration in data center networks,” IEEE
Access, vol. 7, pp. 100 147-100 161, 2019.

A. Fischer, J. F. Botero, M. T. Beck, H. De Meer, and X. Hesselbach,
“Virtual network embedding: A survey,” IEEE Communications Surveys
& Tutorials, vol. 15, no. 4, pp. 1888-1906, 2013.

M. Melo, S. Sargento, U. Killat, A. Timm-Giel, and J. Carapinha,
“Optimal virtual network embedding: Node-link formulation,” IEEE

[26]

(27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

(371

(38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

(471

(48]

[49]

Transactions on Network and Service Management, vol. 10, no. 4, pp.
356-368, 2013.

A. Blenk, P. Kalmbach, J. Zerwas, M. Jarschel, S. Schmid, and
W. Kellerer, “Neurovine: A neural preprocessor for your virtual network
embedding algorithm,” in Proc. of IEEE INFOCOM, 2018, pp. 405-413.
X. Chen, Z. Li, Y. Zhang, R. Long, H. Yu, X. Du, and M. Guizani,
“Reinforcement learning—based QoS/QoE-aware service function chaining
in software-driven 5G slices,” Transactions on Emerging Telecommuni-
cations Technologies, vol. 29, no. 11, p. 3477, 2018.

X. Wang, C. Wu, F. Le, and F. C. Lau, “Online learning-assisted VNF
service chain scaling with network uncertainties,” in Proc. of IEEE
CLOUD, 2017, pp. 205-213.

J. Beran, Y. Feng, S. Ghosh, and R. Kulik, Long-Memory Processes.
Springer, 2016.

P. Bermolen and D. Rossi, “Support vector regression for link load
prediction,” Computer Networks, vol. 53, no. 2, pp. 191-201, 2009.

J. Lee, S. Lee, J. Lee, S. D. Sathyanarayana, H. Lim, J. Lee, X. Zhu,
S. Ramakrishnan, D. Grunwald, K. Lee, and S. Ha, “PERCEIVE: Deep
learning-based cellular uplink prediction using real-time scheduling
patterns,” in Proc. of ACM MobiSys, 2020, p. 377-390.

A. Scalingi, F. Esposito, W. Muhammad, and A. Pescapé, “Scalable
provisioning of virtual network functions via supervised learning,” in
Proc. of IEEE NetSoft, 2019, pp. 423-431.

C. Fiandrino, C. Zhang, P. Patras, A. Banchs, and J. Widmer, “A machine
learning-based framework for optimizing the operation of future networks,”
IEEE Communications Magazine, vol. 58, no. 6, 2020.

D. Chemodanov, P. Calyam, F. Esposito, and A. Sukhov, “A general
constrained shortest path approach for virtual path embedding,” in Proc. of
IEEE LANMAN, June 2016, pp. 1-7.

D. Chemodanov, P. Calyam, and F. Esposito, “A near optimal reliable
composition approach for Geo-Distributed Latency-Sensitive service
chains,” in Proc. of IEEE INFOCOM, Apr. 2019, pp. 1792-1800.

D. Chemodanov, P. Calyam, F. Esposito, R. McGarvey, K. Palaniappan,
and A. Pescapé, “A near optimal reliable orchestration approach for
geo-distributed latency-sensitive SFCs,” IEEE Transactions on Network
Science and Engineering, vol. 7, no. 4, pp. 2730-2745, 2020.

S. Boyd, S. P. Boyd, and L. Vandenberghe, Convex optimization.
Cambridge university press, 2004.

F. Esposito, “Catena: A distributed architecture for robust service function
chain instantiation with guarantees,” in Proc. of IEEE NetSoft, 2017, pp.
1-9.

S. Kiranyaz, O. Avci, O. Abdeljaber, T. Ince, M. Gabbouj, and D. J.
Inman, “ID convolutional neural networks and applications: A survey,”
Mechanical Systems and Signal Processing, vol. 151, p. 107398, 2021.
X. Cao, Y. Zhong, Y. Zhou, J. Wang, C. Zhu, and W. Zhang, “Interactive
temporal recurrent convolution network for traffic prediction in data
centers,” IEEE Access, vol. 6, pp. 5276-5289, 2017.

A. Mozo, B. Ordozgoiti, and S. Gémez-Canaval, “Forecasting short-term
data center network traffic load with convolutional neural networks,”
PLOS one, vol. 13, no. 2, p. e0191939, 2018.

L. Li, W. Chu, J. Langford, and R. E. Schapire, “A contextual-bandit
approach to personalized news article recommendation,” in Proc. of ACM
WWW, 2010, pp. 661-670.

A. Slivkins, “Introduction to multi-armed bandits,” arXiv preprint
arXiv:1904.07272, 2019.

N. Cesa-Bianchi, C. Gentile, G. Lugosi, and G. Neu, “Boltzmann
exploration done right,” in Advances in neural information processing
systems, 2017, pp. 6284-6293.

J. A. Aroca and A. F. Anta, “Bisection (band)width of product networks
with application to data centers,” IEEE Transactions on Parallel and
Distributed Systems, vol. 25, no. 3, pp. 570-580, 2014.

A. Singh, J. Ong, and et. al., “Jupiter rising: A decade of clos topologies
and centralized control in Google’s datacenter network,” in Proc. of ACM
SIGCOMM, 2015, p. 183-197.

L. John, S. Alex, , and L. Lihong, “Vowpal wabbit,” Available from
https://hunch.net/ vw/.

X. Zhong, Y. Wang, and X. Qiu, “Cost-aware service function chaining
with reliability guarantees in NFV-enabled inter-DC network,” in Proc. of
IFIP/IEEE IM, 2019, pp. 304-311.

G. Sun, Z. Chen, H. Yu, X. Du, and M. Guizani, “Online parallelized
service function chain orchestration in data center networks,” IEEE
Access, vol. 7, pp. 100 147-100 161, 2019.

Authorized licensed use limited to: SAINT LOUIS UNIVERSITY. Downloadkddn October 05,2021 at 03:36:09 UTC from IEEE Xplore. Restrictions apply.

