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ABSTRACT

The falling cost of solar energy deployments has resulted in ever-

increasing growth in solar capacity worldwide. The primary chal-

lenge posed by increasing grid-tied solar capacity is handling its

variability due to continuously changing conditions. Thus, prior work

has developed highly sophisticated models to estimate and forecast

solar power output based on many characteristics, including location,

elevation, time, weather, shading, module type, wiring, etc. These

models are highly accurate for estimating solar power, especially

over long periods, for sites at low latitudes, i.e., closer to the equator.

However, models for sites at higher latitudes are less accurate due to

the effect of snow on solar output, since even a small amount of snow

can cover panels and reduce power to zero. Improving the accuracy

of these models for annual solar output by even 2-3% is significant,

as power translates directly into revenue, which compounds over

the system’s lifetime. Thus, if a site produces 2-3% less power on

average per year due to snow than a model predicts, it can mean the

difference between a positive or negative return-on-investment.

To address the problem, we develop DeepSnow, a data-driven

approach that models the effect of snow on solar power generation.

DeepSnow integrates with existing solar modeling frameworks, and

uses publicly available snow data to learn its effect on solar gener-

ation. We leverage deep learning to quantify the effect of different

snow variables on solar power using 4 million hourly readings from

40 solar sites. We evaluate our approach on 10 solar sites, and show

that it yields a higher accuracy than the current approach for model-

ing snow effects used by the U.S. Department of Energy’s System

Advisor Model (SAM), a popular solar modeling framework.
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• Applied computing → Forecasting; • General and reference →
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1 INTRODUCTION

Solar photovoltaic (PV) power is on track to become the largest

source of electricity generation by 2050 given current trends. Solar

PV has numerous benefits that other forms of energy cannot compete

with: it has an increasingly low hardware cost, provides a limit-less

energy supply without fuel, is passive with no moving parts and thus

has low maintenance costs, and can be used effectively anywhere.

In addition, the cost of solar PV is continuing to decrease as man-

ufacturing volume and efficiency increases. Similarly, researchers

are continuing to improve solar efficiency in multiple ways, e.g.,

by using multiple p-n junctions to overcome the Shockley-Queisser

limit [18], using bi-facial panels, integrating solar PV and solar ther-

mal, and making panels smaller and more flexible (as part of roof

tiles) to increase their coverage. By contrast, conventional thermal

generators are already highly cost- and energy-optimized, and are

unlikely to experience significant further improvement.

The primary challenge with increasing solar capacity is its high

variability due to changing environmental conditions. There are two

ways to mitigate this challenge. One way is to install large-scale

energy storage to store excess solar energy, and supply energy when

there is a solar deficit. While there is significant active research in

energy storage, the current offerings remain too expensive for grid-

scale deployment, and improvements in energy storage’s cost and

efficiency are lagging improvements in solar. Thus, solar capacity

will likely increase at a much faster rate than energy storage capacity

in the near-term future. Without sufficient energy storage, utilities

will need to be able to accurately model and predict sites’ solar

output to enable better advance planning of the energy supply in

the grid. Models of current and future solar output are also useful

for solar operators in estimating their future year-over-year revenue,

valuing solar sites, and potentially participating in electricity markets,

e.g., by committing solar power in the day-ahead market.

Thus, solar performance modeling, which estimates a site’s cur-

rent or future solar output based on a site’s characteristics and

environment, is a highly active research area. There are multiple

open-source and proprietary models available. For example, the U.S.

Department of Energy (DOE) has at least two open-source solar

modeling frameworks: pvlib [11] and the System Advisor Model

(SAM) [9]. These frameworks enable users to virtually configure

detailed solar systems, and then provides an estimate of solar output

over time. Other approaches, such as Solar-TK [6], develop models

directly from data, rather than requiring users to know the details of

their system to virtually configure it. These modeling frameworks

all use the same basic set of physical models that determine solar

power output, including a site’s location, elevation, time-of-day, day-

of-year, panel efficiency, temperature coefficient, wiring topology,

inverter efficiency, panel tilt and orientation, shading effects, cloud

cover and global horizontal irradiance (GHI), etc.
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The modeling frameworks above are generally highly accurate

after configuring or calibrating them for a particular solar site. Un-

fortunately, this accuracy significantly degrades for sites at higher

latitudes due to the effect of snow on solar output. While snow ef-

fects only occur during winter, they are large enough to degrade the

accuracy of yearly estimates of solar output. Even a small amount

of snow (less than 1 inch) can completely cover panels, and reduce

power output to zero for extended periods of time. Solar output at

higher latitudes in winter months tends to also be highly volatile, and

almost completely based on snowfall. For example, at one site we

monitor in the Northeast U.S., we recorded a monthly solar output

in March, 2018 of 256kWh, and in March, 2019 of 774 kWh. The

302% increase in monthly solar output was due almost exclusively to

snow cover, with 2018 having much more snow in March than 2019.

This snowfall had a significant impact on the annual solar output as

well. For the same site, the 2018 annual output was 8,141kWh, while

the 2019 annual output was 9,091kWh, or a difference of 950kWh.

Importantly, at this site, the difference in solar output in the winter

months (January, February, March) in 2018 and 2019 accounted for

617kWh (or 65%) of the difference in output over the year, even

though the winter months only accounted for 8% (2018) and 14%

(2019) of the yearly output. Thus, for high latitude solar sites, the

variability in solar output is disproportionately affected by snowfall

in the winter. As a result, accurately modeling the effect of snowfall

is important both at short-term intervals, e.g., every hour, and over

long-term intervals, e.g., over months and years. At short-term inter-

vals as snow melts, solar output is determined by the rate of snow

melt as well physical features, such as a panel’s tilt angle. As our ex-

ample shows, accurately modeling snow over long-term intervals is

also important: improving accuracy by even a small amount (2-3%)

can be significant, since power translates to monetary revenue, which

compounds over time. Thus, a 2-3% difference when compounded

over a 25-year lifetime is significant and can make the difference

between a positive and negative return-on-investment (ROI).

To address the problem, we develop DeepSnow, a data-driven

approach to modeling snow effects on solar power. Our hypothesis

is that DeepSnow can significantly improve the accuracy of existing

solar modeling frameworks for higher latitudes with snowfall. In

evaluating our hypothesis, we make the following contributions.

Snow Data Analysis. We analyze public snow data to learn the snow

variables that most affect solar generation. Snow is highly complex,

and public snow data sites record over 40 different variables that

describe snow. We analyze this dataset and identify the variables

that most correlate with solar output. In total, our analysis covers 4

million hourly snow readings from 40 solar sites.

Deep Learning Approach. We combine the snow data with other

data, such as the shading level, tilt angle, and temperature, to learn

the effect of snow on solar output. Our approach builds on other solar

modeling frameworks by augmenting them to account for the effect

of snow. When snow is not present, our approach simply devolves to

the current state-of-the-art. Thus, our model distills only the effects

of snow on solar output and does not conflate it with the effect of

other variables. We learn a common model for snow that can be

applied to any new or existing solar site without re-training.

Implementation and Evaluation. We integrate our approach into

an existing solar modeling framework [6], and evaluate its perfor-

mance on 10 solar sites. We compare it to the same modeling frame-

work without considering snow, and to DOE’s SAM model, which

includes a physical snow model. We show that our approach sig-

nificantly outperforms the SAM model, consistently yielding better

accuracy across all 10 sites by up to 7% over a year, and much more

over the winter months and at shorter time intervals. We also show

that DeepSnow is more accurate than SAM even over the summer.

2 BACKGROUND

We briefly summarize the impact of snow on solar power and discuss

physical models that describe the relationship between different

snow properties and solar power.

2.1 Solar Performance Models

There has been significant prior work on solar performance modeling

and forecasting. Solar performance modeling infers a site’s solar

power output at the current time based on known conditions, while

solar forecasting predicts a site’s solar output at a future time based

on forecasted conditions. While there has been hundreds of papers

on this topic, there are a limited number of toolkits using these

models that are open-source and available for public use. Below, we

describe the three most prominent solar performance modeling tools.

While we discuss these approaches, our main focus is on describing

how these toolkits incorporate snow effects on solar panel output.

System Advisor Model (SAM). The System Advisor Model (SAM)

is a financial and performance model that estimates the cost of energy

for grid-connected power projects [7]. SAM contains performance

models for a variety of energy resources and their relevant financial

models, but we focus only the performance model for photovoltaic

(PV) systems. SAM’s performance model requires users to pro-

vide detailed information about the site, i.e., type of PV module

used, wiring of panels, inverter model, site’s tilt, and orientation.

Researchers may not have access to such detailed information when

performing analyses on a large number of solar sites. In addition,

SAM takes the weather data in the Typical Meteorological Year

(TMY) format and provides support to download TMY weather files

for locations across the United States. However, if users must evalu-

ate the performance of a site for a given year, they must go through a

non-trivial process of constructing TMY files for the desired location

and year. Therefore, SAM is more suited for a one-time feasibility

analysis of a PV site. Despite SAM’s configuration challenges, it

provides a good baseline for our analysis, as we expect DeepSnow

to be used for energy estimates of solar sites similar to SAM.

An attractive feature of SAM’s performance model is that it takes

into account the energy loss due to snow. The snow model used

by SAM is based on prior work that calculates the percentage of a

PV array that will be covered by snow given the daily snow depth

measurement, plane of array irradiance, temperature, and the tilt

angle for the site [13]. This model considers the snow sliding off

the surface of solar panels as the dominant snow removal process.

However, the model does not take into account snow melting due to

temperature, or the wind blowing light snow from the panel surface.

SAM’s snow model uses daily snow depth values. At the beginning

of the day, the model will check if there is a snow event, and, if the

snow depth is greater than 0, the model assumes that all solar panels
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on the site are covered by the snow. At each hour, the model will

then check if the following condition is met.

Ta >
Ipoa

m

Here, Ta is the ambient temperature, Ipoa is the plane of array

irradiance, andm is an empirically determined constant with a value

of -80 W
m2◦C

. This inequality checks if the ambient temperature and

plane of array irradiance are high enough to allow some of the snow

to slide off the array surface. If the given inequality is satisfied for

a particular hour, some portion of the PV array will be exposed

to direct sunlight. The amount of exposed surface is intuitively

dependent upon the tilt angle for the site and is computed as follows.

Snow Slide Amount = 1.97 × sin(tilt)

Here, 1.97 is the sliding coefficient determined empirically by the

authors of the snow model [13]. The Snow Slide Amount computed

from the previous equation is given as multiple of 1/10th of the

array’s height. For example, a value of 2 for the Snow Slide Amount

means that 2/10th of the array is exposed to sunlight. Note that the

model assumes that the snow completely slides off the panels and

does not accumulate near the bottom of the panel. If the snow slides

off in a given hour, the model determines the fraction of solar panels

exposed at the end of the hour. Solar output for a corresponding

number of panels is set to normal, while the covered panels’ output is

set to 0. The model makes a few simplistic assumptions, such as snow

removal occurring only because of sliding, and snow completely

sliding off the panels and not accumulating near the bottom, and the

power output of the covered portion of the panels being 0. As we

show, these assumptions significantly reduce the accuracy of this

snow model compared to DeepSnow, which implicitly models these

phenomenon by learning them from data.

PVlib. PVlib is a python library for modeling solar energy systems

that, compared to SAM, focuses more on programmability and less

on financial estimates [11]. PVlib’s model library implements multi-

ple physical models for various factors related to solar performance,

i.e., pvlib has multiple models for solar irradiance to power con-

version. The underlying models used by SAM are also available in

PVlib. Like SAM, PVlib also requires the user to specify detailed

information about a solar site to model it. PVlib uses the same snow

model as SAM. Due to these overlapping characteristics, we do not

consider PVlib for further analysis in this paper.

Solar-TK. Solar-TK is a black-box solar performance model that

is open-source and publicly available [6]. This model calibrates

the model parameters entirely from a small amount of historical

generation data from a solar site. Once calibrated, the model only

requires as input a site’s location, time, and weather (cloud cover

and temperature) over some time resolution, and returns as output

an estimate of solar energy over that time resolution. Solar-TK also

has an optional shade-adjustment module that uses machine learning

(ML) to learn the effect of shading from nearby buildings and trees

on solar output. The shade-adjustment module provides its output

as a fraction between 0 and 1: a value of 0 indicates that power has

dropped to zero because of shade and a value of 1 indicates that

shading has no effect on the site. Such shading has an effect on snow

melting, as shaded snow melts slower than the non-shaded snow.

Therefore, we use the shade factor provided by Solar-TK as one

of the features of DeepSnow’s model. However, Solar-TK does not

model the effect of snow on solar power output. Since Solar-TK

is modular and extensible, we integrate a DeepSnow module that

augments Solar-TK’s existing framework to model snow.

2.2 Solar Performance Modeling under Snow

The key effect of snow on the solar sites is in the form of blocking

the solar irradiation from reaching the panel surface. The importance

of this can be assessed and even quantified by utilizing the physical

models for the optical properties of snow. There are a large number of

factors that affect these optical properties, such as the average snow

flake/grain size, free water content, or the formation and density of

the layers within the snowpack [10].

The most important property of the snow is its reflectance, which

is also often called its albedo, that describes the ratio of reflected

radiation from a surface to radiation incident on it. The albedo

depends upon the snow depth for the thin snow layers, and prior

work has shown that it will reach its maximum value when the

snow depth is around 4cm [14]. The reflectance is not the only

phenomenon that reduces the solar irradiation reaching the panel

surface, as snow absorbs some of the radiation as well. However,

the absorption effect is less significant when compared with the

reflectance. As the snow melts, the transmission of solar irradiation

to the surface may not increase as the increased snow water content

increases the absorption of radiation in the snow water [17]. While

there is a consensus that the combined effect of reflectance and

absorption means that even a small amount of snow will greatly

reduce the solar generation, the depth of snow needed to block 99%

of light varies from 2-74cm in prior work [12, 17].

Researchers have established that the snow depth along with snow

water is not enough to describe the effect of snow on solar irradiation.

The top layer of snow has different optical properties than the snow

in the deeper layers of the snowpack, which are compressed by

the weight of upper snow layers. At snow depths lower than the

thickness of the top layer, the optical properties of the snow pack

will be influenced by its underlying surface. This top layer has a

higher extinction coefficient than the deeper snow, resulting in a

more rapid extinction of solar radiation passing through it [12, 14].

Further, the extinction coefficient of a typical snowpack, within the

visible spectrum, varies across different wavelengths of radiation. At

longer wavelengths, the solar radiation penetrating the snow layer is

of a comparatively low wavelengths with the highest transmittance

occurring at wavelengths between 450 and 550nm. The extinction

coefficient of snow appears to be the lowest between 400 and 700nm,

increasing sharply for wavelengths above 700nm. The extinction

coefficient is somewhat lower for older snow than for new fluffy

snow, and significantly higher for very wet, melting snow [14, 17].

The primary point of our discussion above is that the impact of

snow on solar power is highly complex, and not a straightforward

phenomenon. The snow depth alone is not enough to quantify the ef-

fect of snow and its additional variables, such as snow water amount,

snow layers, density of different layers, snow layer temperature,

humidity, windspeed, and types of incident irradiation. Understand-

ing these additional variables is necessary to fully understand the

impact of snow. While the effect of these different parameters is

well-understood individually, there is no well-known physical model

that incorporates the effect of snow on the solar irradiation passing
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Feature Data Unit

Type

Snow Depth (Hourly) Numerical Model inches

Cumulative Snow Precipitation Numerical Model %

Cumulative Total Precipitation Numerical Model %

Relative Humidity Numerical Model %

Snow Loss Factor (SAM) Physical Model %

Shading Factor (Solar-TK) ML Model %

Orientation (Solar-TK) Calibrated Model ◦

Tilt Angle (Solar-TK) Calibrated Model ◦

Air Temperature Observed C

Dew Point Temperature Observed C

Snow Depth (Daily) Observed inches

Wind Speed Observed mph

Table 2: Final set of features used for model training.

Tilt and Orientation. The site-specific parameters in our feature set

are generated using a calibrated model from Solar-TK. Calibrated

models fit the well-known physical models to the ground truth obser-

vations to determine the parameters or coefficients of the physical

model. For example, Solar-TK’s physical parameter module uses

a physical model that describes the relationship between the solar

panel output and its capacity, tilt, orientation, and temperature coef-

ficients. Solar-TK calibrates the model to ground-truth data to find

these physical parameters for each site. Since we do not have physi-

cal access to the solar sites, we use Solar-TK’s calibration model to

estimate the tilt and orientation of sites.

Snow Observations. The simplest source of data comes from the

actual measurements of different snow variables at the snow station.

In the final set of features, air temperature, dew point temperature,

wind speed, and daily snow depth come from actual observations of

these variables at the weather station. The variables, except for daily

snow depth, have hourly resolution while the snow depth measure-

ments are made every 24 hours. The observed values represent the

most accurate form of data available to DeepSnow’s model.

Snow-related Parameters. Most of the weather stations are not

equipped with the most advanced equipment and therefore cannot

measure the ground truth data for many of the snow-related variables.

In order to provide full coverage, the NOHRSC dataset provides

the values for the non-observed variables using Numerical Weather

Prediction (NWP) models, i.e. hourly snow depth, snow precipi-

tation, etc. NOHSRC runs these models for every ∼1km2 area of

the country, and releases them to the public. In our dataset, these

measurements are available at an hourly granularity.

Snow Loss Factor. Physical models assume detailed knowledge of

a site. These models translate this knowledge into the parameters

that the model require. For example, the snow model used by SAM

takes the tilt angle and the configuration of solar panels for a site as

its input parameters. Given these parameters, it employs a physical

model that estimates when the snow will slide off the solar panel

surface and how much surface area of all the panels will be exposed

to the direct sun after the slide. The proportion of surface area

covered by snow determines how much the loss of power due to

snow will be. While the snow model used by SAM is simple and

makes many assumptions, it still is a good indicator of the snow that

is present on a tilted surface. Our evaluation shows that using even a

simplistic model can improve the accuracy of modeling considerably

when compared with a model that does not use any snow modeling

Figure 5: Flow diagram of DeepSnow, its inputs and outputs,

and how it integrates into any solar performance model.

at all. Therefore, we use the Snow Loss Factor from SAM as one of

the features for our model.

Shading Factor. Physical models or observed values do not exist

for all factors that affect solar power output. For example, there is

no physical model that describes how shading from nearby objects

impact the solar output. Further, shading is unique to each site [6]

and local effects needs to be modeled for each site. Machine learning

is a useful tool for such situations and we use it to learn the non-

linear effects of shading on individual sites. Specifically, we use the

shade adjustment model, that employs an SVM kernel with RBF

kernel, from Solar-TK to determine the shading factor.

Table 2 presents the final set of features used by the DeepSnow.

We combine data from all these multiple sources to train our model

rather than relying on any single data type.

B. DeepSnow Model. We have outlined a set of features that our

model will use to learn how snow affects the power output of a solar

site. Figure 5 illustrates the DeepSnow workflow, how it integrates

into a solar performance model’s existing workflow, and how a user

can use it for a given solar site. DeepSnow’s model takes as an input

the output of a solar model that has not yet incorporated the effect

of snow. For example, in case of Solar-TK the input to DeepSnow

would be the shade-adjusted power output for a site. The assumption

here is that the output of the solar performance model has already

incorporated the effect of site-specific parameters, weather, and

optionally shading. DeepSnow’s model takes this modeled power

as an input and multiplies it with a factor, whose values range from

0 to 1. A value of 1 for the snow adjustment factor means that

there is no loss due to snow and the expected power of DeepSnow

would be same as the input power. A value of 0 means that snow

has completely covered all the solar panels on the site and the snow-

adjusted power output for the site would be zero.

The value of the snow adjustment factor is dependent upon the

set of features outlined in Table 2. The training of the DeepSnow

model depends upon the availability of the features. Snow data is

always required and is also publicly available for all sites in the

United States. The tilt angle is another important feature as it is

not only used as a direct feature to the model, but is also needed to

determine the Snow Loss Factor from SAM. Solar-TK’s physical

parameter module can be used to determine the tilt angle for existing

solar sites to which we do not have physical access but have some

prior data, i.e. a few days. For the new sites yet to be deployed,

the tilt angle can be set arbitrarily to any angle. The orientation

feature offers similar challenges and options as the tilt angle. Finally,

the shading factor is a feature that models the site-specific shading

characteristics and needs prior solar data for the site. Prior work that

has proposed or used the shading-adjustment has not fully evaluated

its data requirements [6, 8]. However, intuitively, at least one year of

data is necessary to account for the shading effect during all times of
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the year. However, one year of data may not be available for many

sites. Thus, we use the shade adjustment as an optional feature.

We use the observed solar output divided by the output of the

solar performance model without the snow effect, which is also used

as the input to DeepSnow model, as the target output variable for our

DeepSnow model training. This ratio gives us the effect of snow on

the solar power output and also normalizes the target variable across

all the sites. This normalization allows us to train DeepSnow’s model

using solar data from many sites with different characteristics.

The training of the DeepSnow model can be done for individual

sites (local model) or a single model can be built for multiple sites

(global model). In training a local model, we use the snow data,

snow loss factor, and shade adjustment factor if available. Tilt and

orientation angles for a given site would be fixed and therefore are

not useful as features. While training a global model, we use the

snow data, tilt and orientation angles, snow loss factor, and shade

adjustment factor if available. Tilt and orientation angles remain

constant for a given site, but the model learns to incorporate the

effect of tilt as more and more sites are used for training. The benefit

of a global model is it enables using DeepSnow for sites that do not

have enough data to train an accurate local model.

In contrast, a local model has the potential to learn unique local

factors that influence the effect of snow on a particular site’s solar

output. However, it requires a large amount of data to train an accu-

rate model, which may not available for most sites. Our hypothesis

is that a local model trained for a site with “enough” data can outper-

form a global model for that site. But, how much data is “enough” to

build a superior local model? How much the performance improves

by building a local model? What is the effect of optional shading

adjustment factor? We answer these questions in our evaluation.

The choice of feature set, the target variable, and the tradeoff of

local versus global model are irrespective of the machine learning or

deep learning model used. Of course, some machine learning models

would perform better with less data and will be suitable for a local

model and vice versa. We evaluate these differences on 4 different

ML models in our evaluation. The first model we chose is a simple

linear regression model. We choose linear regression to evaluate the

performance of the simplest model in modeling the effect of snow.

SVM models have been used by prior work to model the effect of

site characteristics on solar power output, i.e., modeling shading

impact on solar sites [8]. Random Forest (RF) is one of the most

popular ensemble learning methods as by using multiple samples

of the original dataset while building trees, RF reduces the variance

of the final model. A low variance means low overfitting and better

generalizability. Finally, when building a global model, we will have

access to millions of data points. Neural Networks (NN) tend to work

better with large datasets. Therefore, we compare the accuracy of our

DeepSnow model while using these machine learning models. Once

the model is chosen and trained, our DeepSnow model takes the

relevant set of features and computes the snow adjustment fraction.

This fraction is then multiplied with the modeled input power to the

DeepSnow to get the snow-adjusted power output for the site.

4 DEEPSNOW IMPLEMENTATION

We have implemented a prototype of DeepSnow in python. The

implementation provides a DeepSnow python module that can be

plugged into Solar-TK’s modeling workflow. It also provides a Deep-

Snow module that is compatible with the PVlib python library. Our

implementation extensively uses the pandas python data analysis

library [2], and the NumPy scientific computing python library [1].

We use hourly snow data from NOHSRC Interactive Maps [4] and

daily snow depth data from SNODAS [5]. We have used solar data

from Solar-TK’s solar data repository. We have released DeepSnow’s

code and model as part of Solar-TK’s release, and made the data for

our evaluation public at the UMass Trace Repository.1

We use the Scikit-learn [16], a Python library for machine learn-

ing, to implement the linear, SVM, and RF regression models. We

use SVM with a Radial Basis Function (RBF) kernel. For RF, we

use randomized search cross validation function from scikit-learn

to determine the optimal hyper-parameters for the model. For the

deep learning models, we use PyTorch [15], a deep learning library

for Python. We use a 4 hidden layer feed-forward NN implemented

using PyTorch. The NN has 128, 128, 128, and 64 neurons in the

hidden layers. The hidden layers use the “relu” activation function,

while the final output layer has a single output with linear activation.

We use L2 regularization and dropout layers to reduce overfitting.

A grid search was performed for the selection of hyper-parameters.

For training, we use the Adam optimizer with mean absolute error

as the loss function. The train and test split size was dependent on

the choice of local and global models and is cited in the evaluation.

5 EXPERIMENTAL EVALUATION

The objective of any solar performance model is to accurately model

and infer the power generated by a solar site at any given time. As

we established earlier, accurate energy estimates over some period,

i.e. one year, are also important for the financial models of PV de-

ployments. It is worth pointing out that, while low error in predicting

instantaneous power values will generally result in lower error in

energy estimations, it is necessarily not a linear relationship. The

over and under power estimations may cancel out over longer pe-

riods, leading to low errors in energy estimations but high errors

in power inference. Therefore, the performance analysis of a solar

performance model should take error in both power and energy into

account. Thus, we evaluate DeepSnow’s accuracy in estimating both

annual solar energy production and inferring instantaneous power.

We evaluate and compare the accuracy of DeepSnow with the

solar performance models described in §2 on data from 10 solar sites

at different locations with widely different characteristics in terms of

snowfall. We picked sites across Colorado, Illinois, Massachusetts,

Minnesota, and New York. All of the sites have 6-11 years of solar

and snow data available. As a general rule, we keep the last 3 years

data as the test dataset and train the different models on rest of the

data. The rationale behind saving the last three years of data for each

site is that we want to estimate annual energy for the sites and want

to include all seasons of the year since the accuracy across seasons

varies. As a result, the amount of training data for the different sites

is not the same. Therefore, we clearly state the data characteristics

in each subsequent experiment and discuss its effects on the results.

To quantify accuracy, we use Mean Absolute Percentage Error

(MAPE), as follows, between the ground truth solar energy and the

1See https://github.com/sustainablecomputinglab/solar-tk and http://traces.cs.umass.
edu/index.php/Smart/Smart
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Figure 6: Global and local snow model accuracy in predicting

solar output over one year using different ML models.

solar energy that DeepSnow estimates over the time interval, i.e. one

year. A lower MAPE indicates higher accuracy with a 0% MAPE

being perfectly accurate energy inference.

MAPE =
100

n

n∑

t=0

|
St − Pt

St
|

Here, St and Pt are the actual and inferred solar energy generation,

respectively. We also compute the MAPE between the instantaneous

power estimated by DeepSnow and the ground truth solar power.

5.1 Baseline

We compare the accuracy of DeepSnow with Solar-TK [6] and

SAM [9]. We use our best effort to model sites equivalently in both

tools, which we describe below.

Solar-TK. Solar-TK provides a physical parameter module that esti-

mates the physical characteristics of a solar site and its temperature

related parameters. These parameters are then used by the subse-

quent modules to estimate weather-adjusted power generation. We

use one year of data for each site to estimate the physical parameters.

We use all the training data for each site to train Solar-TK’s shading

module, which means that each site’s shade training is done using at

least 3 years of data. The output of the shading module is a shading

index value at each timestamp that dictates how much shading re-

duces solar output. The shade-adjusted power values from Solar-TK

are used as the first baseline. In addition to that, we use the shade

index for our DeepSnow model as a feature. The shade index has a

value between 0 and 1, a value of 0 means no power due to shading

while 1 means shading has no effect for the site.

System Advisor Model (SAM). SAM’s configuration for a site

requires choosing the exact solar panels used, the wiring scheme

for the modules, and the site’s tilt, and panel orientation angles.

Since we do not have physical access to any of the sites used for

this analysis, we do our best effort to configure the sites in SAM.

The first step in our approach is to estimate the overall capacity of

the solar site, its tilt, and orientation angle. We do this by using

Solar-TK’s physical parameter module, which has been shown to

have high accuracy in prior work [6]. Once we have an estimate of

capacity, we manually examine satellite imagery of the site to infer

the number of panels, their wiring scheme, and the size of each panel.

Since we do not know the exact solar panel type, we tried multiple

different modules with the same rating and selected the one that gave

the best results. Furthermore, SAM requires input solar-irradiation

and weather data in the form of Typical Meteorological Year (TMY)

files, we prepare the data for all the sites and all years in the TMY

format. We get solar irradiation data from NSRDB database and

weather data from the Weather Underground; the same data source

is used by DeepSnow and Solar-TK for non-snow weather data.
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Figure 7: A local model requires more data than a global model.
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Figure 8: Percentage improvement in accuracy from using

shade adjustment factor. Sites 2, 3, 9 and 10 don’t experience

shading and do not see any improvement as a result.

5.2 Local versus Global Model

The effect of snow, as we have illustrated, depends on variables that

are listed in Table 2. Some of these variables are not dependent upon

the solar sites, i.e., snow depth, humidity, precipitation, and wind

speed. That is, while the value of these variables vary across space

and time, they are not dependent upon the configuration of the solar

site itself. In contrast, other variables such as the shading factor, tilt,

and orientation depend upon the site’s configuration. Each of these

site-dependent parameters will determine how snow accumulates

and melts over time. Therefore, ideally, building a local snow model

for each site seems like an attractive option. However, not all of

the sites will have enough data to train a local model. In this case,

a global snow model is a reasonable alternative, as the accuracy

of different machine learning models have a different relationship

with the amount of data available, i.e., NNs typically require more

training data than the Random Forest model.

We next evaluate the accuracy of DeepSnow using the linear

regression, SVM, RF regression and NN models that we discussed

in §3. Figure 6 shows the accuracy of each model when building a

local model and a global model. For this analysis, we choose a site

for which we have 11 years of data. For simplicity, we will refer to

this site as the local site. When training a local model, we use only

the data available for the local site. We keep the last 3 years of data

as the test dataset. For the global model, we use data from all the

sites, which adds up to a total of 56 years. To train the global model,

we use all data from the remaining 9 sites used for evaluation. While

training the global model, we do not use any data from the local

site. As a result, we measure the accuracy of the global model on an

unseen site whose data was not used for training.

The linear regression and SVM models show a high error for

both the local and global models. The RF model performs well for

the local model, as it is able to achieve a good fit for the model. A

well-trained local model with 8 years of data achieves a very high

accuracy. This happens because the characteristics of the local site

do not change over time. However, the model’s accuracy degrades

as we train a global model with data coming from many sites. NNs

are not suitable for building a local model because there is a limited
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Figure 9: Accuracy for Solar-TK, SAM, and DeepSnow in estimating energy during (a) summer, (b) winter, and (c) overall.
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Figure 10: Accuracy for Solar-TK, SAM, and DeepSnow in estimating power during (a) summer, (b) winter, and (c) overall.

amount of data available for a single site. However, a global model

trained using NNs achieves higher accuracy. But, its accuracy is

still less than a well-trained local model. This presents a trade-off

between scalability and accuracy. A global model is less accurate

but applies to many sites. A local model can be accurate, but it is

often not possible to train such a local model due to a lack of data.

As we saw in Figure 6, a well-trained local model can outperform

the global model. However, the local model that outperformed the

global model was trained on 8 years of data. The data for 8 years

or more is probably not going to be available for most solar sites.

Therefore, we also evaluate how the accuracy of the local model

improves with the amount of data available. Figure 7 presents the

accuracy of the local model as more and more training data is used to

train the local model. The local model does not have high accuracy

if there is less than 5 years of data available. The accuracy of the

local and global models is comparable at 6 years and the local model

outperforms the global model with additional data. However, the

gain in accuracy becomes marginal even with more data.

The global model presented in Figure 6 uses the shading index

feature as an input, which means that we need some data for each site

to train the shading module. Therefore, this model cannot be used for

sites that have no prior data available or even for the sites that have

very little data available. To remove this condition, we trained the

global model without the shading feature and compared its accuracy

with the global model with the shading feature. Figure 8 compares

the accuracy of a global model with the shading index as an input

feature and without it. The shading index feature is not important

for the sites that do not have any shading present, as with sites 2,

3, 9 and 10 in this case. For the sites with shading present, adding

the shading factor as the feature improves the accuracy of the global

model by 10-15% with an average improvement of 12%. We use a

global model with shading feature for all subsequent experiments.

5.3 Energy

The accuracy in inferring energy output is important for estimat-

ing a site’s revenue. A higher accuracy allows the users to make

better financial projections, which affects the value of a site and

possible financing. Figure 9 shows the error in inferring solar energy

production during summer, winter, and overall during a year. Since

DeepSnow uses Solar-TK’s solar-performance model and simply

adds a module to incorporate the snow effect, both Solar-TK and

DeepSnow yield the same accuracy in the absence of snow. SAM

on the other hand has lower accuracy than DeepSnow for all 10 the

sites. For some of the sites, i.e., site 7, the difference is exacerbated

by the shading effect present at the site. The shading effect is not

modeled in SAM as shading is a site-specific property which must

be learned from data. DeepSnow uses the shading module of the

Solar-TK, and is able to achieve a higher accuracy.

The accuracy of all approaches decreases during the winter season,

as can be seen in Figure 9(b). Solar-TK has the worst accuracy as

it does not incorporate the effect of snow in its modeling approach.

The simple physical model used by SAM improves the accuracy

of the model during the winter where it significantly outperforms

Solar-TK. The improvement in accuracy is significant as Solar-TK

predicts solar power to be near its maximum expected, especially if

it is a sunny day. However, in presence of snow even on a sunny day,

the actual power generated will be closer to 0 than the maximum

power. Therefore, even a simple model that predicts the power to

be zero under snow would likely perform better job than Solar-TK

on a sunny day with a large amount of snow. DeepSnow improves

the accuracy of inference beyond SAM as it not only considers the

simple snow model used by SAM, but also incorporates the effect of

shading and orientation. It also learns additional information from

the variables gathered through NOHSRC dataset.

Even after incorporating the snow model, both SAM and Deep-

Snow have a fairly high error during the winter season. However, the

winter season in our analysis only includes time periods when the

snow depth is greater than 0. The total number of days is around 2

months per year on average for all of the sites, which means that the

overall effect of inaccuracy during winter is reduced when viewed

over the whole year. In addition, the energy generated during the

winter is also less, which further lessons the impact of winter inac-

curacy. However, this does not mean that incorporating the effect

of snow is not valuable. Figure 9(c) shows the overall MAPE for

all the three approaches over the course of a year. We can see that

DeepSnow improves the accuracy of Solar-TK considerably as it in-

corporates the snow effect. However, while a snow model improves

the winter accuracy for SAM, the better accuracy of Solar-TK in

solar modeling for non-snow periods means that it has an overall

better accuracy than SAM even for the sites with less snow.
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Figure 11: Error analysis of different modeling approaches.

5.4 Power

The accuracy in inferring the instantaneous power output is important

for the grid operators, as higher accuracy allows them to plan ahead

and manage their supply resources better. Figure 10(a) shows the

error in inferring solar power during the summer. As with the case of

energy, Solar-TK and DeepSnow have the same accuracy during the

summer because their underlying performance model in the absence

of snow is the same. DeepSnow, however, achieves better accuracy

than SAM for all the sites. The shading effect on site 7 worsens the

accuracy of the SAM model, as was the case for energy.

The accuracy of all approaches during the winter is worse than the

summer season, as shown in Figure 10(b). Solar-TK is not present in

this figure as the MAPE values for it across sites range from 1700-

2500%. The high MAPE for Solar-TK is expected as it does not

incorporate snow effects. In the event of snow, as the actual power

approaches 0, the MAPE of Solar-TK approaches infinity. Therefore,

Solar-TK alone would not provide good accuracy during the winter

for the sites that experience snow. SAM outperforms Solar-TK with

its simple physical model of snow, but the error across sites ranges

from 100-180%, which limits its use during winters. DeepSnow

yields better accuracy than SAM, as it not only incorporates the

SAM model but also models the effect of additional variables.

The overall accuracy for all the approaches lies between the ac-

curacy during summer (high) and winter (low). However, the actual

magnitude of the error for different approaches is interesting. While

Solar-TK does better during the summer, it has poor accuracy during

the winter, which makes itsoverall error quite high (28-40%, aver-

age ∼35%). However, the addition of DeepSnow reduces its MAPE

range to 8-25% with an average value of 12%. Thus, DeepSnow

reduce sthe MAPE of Solar-TK by ∼65%. The accuracy improve-

ment over SAM is also significant at 25%. SAM’s average MAPE

is 15% as compared to 12% for DeepSnow. However, even this 3%

difference is significant as it translates to revenue that compounds.

5.5 Distribution of Errors

MAPE captures both underestimates and overestimates. However,

underestimates and overestimates have different impacts. If a model

underestimates the annual energy yield, the solar deployment would

appear to be a less attractive financial investment, and causes the

solar site to have a lower value. In contrast, overestimating overval-

ues a site, causing the owner to expect more revenue than they will

actually earn. Ideally, a model would have a zero error, but a model

that constantly overestimates is better than the one that underesti-

mates. Figure 11 shows the distribution of absolute average error for

all the modeling approaches. Solar-TK has a higher error than both

SAM and DeepSnow, as expected. However, it is interesting to note

that while SAM has a higher MAPE than DeepSnow, its average

absolute error is low with a very high error range. This means that

SAM underestimates for some sites while overestimates for others.

Thus, using SAM, these sites have no certainty over whether the

model is overestimating or underestimating the power. In contrast,

DeepSnow has a slightly average absolute error with a narrow range

and always over-predicts. Thus, DeepSnow is much more likely to be

an overestimate within a narrow range. That is, DeepSnow’s errors

tend to be much more consistent and predictable than SAM.

6 CONCLUSIONS

There has been decades of research on solar modeling and fore-

casting using physical and empirical models. DeepSnow builds on

and leverages much of this work. DeepSnow’s novelty lies in its

empirical modeling of the effect of snow on solar output. None of

the prior work does well under snow, and most does not even attempt

to model the effect of snow, even though it is significant at higher

latitudes. DeepSnow’s data-driven approach leverages existing solar

modeling frameworks, and uses publicly available snow data. Our

data analysis quantifies the effect of different snow variables on solar

power using 4 million hourly readings from 40 solar sites. We then

evaluate our approach on 10 solar sites, and show that it yields a

higher accuracy than the current approach for modeling snow effects

used by the the U.S. Department of Energy’s System Advisor Model

(SAM), a popular solar modeling framework.
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