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Ultrasound Sensing Can Improve Continuous
Classification of Discrete Ambulation Modes

Compared to Surface Electromyography
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Abstract—Clinical translation of “intelligent” lower-limb
assistive technologies relies on robust control interfaces
capable of accurately detecting user intent. To date,
mechanical sensors and surface electromyography (EMG)
have been the primary sensing modalities used to classify
ambulation. Ultrasound (US) imaging can be used to
detect user-intent by characterizing structural changes of
muscle. Our study evaluates wearable US imaging as a
new sensing modality for continuous classification of five
discrete ambulation modes: level, incline, decline, stair
ascent, and stair descent ambulation, and benchmarks
performance relative to EMG sensing. Ten able-bodied
subjects were equipped with a wearable US scanner and
eight unilateral EMG sensors. Time-intensity features
were recorded from US images of three thigh muscles.
Features from sliding windows of EMG signals were
analyzed in two configurations: one including 5 EMG
sensors on muscles around the thigh, and another with 3
additional sensors placed on the shank. Linear discriminate
analysis was implemented to continuously classify these
phase-dependent features of each sensing modality as one
of five ambulation modes. US-based sensing statistically
improved mean classification accuracy to 99.8% (99.5-100%
CI) compared to 8-EMG sensors (85.8%; 84.0-87.6% CI) and
5-EMG sensors (75.3%; 74.5-76.1% CI). Further, separability
analyses show the importance of superficial and deep US
information for stair classification relative to other modes.
These results are the first to demonstrate the ability of
US-based sensing to classify discrete ambulation modes,
highlighting the potential for improved assistive device
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control using less widespread, less superficial and higher
resolution sensing of skeletal muscle.

Index Terms—Assistive technology, electromyography,
ultrasound.

I. INTRODUCTION

AN ESTIMATED 12.3 million people over the age of six
years needed assistance with activities of daily living in

the United States in 2010. Furthermore, 1.9 million people
were living with limb loss and annual hospital costs associated
with these individuals total more than $9 billion [1]. Aging,
obesity and the development of vascular and other diseases
(e.g. osteosarcoma) have led to projections that the number of
individuals with limb loss will double by 2050 [2]. Wearable
assistive devices aiming to restore “natural” locomotor abilities
during a wide sampling of daily tasks are essential for improving
the quality of life of individuals with mobility impairments.

To date, the most common assistive devices clinically avail-
able to patients with disability affecting the lower-limb are
conventional passive devices or devices that are controlled via
a microprocessor. Currently, most lower-limb assistive devices
rely on mechanical sensors for detection of motion and require
the user to manually identify and switch the ambulation mode of
the device [3], [4]. This requirement for manual control is bur-
densome and inconvenient to the user. Mechanically-powered
(i.e. robotic) assistive devices are capable of generating and
transmitting net mechanical energy to their users in order to
restore the ability to perform dynamic locomotor tasks of height-
ened mechanical demands. A recent literature review evaluated
21 powered lower-limb assistive devices and concluded that the
lack of a robust control system that can accurately recognize user
intent is a significant limiting factor for potential users [5]. To im-
prove functionality and clinical translation of assistive devices,
a robust and intuitive control interface (i.e. capable of continu-
ously detecting ambulation mode and seamlessly transitioning
between various modes without direct user input) is required.

Many researchers have investigated the use of surface elec-
tromyography (EMG) and machine learning models, or pattern
recognition classifiers, for ambulation mode detection and as-
sistive device control. Surface EMG has primarily been sug-
gested as an intuitive sensing interface due to its noninvasive
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ability to measure muscle excitation [6], [7]. These studies have
generated promising results indicating the inclusion of EMG
from many (≥5) muscle sites around the thigh and/or lower-
limb, along with information from mechanical sensors improved
classification accuracy of ambulation modes; however, substan-
tial errors remain in misclassifying ambulation mode [8], [9].
These errors may be attributed to EMGs reliance on superficial
muscle recordings, the inability to differentiate between relative
muscle firing of adjacent muscles resulting in susceptibility to
muscle crosstalk [10], as well as susceptibility to motion and
environmental conditions of the skin interface [11]. To robustly
handle these limitations, classification approaches that interpret
EMG and mechanical sensors are usually phase-based, such that
decisions are only made at specific events within the gait cycle
(e.g. heel strike and toe off), or incorporate sensor fault detection
to increase class separability [12], [13]. The performance of
lower-limb assistive technologies may improve if such devices
are able to interpret transitions between classes continuously.
Continuous classification could allow for users to react to pertur-
bations during gait and seamlessly transition between ambula-
tion modes. However, continuous classification is more difficult
during ambulation due to the non-stationary nature of both neural
and mechanical signals during each stride. Thus, there may
be other sensing modalities that offer equivalent or improved
performance with less widespread sensing requirements while
also enabling continuous classification of ambulation.

Musculoskeletal ultrasound (US) involves the use of high-
frequency sound waves to noninvasively image underlying soft
tissues and bony structures in the body. The use of dynamic US
imaging of muscle contraction as a possible sensing technology
for intuitive control has been recently proposed. US has the abil-
ity to provide a more detailed description of muscle contraction,
without crosstalk, in real-time via detection of morphological
changes in both the superficial and deep muscles with a high
spatial and temporal resolution [14]. For example, changes
in US image intensity are visualized during the formation of
cross-bridges prior to force production [15], [16]. Multiple re-
searchers have demonstrated the ability to classify wrist rotation
and position, as well as discrete finger movements and control
dexterous robotic hands with features derived from grayscale
US imaging [17]–[23]. US features of the forearm muscles have
also shown superior performance for the gesture recognition and
muscle contraction force estimation of hand and wrist, compared
to EMG [19], [24]. In two separate studies, Wang et al. and
Dhawan et al. have recently demonstrated the feasibility of using
US sensing for hand motion intention recognition and the control
of robotic hands on amputee subjects [25], [26]. Furthermore,
US has been used to estimate and predict non-weight bearing
lower limb motion, as well as classify discrete phases (stance
vs. swing) of the gait cycle [27]–[30].

It has yet to be explored whether US-derived features of
lower-limb skeletal muscle can be used to continuously classify
various modes of ambulation and how this sensing modality
compares to EMG-based classification. Herein, the objective
was to evaluate the feasibility of a method based on US image
intensity features of the rectus femoris, vastus medialis and
vastus intermedius muscles for continuous classification of five
ambulation modes including: (1) level walk, (2) incline-walk, (3)

Fig. 1. Sensor placement on representative subject. (A) Ultrasound
(US) probe holder placement with US transducer in place. (B) Anterior
view of surface electromyography (EMG) sensor placement. (C) Pos-
terior view of surface EMG sensor placement. (D) Complete sensor
configuration including surface EMG, US with custom transducer holder
and VICON reflective markers.

decline-walk, (4) stair ascent, and (5) stair descent in able-bodied
subjects. We compare this US-based sensing method to features
extracted from two separate configurations of surface EMG
by implementing a widely-used machine learning classifier,
namely, linear discriminant analysis (LDA). We hypothesized
that US-based sensing would improve ambulation mode classi-
fication compared to surface EMG.

II. METHODS

A. Subjects and Ambulation Experiment

Ten able-bodied subjects completed five ambulation tasks
at a self-selected speed including level walking, 10◦ incline
walking, 10◦ decline walking, stair ascent and stair descent.
Level walk, incline and decline trials were completed on a
force-instrumented treadmill for one minute. Following tread-
mill trials, subjects were asked to complete five trials of 4-stair
ascent followed by 4-stair descent with the normal step-over-
step alternating pattern (i.e. reciprocal gait). The staircase was
20.3 cm high, 90.8 cm wide, and 30.5 cm deep. Transition strides
including walk-to-stair and stair-to-walk during stair ascent and
descent were labeled as the respective stair ambulation mode
and included in analyses to increase the total number of stair
strides available for classification, and increase the difficulty
of the classification problem. This study was approved by the
institutional review board at at The University of Texas at Dallas
(protocol # IRB 18-33) on January 23, 2018. All subjects com-
pleted the institutional review board approved consent process
prior to participation; data collection took place from October
2018 to June 2019.

B. Sensor Placement

Subjects were equipped with a custom-designed 3D printed
US probe holder on their non-dominant limb. The US probe
holder was placed approximately 50% of the distance between
the anterior superior iliac spine and proximal base of the patella
such that the US transducer will capture the belly of the an-
terior thigh muscles (Fig. 1(A)). The transducer of a handheld
and wearable US device (mSonics, Lonshine Technologies Inc,
Beijing, China) was placed transversely to collect real-time
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images of rectus femoris, vastus medialis and vastus inter-
medius muscles. After confirmation of US transducer position
and adjusting US beam depth to achieve a clear image from
the transducer-skin interface to the deep vastus intermedius
boundary, the transducer holder was secured around the thigh
with Velcro straps to maintain the transducer position. Grayscale
US images were acquired using a linear array transducer with
a center frequency of 7.5 MHz, which was previously shown
to have a comparable accuracy to MRI for quantification of the
anterior thigh muscle parameters [31]; balancing the competing
effects of spatial resolution with penetration depth. Therefore,
US images were collected using a 128-element linear array
transducer with a transmit frequency of 7.5 MHz and a dynamic
range of 50 dB, ensuring a clear grayscale US image ranging
from the superficial skin-transducer interface to the deep vastus
intermedius boundary.

Eight channels of surface EMG signals were collected using
the Shimmer toolkit (Shimmer3 EMG Unit, Shimmer, Dublin,
Ireland). Self-adhesive and disposable pre-gelled electrodes
were placed over the belly of each muscle with an interelectrode
distance of 2 cm (H124SG - Covidien, Medtronic Inc., Dublin,
Ireland). The skin was shaved and cleaned prior to electrode
placement. Surface EMG was collected from the rectus femoris,
vastus lateralis, biceps femoris, adductor magnus, tensor fascia
latae, gastrocnemius, soleus and tibialis anterior muscles on
the same limb as US (Fig. 1(B) and Fig. 1(C)). A custom
software interface was developed to support a synchronized,
real-time stream of US images and EMG signals with a temporal
resolution of 1 ms. Anatomical data were recorded using VICON
3D motion capture system that tracked the location of reflective
markers (Fig. 1(D)). Gait events including heel strike and toe off
were recorded using Visual3D software.

C. Processing of Surface EMG and US Data

EMG sensor signals were analyzed in two separate configu-
rations. One sensor configuration included only the five EMG
sensors placed over the thigh muscles (above the knee) in order
to simulate sensor placement on a subject with a transfemoral
amputation (5-EMG sensing configuration). The second EMG
configuration included all eight EMG sensors placed over both
the thigh muscles as well as distal muscles below the knee
to simulate sensor placement on a subject with a transtibial
amputation (8-EMG sensor configuration). Raw EMG data were
filtered with a 4th order Butterworth bandpass filter with a low
cutoff at 20 Hz to remove motion artifact and a high cutoff at
450 Hz to remove high-frequency noise [32].

Continuous phase-dependent analysis was completed by
segmenting EMG using an overlapping sliding window
method [33]. Sliding analysis windows of 200 ms length with
100 ms overlap were used to extract six features from each
window of each EMG signal [34], [35]. The six features in-
cluded four time-domain features: mean absolute value, number
of slope sign changes, number of zero crossings, waveform
length; as well as the first two coefficients of a fourth-order
auto-regressive model. An auto-regressive model is a prediction
model that describes each sample from the EMG signal as a
linear combination of the previous samples; a model with four

Fig. 2. Schematic Diagram of US Time Intensity Feature Methods.
(A) Time series of raw B-mode US images visualizing vastus medialis
(VM), rectus femoris (RF) and vastus intermedius (VI) muscles during
a single walking stride. (B) Time series of 2-dimensional US features
consisting of 3 × 3 mm blocks of mean intensity. (C) Single frame
of US features transformed into 1-dimensional US intensity features
ranging from superficial to deep muscle tissue. (D) Full time series of
US intensity features.

orders was chosen based on previous research stating there was
no improvement in discrimination accuracy for models with
greater than four orders [36], [37]. This resulted in a [N×D]
feature vector for each stride, where N is the number of EMG
windows per stride and D is the total number of features multi-
plied by the number of sensors (either 6 features× 5 or 8 sensors,
depending on EMG configuration).

Grayscale US imaging can be used to visualize the hyper-
echoic (bright) connective tissue as well as the hypoechoic
(dark) contractile tissue of muscle (Fig. 2(A)). Muscle motion
is recognizable by the rapidly changing image echogenicity, or
intensity, of muscle tissue. Furthermore, the frequency of change
in grayscale images is related to the rate of displacement with
which muscle fascicles pass through the US beam [16]. Previous
researchers established a correlation between image intensity
from grayscale US images with muscle contraction and muscle
power [38], [39]. Additionally, fascicle behavior accessed by
US has shown distinct patterns for different movements and the
movement mechanics is shown to be a determinate of muscle
structure and coordination, when revealed by US imaging [40].
For instance, fascicle dynamics computed using US images of
the gastrocnemius medialis muscle exhibit different patterns dur-
ing stair ascent and stair descent movements [41], [42]. Further,
it has been demonstrated previously that US image intensity of
the rectus femoris is the greatest contributor to continuous esti-
mation of knee joint kinematics during non-weight-bearing knee
flexion/extension in comparison to fascicle mechanics, muscle
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thickness and aponeuroses angle [27]. Given the relevance and
the low computation cost of calculating the US image intensity,
we chose to create an US feature vector set consisting of multiple
time-intensity features.

Mean image intensity of 3 × 3 mm blocks were extracted
from each frame of US (Fig. 2(B)). The 3× 3 mm block size was
chosen to capture any changes in muscle thickness and pennation
angle; previous research revealed average rectus femoris muscle
thickness increases by 3.4 mm from rest to 25% of maximum
voluntary contraction [43]. This 2D vector set for each frame
was converted to a 1D vector set by organizing features from
left to right then superficial blocks to deep blocks (Fig. 2(C)).
The final US feature vector for each stride was then organized
into an [N × D] vector, where N is the number of frames per
stride and D is the number of features per frame (Fig. 2(D)).

D. Ambulation Mode Classification

A linear discriminate analysis (LDA) classifier was used
for continuous subject-dependent classification of ambulation
mode from features of the three sensing modalities: US, 5-EMG
sensors, and 8-EMG sensors. The LDA classifier was chosen
for its comparable performance to more complex classifiers,
as well as its potential for real-time implementation into myo-
electric prostheses [34], [44]. Mean classification accuracy was
reported for each sensing modality of a 5-fold within subject
cross-validation randomizing the extracted feature vectors into
training and testing sets, and repeating classification such that
each fold was the test set once.

Confusion matrices displaying predicted ambulation mode vs.
true ambulation mode are presented for each of the three sensing
modalities. The confusion matrices consist of percent accuracy
of classification, defined by:

Accuracy =
#Correctly Predicted Windows

Total # of Windows
× 100%

(1)
To account for imbalance in the amount of data in each of the
five ambulation modes, precision, recall, and F1 score were
calculated as additional measures to assess model performance.
Precision was calculated as:

Precision =
#True Positives

#True Positives + #False Positives
(2)

Recall was calculated as:

Recall =
#True Positives

#True Positives + #False Negatives
(3)

F1 score is the harmonic mean of precision and recall, and is
calculated as

F1 = 2× Precision×Recall

Precision+Recall
(4)

E. Quantification of US Feature Space and Class
Separability

We implemented a separability index (SI) calculation for each
ambulation mode (or classes) to evaluate the contribution of
information from both the superficial and deep muscle tissue
available to US sensing. Previous researchers have implemented

a similar SI calculation to quantify depth information of US on
hand and wrist gesture classification as well as to quantify the
feature space of EMG for pattern recognition control [45], [46].
SI measures half the Mahalanobis distance from one class to
its nearest class. A one-vs.-all calculation of SI was used where
each individual class is compared against all the other classes
and the minimum distance was chosen to represent the nearest
class.

SI = min
1≤i≤N ;i%=j

1

2

√
(µi − µj)TS

−1
j (µi − µj) (5)

where µi and µj is the centroid of class i and class j, Sj

is the covariance matrix of class j and N is the number of
classes. A larger value of SI indicates more distinct classes.
Each US intensity feature vector set was segmented into ten
layers ranging from most superficial to deepest. The depth of
each layer depended on the overall US beam depth for each
subject, with the exception of the first layer, which was 6 mm for
all subjects. For subjects with an overall beam depth of 50 mm,
layers 2-7 were 6 mm deep and layers 8-10 were 3 mm deep.
For subjects with an overall beam depth of 60 mm, all 10 layers
were 6 mm deep. For subjects with an overall US beam depth of
70 mm layers 2-4 were 9 mm deep and layers 5-10 were 6 mm
deep. There was no overlap between layers. The SI value of each
layer was calculated separately for each subject then averaged
to report an overall mean value for each layer.

F. Statistical Analysis

For overall classification accuracy as well as classification
accuracy of each mode, a one-way repeated measure analysis of
variance (ANOVA) was performed to compare the three sensing
modalities. If a significant difference was detected between sens-
ing modalities, paired t-tests with Bonferroni corrections were
used to compare p-values (α = 0.05). Additionally, to compare
the SI of each US layer, a one-way ANOVA was performed.
If a significant difference was detected between the US layers
evaluated, t-tests were completed with Bonferroni corrections
to compare p-values (α = 0.05) between layers.

III. RESULTS

Ten able-bodied subjects (5 male, 5 female) completed five
ambulation tasks including: (1) level walking, (2) 10◦ incline
walking, (3) 10◦ decline walking, (4) stair ascent and (5) stair
descent at a self-selected pace. Subject age ranged from 19–56
years, weight ranged from 50.7 to 82.1 kg, and height ranged
from 1.50 to 1.88 m. The mean (SD) number of frames of US
data of each ambulation mode are as follows, level walk: 186.8
(25.6), incline walk: 208.7 (26.7), decline walk: 184.3 (28.3),
stair ascent: 36.0 (5.3), and stair descent 31.6 (3.1). Additional
subject characteristics are given in Table I. All subjects reported
the left leg to be their non-dominant limb.

A. Classification Accuracy of Each Sensing Modality

Five-fold cross-validation was completed for each subject to
assess the average accuracy of an LDA classifier for continuous
classification of five ambulation modes (level walk, incline,
decline, stair ascent, and stair descent) with features from the
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TABLE I
DETAILED SUBJECT CHARACTERISTICS (N = 10)

US = ultrasound, SD = standard deviation.

three sensor sets. US sensing resulted in significantly greater
mean classification accuracy across all ambulation modes of
99.8% (95% CI, 99.5 - 100%) (p< 0.001) in comparison to both
the 8-EMG sensing (85.8%; 95% CI, 84.0 - 87.6%) and 5-EMG
sensing (75.3%; 95% CI, 74.5 - 76.1%). F1 score was calculated
as an additional classification performance metric to account for
the imbalance in the amount of data for each ambulation mode.
Similar to accuracy, US sensing resulted in significantly greater
F1 score of 98.9% (95% CI, 85.2%-100%) in comparison to 8-
EMG sensing (72.8%; 95% CI, 53.6%-91.9%) (p = 0.003) and
5-EMG sensing (67.1%; 95% CI, 61.9%-73.8%) (p < 0.001).

US sensing resulted in significantly greater (p < 0.001) mean
classification accuracy for each ambulation mode in comparison
to the 8-EMG sensor configuration (Fig. 3). The additional 3
EMG sensors placed over muscles below the knee in the 8-
EMG sensor configuration significantly (p < 0.05) improved
mean classification accuracy in comparison to the 5-EMG sensor
configuration containing EMG sensors only over muscles above
the knee for level walk, decline walk and stair ascent ambulation
modes only.

Confusion matrices displaying mean percent accuracy, preci-
sion and recall are presented in Fig. 3. For US-based sensing,
the only classification errors occurred during stair ascent and
stair descent where stair ascent was most commonly misclas-
sified as stair descent and vice versa. Furthermore, US-based
classification produced the greatest precision (i.e., the ability of
a classification model to correctly identify only the relevant data
points) and recall (i.e., the ability to identify all relevant data
points in a dataset) for all ambulation modes in comparison to
EMG sensing. For level, incline and decline walking, there was
100% precision and recall, meaning there were no false positives
or false negatives. The 5 and 8-EMG sensor configurations
revealed similar trends to each other, with an overall reduction
in the number of errors in the 8-EMG sensor confusion matrix
compared to 5-EMG sensing. Level walk was most commonly
misclassified as either incline or decline, while both incline
and decline were most commonly misclassified as level walk.
Both EMG-based classification models exhibited the greatest
recall for level walking, while classification of incline walking
exhibited the greatest precision. Similar to the US-based model,
in terms of classification accuracy, precision and recall, the
classification performance worsened during stair ambulation.
For the 5-EMG sensor configuration, stair ascent was commonly
misclassified as stair descent. However, for the 8-EMG sensor

Fig. 3. (A) Classification accuracy (mean and standard deviation (SD)
from 10 subjects) and (B) confusion matrices from 5-fold cross validation
for each sensing modality from each sensing modality, (5-EMG sensors,
8-EMG sensors and US), for each of the five ambulation modes, includ-
ing: walk (W), incline (I), decline (D), stair ascent (SA) and stair descent
(SD). Confusion matrices display mean (SD) accuracy, as well as mean
precision and recall for each ambulation mode from 10 subjects.

configuration stair ascent was commonly misclassified as in-
cline. For the 5-EMG and 8-EMG sensor configurations, stair
descent was most commonly misclassified as either decline or
stair ascent.

Fig. 4 displays the mean classification accuracy vs. percent
of the gait cycle for a single stride of each ambulation mode.
Consistent with the results presented in Fig. 3, US-based sensing
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Fig. 4. Classification accuracy per stride. Mean classification accuracy
per stride of all subjects using 5-EMG sensors, 8-EMG sensors and
US during five locomotion modes: (A) level walking, (B) 10◦ incline
walking, (C) 10◦ decline walking, (D) stair ascent, and (E) stair descent.
The dashed vertical line represents the transition from stance to swing
phase. Respective standard deviation shown as shaded region for all
sensing modalities.

resulted in 100% accuracy during the entire gait cycle of level
walk, incline and decline strides. For each of the three sensing
modalities, classification accuracy remains consistent along the
gait cycle for level walk strides. For both 5-EMG and 8-EMG
sensing configurations, classification accuracy during incline
walking decreases during swing. The opposite trend is seen for
decline walking, where classification accuracy is decreased at
the beginning of stance phase and increases towards toe-off and
swing phase of gait. Classification accuracy during both stair as-
cent and stair descent with US sensing appears to increase along
the gait cycle, with the greatest number of misclassifications
occurring during early stance phase. In contrast to US sensing,

Fig. 5. Representative US Intensity Features with Layers. Color map of
US intensity features from 5 strides of each ambulation mode for a single
representative subject. Features have been separated into ten layers
ranging from layer 1 including the most superficial US features to layer
ten including the deepest US features. The range of features from 0 to 1
corresponds to magnitude of US intensity features with 0 corresponding
to darkest intensity features and 1 corresponding to brightest intensity
features.

classification accuracy during stair ascent for both 5-EMG and
8-EMG sensing appears to increase during stance phase to a
maximum value of 80% then decrease back to the initial value
of 50% during swing phase. Peak classification accuracy during
stair descent for 8-EMG sensing is 80%, occurring during
early swing phase, then rapidly decreases to 50% at terminal
swing phase. Classification accuracy during stair descent for
5-EMG sensing is relatively stable at 50–60% during stance
and decreases during swing phase.

B. Ultrasound Separability of Ambulation Mode

US image intensity features were segmented into ten layers
ranging from the most superficial features in layer one to the
deepest features in layer ten (Fig. 5). The first layer of US
features consisted of relatively similar time-intensity values
for each mode that were greater in magnitude than the sub-
sequent layers due to the reflection of the US beam at the US
transducer-skin interface. Therefore, we removed layer one from
the separability index (SI) calculations in order to focus the
comparison of the effect of US layers from features including
only the underlying muscle tissue on the separability of each
ambulation mode.

Fig. 6 shows the SI of each US layer for each ambulation
mode. Higher values of SI indicate increased separability of the
respective ambulation mode for that US layer. SI decreased as
US depth increased with a statistically significant reduction in SI
after the third layer for level walk (p= 0.01), incline (p= 0.001)
and decline trials (p = 0.005). The SI value at layer two as well
as the magnitude of change between SI of superficial and deep
layers of stair ambulation trials was smaller in comparison to the
level walk, incline and decline trials. There was a statistically
significant reduction (p= 0.03) in SI after the fourth US layer for
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Fig. 6. Separability Index for Each Ambulation Mode. Mean of all subjects SI of nine layers of US features for each of five ambulation modes: (A)
level walking, (B) 10◦ incline walking, (C) 10◦ decline walking, (D) stair ascent, and (E) stair descent. Solid blue shaded regions represent standard
deviation; striped shaded regions indicate a statistically significant reduction in SI from the most superficial layer.

stair ascent trials. For stair descent trials, SI initially decreased
as US depth increased, with a statistically significant reduction
after the fifth layer (p = 0.03), but SI increased at the seventh
and tenth layers to comparable values of SI at US layers 2–4
(p > 0.05).

IV. DISCUSSION

A. Comparison of US and EMG Classification
Performance

This study was the first to our knowledge to evaluate the
efficacy of US-based sensing relative to surface EMG for contin-
uous classification of discrete ambulation modes in able-bodied
subjects. Results from this study support our hypothesis that
wearable US sensing significantly improves the classification
accuracy of multiple ambulation modes in comparison to surface
EMG. The evaluation of US time-intensity features with an LDA
classifier resulted in 100% accuracy for level walk, incline and
decline trials of all 10 able-bodied subjects. Mean classification
accuracy with US-based sensing was 97.6% for both stair ascent
and stair descent. In light of these results, US-based continuous
classification of ambulation mode appears to be feasible and
could be implemented for control of lower-limb assistive tech-
nologies. Additionally, US-based sensing may do so with less
widespread sensor locations on the limb relative to other sensing
modalities. Although this study evaluated able-bodied subjects,
these findings may also serve to build a training database for
future research involving subjects with impairments of the lower
limb (e.g. adaptive learning of hand prostheses [47]).

Ideally, the control system of lower-limb assistive devices
should be able to accurately detect ambulation mode and allow
users to transition between various ambulation modes both
effortlessly and seamlessly. Previous researchers have suggested
that a continuous method for ambulation mode recognition
is more efficient and informative in comparison to a phase-
based method confined to discrete gait events for its ability to
measure and adjust device parameters in real-time [48]–[50].
Furthermore, continuous classification could provide additional
opportunities for mode switching. For instance, this style of
control can be implemented in a hierarchical control structure,

where the high-level controller decides the intended activity (or
ambulation mode) and a mid-level controller defines the required
joint kinematic and/or kinetic trajectories, or more abstract
metrics, such as joint impedance [51], mechanical energy [52]
or swing clearance [53], that could be associated with different
ambulation modes.

Although it is difficult to directly compare the accuracy of
continuous classification of EMG signals to previous work uti-
lizing phase-based classification, the classification accuracy of
LDA with both of the EMG sensing configurations in this study
was less than the classification accuracy of EMG sensing for
similar ambulation modes reported by other researchers. Huang
et al. [34] evaluated ambulation mode classification based on
various combinations of 16 surface EMG sensors placed over
muscles in the foot, shank, upper thigh and gluteal regions. When
including sensors only in the gluteal and thigh regions to simu-
late sensor placement on a transfemoral amputee, a classification
accuracy of 93% was achieved. The classification accuracy
of able-bodied subjects in this study were comparable to the
classification accuracy of amputee subjects with similarly placed
sensors. Beyond the phase-based classification approach, one
possible explanation for the difference in classification accuracy
from the present study to the results described by Huang et al. is
the increase in the number of surface EMG sensors, as well as
a higher concentration of sensors from muscles above the knee.
The present results may indicate that US sensing alone not only
reduces the need for a more complex phase-based classification
scheme, but also reduces the total number of sensors necessary to
improve classification performance for user intent recognition.

Moreover, classification performance deteriorates due to in-
evitable disturbances to the sensor interface. Self-recovery or
sensor fault detection has been shown to improve classification
accuracy when a disturbance occurs and could be incorporated to
improve the classification performance of the surface EMG sig-
nals in the present study. Furthermore, “adaptive” methods have
been explored to improve EMG classification, where a change in
EMG signals is detected and classification of ambulation mode
reverts to mechanical sensor information then adapts the EMG
pattern recognition classifier to the EMG signal changes [13].
However, it is noteworthy to mention that US sensing may suffer
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from similar disturbances at the sensor (US transducer)-skin
interface in regard to motion and the need for a coupling agent.
Similar fault detection or adaptive techniques should be explored
in the case of potential disturbances to the US transducer-skin
interface.

All of the misclassification errors from US-based sensing
occurred during either stair ascent or stair descent trials. This
can possibly be explained by the imbalance of data for each
ambulation mode, such that there were less training and testing
data for stair ambulation modes in comparison to walking am-
bulation modes. Increasing the amount of training data for these
ambulation modes to reduce the imbalance of the data set could
improve classification accuracy during stair ambulation. For
both stair ascent and descent ambulation modes, classification
error decreased as the percent of the gait cycle increased. In other
words, classification performance was worst during early stance
phase through pre-toe off. It is possible this is a result of the
inclusion of transition strides in the stair ascent and descent data
sets. Errors during stair transition strides, as well as stair strides,
could give way to troublesome clinical implications of US-based
sensing within assistive devices, resulting in potentially danger-
ous moderate to substantial perturbations in gait [9]. Previous
research investigating muscle activation patterns with surface
EMG during stair ambulation indicate that the rectus femoris
and vastus medialis muscles are active during only the first half
of stance phase of stair ascent strides, and active during all of
stance as well as terminal swing during stair descent strides [54],
[55]. Therefore, the similar patterns of muscle activation during
early stance could contribute to the number of misclassifications
between the stair ascent and stair descent trials during this phase
of the gait cycle. Inclusion of additional muscles, perhaps on the
posterior thigh, could potentially increase the discrimination
between these ambulation modes and improve classification
accuracy.

B. Contribution of Superficial and Deep US Features

One primary question regarding the improvement in US-
based classification of ambulation mode is to determine whether
the improvement in performance can be attributed to the addi-
tional information from deep muscle information, or whether
it is attributed to the increased dimensionality of the US signal
in comparison to surface EMG. We implemented a one vs. all
calculation of SI to determine the influence of depth informa-
tion of US for classification of each ambulation mode. Results
from the SI calculation revealed that deep muscle information
does not necessarily contribute to the improved classification
performance for level walk, incline and decline trials. The SI
index of the second and third layers, corresponding to 12-18 mm
of tissue below the first 6 mm of skin and connective tissue
provided the most information to discriminate between each of
these three ambulation modes. These results point to increased
dimensionality or resolution of the US signal as the primary
explanation, rather than the addition of information from deep
muscles, for 100% classification accuracy of US-based sensing.
One explanation for the decrease in SI for deeper layers could
be the reduction in the energy of the sound wave as it continues

to penetrate tissue due to reflection, scattering, absorption, or
dispersion [56].

In contrast, the SI value for all layers of US during stair
ambulation trials decreased in magnitude in comparison to the
walking trials. The SI value of stair ascent trials significantly
decreased after the fourth layer (27–30 mm below the first layer).
This depth could correspond to a larger area of the superficial
muscles, indicating the significant contribution of information
from deep fibers within the same muscle. For stair descent trials,
the SI value from the second to fifth layers (24–27 mm below the
first layer) and the seventh layer (6 mm at 36 mm below
the first layer) provided statistically significant discriminatory
information. Therefore, it is likely that the combination of an
increase in resolution from superficial muscle tissue as well as
the addition of information from the vastus intermedius muscle
(a deep muscle in the anterior thigh) is responsible for the high
classification performance of this ambulation mode. Future work
should continue to evaluate the contribution of information from
deep muscles available to US sensing during additional tasks,
as well as the potential contribution of the US features stability
over time for device implementation.

C. Potential for US Integration With Assistive Devices

Future exploration of raw US signals instead of image features
may improve the potential for real-time implementation by
removing the computational cost of image capturing, recon-
struction and image processing steps, as well as their associated
power demands. Beyond the computational and power demands,
additional optimization of the size and transducer-skin interface
of US imaging systems is required for this sensing modality to
be incorporated into assistive devices.

Average time to process a single frame of US imaging data was
31 msec on a single CPU (Intel(R) Core i7-7700 at 3.60 GHz)
computer. Currently, this is insufficient for realistic online clas-
sification. Future work aims to determine if data from the entire
128-element linear US array is needed, or rather if a subset of
image intensity features from single US elements will yield
similar classification accuracy. Therefore, miniaturization not
only reduces the physical size of the US system, but also has
potential to reduce the computational demand of the US system
necessary to achieve an online control system.

Significant advances in miniaturization of US imaging sys-
tems gives way for this technology to realistically be integrated
into control systems of lower limb assistive devices. Multiple
researchers have explored the use of one-dimensional amplitude
(A-mode) US signals for the classification of forearm muscle
contraction and gesture recognition [19], [21], [57]. Further-
more, Akhlaghi et al. [58] concluded that there is no effect
on classification accuracy when the number of US elements is
reduced from 128 elements to four equidistantly spaced US ele-
ments. While the experimental set-up used in the present study
may not directly translate to A-mode US-based control, these re-
sults inspire future work evaluating the use of A-mode US for the
classification of ambulation as well as a reduction in the number
of elements. Additionally, researchers have recently described
multiple designs to reduce the size of US transducers; emerging
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technology utilizes a polymer-based wearable US transducer
that is low-profile and includes miniaturized sensors as flexible
substrates [59], [60]. The combination of miniaturization of
US imaging technology along with the improved classification
performance demonstrates the potential for US imaging as a
wearable sensing interface for assistive device control.

D. Limitations and Future Work

The current results demonstrate the ability of US to improve
classification performance, but limitations exist that require
future research. We chose to keep the classification architecture,
LDA, fixed in this study to evaluate the sole effect of sens-
ing modality. While this is a very common classifier used for
applications in user intent recognition with assistive devices,
optimization of the classifier architectures for these different
sensing modalities remains an important area of future work. For
example, neural networks have been explored for improving per-
formance of user intent recognition based on surface EMG, me-
chanical sensors, as well as ultrasound-based sensors [61]–[64].
The strategies employed for US-based estimation of upper-limb
motions may have the potential to translate to the lower-limb
applications. For instance, using a Hidden Markov Model-based
approach has shown promise to encode the temporal dependency
of US features for motion prediction during transitions [65].

The imbalance in the amount of data of each ambulation mode
may have negatively affected the classification performance for
stair ascent and descent modes. Future data collection methods
should aim to minimize the imbalance in data of all ambulation
modes studied. Moreover, this study only evaluated cyclic tasks;
inclusion of specific gestures as well as more complex move-
ments, such as sit-to-stand or obstacle crossing, would reveal
more information about the feasibility of US-based sensing for a
truly intuitive controller for assistive devices. We aim to address
these additional tasks, as well as evaluate continuous estimation
of joint motion with continuous regression models as well as
force-related motion protocols in future work.

Additional work is required to evaluate the stability of US fea-
tures over time. Data should be collected over longer durations
and multiple days to confirm that the US-based classification
performance does not deteriorate over time. Additionally, the
present study included able-bodied subjects only; including sub-
jects with mobility disorders who require assistive devices and
subjects with lower-limb amputations are necessary to confirm
the findings of the present study. Due to the subject-dependent
nature of the US features, we expect these features to change
based on differences in muscle architecture of amputee subjects.
However, recent research by Dhawan et al. [26] including both
able-bodied subjects and subjects with an upper-extremity am-
putation revealed that amputee subjects were able to complete
five different hand positions with>96% accuracy using the same
US-based sensing as able-bodied subjects. Given the promising
results of upper-extremity research involving US-based sensing,
we expect that the techniques proposed in the current paper
can be translated from able-bodied subjects to subjects with a
lower-limb amputation with similar improvements in classifica-
tion performance relative to EMG.

V. CONCLUSION

These results demonstrate the feasibility of using US imaging
to reliably classify multiple ambulation modes as well as validate
this classification performance versus surface EMG, one of
the most commonly used sensing modalities for user intent
recognition in assistive devices. The increased dimensionality
of the US signal is primarily responsible for the improvement in
classification performance, with information from deep muscles
contributing to classification of stair ambulation. In combination
with the continued miniaturization of US imaging systems,
this approach could provide transformative improvements over
traditional control strategies for lower-limb assistive devices,
returning natural functionality and enhancing the quality of life
of patients.

REFERENCES

[1] M. W. Brault, “Americans With Disabilities: 2010,” Current Popula-
tion Reports, 2012. [Online]. Available: https://www.census.gov/library/
publications/2012/demo/p70-131.html

[2] K. Ziegler-Graham et al., “Estimating the prevalence of limb loss in the
United States: 2005 to 2050,” Arch. Phys. Med. Rehabil., vol. 89, no. 3,
pp. 422–429, 2008.

[3] Ö. Americas, “Power Knee,” 2018. [Online]. Available: https://www.ossur.
com/en-us/prosthetics/knees/power-knee

[4] M. Bellmann et al., “Immediate effects of a new microprocessor-controlled
prosthetic knee joint: A comparative biomechanical evaluation,” Arch.
Phys. Med. Rehabil., vol. 93, no. 3, pp. 541–549, 2012.

[5] M. Windrich et al., “Active lower limb prosthetics: A systematic re-
view of design issues and solutions,” Biomed. Eng. Online, vol. 15,
no. Suppl 3, 2016. [Online]. Available: https://www.ncbi.nlm.nih.gov/
pubmed/28105948

[6] C. D. Joshi, U. Lahiri, and N. V. Thakor, “Classification of gait phases
from lower limb EMG: Application to exoskeleton orthosis,” in Proc. IEEE
Point-of-Care Healthcare Technol. (PHT), 2013, pp. 228–231.

[7] D. Farina et al., “The extraction of neural information from the surface
EMG for the control of upper-limb prostheses: Emerging avenues and
challenges,” IEEE Trans. Neural Syst. Rehabil. Eng., vol. 22, no. 4,
pp. 797–809, Jul. 2014.

[8] A. J. Young, T. A. Kuiken, and L. J. Hargrove, “Analysis of using EMG
and mechanical sensors to enhance intent recognition in powered lower
limb prostheses,” J. Neural Eng., vol. 11, no. 5, Sep. 2014, Art. no. 056021.

[9] L. J. Hargrove et al., “Intuitive control of a powered prosthetic leg dur-
ing ambulation: A randomized clinical trial,” JAMA, vol. 313, no. 22,
pp. 2244–2252, 2015.

[10] D. Farina et al., “Surface EMG crosstalk between knee extensor mus-
cles: Experimental and model results,” Muscle Nerve, vol. 26, no. 5,
pp. 681–695, 2002.

[11] R. H. Chowdhury et al., “Surface electromyography signal processing and
classification techniques,” Sensors (Basel), vol. 13, no. 9, pp. 12 431–
12 466, 2013.

[12] M. Liu, F. Zhang, and H. H. Huang, “An adaptive classification strat-
egy for reliable locomotion mode recognition,” Sensors, vol. 17, no. 9,
pp. 1–18, 2017.

[13] J. A. Spanias et al., “Online adaptive neural control of a robotic lower limb
prosthesis,” J. Neural Eng., vol. 15, 1, 2018, Art. no. 16015.

[14] T. Fukunaga et al., “Muscle architecture and function in humans,” J.
Biomech., vol. 30, no. 5, pp. 457–463, 1997.

[15] R. G. Lopata et al., “Dynamic imaging of skeletal muscle contraction
in three orthogonal directions,” J. Appl. Physiol. (1985), vol. 109, no. 3,
pp. 906–915, 2010.

[16] A. V. Dieterich et al., “Spatial variation and inconsistency between esti-
mates of onset of muscle activation from EMG and ultrasound,” Sci. Rep.,
vol. 7, 2017, Art. no. 42011.

[17] X. Yang, J. Yan, Y. Fang, D. Zhou, and H. Liu, “Simultaneous prediction of
wrist/hand motion via wearable ultrasound sensing,” IEEE Trans. Neural
Syst. Rehabil. Eng., vol. 28, no. 4, pp. 970–977, Apr. 2020.

[18] N. Akhlaghi et al., “Real-time classification of hand motions using ultra-
sound imaging of forearm muscles,” IEEE Trans. Biomed. Eng., vol. 63,
no. 8, pp. 1687–1698, Aug. 2016.

Authorized licensed use limited to: University of Texas at Austin. Downloaded on September 30,2021 at 14:16:23 UTC from IEEE Xplore.  Restrictions apply. 

https://www.census.gov/library/publications/2012/demo/p70-131.html
https://www.ossur.com/en-us/prosthetics/knees/power-knee
https://www.ncbi.nlm.nih.gov/pubmed/28105948


1388 IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, VOL. 68, NO. 4, APRIL 2021

[19] J. He et al., “Wrist and finger gesture recognition with single-element
ultrasound signals: A comparison with single-channel surface elec-
tromyogram,” IEEE Trans. Biomed. Eng., vol. 66, no. 5, pp. 1277–1284,
May 2019.

[20] L. A. Hallock, A. Kato, and R. Bajcsy, “Empirical quantification and mod-
eling of muscle deformation: Toward ultrasound-driven assistive device
control,” in Proc. IEEE Int. Conf. Robot. Autom., 2018, pp. 1825–1832.

[21] J. McIntosh et al., “EchoFlex: Hand gesture recognition using ultrasound
imaging,” in Proc. Conf. Human Factors Comput. Syst., pp. 1923–1934,
May 2017.

[22] J. Shi et al., “Recognition of finger flexion motion from ultrasound image:
A feasibility study,” Ultrasound Med. Biol., vol. 38, no. 10, pp. 1695–1704,
Oct. 2012.

[23] S. Sikdar et al., “Novel method for predicting dexterous individual finger
movements by imaging muscle activity using a wearable ultrasonic sys-
tem,” IEEE Trans. Neural Syst. Rehabil. Eng., vol. 22, no. 1, pp. 69–76,
Jan. 2014.

[24] X. Yang, J. Yan, and H. Liu, “Comparative analysis of wearable a-mode ul-
trasound and SEMG for muscle-computer interface,” IEEE Trans. Biomed.
Eng., vol. 67, no. 9, pp. 2434–2442, Sep. 2019.

[25] Z. Wang et al., “Ultrasonography and electromyography based hand
motion intention recognition for a trans-radial amputee: A case study,”
Med. Eng. Phys., vol. 75, pp. 45–48, Jan. 2020.

[26] A. S. Dhawan et al., “Proprioceptive sonomyographic control: A novel
method for intuitive and proportional control of multiple degrees-of-
freedom for individuals with upper extremity limb loss,” Scientific Rep.,
vol. 9, 1, 2019, Art. no. 9499.

[27] M. H. Jahanandish, N. P. Fey, and K. Hoyt, “Lower-limb motion estimation
using ultrasound imaging: A framework for assistive device control,” IEEE
J. Biomed. Health Inform., vol. 23, no. 6, pp. 2505–2514, Nov. 2019.

[28] M. H. Jahanandish, N. P. Fey, and K. Hoyt, “prediction of distal lower-limb
motion using ultrasound-derived features of proximal skeletal muscle,” in
Proc. IEEE Int. Conf. Rehabil. Robot., 2019, vol. 2019, pp. 71–76.

[29] M. H. Jahanandish et al., “Gait phase identification during level, incline
and decline ambulation tasks using portable sonomyographic sensing,” in
Proc. IEEE Int. Conf. Rehabil. Robot., 2019, vol. 2019, pp. 988–993.

[30] Q. Zhang, K. Kim, and N. Sharma, “Prediction of ankle dorsiflexion mo-
ment by combined ultrasound sonography and electromyography,” IEEE
Trans. Neural Syst. Rehabil. Eng., vol. 28, no. 1, pp. 318–327, Jan. 2020.

[31] N. D. Reeves, C. N. Maganaris, and M. V. Narici, “Ultrasonographic
assessment of human skeletal muscle size,” Eur. J. Appl. Physiol., vol.
91, pp. 116–118, 2004.

[32] C. J. De Luca et al., “Filtering the surface EMG signal: Movement
artifact and baseline noise contamination,” J. Biomechanics, vol. 43, no. 8,
pp. 1573–1579, 2010.

[33] L. J. Hargrove et al., “Principal components analysis preprocessing for im-
proved classification accuracies in pattern-recognition-based myoelectric
control,” IEEE Trans. Biomed. Eng., vol. 56, 5, pp. 1407–1414, May 2009.
[Online]. Available: https://www.ncbi.nlm.nih.gov/pubmed/19473932

[34] H. Huang, T. A. Kuiken, and R. D. Lipschutz, “A strategy for identifying
locomotion modes using surface electromyography,” IEEE Trans. Biomed.
Eng., vol. 56, no. 1, pp. 65–73, Jan. 2009.

[35] B. Hudgins, P. Parker, and R. N. Scott, “A new strategy for multifunction
myoelectric control,” IEEE Trans. Biomed. Eng., vol. 40, no. 1, pp. 82–94,
Jan. 1993.

[36] D. Graupe, J. Salahi, and K. H. Kohn, “Multifunctional prosthesis and
orthosis control via microcomputer identification of temporal pattern
differences in single-site myoelectric signals,” J. Biomed. Eng., vol. 4,
no. 1, pp. 17–22, 1982.

[37] H. Han-Pang et al., “EMG classification for prehensile postures using
cascaded architecture of neural networks with self-organizing maps,” in
Proc. IEEE Int. Conf. Robot. Autom. (Cat. No.03CH37422), 2003, vol. 1,
pp. 1497–1502.

[38] E. L. Cadore et al., “Echo intensity is associated with skeletal muscle
power and cardiovascular performance in elderly men,” Exp. Gerontol,
vol. 47, no. 6, pp. 473–478, 2012.

[39] P. W. Hodges et al., “Measurement of muscle contraction with ultrasound
imaging,” Muscle Nerve, vol. 27, no. 6, pp. 682–692, 2003.

[40] J. M. Wakeling et al., “Movement mechanics as a determinate of muscle
structure, recruitment and coordination,” Philosophy Trans. Roy. Soc. B:
Biol. Sci., vol. 366, no. 1570, pp. 1554–1564, 2011.

[41] M. Spanjaard et al., “Influence of step-height and body mass on gastrocne-
mius muscle fascicle behavior during stair ascent,” J. Biomechanics, vol.
41, no. 5, pp. 937–944, 2008.

[42] M. Spanjaard et al., “Lower-limb biomechanics during stair descent:
Influence of step-height and body mass,” J. Exp. Biol., pp. 1368–1375,
2008.

[43] B. Chauhan, M. A. Hamzeh, and A. I. Cuesta-Vargas, “Prediction of
muscular architecture of the rectus femoris and vastus lateralis from EMG
during isometric contractions in soccer players,” Springerplus, vol. 2,
pp. 1–8, 2013. [Online]. Available: https://www.ncbi.nlm.nih.gov/
pubmed/24171156

[44] K. Englehart and B. Hudgins, “A robust, real-time control scheme for
multifunction myoelectric control,” IEEE Trans. Biomed. Eng., vol. 50,
no. 7, pp. 848–854, Jul. 2003.

[45] N. E. Bunderson and T. A. Kuiken, “Quantification of feature space
changes with experience during electromyogram pattern recognition con-
trol,” IEEE Trans. Neural Syst. Rehabil. Eng., vol. 20, no. 3, pp. 239–246,
May 2012.

[46] J. He et al., “Wrist and finger gesture recognition with single-element
ultrasound signals: A comparison with single-channel surface elec-
tromyogram,” IEEE Trans. Biomed. Eng., vol. 66, no. 5, pp. 1277–1284,
May 2019.

[47] T. Tommasi et al., “Improving control of dexterous hand prostheses using
adaptive learning,” IEEE Trans. Robot., vol. 29, no. 1, pp. 207–219,
Feb. 2013.

[48] H. Huang et al., “Continuous locomotion-mode identification for pros-
thetic legs based on neuromuscular - Mechanical fusion,” IEEE Trans.
Biomed. Eng., vol. 58, no. 10, pp. 2867–2875, Oct. 2011.

[49] D. Xu et al., “Real-time on-board recognition of continuous locomo-
tion modes for amputees with robotic transtibial prostheses,” IEEE
Trans. Neural Syst. Rehabil. Eng., vol. 26, no. 10, pp. 2015–2025,
Oct. 2018.

[50] H. A. Varol, F. Sup, and M. Goldfarb, “Multiclass real-time intent recog-
nition of a powered lower limb prosthesis,” IEEE Trans. Biomed. Eng.,
vol. 57, no. 3, pp. 542–551, Mar. 2010.

[51] N. Hogan, “Impedance control: An approach to manipulation: Part I-
theory,” J. Dyn. Syst., Meas. Control, Trans. ASME, vol. 107, no. 1, pp.
1–7, 1985.

[52] T. Lenzi, L. Hargrove, and J. Sensinger, “Speed-adaptation mechanism:
Robotic prostheses can actively regulate joint torque,” IEEE Robot. Autom.
Mag., vol. 21, no. 4, pp. 94–107, Dec. 2014.

[53] J. Mendez, S. Hood, A. Gunnel, and T. Lenzi, “Powered knee and
ankle prosthesis with indirect volitional swing control enables level-
ground walking and crossing over obstacles,” Sci. Robot., vol. 5, no. 44,
2020.

[54] Benedetti MG et al., “Muscle activation patterns during level walking and
stair ambulation,” in Appl. EMG Clin. Sports Med.. IntechOpen, 2012,
pp. 117–130. [Online]. Available: https://cdn.intechopen.com/pdfs-wm/
25822.pdf

[55] M. Hall, C. A. Stevermer, and J. C. Gillette, “Muscle activity ampli-
tudes and co-contraction during stair ambulation following anterior cru-
ciate ligament reconstruction,” J. Electromyogr. Kinesiol, vol. 25, no. 2,
pp. 298–304, 2015.

[56] P. N. T. Wells, “Absorption and dispersion of ultrasound in biological
tissue,” Ultrasound Med. Biol., vol. 1, no. 4, pp. 369–376, 1975.

[57] N. Hettiarachchi, Z. Ju, and H. Liu, “A new wearable ultrasound muscle
activity sensing system for dexterous prosthetic control,” in Proc. IEEE
Int. Conf. Syst., Man, Cybern., 2015, pp. 1415–1420.

[58] N. Akhlaghi et al., “Sparsity analysis of a sonomyographic muscle-
computer interface,” IEEE Trans. Biomed. Eng., vol. 67, 3, pp. 688–696,
Mar. 2020.

[59] C. D. Gerardo, E. Cretu, and R. Rohling, “Fabrication and testing of
polymer-based capacitive micromachined ultrasound transducers for med-
ical imaging,” Microsyst. Nanoeng., vol. 4, pp. 1–12, 2018, Art. no. 19.

[60] I. Almohimeed and Y. Ono, “Ultrasound measurement of skeletal muscle
contractile parameters using flexible and wearable single-element ultra-
sonic sensor,” Sensors, vol. 20, no. 13, 2020, Art. no. 3616.

[61] A. J. Young, T. A. Kuiken, and L. J. Hargrove, “Analysis of using EMG
and mechanical sensors to enhance intent recognition in powered lower
limb prostheses,” J. Neural Eng., vol. 11, 5, 2014, Art. no. 56021.

[62] H. Mohammadi et al., “User intent recognition for transfemoral amputees
with prosthetic legs using evolutionary algorithms,” in Proc. ASME Dyn.
Syst. Control Conf., 2019.

[63] Y. Li et al., “Prediction of knee joint moment by surface electromyography
of the antagonistic and agonistic muscle pairs,” IEEE Access, vol. 7,
pp. 82320–82328, 2019, pp. 20–22.

[64] L. Brausch, H. Hewener, and P. Lukowicz, “Towards a wearable low-cost
ultrasound device for classification of muscle activity and muscle fatigue,”
in Proc. 23rd Int. Symp. Wearable Comput., 2019.

[65] A. S. Dhawan et al., “An intuitive muscle-computer interface using ultra-
sound sensing and Markovian state transitions,” in Proc. 15th Int. Symp.
Biomed. Imag., 2018, pp. 1191–1194.

Authorized licensed use limited to: University of Texas at Austin. Downloaded on September 30,2021 at 14:16:23 UTC from IEEE Xplore.  Restrictions apply. 

https://www.ncbi.nlm.nih.gov/pubmed/19473932
https://www.ncbi.nlm.nih.gov/pubmed/24171156
https://cdn.intechopen.com/pdfs-wm/25822.pdf

