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While ride-sharing has emerged as a popular form of transportation in urban areas due to its on-demand convenience, it has

become a major contributor to carbon emissions, with recent studies suggesting it is 47% more carbon-intensive than personal

car trips. In this paper, we examine the feasibility, costs, and carbon benefits of using electric bike-sharing—a low carbon form

of ride-sharing—as a potential substitute for shorter ride-sharing trips, with the overall goal of greening the ride-sharing

ecosystem. Using public datasets from New York City, our analysis shows that nearly half of the taxi and rideshare trips in

New York are shorts trips of less than 3.5km, and that biking is actually faster than using a car for ultra-short trips of 2km or

less. We analyze the cost and carbon benefits of different levels of ride substitution under various scenarios. We find that the

additional bikes required to satisfy increased demand from ride substitution increases sub-linearly and results in 6.6% carbon

emission reduction for 10% taxi ride substitution. Moreover, this reduction can be achieved through a hybrid mix that requires

only a quarter of the bikes to be electric bikes, which reduces system costs. We also find that expanding bike-share systems

to new areas that lack bike-share coverage requires additional investments due to the need for new bike stations and bike

capacity to satisfy demand but also provides substantial carbon emission reductions. Finally, frequent station repositioning

can reduce the number of bikes needed in the system by up to a third for a minimal increase in carbon emissions of 2% from

the trucks required to perform repositioning, providing an interesting tradeoff between capital costs and carbon emissions.
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1 INTRODUCTION

Urban transportation has seen significant changes over the past decade due to the emergence of the sharing
economy and the ubiquity of smartphones. Ride sharing services, such as Uber, Lyft, Grab, and Didi, have
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become immensely successful due to their promise of personal on-demand transportation at any time [25]. Early
proponents of ride sharing suggested that these services would reduce our reliance on privately-owned cars,
reduce traffic congestion, and reduce carbon emissions, with early studies estimating that at least five private
vehicles would be replaced for each shared car and there would likely be carbon emission reductions if shared
cars were newer vehicles [4]. However, the success of these services has resulted in an increase in traffic and more
congestion on roads—a type of rebound effect [23]. For example, in New York City, a recent study has shown that
ride sharing constitutes more than 50% of traffic on the roads [9, 41]. Another study on the climate impact of ride
sharing has estimated that a typical ride sharing trip is less efficient than a personal car trip, mainly due to the
“dead” miles travelled by a ride-share car between consecutive hired rides, and that this generates 47% higher
carbon emissions than an equivalent private car ride [5, 8]. The study also showed that the greater convenience
of ride sharing has steered passengers away from public transit options. From a carbon emissions standpoint,
the study argues for greater use of travel modes that produce fewer, or zero, carbon emissions such as biking,
walking, or mass transit [8].

Motivated by the need to green ride sharing, we address a key question: what are the carbon benefits and
costs of encouraging more bike sharing as a substitute for shorter ride sharing trips, and what is the feasibility of
such an approach? Bike sharing programs have become popular in major urban areas in recent years, with cities
deploying tens or hundreds of thousands bikes within the urban core. Bike sharing provides many benefits—it
is pollution free, provides wellness benefits through exercise, and can reduce our reliance on other forms of
transportation, especially for shorter rides within urban areas [10]. However, bike sharing has traditionally been
considered to be complementary to car-based ride sharing, rather than an alternative. There are many challenges
in using bikes as a substitute for car rides. Biking can become challenging in rainy or cold weather and in the
dark or may be infeasible for transporting cargo items. The pedaling effort involved in biking discourages its use
for longer rides and for those requiring uphill terrain or steep slopes. The latter limitation can be addressed by
using electric bikes, or e-bikes, in bike sharing programs. E-bikes, which are already popular in many countries,
such as China, provide pedal assist through a battery-powered motor that makes biking easier for longer or uphill
rides [47]. Although some bike sharing systems are beginning to adopt e-bikes, they incur higher deployment and
maintenance costs than regular bikes. We argue that a hybrid mix of regular and e-bikes can be more effective
than using either type of bike in a bike share program. Even with the use of some, or all, e-bikes in a bike sharing
system, a car ride can be potentially replaced by a bike ride only when (i) the distance makes it amenable to
biking, (ii) a bike can be easily picked up and dropped off at the start and end of the car trip, and (iii) factors such
as weather and time of day are favorable. Analyzing the feasibility of such ride substitution using real-world car
and bike data is a key goal of our work.
In addition to these user-centric challenges, there are several provider-centric challenges as well. Since bike

share programs were not explicitly designed as an alternative to ride sharing, they will face capacity constraints if
riders substitute car rides with bike rides even in modest numbers. The capacity of a bike share system will need
to be significantly enhanced to handle this higher demand. Further, the bike share system will need to expand to
new areas that lack coverage, especially if those areas see a significant volume of ride pickups or drop-offs. A
detailed analysis of these capacity enhancement costs and the carbon benefits they provide is another goal of our
work.

Motivated by these questions, we conduct a data-driven study to analyze the benefits of adding e-bikes to bike
sharing programs with the broader goal of reducing carbon emissions and greening the ride sharing ecosystem.
Our emphasis on green carbon-aware design of hybrid bike share systems and carbon analysis of using biking
for short rides differentiates this study from prior work. To understand feasibility and benefits of using electric
bikes within bike share systems, our paper seeks to address the following questions.
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(1) What are the characteristics of typical bike share and ride share trips within an urban area? Based on the
distances traversed by ride share trips, what fraction are amenable to substitution by bike rides? What
percentage of ride share trips have a bike share station near the pickup and dropoff location?

(2) What is the amount of capacity enhancement needed to accommodate a certain percentage (say 5 or 10%)
of car trips using bikes? What is the optimal mix of regular and electric bikes needed to accommodate
those trips, and what are the carbon benefits of such ride substitution?

(3) How should coverage of bike share systems be intelligently extended to parts of the city that lack bike
coverage so as to maximize the use of bikes as an alternative to short ride share trips? What are the carbon
benefits and costs of such expansion?

(4) How can the capital and operational costs of these hybrid bike share systems be optimized using factors
such as repositioning and what are their cost vs. carbon tradeoffs?

We adopt a data-driven analysis approach to address these questions by leveraging public datasets on bike
sharing and ride sharing (taxi, Uber, Lyft, Juno, Via) for New York City. Our algorithms and data-driven analysis
for addressing these questions yield the following contributions.

• First, we characterize and compare bike sharing and car trips in New York City and show that 50% of car
rides are less than 3.6km and 69% are within 200 meters of a bike station. Our results imply that many
shorter car rides could be easily substituted by bike rides if the user is motivated to do so.

• Second, we use optimization-driven data analysis to determine the capacity enhancements needed to
substitute a modest fraction of car rides with bike rides. Our results show a 6.6% reduction of carbon
emissions with 10% ride substitution, and although this would triple demand in the bike share system, it
would require only a 2x increase in the number of bikes needed due to slack in the system from skewed
spatial demand. A hybrid design that assumes electric bikes for longer bike rides of more than 5km requires
only a quarter of these bikes to be electric, saving on the overall cost of the system. We also show that our
results broadly hold under different strategies for ride substitution.

• Third, we use traffic estimates from ride sharing in urban areas that lack bike sharing coverage to determine
popular pickup and dropoff locations and compute the additional carbon benefits of expansion into these
areas. Our results show that adding bike coverage to new regions requires higher capacity enhancements
for ride substitution than that for regions with current coverage. Specifically, we show that adding coverage
to parts of New York City that lack bike sharing coverage would require a doubling of the number of bike
stations and 50% more bikes, but the greening benefits of adding such coverage are significant, yielding up
to 5000MT reduction in carbon emissions.

• Finally, we use our optimization-driven methods to characterize the tradeoff between capital costs of expan-
sion and the operational costs of bike repositioning. We show that reducing the frequency of repositioning
by 2 hours (e.g., from 2 to 4 hours) can reduce the cost of repositioning and the overall carbon emission by
58% while increasing the capital cost (number of bikes required) by only 29%.

Overall, our analysis shows that the carbon benefits of substituting even a modest fraction of ride share trips
using electric and regular bikes are substantial and can help green the overall ride sharing ecosystem.

2 BACKGROUND

In this section, we provide background on ride and bike sharing.

Shared On-demand Mobility. The sharing economy has had a significant impact on personal transportation
and has led to ride sharing becoming common, or even the preferred, form of transport in urban areas [27]. The
ability to get a ride on demand using a smartphone “anywhere” has made them a popular alternative to traditional
taxi rides and private car ownership. A side effect of this convenience has also caused them to supplant more
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carbon-efficient public transit options. Researchers have analyzed the climate impact of ride sharing and found
ride sharing trips to generate 47% more carbon emissions than a private car trip, mainly due to the “wasted”
driving between two hailed trips [5, 8]. This observation motivates our study on whether other types of ride
sharing, such as bike sharing, which have a low carbon footprint could be used for short rides, while providing
similar convenience such as on-demand pick-up/drop-off and wide availability.

Bike Sharing. Bike sharing programs are now commonplace in many urban areas. Biking is considered to
be a “fun” mode of transportation that is ideal for last-mile short distance rides at a much lower cost than
ride-sharing services. Moreover, bikes have dedicated bike lanes in many urban areas and are less susceptible
to traffic congestion as a result, allowing for relatively quick short distance rides. In addition to being a clean
and a zero-carbon transportation mode, biking is seen as a form of exercise and promotes an active lifestyle
with health benefits. Bike sharing programs have led to a significant increase in the popularity of biking within
urban areas in recent years. Bike sharing comes in two flavors: docked programs, where bikes are picked up and
dropped off from bike stations, and dockless programs, where bikes can be dropped off anywhere [43]. Our work
currently focuses on docked programs due to the need to charge electric-bikes at bike stations; however many of
our insights carry over to dockless bike sharing programs as well.

There has been significant research attention on the design of bike sharing systems over the years. A range of
problems which are discussed in more detail in Section 7 such as optimizing station placement, capacity planning,
rebalancing algorithms, and bike placement methods have been studied. A key difference with this body of prior
work is our focus on sustainable carbon-aware design and on using bike sharing as a viable alternative for shorter
car rides from a carbon standpoint.

Electric Bikes. An electric bike provides pedal assist to its rider using an inbuilt motor and battery, which
makes biking nearly effortless and attractive for longer rides or rides on uphill roads. Their attractiveness for
handling more challenging rides and reducing the biking effort makes them a key design element for encouraging
substitution of short car rides with bikes. Electric bikes have long been a popular form of transportation in
countries like China [32]. Some bike share program such as in Riverside [40] and Raleigh [38] in the USA and
Guildford [22] in UK use only electric bikes. Moreover, New York’s Citibike program has plans to add up to 4000
electric bikes to its fleet [15]. While an all-electric bike system requires higher capital and operational cost, e.g.,
electric bikes are more expensive to acquire, and a charging infrastructure must be put in place for operation, a
hybrid system is cheaper to build and maintain as only a subset of bikes and infrastructure will require electric
capability. Given the higher deployment and maintenance costs of electric bikes, a goal of our work is to highlight
the benefits of hybrid systems that use a combination of regular and electric bikes as a cheaper alternative to an
all electric-bike system while retaining the key advantage of electric bikes for enabling ride substitution.

Given this background, the overall goal of our work is to analyze the feasibility of substituting shorter but more
carbon-intensive car rides using bike sharing and to understand the carbon benefits of such ride substitution as
well as the costs of handling a higher bike sharing demand resulting from such substitution.

3 HOW SUBSTITUTABLE ARE RIDE SHARE TRIPS BY BIKE TRIPS?

In this section, we present a feasibility analysis that examines the degree to which ride sharing trips are substi-
tutable by bike trips.

3.1 Overview of Datasets

Our analysis is based on two public datasets from New York City. These datasets are described below and
summarized in Table 1.
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Table 1. Ride Sharing Datasets

CitiBike 2019 TLC 2019 TLC 2016

Vehicle Type Bikes Taxi and FHV Taxi

Number of vehicles 17,954 bikes/941 station 14K taxi, 78K FHV 22K taxi

Number of trips 18.98 million 354 million (101 taxi, 253 FHV) 156.77 million

Trip-level records yes yes yes

Pickup/dropoff coordinates GPS Geo-fenced Zones GPS

Duration Jul 2018 - Jun 2019 Jul 2018 - Jun 2019 Jul 2015 - Jun 2016

CitiBike Dataset. CitiBike is the official bike share system for New York City and has released extensive data
about its operations. For the purposes of our work, we use a 12 month period (July 2018 - June 2019) that
comprises of 18.98 million trips. This is the most recent 12 months for which data is available. During this period,
the CitiBike system had 17,954 bikes1 and 941 bike stations. The data contains a trip’s duration, its start and end
time, the ID of start and end stations, the station names, the start and end GPS locations (latitude and longitude),
the type of user, age and gender, and the bike ID.

New York TLC Dataset. The New York City Taxi and Limousine Commission (TLC) [1] provides comprehensive
statistics for taxi trips as well as ride sharing vehicles (referred to as For-Hire-Vehicles (FHV)) such as Uber,
Lyft, Juno, Via and Limousine series. While many years of data are available, the nature of what information
is released on a trip-level record has changed over the years. For the July 2018 - June 2019 period, which we
refer to as the TLC 2019 dataset, there were a total of 354 million rides, of which 101 million come from taxis
and 253 million come from FHVs, with Uber and Lyft accounting for a large majority (> 90%) of the FHV rides.
Trip-level records are available for all of these 354 million rides, which include the pickup and drop-off date and
time, pickup and drop-off location, trip distance, number of passengers, and itemized fare. The latter three fields
are optional fields and only reported for taxi rides and unavailable for FHV rides. For the TLC 2019 data, pickup
and drop-off locations are reported in the form of coarse-grain taxi zones, rather than exact GPS coordinates to
preserve privacy. Each zone represents a geofenced neighborhood. Since some of our analysis requires precise
pickup and drop-off location coordinates, we also use TLC data from July 2015 to June 2016 (TLC 2016 dataset),
the most recent year for which precise GPS pickup and drop-off coordinates are available for taxi rides. The
TLC 2016 dataset comprises of 156 million taxi rides as shown in Table 1. We note that as the popularity of FHV
services like Uber and Lyft increased, the number of taxi rides dropped from 156 million in 2016 to 101 million in
2019, but the total volume of rides increased significantly, with FHV rides increasing to 2.5 times of taxi rides.

3.2 Feasibility Based on Distance

We begin our feasibility analysis by computing distributions of trip distances for bike, taxi, and FHV car sharing
for the above datasets.
We analyze trip distances either by using the actual trip distance whenever reported in the trip records, or

by computing the shortest road distance between the pickup and dropoff locations. For taxi rides, the actual
trip distance is available in trip records. For bike rides, we use the GPS coordinates of the pickup and dropoff
bike stations to estimate the bike trip distance. For the FHV rides, the trip distance is not available in trip-level
records. Further, the pickup and drop-off locations are reported in terms of coarse-grain geo-fenced zones. To
estimate the trip distance from coarse-grain pickup and dropoff zones, we compute the centroid of each pickup
and dropoff zone and compute the shortest road distance between the two centroids. For trips that originate and

1The vast majority of CitiBikes are regular, non-electric bikes. CitiBike began a pilot deployment of electric bikes in 2019, but these constitute

a small portion of the total bikes during this period.
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We use the process above to create multiple enhanced bike datasets, each representing a different level of
ride substitution (e.g. 1%, 2%, 3%, 5%, 10%). This yields enhanced datasets with the total number of trips in the
enhanced datasets ranging from 18 to 54 million (see Table 4 in appendix for details about the enhanced datasets).

Finally, since the above sampling process needs to ensure substituted car rides start and stop within a threshold
walking distance of a bike station, we need precise GPS coordinates of pickup and dropoff locations for trips in the
TLC data. Recall that the 2019 TLC data only provides coarse-grain zones for location coordinates. Hence, we use
a combination of the 2019 and 2016 TLC data for constructing the enhanced bike datasets. In Section 3, we showed
the median distance of the 2016 and 2019 taxi trips was similar (2.8 and 2.7km). Further, our analysis (omitted for
brevity) shows that both 2019 and 2016 TLC datasets exhibit similar spatial and temporal distributions. Hence,
we use the 2019 TLC data to determine the volume of trips that need to be sampled for a certain level of ride
substitution and then sample rides from the 2016 data to construct an enhanced bike dataset with complete trip
level records having the desired substitution volume.

Optimization Problem. We now cast an optimization problem with the objective of minimizing the number
of regular and electric bikes needed to satisfy the demand represented by the above enhanced bike dataset. We
divide the trips in the dataset into short, long, and medium categories by using two distance thresholds: Tshort
and Tlong. Short trips are assumed to have distances less than Tshort, long trips are assumed to have distances
greater than Tlong, and medium trips lie between the two. We assume that the demand for short and long trips is
handled by regular and electric bikes, respectively. Demand for medium trips can be handled by either regular
or electric bikes, based on the preference of the rider. Our optimization formulation finds the allocation of
medium trips between regular and electric bikes such that the overall number of bikes is minimized (in addition
to computing the optimal number of regular and electric bikes needed to handle the demand from short and long
trips, respectively).
We define our optimization model as follows. Let S = {1, . . . ,n} denote the set of bike stations in a bike

sharing system, each indexed by i . We assume a time-slotted model where in each slot t and station i , we have
incoming trips denoted by Ii (t). We use mean bike trip duration as the value of t . Trips that start and end in a
particular time slot are considered independently, i.e., trips that start in one time slice and end in another are
considered as starting in the first time slot and ending in the other, respectively. We further divide the incoming
trips Ii (t) into I

L
i (t), I

M
i (t), and I

S
i (t) to indicate the number of incoming long, medium, and short incoming trips to

station i at time t , respectively, and we have

Ii (t) = I Li (t) + I
S
i (t) + I

M
i (t), ∀i,∀t . (1)

Next, let Oi (t) denote the number of outgoing trips from station i at time t . Similarly, outgoing trips can be
further divided into long OL

i (t), medium OM
i (t), and short OS

i (t) outgoing trips, so, we have

Oi (t) = O
L
i (t) +O

S
i (t) +O

M
i (t), ∀i,∀t . (2)

As the optimization variables, let xi (t) and yi (t) denote the number of e-bikes and regular bikes available at
station i and time t . Then, the flow conservation constraint indicates that the outgoing flows from station i at
time t should be less than or equal to the incoming flow and available bikes at the station, i.e.,

Ii (t) + xi (t) + yi (t) ≥ Oi (t), ∀i,∀t . (3)

Note that bikes from incoming trips can also be used to satisfy outgoing trips. To optimize the bike usage for the
medium trips, for station i at time t , let us define Ii

M,e(t) and Oi
M,e(t) as additional optimization variables that

determine the e-bike incoming and outgoing medium trips respectively, and Ii
M,r(t) and Oi

M,r(t) denote medium
trips satisfied by regular bikes. Now, the flow conservation constraint could be further divided to separately
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enforce the dedicated e-bike and regular flows, i.e.,

I Li (t) + I
M,e

i (t) + xi (t) ≥ OL
i (t) +O

M,e

i (t), ∀i,∀t, (4)

I Si (t) + I
M,r

i (t) + yi (t), ≥ OS
i (t) +O

M,r

i (t), ∀i,∀t . (5)

Note that with the formulation of Equations (4) and (5) formulated, Equation (3) becomes redundant, and is stated
for the sake of better illustration of the flow conservation constraints. We further emphasize while I Mi (t) andO

M
i (t)

are the inputs to the optimization problem, the allocation of medium trips to regular and e-bikes is performed by
the optimization problem, and we have

I Mi (t) = I
M,e

i (t) + I
M,r

i (t), ∀i,∀t, (6)

OM
i (t) = O

M,e

i (t) +O
M,r

i (t), ∀i,∀t . (7)

The next constraint determines the evolution of available bikes across time slots, i.e.,

xi (t + 1) + yi (t + 1) = xi (t) + yi (t) + Ii (t) −Oi (t), ∀i,∀t . (8)

That is, the overall bikes available of station i at the next slot t + 1 is equal to the aggregation of incoming and
available bikes subtracted by the outgoing bikes at t . Similarly, the bike evolution constraints could be further
partitioned to determine the number of e-bikes and regular bikes available, i.e.,

xi (t + 1) = I Li (t) + I
M,e

i (t) + xi (t) −OL
i (t) −O

M,e

i (t), ∀i,∀t, (9)

yi (t + 1) = I Si (t) + I
M,r

i (t) + yi (t) −OS
i (t) −O

M,e

i (t), ∀i,∀t . (10)

Equation (9) (resp. Equation (10)) states that the e-bikes (resp. regular bikes) available at t + 1 is equal to the
aggregation of the incoming long (resp. short) trips, medium trips dedicated to e-bikes (resp. regular bikes), and
the available e-bikes (resp. regular), subtracted by the outgoing long (resp. short) and medium trips handled by
e-bikes (resp. regular). The last set of constraints simply enforce the availability of bikes in each slot.

xi (t) ≥ 0 ∀i,∀t, (11)

yi (t) ≥ 0 ∀i,∀t . (12)

Finally, let xi (1) and yi (1) denote the number of bikes available at the beginning in each station, then the
optimization objective is to minimize the number of regular and electric bikes at the first slot, while respecting the
constraints. Hence, the optimization problem that determines the optimal mix between the regular and electric
bikes (called OptMix, hereafter) could be formally formulated as

[OptMix] min

n
∑

i=1

xi (1) + yi (1)

s.t., Equations (1) − (12),

vars., xi (t),yi (t), I
M,r

i (t), I
M,e

i (t),O
M,r

i (t),O
M,e

i (t), ∀i,∀t .

We use our enhanced bike datasets, each representing a certain percentage of ride substitution demand, as the
input to this optimization problem; since each dataset represents one year of data, our approach assumes that
demand estimates for the entire year are available in advance to solve this optimization problem. Our optimization
approach yields the minimum possible number of bikes to fully cover the trips in the dataset.
Note that the actual number of bikes deployed in the system needs to be greater than this minimum (lower

bound) solution to reduce the so-called blocking probability—where a user arrives at a bike station and finds
the station empty. Bike share systems usually overprovision the number of bikes well above the minimum levels
needed to match estimated demand in order to reduce the blocking probability of turning away bikers, especially
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since real-world demand will not exactly follow this estimated demand and will exhibit real-time stochastic
variations.

In addition, bike-sharing systems often rebalance (or reposition, used interchangeably) bikes twice a day to
cater to demand surge or depleted stations [36], as discussed in detail in Section 6. Hence with repositioning,
the number of available bikes in each station changes and the bike evolution constraints (Equations (9) and (10))
will need to be modified to account for arrivals, departures, and repositioning within the system. To capture the
effects of repositioning, we can run the OptMix problem in each repositioning period separately. Specifically, let
P = {1, . . . , P}, be the set of repositioning periods, each indexed by p. To find the overall optimal mixture of

regular and electric bikes, we solve P instances of OptMix, separately. In addition, let x
p
i (1) and y

p
i (1), i ∈ S be

the optimal number of e-bikes and regular bikes for the p-th instance of OptMix that takes inputs from the p-th

repositioning period. In addition, OptMix(p) = x
p
i (1) + y

p
i (1) is the optimal heterogeneous mix of bikes that will

satisfy all bike trip demand within repositioning period p. Given the optimal solution of all instances, and to
compute the global optimal mix of bikes, we take the maximum across all instances, i.e.,

x⋆i (1) = max
p∈P

x
p
i (1), y⋆i (1) = max

p∈P
y
p
i (1), OptMix⋆ = x⋆i (1) + y

⋆

i (1), (13)

where x⋆i (1) and y
⋆

i (1) are the maximum number of e-bikes and regular bikes required across all repositioning
periods, and OptMix⋆ is the global optimum of the OptMix problem across all repositioning periods, and we have
OptMix⋆ ≥ maxp∈P OptMix(p).

4.2 Cost Analysis

Given the above optimization approach, we use our enhanced bike dataset to compute the total minimum number
of bikes needed to handle a certain level of ride substitution, as well as the mix of regular and electric bikes.
Unless specified otherwise, we assumeTshort = 2km andTlong = 5km, which implies that very short rides of 2km
or less are satisfied using regular bikes, rides longer than 5km are satisfied using electric bikes and all medium
rides of 2 to 5km can be satisfied using either type of bike based on user preference. Our analysis below assumes a
rebalancing frequency of 8 hours (twice a day) - Section 6 analyzes the impact of other rebalancing periods. Since
the CitiBike system sees peak demand during the morning and evening rush hours (see Figure 6b), we assume that
bikes are repositioned once after the morning rush to fill in depleted stations, and once more after the evening
rush hours [36]. We run our optimization algorithm for various levels of ride substitution ranging from 1% to 10%
using the enhanced datasets, and compute the total number of bikes needed to satisfy the corresponding demand
as well as the relative proportion of electric and regular bikes. Figure 8b depicts our results.
Note that the original CitiBike dataset has around 18 million trips. Ride substitution of 5% (i.e. 5% of 354

million TLC rides) adds around 17.7 million additional bike trips and doubles the aggregate bike trip demand.
Ride substitution of 10% adds 35.4 million additional bike trips to the dataset, and triples the demand. As shown in
Figure 8b, the total number of bikes grows sub-linearly with increasing demand from increased ride substitution.
The graph yields the following observations.

First, we observe that for 5% ride substitution—which doubles the total number of bike trips—the total number
of bikes increases to 13,348 (from 9,199), roughly a 52% increase. For 10% ride substitution—which triples the
total number of trips—the total number of bikes increases to 19,065, a 117% increase.
This sub-linear increase in bike share capacity to handle a linear increase in demand is an interesting result

and attractive from a greening perspective. The primary reason for this sub-linear increase is due to the skewed
nature of demand that causes some bike stations to see high demand while others have slack. As overall demand
increases, heavily utilized bike stations need additional bikes to handle the extra demand, but less utilized stations
can absorb some of the extra demand using available slack rather than requiring extra bikes. Similarly, any
increase in demand during off-peak hours typically does not require a proportionate increase in bikes, since there
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Figure 10b depicts the percentage reduction in CO2 emission under different ride substitution scenarios. As
shown, 5% ride substitution yields a 3.3% reduction in CO2 emission, while a 10% ride substitution yields 6.6%
reduction in CO2 emission. Even a small 2% ride substitution yields 1.3% savings in CO2 emission. These results
show the greening potential of ride substitution.
Interestingly, the reduction, while good at an absolute level, is sub-linear with respect to the percentage of

ride substitution. This is due to the nature of sampling used to determine trips for ride substitution. If we had
uniformly sampled the TLC dataset, a certain percentage of trips would yield a corresponding reduction in miles
driven and an equivalent reduction in CO2 emission. However, since the sampling is biased towards short and
medium distance car trips less than 5km, these shorter rides yield a lower reduction in total miles driven (by
virtual of being short), and a sub-linear reduction in CO2 emission.

There are two reasons why these estimates are likely to be conservative. First, a reduction in trips reduces
traffic congestion and brings additional benefits to other vehicles (e.g. faster moving traffic, less idling at traffic
lights), which reduces carbon emissions. Second, as noted in Section 1, taxis and FHVs consume dead miles
driving between hailed trips, which increases CO2 emission by 47% as per a study [8]. Our analysis does not
account for these dead miles, which will subsantially increase the carbon emissions reported in Figure 10b.

Finally, Figure 10c shows CO2 emissions from the bike share system. The distance threshold results in different
number of electric bikes, and hence different levels of emission. As shown, even for a threshold of zero which
yields an all-electric bike system, the total emissions for a year are 188MT, which is negligible compared to the
32,000MT of taxi and FHVs. The result highlights the benefit of using a zero or low carbon form of ride sharing
for greening the overall ride share ecosystem.

Key Takeaways. The overall emissions represented as the sum of taxi and e-bike emissions see a reduction of
7% under 10% ride substitution. Under this scenario, e-bikes account for only 0.05% of the emissions, indicating
substantial carbon benefits from greening ride shares.

5 EXPANDING A BIKE SHARE SYSTEM

Having explored how existing taxi trips can be substituted with a combination of regular and electric bikes, we
now study how to effectively expand the bike share system and analyze its impact on the overall carbon emission
of the ride-sharing ecosystem. We first present our methodology for our analysis, followed by our results.

5.1 Research Methodology

We begin with the TLC dataset since it represents ride-share trips that can potentially represent bike demand in
the expanded system. Since not all taxi rides can be substituted as bike rides, we sample the dataset with the
following constraints:

• We only sub-sample the taxi rides with pickup and drop-off locations outside the existing bike share system.
In other words, we exclude the taxi trips that are within the 300m range of the current bike share system.

• We exclude the long trips that are likely not substitutable by bike trips and only consider ride trips less
than a threshold distance (e.g., 12km).

We construct our expanded bike-share dataset using the above methodology. Table 3 describes the characteristics
of the expanded bike-share system dataset and adds 3.89 million additional trips to the CitiBike dataset.

Next, we use the additional trips as input to our data-driven methodology for expansion. Our methodology for
intelligent expansion of the bike share system includes four major steps. First, we identify geographical locations
with high ride-sharing activity that are outside the current bike coverage (Section 5.1.1). Second, we estimate the
number of stations required in these locations. Third, we devise an algorithm to determine the minimum number
of bike stations that ensures maximum coverage of the area. (Section 5.1.3). Finally, we determine the optimal
number of regular and electric bikes in the expanded stations by solving the OptMix problem (Section 5.1.4).
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5.1.1 Clustering the Geographical Areas outside the Current Coverage. The main goal is to determine the geo-
graphical regions with high ride-sharing demand, as they may have a higher potential of conversion if bikes are
more accessible. To do so, we first cluster the taxi trips to find the areas with high ride traffic. Our algorithm is
built upon DBSCAN [17], a density-based clustering algorithm that groups points based on proximity. At a high
level, DBSCAN only clusters points at high-density regions. Points that lie in low-density regions far from other
clusters do not belong to any group. DBSCAN uses two main parameters to estimate density-based clusters: first,
an application-specific distance threshold ϵ which is a radius within which points should be in order for them to
considered neighbors and within a cluster. The second parameter is minPts, a threshold for the minimum number
of neighbors for a point to form a cluster. We now explain how DBSCAN constructs a cluster. The points that
have more than minPts neighbors within the radius ϵ are considered as the core points. All points within the
radius ϵ of a core point are directly density-reachable points. If a directly density-reachable point is again a core
point, all its neighbors are progressively added to the cluster, and are said to be density-reachable. All these points
together are said to be density-connected, and form a cluster in the data. DBSCAN therefore alienates dense areas
from areas of lower density, and ϵ could be interpreted as the gap between two clusters. The final output from
DBSCAN is spatially labeled clusters representing geographical regions with high ride density.

To apply DBSCAN to our dataset, we need to determine the values of minPts and ϵ . Our parameter choices are
as follows. We set ϵ = 300m, as the threshold distance between points to ensure that a bike station is available
within walking distance from a trip’s pickup location. We then set the minPts parameter to 10,000, which is at
least 2 times the average number of trips per bike station in CiteBike share dataset in the one year period of
analysis. Finally, we use ELKI [42], an open-source software library containing the implementation of DBSCAN
to cluster the potential areas for expanding the bike share system.

5.1.2 Determining the Number of Bike Stations for Expansion. Next, we estimate the number of stations needed
in each cluster. In our approach, we assume the coverage density provided by stations in the expanded bike-share
system will be similar to the existing CitiBike system. Hence, we use the geographical information, the ride
demand, and the number of stations in the existing system to estimate the coverage density of future stations.
Specifically, we calculate the cluster density d , which represents the number of stations per unit area, of the
CitiBike dataset. We then estimate the number of stations kj in cluster j ∈ K by dividing the total area of the
cluster by the density d .

5.1.3 Station Placement Algorithm. The third step is to develop a bike station placement algorithm with the
geographical clusters K and kj as the number of stations for cluster j ∈ K as the input. The objective is to place
kj bike stations in cluster j such that the total number of trips that could be covered by at least one station is
maximized.

We use the following algorithm for the bike station placement. Since the coverage area of a cluster might be an
arbitrary polygon, we first convert the corresponding polygon of the cluster into a square by first computing the
bounding rectangle, i.e., the smallest rectangular polygon that contains the polygon, and then deriving a square
of length l where l is the length of the longer side of the rectangular polygon, and the rectangular polygon is

contained in the square. Then, the station placement mechanism works as follows: compute n =
⌊√

kj
⌋

, and split
the square into n ×n cells. In each cell, place a station randomly (in practice the placement within each cell might
come with the several practical constraints, and our approach just indicates the area in which the station should
be placed). Due to the rounding process, we might have some remaining stations to be placed. In this case, we
distribute them across the whole square region at random. Finally, we discard all placements which do not cover
a single trip to remove the extra points brought about by transforming the original polygon into a square.

5.1.4 Optimal Number of Regular and Electric Bikes. The last step is to determine the number of bikes for each
station. Towards this, we first use a preprocessing analysis on the taxi trips and assign them to the final set of
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Table 3. Number of stations, trips, bikes and carbon reduction in the expanded system.

Current System Expanded System

No. of stations 941 1761

No. of trips (millions) 18.98 22.86

No. of e-bikes 3,337 4,361

No. of regular bikes 5,862 7,949

Total bikes 9199 12310

Total annual e-bike CO2 emission 47 MT 100 MT

Total annual taxi CO2 emission 183,648 MT 168,835 MT

bike stations and calculate the incoming and outgoing flows of the stations, and then run the OptMix problem in
Section 4 to determine the optimal mix between regular and electric bikes to meet the demand.

5.2 Cost Analysis

We now evaluate the performance of our expanding strategy for the existing bike share system to cover new
areas. Similar to the previous section, we consider short rides of 2km or less use regular bikes, rides longer than
5km use e-bikes, and medium rides between 2 to 5km are satisfied using either e-bikes or regular bikes. The
expanded bike sharing system adds an additional 3.89 million trips, which is around 20% of the original CitiBike
dataset, in neighborhoods that have no bike stations. We use the expanded bike sharing dataset to compute the
number of stations and bikes required to satisfy the demand.
We begin by highlighting the regions with ride-share traffic for one month (see Figure 14a in the appendix).

The figure depicts trips originating from areas outside the coverage of the current bike system. The green markers
show the snapshot of the taxi trips’ pickup points, and the red markers are the existing bike stations. It reveals
that most stations are centered around Manhattan and parts of Brooklyn. Our goal is to expand the bike share
system’s coverage into other areas indicated by the green markers.
Figure 14b (included in appendix) depicts our density-based clustering results. The current CitiBike system

shows that most stations are centered around Manhattan and parts of Brooklyn. Our algorithm identified 31
high-density clusters outside these areas, and the overall trips within each cluster ranged from 10,000 to 2.5
million trips in size. The black markers depict points that lie in low-density regions, distant from other clusters,
and thus, not classified into any cluster. In total, the number of trips that do not belong to any cluster is 1.2
million (about 13% of the uncovered region). We exclude these points in our analysis.
As seen in the figure, newer stations are placed in neighborhoods such as Upper Manhattan, Bronx, Queens,

among others, that have higher ride-sharing traffic. The newer stations identified by trip clusters are placed in
neighborhoods such as Upper Manhattan, Bronx, Queens, among others, that have higher ride-sharing traffic.
These neighborhoods have an average number of 4,766 bike trips per station and lie close to the boundaries
of the existing bike system. Since they can enhance the connectivity of the existing system, stations in these
neighborhoods could be likely candidate locations for expansion. We observe that stations are also located in
neighborhoods such as Coney Island Beach, which is distant from the existing CitiBike stations. Note that our
expanded bike-share dataset contains taxi trips that are feasible for bike substitution (i.e., trip distance less than 12
km). Since the average number of bike trips per station in these geographically spread out regions is close to the
other places, these locations show bike-share potential, even though they are distant from other neighborhoods.
A second key observation is that the number of new bike stations required is close to 88% of the existing

capacity. Although this number is substantial, the expanded bike-share system also has high coverage. If we
assume the new stations can provide service at a radius of 300m, it has a coverage area of 113 km2, which is
similar to the coverage provided by the existing system. Overall, our results show that 820 stations are added to
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to the existing system, and adds an additional 820 stations and 3,111 bikes. Some newer stations are located close
to the existing bike stations, and could potentially enhance the connectivity of the current system.

5.4 Carbon Analysis

We now analyze the emissions from expanding the bike-share system. We evaluate the overall emissions from
taxis and e-bikes in the expanded dataset for various levels of ride substitution ranging from 0% to 100%. Figure 11b
depicts our results. We note that the expanded bike dataset has an additional 3.88 million trips and, as seen in
the figure, responsible for 4960MT carbon emissions. As we increase the ride substitution levels, the carbon
emissions also reduce significantly due to near zero emissions from bikes. The results also reveal that there
is a significant benefit to expanding bike-share systems even if a fraction of the taxi rides are substituted. For
example, the emissions are reduced by a quarter if 25% of car trips, (i.e., 0.95 million trips) are replaced by bikes.
The emissions are proportionately reduced for different level of ride substitution. Lastly, it is worth noting that
our emission estimates are conservative, as we do not account for emissions due to the deadheading of FHVs. As
noted previously, deadheading accounts for 47% of the miles logged in FHVs. Hence, we expect to see a much
higher overall reduction if we see an uptake of bikes in the expanded region.

Key Takeaways. There is significant potential greening benefit from expanding the existing bike station. Carbon
emissions drop from 4960 MT to 3700MT, when we consider 25% ride substitution in our expanded dataset. To
put this in perspective, this is equivalent to a 141,780 gallons reduction in of gasoline consumption [2].

6 COST AND CARBON BENEFITS OF BIKE REPOSITIONING

Asymmetric distribution of user demand creates an imbalance in the bike system, leading to depleted bikes in
one station and overcapacity in another. This imbalance pattern may occur in residential and commercial areas
in the morning where riders may ride bikes to work, causing residential areas to be devoid of bikes. To solve
this imbalance problem, trucks or bike trailers are often used to reposition bikes within the system. There have
been many studies that focus on mitigating imbalance in bike stations [11, 18, 21, 30, 34, 36, 44]. Here, we focus
on understanding the cost of repositioning bikes from the emissions standpoint. Moving bikes involves trucks
or trailers that produce emissions. Hence, we seek to answer the following key research questions: (i) What is
the cost of repositioning bikes, i.e., the distance traveled by trucks to move bikes, and how does it impact bike
capacity if we reposition frequently? (ii) How much carbon do trucks emit in repositioning bikes? (iii) How does
repositioning impact the overall carbon emission of the rideshare ecosystem?

6.1 Research Methodology

In Section 4, we formulated the OptMix problem to compute the optimal mix of bikes needed at the start of
each rebalancing period (i.e., initial state) at each station. At the end of each run, we get a final state, which
represents the number of bikes available at each station after the simulation. Recall that we implicitly assume
bike repositioning between each rebalancing period, where the number of bikes changes from the final state to
the initial state of the next period. Here, we describe our approach to calculate the cost of repositioning bikes
within stations.

We define the cost of repositioning as the distance traveled by trucks to move bikes between stations. It is
calculated by determining the distance traveled in moving the bikes in the final state to resemble the initial state
of the next rebalancing period. Our algorithmic approach to minimize this cost is as follows. We first calculate
the surplus and deficit stations by taking the difference between the current final state Sfinalp and the initial state

Sinitialp+1 of the system, where p and p + 1 denote the current and next rebalancing period, respectively. A station
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by repositioning vehicles. Conversely, if we do not rebalance bikes frequently, we will require more bikes to meet
demand surges or asymmetric usage behavior. As shown in the figure, when stations are rebalanced every two
hours, the overall bikes needed to meet all demand is 6,324. As we increase the frequency to the bare minimum
of once per day, the number of bikes in the system increases three-fold. Thus, a system that rebalances frequently
will need a much smaller bike capacity to operate. Of course, in practice, it is much difficult to predict the demand,
which is why most bike-sharing systems are over-provisioned to ensure availability. This also reduces the need
to rebalance frequently.

Next, we examine the cost of repositioning in terms of the total distance traveled by the repositioning vehicles.
Figure 12b depicts the results. The figure shows that a decrease in repositioning frequency decreases the cost of
repositioning significantly. The primary reason for this pattern can be attributed to asymmetric user demand.
Daily commuters may pick bikes up in the morning to commute to work and return to the same station in the
evening. Similarly, a commuter may pick bikes up and ride it to a depleted station. As a result of this, some
stations may get replenished, reducing the need for trucks to balance the deficit. This auto balancing effect may
reduce the movement of bikes within stations. In particular, our results show that the total annual repositioning
cost of bikes is >600,000km, if we rebalance every 2 hours, and decreases by 99% if we rebalance every 24 hours.
Interestingly, the figure also indicates a significant drop in repositioning cost when the frequency increases

from 2 to 4 hours. Since the vehicles travel less distance under the 4-hour scenario, it suggests that there is no
need for trucks to rebalance frequently, as the system partially auto balances itself — presumably due to riders
returning bikes to the same station. However, we see diminishing returns in repositioning cost as we increase the
repositioning frequency beyond 12 hours — as a result of the self-balancing demand pattern discussed earlier.

Lastly, there is a clear tradeoff between the cost of repositioning and the number of bikes as the repositioning
frequency changes. More precisely, repositioning bikes frequently reduces the overall bikes in the system — a
capital expenditure (CapEx) benefit. On the downside, however, it increases the operational expenditure (OpEx)
associated with repositioning. To analyze the CapEX vs. OpEx tradeoff, we normalize the data with their maximum
and report the results in Figure 12c. As seen, the normalized number of bikes, depicted by the black line, increases
when the system rebalances less often. However, we see that the normalized repositioning cost decreases as we
increase the repositioning frequency because bike trailers travel less distance.

Key Takeaways. Repositioning bikes less frequently increases the overall number of bikes needed in the system.
For example, repositioning bikes once per day can result in a three-fold increase compared to repositioning every
2 hours. However, the cost of repositioning is high if done frequently. Vehicles may travel an estimated 600,
000 miles annually if the repositioning frequency is 2 hours. This will diminish the green benefit of bike-share
systems. We can reduce the repositioning cost by 73.9% to 82.4% if we reposition every 6-8 hours, and this does
not increase the overall number of bikes adversely.

6.3 Carbon Analysis

We evaluate the impact of repositioning frequency on carbon emissions generated by repositioning vehicles. In
our analysis, we assume the repositioning vehicles’ mileage is similar to the national average fuel economy of
trucks of 6.5 miles per gallon [6] and use the methodology in Section 4 to calculate the carbon emissions.

We begin by analyzing the emissions from repositioning on the CitiBike dataset. Figure 13a depicts the results.
The results show a 58% drop, i.e., from 540MT to 226MT, in carbon emissions when we vary repositioning
frequency from 2 to 4-hour periods. This rapid drop observed in the total distance traveled by the vehicles as
reported in Figure 12b is due to the auto-balance effect explained in Section 6.2. At the extreme, we see a drop in
emissions to 4.8MT, when the repositioning frequency is 24 hours.

Another key observation is that the annual emission footprint of e-bikes only is 47MT (Table 3), whereas that
from repositioning vehicles under the 8-hour period is 94.5MT. This indicates that emissions from repositioning
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Rebalancing bikes has also been extensively studied [11, 18, 21, 30, 34, 36, 44–46]. Bike deployment models
focus on improving the availability of bikes in stations while reducing the bikes shuffled across stations. Modeling
demand surge periods, depleted bike stations, hotspots for bike pick up and drop off can play a key role in
rebalancing [36, 44]. Since there is an operating cost associated with rebalancing bikes, most approaches optimize
for truck routes with the number of trucks and time of day as additional constraints. For example, in [36], the
authors limit the number of trucks for rebalancing and consider different rebalancing strategies during rush hour
and night time [36] since traffic during rush hour is vastly different during this period. Differently, [21, 34] propose
online re-positioning strategies that consider truck routes and future expected demand. In [46], a data-driven
model is proposed to predict the safe rebalancing range for bike stations. In comparison, while prior work focuses
on reducing the cost of repositioning bikes by optimizing routes, our work focuses on quantifying the carbon
footprint of repositioning activity and analyzing the tradeoff between capital cost and frequency of repositioning.
Our work also presents an optimal way of bike-share expansion by finding clusters of high FHV activity with
high potential for trip substitution, thereby identifying optimal carbon reduction opportunities by converting car
trips to bike trips.

Mobility patterns from taxi cabs [19, 24, 33], and extrinsic sources such asmobile, social networks, demographics,
have also been used for modeling and analyzing bike systems [16, 26, 28]. These studies mainly focus on designing
and optimizing bike infrastructure systems. However, our approach provides a novel analysis of the carbon
footprint in designing hybrid bike-sharing systems.

8 CONCLUSIONS

To green the ride sharing ecosystem, we conducted a data-driven approach to study the feasibility, costs, and
carbon benefits of using hybrid electric bike share system as an alternative to ride sharing systems. From the
feasibility perspective, our analysis using publicly available datasets showed that a large fraction of car rides is
feasible for substitution with bike rides. We also showed that various sampling strategies yield similar results
(within 11.8% of one another on average) for bike capacity needed to handle ride substitution. Our analysis
showed that only 10% ride substitution reduces the carbon emissions of the entire ride share system by up to
7%, while e-bikes account for only 0.05% of the emissions. We also proposed a data-driven clustering approach
to expand the bike coverage area and analyzed the benefits of such expansion from the emissions’ perspective.
Finally, we studied the cost vs. emissions tradeoff of frequent repositioning of the system to prevent empty or full
stations, and our results showed that the annual carbon emissions from repositioning vehicles can be twice as
much as emissions from riding e-bikes. However, they are still negligible compared to the emissions from cars.
While our results were specific to New York City, many of our observations apply more broadly to other

cities. Biking using hybrid electric bike share systems can be a viable form of transport for short rides in many
congested cities, and it can provide a reduction in carbon emissions from cars. As part of future work, we plan to
study how the use of electric cars in ride sharing schemes can be used in conjunction with electric bike sharing
to further green the ride sharing ecosystem.
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9 APPENDIX

9.1 Dataset Characteristics

Table 4 depicts the characteristics of our enhanced bike datasets. The original CitiBike dataset consists of around
18 million trips (see Table 4). We use the process described in Section 4.1 to sample taxi trips and create multiple
enhanced bike datasets, each representing a different level of ride substitution (e.g. 1%, 2%, 3%, 5%, 10%). This
yields enhanced datasets with the total number of trips ranging from 18 to 54 million, which triples the original
bike trip demand.
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