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Abstract

Context: As robot-assisted surgery is increasingly used in surgical care, the engineering
research effort towards surgical automation has also increased significantly. Automation
promises to enhance surgical outcomes, offload mundane or repetitive tasks, and
improve workflow. However, we must ask an important question: should autonomous
surgery be our long-term goal?
Objective: To provide an overview of the engineering requirements for automating
control systems, summarize technical challenges in automated robotic surgery, and
review sensing and modeling techniques to capture real-time human behaviors for
integration into the robotic control loop for enhanced shared or collaborative control.
Evidence acquisition: We performed a nonsystematic search of the English language
literature up to March 25, 2021. We included original studies related to automation in
robot-assisted laparoscopic surgery and human-centered sensing and modeling.
Evidence synthesis: We identified four comprehensive review papers that present
techniques for automating portions of surgical tasks. Sixteen studies relate to
human-centered sensing technologies and 23 to computer vision and/or advanced
artificial intelligence or machine learning methods for skill assessment. Twenty-two
studies evaluate or review the role of haptic or adaptive guidance during some learning
task, with only a few applied to robotic surgery. Finally, only three studies discuss the
role of some form of training in patient outcomes and none evaluated the effects of full or
semi-autonomy on patient outcomes.
Conclusions: Rather than focusing on autonomy, which eliminates the surgeon from the
loop, research centered on more fully understanding the surgeon’s behaviors, goals, and
limitations could facilitate a superior class of collaborative surgical robots that could be
more effective and intelligent than automation alone.
Patient summary: We reviewed the literature for studies on automation in surgical
robotics and on modeling of human behavior in human-machine interaction. The main
application is to enhance the ability of surgical robotic systems to collaborate more
effectively and intelligently with human surgeon operators.
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1. Introduction

Since the word “robot” was first popularized in a Czech
science fiction play in 1921, we have seen incredible advances
in the technology and applications of robotics and automa-
tion. Robot-assisted surgery is particularly beneficial in urol-
ogy, where surgical dexterity is paramount for complex pro-
cedures. For example, robotic assistance can lead to fewer
complications in cystectomy [1], along with other potential
benefits [2]. It has also been shown that prostatectomy and
nephrectomy benefit from robotic assistance [3,4].

However, commercially available surgical robots have
fallen short of the ultimate vision of a robotic system that
is capable of sensing its environment and performing
actions (either simple or complex) in a fully autonomous
manner. As the technology continues to improve, it is
natural to wonder if surgical robots will one day be fully
autonomous, eliminating the need for a surgeon.

In the surgical world, any surgery performed with a robot is
termed robot-assisted surgery (RAS). Rather than aim for the
goal of full autonomy, which may be misguided and currently
not possible, we envision a more realistic and beneficial model
to push forward the level of assistance offered by the robot,
bringing it to the level of robot-enhanced surgery (RES).

In this review, we first provide a short tutorial on the
challenges of fully automating a system from an engineer-
ing controls perspective. We give a brief overview of the
current state of surgical robotics research as it relates to
various levels of autonomy. We also summarize technolo-
gies and techniques to enhance the intelligence of the
robotic system as it relates to understanding the surgeon
operator. We hope to convey that the design of more
collaborative and adaptive robot partners that leverage
surgeon strengths and help to overcome limitations might
be a more feasible and effective near-term goal.

2. Evidence acquisition

We performed a nonsystematic search of the English lan-
guage literature using Google Scholar, Scopus, and the
PubMed-MEDLINE database up to March 25, 2021. Keyword
and title searches were conducted for topics related to
robotic surgery, ranging from general searches such as
“autonomous robotic surgery” to more specific terms such
as “force measurements in robotic surgery”, “surgical skill
assessment”, “physiological sensing”, and “computer vision
for robotic surgery”. We included original studies related to
automation in RAS and human-centered sensing and
modeling, as well as previous reviews on relevant topics.

3. Evidence synthesis

Table 1 summarizes the studies identified in the nonsys-
tematic search [5–56].

3.1. Towards autonomous surgery: what do we need?

In robotic control theory, the behavior of a robot is con-
trolled using a theoretical framework that is applied to the

physical world through a variety of sensors and actuators.
While a rigorous description of automated control is beyond
the scope of this paper, we introduce some basic require-
ments for truly autonomous surgical robots. Figure 1 shows
how robotic surgery can be described as a closed-loop
control problem, with three major elements: a model of
expertise, physical reality, and measured reality, the
approximate representation of the real world.

The model of expertise represents the intelligence of the
robotic system. It contains a mathematical model of the
desired outcome (e.g., a surgical outcome) that is used to
generate a control action for the physical robot. The
physical reality block is composed of all the physical actors
involved in RAS: the patient, the surgeon, and the robotic
hardware. Finally, the measured reality block is a represen-
tation of how the robot can see and understand the physi-
cal reality through sensor measurements. The goal of all
modern control systems is to find the error between the
measured reality and model of expertise in order to gen-
erate meaningful and effective feedback to push the phys-
ical reality closer to ideal behavior and minimize errors.
The frequency of this control loop must be fast enough for
meaningful and stable control (Fig. 2). For all control
systems, it is essential that each element of the control
feedback loop is fully defined in a mathematically rigorous
way to ensure the safety and effectiveness of the overall
system.

3.2. Levels of autonomy in robotic surgery

One of the great strengths of robotic control systems is that
the level or degree of autonomy for a given system can be a
design choice, and one that is not necessarily a binary
choice. Borrowing from classifications developed for self-
driving cars, Yang et al [57] classified autonomy for medical
robots on a scale from 0 to 5, with 0 corresponding to no
autonomy, with the surgeon remaining in full control, and
5 to a system fully capable of performing entire surgeries,
with no human input (Fig. 3). Two recent reviews used
similar classification methods for surgical robot autonomy,
reviewing both academic research results and commercially
available surgical robotic platforms [58,59]. Yip and Das [58]
provide an overview of commercially available or otherwise
well-known surgical robots, while Attanasio et al [59] pro-
vide a comprehensive review summarizing the current state
of automating specific types of surgical procedures (eg, knot
tying, supervised suturing, organ and tumor segmentation,
ablation) across a variety of surgical specialties from urol-
ogy to orthopedics. The majority of surgical robotic systems
that are either in, or nearing, clinical use, fall at either end of
the autonomy spectrum rather than the middle. Arguably,
design at the ends of the spectrum represents an easier
technological challenge: the engineering problem either
simplifies to eliminating any intelligence in the robotic
system (such as the da Vinci Surgical System; Intuitive
Surgical, Sunnyvale, CA, USA) or fully eliminating the most
unpredictable and dynamic element of the control loop, the
human operator (eg, ROBODOC [CUREXO, Fremont, CA, USA]
for supervised autonomous orthopedic surgery and
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CyberKnife [Accuracy, Sunnyvale, CA, USA] for radiological
treatments [58]).

Another important technical distinction is that auto-
matic behavior, whereby the robot executes rigid predeter-
mined behavior, is very different from autonomous behav-
ior, whereby the robot is able to modify its behavior in real
time and change its planning to react to unexpected events
[59]. This ability to deal with the unexpected is the ultimate
benchmark to compare the performance of a human with
that of a robot. While artificial intelligence (AI) is developing
rapidly and has shown applications in improving diagnostic
capabilities [60], the technology still lacks the level of
sophistication required for true autonomy, and this remains
a major technical challenge in the design of all robotic
systems, not just those designed for surgery.

Finally, beyond technical challenges, there are significant
regulatory, legal, and ethical concerns associated with the
deployment of autonomous surgical robots [57]. When
errors and patient harm occur, who bears the legal respon-
sibility for autonomous surgical robots, the surgeon, the
hospital, the robot, or the engineer who designed the robot
[61]?

With these considerations in mind, it is clear that keep-
ing a human in the surgical robot control loop is critical, at
least in the near term. However, to allow natural and
seamless collaboration between humans and robots, the
robotic system needs more information about the surgeon’s
intent and ability to carry out the intended task. In the next
sections, we review the different aspects necessary for the
control framework for semi-autonomous, collaborative,
surgical robots and highlight technologies and techniques
to better model surgeon behavior and skill levels in ways
that can be integrated into the real-time robot control loop.

3.3. Measured reality: using sensors to quantify surgical

expertise

In this section we review the technology available for
quantitative measurement of the surgeon, robot, and
patient environment (Fig. 4 [62–65]). Broadly speaking,
sensing for RAS can be divided in three categories:
motion-related measurements, which capture information
on the movement of the actors involved and the forces that
they exchange; physiological sensing, which records physi-
ological information from the human in the loop; and
vision-based sensing, which provides the robot with a more
generalized and high-level understanding of the environ-
ment, often involving advanced processing techniques such
as machine learning. As robotic control systems tend to
operate between 100 and 1000 Hz, it is important that
sensors used to measure the real world can be sampled
at similar speeds.

3.3.1. Motion-related sensing
Robots sense and take commands using simple variables,
such as position and velocity, to accomplish tasks. While
turning these measurements into metrics that can define a
model of good surgery is challenging, obtaining the mea-
surements themselves is relatively straightforward. For
example, force sensors can be embedded in surgical tools
[33] and kinematic sensors can be embedded into the joints
of the robotic systems [32]. Measurements on the human
surgeon can also be useful for human-robot collaboration
and for the development of better models of surgical exper-
tise. In this case, kinematic measurements can be obtained,
for example, via wireless sensors [34], electromagnetic
sensors [35], and optical and camera trackers [36].

Table 1 – Topics and references identified in the literature review

Topic Article type and references Evaluation type (when present) Open issues

Model of expertise
Expertise metrics Research [5–8] Nonrandomized controlled trial [5–8] No ground truth for surgical expertise
Data-driven modeling Nonsystematic review [9]

Research [10–14]
Technical validation [10–14] Sparse data available for model training, black-box

algorithms do not easily translate to training strategies
Measured reality
Physiological Nonsystematic review [15–17]

Research [18–21]
Validation of measurements [18,20,21]
Crossover trial [19]

Baseline data collections and wearable sensors are
always required

Vision-based Nonsystematic review [22–25]
Systematic review [26]
Research [27–31]

Technical validation [27–31] Persisting challenges in image segmentation, black-box
algorithms do not easily translate to training strategies

Motion-based Nonsystematic review [32]
Research [33–36]

Validation of measurements [33]
Validation of assessment [34–36]

Augmenting robot sensing capabilities

Physical reality
Reflective haptic
feedback

Nonsystematic review
Systematic review [38]
Research [39–43]

Randomized crossover trial [42]
Crossover trial [39–41,43]

Existing methods lack realism, methods to enhance
fidelity not feasible for real-time human interaction
owing to computational complexity

Haptic movement
guidance

Research [44–52] Demonstration only [44]
Crossover trial [45,50,51]
Randomized concurrent controlled trial
[46,52]
Psychophysics (accuracy) [47,48]
Randomized crossover trial [49]

Paucity of guidelines on effective feedback strategies,
variability across human learners

Adaptive training
guidance

Nonsystematic review [53],
Tutorial [54],
Opinion [55],
Research [56]

Randomized concurrent controlled trial
[56]

Paucity in the literature, lack of methods for
unstructured (ie, not predefined) movement tasks
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3.3.2. Physiological sensing
Physiological measurements obtained from human sur-
geons have been linked to expertise level, workload, stress,
and other factors. For example, eye motions can be used to
classify surgical expertise levels [18]. The number of eye
blinks serves as an indicator of stress and concentration
levels during training [19], while galvanic skin response
(changes in skin electrical conductance) can be used to
estimate cognitive load, attention, and emotional state
[20]. Surface electromyography measures the electrical sig-
nals from active muscles, which can reveal the underlying
motor patterns, physical effort, and motion intent [15,16]. It
has been shown that heart rate and its variability capture
the dynamic workload, emotion, and cumulative stress
[17]. Finally, electroencephalography can quantify human
emotion, perception, cognition, and technical skills

[21]. These sensing technologies are promising in that they
take direct measurements from the human operator; how-
ever, wearable sensing can be cumbersome and the inter-
pretation of these data can be challenging.

3.3.3. Vision-based sensing
Thefield ofcomputervision(CV)aimstotransformvisual  input
stimuli into meaningful mathematical representations that
can be manipulated by algorithms downstream to execute
various higher-level tasks, such as object detection. Analogous
to the human visual system, CV-based sensing for robot-ori-
ented surgical analysis can provide a tremendous amount of
information moment-to-moment to guide the formation
and refinement of dynamic models of the operating theater
(Fig. 5 [27–29,66]). Although the ultimate goal of visually
“perceiving” real-time surgeries at the level of an expert
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Fig. 1 – Closed-loop control for automated surgery. Control begins with a model of a desired behavior, such as surgical expertise. The physical surgeon-
robot behavior is then measured using sensors and compared to the original model of expertise. Errors are used to provide some form of feedback to
the surgeon or robot to enhance performance in near real time.

Fig. 2 – Overview of the technology available for measurements in robotic surgery. Automated surgery or intelligent feedback to the surgeon requires
sensors that provide measurement data fast enough for computer control. EEG = electroencephalography; EMG = electromyography; IMU = inertial
measurement units.
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surgeon (or superior) remains distant, significant technical
progress continues to be made, piecewise, in allowing quanti-
tative, vision-based feedback forguiding andinforming robotic
surgery. Video-based methods have been proposed for a vari-
ety of relevant objectives [22], including characterization of
tool articulation and kinematics [27,28], phase and step recog-
nition in surgical procedures [29], classification of action,
gestures, and tasks [26], and assessment of surgical skill

[23,30,31]. Notably, at the heart of state-of-the-art approaches
to surgical video analysis is deep learning (DL), a subfield of
machine learning involving models that can automatically
learn multiple layers of data representation to capture increas-
ingly complex patterns in a hierarchical fashion [24]. Progress
in DL research has been the most important technological
development in recent years foradvancing CV and AI in general
[25].

Fig. 3 – Levels of autonomy possible in robotic surgery range from no autonomy, with the surgeon in full control, to full automation, with no human
input. Copyright© 2017, American Association for the Advancement of Science. Reproduced with permission from Tang et al [57].

Fig. 4 – Examples of real-time measurement systems for modeling of human behavior in robotic surgery [62–64] and human-computer interaction
[65], including video data, human-centric EMG, EEG, and GSR measurements, inertial measurement, and position tracking. EEG =
electroencephalography; EMG = electromyography; FA = forearm; GSR = galvanic skin response; HR = heart rate; IMU = inertial measurement units; UA
= upper arm.
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3.4. Modeling expertise: defining surgical mastery

quantitatively

A second key aspect of a collaborative control framework is
the internal model of expertise that gives the robotic system
a reference or ideal trajectory for good surgical behavior.
This includes both a quantitative understanding of what
surgical expertise is and the formulation of a concrete plan
to perform the necessary tasks. Combined, these steps
represent the control action that will be executed by the
robotic system to achieve ideal performance.

3.4.1. Kinematic modeling of expertise
As discussed in the previous sections, modern techniques
for motion tracking facilitate data collection and analysis
during surgical procedures that can be used to quantita-
tively define good performance for robotic systems. In the
research community, the fundamental movements of sur-
gery, referred to as bases of movement, can define the
underlying structure and building blocks of surgical move-
ment. Bases of surgical movements have primarily been
created by learning from demonstration [9], in which
machine learning techniques are used to teach a robot
how to move on the basis of data collected from humans.
Characterizing surgical movements can aid in the assess-
ment of surgical skills such as expertise level [5] or surgical
style [11]. For instance, a statistical analysis of jerk, typically
related to the smoothness or crispness of a movement, can
distinguish experts from novices [6]. More complex analysis
can be performed with larger data sets by implementing
machine learning techniques to assess surgical skill [14,67].

3.4.2. Post-completion task-level metrics of expertise
Another way to quantify surgical expertise is through task-
level metrics such as completion time, path length, econ-
omy of volume, and mistakes made during execution. These
types of metric are often used to evaluate the surgical
training outcomes and their construct validity, and the
ability to identify high levels of expertise has been

extensively studied in the literature [7,8]. In addition to
providing post-training evaluation, post-task metrics can
also be used to provide benchmarks for surgical proficiency
or as a measure of optimization by a robotic control system.

3.4.3. Real-time metrics of expertise
While post-completion task evaluation is useful for quanti-
fying proficiency, it cannot be used to evaluate skill during a
procedure. Real-time evaluation is necessary for any level of
robotic automation. Real-time evaluation of expertise is
challenging and is still an open research topic. Some recent
techniques compare tool trajectories to “optimal” trajecto-
ries [12] or use streamed kinematic data to classify stylistic
behavior [13]. Other work has been done to facilitate extrac-
tion of the most relevant information during surgery for
expertise evaluation, thus reducing the memory and
computational effort needed [10]. While these results are
promising, advances in the field are still not at a stage at
which such information can be integrated in a completely
automated robotic loop.

3.4.4. Control actions
Assuming that the robot has a correct representation of
good surgery, the control actions represent the planned
steps necessary to achieve good surgery. This is a challeng-
ing aspect of robotic surgery and the one that, together with
real-time evaluation of expertise, represents the greatest
barrier to automated and semi-automated surgery. Indeed,
while it is possible to automate some specific tasks within a
surgical procedure [68], to the best of our knowledge there
are no fully automated surgical robots.

3.4.5. Physical reality: evaluation of feedback effectiveness
The final step towards designing effective and collaborative
intelligent surgical robots is to ensure that the feedback
provided to the surgeon is intuitive, natural, and effective
(Fig. 6). Because of the uniqueness and complexity of the
human perceptual system, the design of universally effec-
tive feedback is a major technical challenge.

Fig. 5 – Examples of surgical video analysis techniques, including detection and characterization of the articulation and movement of the surgical
instrument [27,28] and surgical phase recognition [29,66]. LTP = left tip point; RTP = right tip point; HP = head point; SP = shaft point; EP = end point;
HMM = hidden Markov model; SVM = support vector machine; DTW = dynamic time warping; RF = random forest; ANN = artificial neural network.
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Many surgical robot prototypes and surgical robotic
simulators have been used to evaluate the effects of adding
reflective haptic feedback (eg, providing users with a force
model of the surgical environment) and revealed improve-
ments in performance [37,39–41]. Force feedback can also
improve the development of psychomotor skills for early
surgical trainees [38,42]. However, reflective force feedback
lacks the fidelity needed to accurately represent the surgical
environment and is often perceived negatively by the user
[43].

An alternative approach to reflective haptic feedback is
guidance haptic feedback, in which the goal is not to simu-
late the patient’s tissue properties but rather to enhance
motor learning via haptic or tactile motion cues—cues that
become critical in human-robot collaborative environ-
ments. Studies have shown the effectiveness of haptic feed-
back in developing motor skills [44–46] and guiding move-
ment [47–49]. A common type of training of motor skills
with haptic feedback involves recording an expert’s move-
ments and having a novice follow those movements, with
haptic feedback provided if they deviate from the intended
path [50]. However, if the feedback gains are too strong,
learning can be negatively impacted [51]. By contrast, haptic
guidance designed to be less restrictive and exploratory can
allow the user to discover new movement strategies [52].

One opportunity for guidance haptic feedback is in the
domain of adaptive training. Adaptive training is typically
used in video gaming, rehabilitation, medical simulation,
and industrial training as a way to optimize learning by
providing trainee-specific content [53]. Typically, some
adaptive variable (eg, performance) is measured in real
time and used to adapt the learning environment in real
time (eg, increase the task difficulty) [54,55]. The first
adaptive training study for a surgical robot, published in
2018, used haptic assistance–as-needed to keep a ring
centered during a rail-following task. The results showed

faster learning curves for eight novices with assistance
when compared to eight novices without assistance,
although the difference was not statistically significant
[56]. The haptic assistance in this study was directly related
to the task (eg, computed from position differences between
the ring and rail) and only one haptic gain was evaluated.
Despite these limitations, this study paves the way for
personalized and adaptive feedback in surgical robotics.

Finally, the ultimate evaluation of any surgical feedback
technique is the impact on patient outcomes. In general,
there is a paucity of studies that relate patient outcomes to
surgical training techniques [69], with limited work dem-
onstrating some improvements to patient outcomes with
simulation-based training [70,71]; however, to the best of
our knowledge, there are no papers on the effects of auton-
omy levels or guidance cues on patient outcomes. These
studies will be critical for future clinical adoption of semi-
or fully autonomous surgical robots.

4. Conclusions

To allow full autonomy, it is critical to define the ideal
behavior of a system, measure how well the physical system
follows that behavior, and provide meaningful and effective
feedback to the system to minimize any errors in near real
time. For surgical robotics, there is a dearth of literature on
all these aspects of autonomous control, making the road to
full autonomous surgery a significant engineering chal-
lenge. However, if robotic systems could instead be
designed to better understand and leverage the intelligence
of the surgeon operator, they could be more effective and
natural collaborators in the delivery of surgical care, paving
the path from robot-assisted surgery towards true robot-
enhanced surgery. Solving open challenges in surgeon-
robot interaction such as predicting surgeon intent, mea-
suring expertise levels, and determining competency

Fig. 6 – Examples of near–real-time surgical skill prediction and feedback systems, including (A) a framework capable of classifying surgical expertise
from kinematic data in a 1–2-s sliding window, reproduced from [67], and (B) a stylistic detection method that computes stylistic deficiencies every
0.25 s [13]. MTM = master tool manipulator; PSM = patient-side manipulator; dVRK = da Vinci research kit.
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during task execution, while providing effective and natural
guidance to the surgeon operator, could help to accelerate
the clinical adoption of more intelligent and collaborative
surgical robots.
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