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Due to the ubiquitous nature of smartphones, opportunistic phone-based crowdsensing has emerged as an
important sensing modality. Since fine-grain ambient temperature measurements are a pre-requisite for energy-
efficient operation of heating and cooling (HVAC) systems in buildings, in this paper, we use mobile phone
sensing in conjunction with a web-based crowdsensing system to obtain detailed ambient temperature estimates
inside buildings. We present a machine learning approach based on a random forest ensemble learning model
that uses the phone battery temperature sensor to infer the ambient air temperature. We also present a few-shot
transfer learning method to quickly learn and deploy our model onto new phones with modest training over-
heads. Our crowdsensing web service enables predictions made by multiple phones to be aggregated in an
opportunistic fashion, extending our approach from an individual level to a community level. We evaluate our
ML-based model for a range of devices, operating scenarios, and ambient temperatures, and see mean errors of
less than +0.5°F for our temperature predictions. More generally, our results show the feasibility of using an on-
device ML model for ambient temperature predictions in mobile phones. This allows buildings — new and old,
with and without sensing systems — to benefit from a new class of ubiquitous temperature sensors, enabling more

sustainable operation.

1. Introduction

The ubiquitous nature of mobile phones along with their sensor-rich
features have made mobile phone sensing an integral part of monitoring
systems such as activity recognition [1,2], health monitoring [3,4], and
environment monitoring [5], to name a few. Mobile phone sensing,
when combined with opportunistic crowdsensing, has opened up new
opportunities for sensing of our physical environment without the need
to deploy a fixed sensing infrastructure for problems such as urban
environment monitoring [6,7], traffic monitoring [8], public trans-
portation tracking [9-11], and parking availability [12]. More recently,
phone sensing has found use for energy sustainability, specifically for
building energy efficiency.

Building energy efficiency is an important problem since buildings
account for nearly 70% of the total electricity and 40% of the total en-
ergy consumption in the U.S. [13], with heating, ventilation, and cool-
ing (HVAC) systems accounting for over 50% of the energy consumed.
To increase the sustainability and usability of HVAC systems, there has
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been a substantial effort to enhance energy-efficient control of these
systems while simultaneously providing improved user comfort [14].
Today’s buildings have sophisticated HVAC systems with independently
controlled zones that are driven by multiple thermostats and tempera-
ture sensors. However, research has shown that such instrumentation is
often misconfigured, leading to energy wastage or discomfort for oc-
cupants. Older buildings tend to have older instrumentation that is more
prone to such configuration issues. To address this challenge in this
paper, we present a technique to crowdsense ambient temperature
measurements from mobile phones, which can then serve as an addi-
tional source of temperature data to HVAC systems for its energy
optimizations.

Our approach focuses on using mobile phones to sense indoor
ambient air temperature, in effect using each phone as a mobile digital
ambient thermometer. The primary challenge, however, is that phones
lack a sensor to directly measure ambient temperature and must infer
this information using other on-board sensors. The feasibility of using
battery temperature sensors inside phones for ambient temperature
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Fig. 1. Use of mobile phones to infer ambient air temperatures and a web service to crowdsense these predictions for energy management.

sensors was shown in [15] using a Physics-based model. Our approach,
depicted in Fig. 1, is based on machine learning and significantly im-
proves upon our prior work [15] in three important ways. First, we use a
machine learning (ML) model based on a Random Forest Bagging Re-
gressor to infer ambient air temperature and show that our approach
yields a much more accurate temperature estimate (3x lower error) than
the state-of-the-art Physics-based approach. Second, to ease the
deployment of our ML model on a broad range of phones with modest
effort, we use a few-shot based transfer learning method, where we use
only a few labeled samples on a new phone to adapt a model trained on
another phone. Third, we develop an end-to-end web-based system to
incorporate phone sensing into a web-based opportunistic crowdsensing
platform for ambient indoor temperature sensing at a community scale.

In designing and implementing our approach, we make the following
contributions:

e We propose an approach to infer ambient temperature using on-
device machine learning model that leverages mobile phone bat-
tery temperature. We use an opportunistic crowdsensing based
approach that aggregates the readings across phones at a location
and computes an ambient temperature reading per building zone or
room.

We design a data-driven, on-device, Random Forest regressor-based

model for ambient temperature prediction and achieve better per-

formance than the current state-of-the-art approach.

We present a few-shot based transfer learning approach for the

ambient temperature prediction model to be deployed on a never-

before-seen phone.

e We develop a full prototype of our system implemented as a RESTful
web service to crowdsense indoor temperature measurements in
conjunction with an indoor positioning system (IPS). We develop
policies to distinguish high-quality crowdsourced measurements
from lower quality ones.

e We evaluate our approach using multiple devices and scenarios. Our
results show that our ML approach yields a prediction error of 0.5 °F
or less and MAE of 0.3 or less for our few-shot based transfer learning
approach.

2. Background and related work

In this section, we present background, review state-of-the-art
techniques, and discuss challenges to opportunistic crowdsensing-
based ambient temperature sensing using ML techniques.

Energy sustainability. Energy sustainability and increasing
resource-use efficiency are key United Nations Sustainable Development
Goals (SDG). Buildings account for over 40% of the energy and 75% of
the electricity usage in the many developed countries. Heating, cooling,
and ventilation (HVAC) is the largest component of a building’s energy
usage and accounts for 50% of the energy usage in typical buildings
[16]. Thus, reducing energy waste of HVAC systems and improving
energy efficiency is important from a sustainability standpoint and one
that can have a societal impact. Misconfigured and miscalibrated ther-
mostats can result in over-use of the HVAC system (which wastes en-
ergy) or under-heat or under-cool areas (which causes user discomfort).
We propose mobile sensing and crowdsensing based approach that al-
lows anyone with a smartphone to collect ambient temperature any-
where in the building. We believe such an approach is easy to deploy in
current buildings and can be used by HVAC systems as additional source
of temperature data.

Building temperature sensing. Modern smart buildings incorpo-
rate fine-grained and ubiquitous instrumentation to provide energy-
efficient and comfortable environments using smart thermostats. Re-
searchers have explored the use of zonal temperature control [17,18],
people-location scheduling based on preference [19], and personalized
control system scheduling [20]. All of these techniques require a
fine-grained temperature sensing infrastructure throughout the build-
ing. Older buildings have HVAC systems with controllable zones but
often lack such a sensing infrastructure due to sparsely-deployed ther-
mostats and instrumentation. As noted earlier, regardless of whether a
building is old or new, misconfiguration of instrumentation is a common
problem in practice, resulting in energy waste from non-optimal HVAC
control. Our work explores the use of mobile phones as ambient tem-
perature sensors to enable older buildings to provide features similar to
newer smart buildings. Also, any building where sensors may be
mis-calibrated can also benefit from our approach by leveraging it as an
additional source of ambient temperature measurements and using it for
HVAC control.

Mobile crowdsensing. Mobile crowdsensing combines mobile
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sensing and web services to opportunistically crowdsource data from
phones via the web with the common intention to collectively share the
acquired data towards a common interest or for common good. The
Mobile crowdsensing paradigm has been used across multiple contexts
such as environmental quality monitoring, noise pollution assessment,
and traffic monitoring. Here, we employ mobile crowdsensing to
crowdsense ambient air temperature measurements inside buildings.

Mobile crowdsensing has been used to crowd-source measurements,
using mobile phones, for applications such as environmental quality
monitoring [7,21], noise pollution assessment [6,22,23], and traffic
monitoring [8,24-26]. In [10] researchers have designed systems for
Intelligent Transportation Systems (ITS) without explicit user input
using participatory sensing. Here, we employ mobile sensing to
crowdsense ambient air temperature measurements inside buildings.

Phone-based sensing. While a mobile phone is a sensor-rich plat-
form, it lacks sensors to directly measure ambient air temperatures. To
date, two phone models had such sensors (Motorola Moto X and Sam-
sung Galaxy S3), but these sensors were removed in later models,
seemingly for cost and accuracy reasons. Although phones lack an
ambient temperature sensor, all phones are equipped with a battery
temperature sensor to continuously monitor the battery and prevent it
from overheating. Two prior studies [7,21] have shown the feasibility of
crowdsensing outdoor air temperature at the city scales using battery
temperature. However, the approach used coarse-grained measurements
that are not location-specific and also did not consider the impact of heat
generated by phone activities. In our prior work [15] we showed the
feasibility of this approach for indoor temperature sensing. We demon-
strated a strong correlation between ambient temperature and battery
temperature across various levels of phone activities. We used a
Physics-based approach to model the thermodynamic effects of phone
activities on battery temperature and used Newton’s law of cooling to
estimate ambient air temperature. However, a key drawback of [15] is
that it incorporates seven distinct models based on a different set of
phone activities and requires a sophisticated detection algorithm to
choose which model can best estimate air temperature. Also, accurate
ambient temperature sensing directly from a smartphone is infeasible
due to the internal heat generated by the phone that affects the tem-
perature sensor reading [27]. Additionally, different manufactures and
models use different thermal insulation material that hinders the usage
of one fixed rule-based approach to extract ambient temperature from
temperature sensor readings.

In this work, we argue for a purely data-driven approach to infer
ambient air temperature based on machine learning. Our approach uses
a single ML model based on ensemble learning instead of a set of distinct
models to make its predictions. We hypothesize that the use of a single
ML model, rather than multiple state-specific models, can simplify the
task of ambient temperature prediction across various phone states and
yield better accuracy than the prior state-of-the-art [15]. Additionally,
we demonstrate that it is easier to train new phones by using few shot
based transfer learning and opportunistic crowdsensing data from more
than one phone improves the accuracy of the computed ambient tem-
perature by at least 2.5 x , which itself is a significant contribution.

3. Ambient temperature sensing using mobile-based machine
learning

In this section, we describe the behavior of phones under different
conditions, present our machine learning model and a few-shot based
transfer learning approach to quickly deploy our models on new phones
with limited training.

3.1. Modeling phone temperature behavior
The battery temperature of the phone depends on activities that the

phone is performing and the heat dissipation due to those activities. The
four main activities that impact phone battery temperature are CPU
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Fig. 2. Phone battery temperature behavior.

Table 1

Phone state transitions.
Current state Next state
Idle Idle/warming
Warming Warming/steady
Steady Steady/cooling
Cooling Cooling/idle
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Fig. 3. Real phone battery temperature behavior.

utilization, network utilization, phone charging, and screen usage.
Although CPU and network utilization are continuous values, we model
them as binary variables with values high or low; the utilization is high
when it exceeds 80% and is low otherwise. For simplicity, we also use
binary states (on/off) for screen usage and battery charging (lithium
battery charge control typically has two or three states). Different
combinations of these activities (e.g., screen usage with high CPU load
or screen use while charging) have different impacts on battery tem-
perature due to different amounts of power draw and heat dissipation.
Regardless of which activities are performed by the phone, its battery
temperature shows the generic behavior depicted in Fig. 2.

The phone is initially idle where its temperature roughly equals
ambient temperature. When the phone starts performing activities, its
battery temperature starts rising as depicted by the warming phase in
Fig. 2. The phone battery then reaches a steady state equilibrium tem-
perature where heat generated equals heat loss. When the activity stops,
the battery temperature starts falling, as depicted by the cooling phase.

This battery temperature behavior is similar with any combination of
screen, CPU, network, and charging is considered; however, the rate of
warming/cooling and time duration of each sub-state for different
combinations are different in each case. Further, given Fig. 2, the phone
may make a consistent transition between its states (idle, warming,
steady, cooling) as shown in Table 1. For example, an idle state is always
followed by a transition to warming. Fig. 3 shows an actual battery
temperature on a phone, it follows the 4 sub-states we described earlier.

3.2. Phone context identification
Based on the empirical analysis and methods of our prior work [15],

we have found that there can be a different impact on battery temper-
ature and heat dissipation depending on how and where a phone is used
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Table 2

Ambient temperature model features.
Features Values
CPU High/low
Network High/low
Screen On/off
Charging On/off

Continuous value
Continuous value
Integer value

Continuous value

Battery Current

Battery Voltage

Battery Level

Battery temperature (current value and 5 previous values)

by the user. Our phone context identification method seeks to distin-
guish whether the phone is: (i) indoors or outdoors, (ii) in motion or
stationary, and (iii) exposed to ambient air (e.g., in hand, on a table) or
not (e.g., in a bag or a pocket). We use a simple classifier that uses a
combination of WiFi and GPS signal strength to classify the environment
as indoors or outdoors. For detecting, if the phone is in-motion or sta-
tionary, we use data from the accelerometer as well as the phone loca-
tion determined by an Indoor Positioning System (IPS) explained in
detail later in Section 4.2. Finally, the activity recognition model from
[28,29] is used to determine if the phone is exposed to ambient air. Our
prediction model is triggered only when the phone is indoors, exposed to
ambient air, and stays at a given location for a settling period.

3.3. Machine learning model

For estimating ambient temperatures, we use an ensemble learning-
based bagging Random Forest (RF) regressor. In the ensemble-based
learning paradigm, rather than using a single highly-accurate model
for predicting ambient air temperature, we learn a large number of weak
models and combine their predictions. The number of decision trees in
the forest, say B, is a hyper-parameter that can be tuned by the user. In
the bagging-based RF regressor, we bootstrap samples from the dataset
and create B samples. Bootstrapping to create B samples from the orig-
inal dataset reduces the variance resulting in low overfitting. Next, we
train B decision trees on each of the B samples.

Our model is trained on 13 features as input (see Table 2 ) and the
true ambient air temperature as the output. While learning at each split
of the decision tree, a random subset of features from the set of 13
features are selected. The selection of a random subset of features helps
avoid correlation between trees in the forest. To make predictions, our
ensemble model considers the average of all the predictions made by the
trees (“weaker models”). Ensemble learning has multiple advantages
such as low training overhead and low overfitting. Low correlation be-
tween trees aids in improving the overall accuracy of the regressor since
good models will likely agree on the accurate/good predictions while
bad models will likely disagree on other predictions due to the avoid-
ance of correlation of the trees.

For our task of predicting ambient temperature, we use 13 features
listed in Table 2 that are indicators of phone activity and state of the
phone. As described in Section 3.1, the combination of the CPU,
network, screen, and charging features captures ongoing phone activ-
ities. CPU and network load take the value high/low, with high
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indicating 80% or more usage and low otherwise. Screen usage can be
on or off, and the charging feature is again on/off with on indicating that
the phone is getting charged otherwise off. Any combination of high
CPU load, the screen on, high network load, or charging phone state can
lead to an increase in battery temperature. The state of the battery can
be captured using four features: current, voltage, battery level, and
temperature. Battery current provides an indicator of state change. A
change in battery current coupled with trends shown by the temperature
sample enables the model to detect a new state transition. Battery charge
level and voltage level are also used as key input features.

Together, these features enable our bagging RF models to infer the
ambient temperature under different activities and states. Additionally,
battery current, battery voltage, and battery level can help identify the
charging stage of the phone (e.g. fast charging) which also affects the
temperature of the battery. We observe that the current battery tem-
perature is also a function of heat dissipated by phone from the previous
state. Also, to learn the current state (idle, warming, steady, cooling) we
need to know the gradient of the curve. To address these problems, we
need to add a series of previous samples of battery temperature to the
features. From an empirical analysis, we found that combining the
current temperature with the previous 5 temperature values (lag values)
is adequate for the model to determine the state based on the curve
gradient and learn the impact of battery temperature from the previous
state.

3.4. Few-shot based transfer learning

With the advancement of mobile phone technology and the
increasing market demand for mobile phones, an increasing number of
phone models gets introduced in the market every year. Deploying and
training our model on a new phone requires time, calibration, and
ground truth, which is an expensive task. Hence, our system uses a
transfer learning approach that enables accelerated bootstrapping of our
pre-trained models on a new phone. To reduce the data gathering effort
and computation cost of training a model from scratch on every new
phone model we use a few-shot based transfer learning approach on a
pre-trained model. Our on-device ML model is based on Random Forest,
which is a collection of decision trees.

A decision tree is a non-linear model that has a hierarchical structure
incorporating non-linear decision rules for making predictions. The
usage of a few-shot transfer learning approach is motivated by a key
observation that the features and feature dependencies used to predict
the ambient temperature are the same across mobile phone models and
hence, the decision trees across mobile phones exhibit a structural
similarity. The task of ambient temperature prediction across phones
from different vendors will need the same set of features but the
threshold values of those features that result in the prediction might be
different while the tree structure would be the same. We use this key
observation to use a pre-trained model as a seed and use a few obser-
vations/data points collected on the new device to tune the seed pa-
rameters to perform inductive transfer learning. The seed model uses the
prior knowledge to augment the supervised experience gained from the
few new observations on the new mobile phone. In our case, we collect a

Ambient Temperature

Prediction
Phone ML-b:sIed
Context 1 mode

Identification

(@D)
é % Location Determination

Web
Service

Opportunistic

Crowdsensing Policy

Fig. 4. Overview of our system.
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few samples from the target phone (new mobile phone) on which we
wish to transfer the pre-trained seed model and label those samples as
target samples. Now, to adapt a pre-trained decision tree trained on the
source sample to target samples, we fine-tune the threshold values used
for features at each split of the decision tree based on the few target
samples using gradient descent.

4. Crowdsensing temperature measurements

In this section, we describe our crowdsensing system to collect
temperature predictions from the mobile phones of building occupants.
The architecture and key components of our system are depicted in
Fig. 4. We assume that each phone has an on-device ML model and
makes temperature predictions every 7z minutes so long as the phone is
indoors and not in motion; our system currently uses 7 = 5min.

4.1. Handling settling times

User mobility is inherently nomadic, where the user walks to a
location, stays there for some time, and then walks to another location.
When a user walks to a new location, the phone needs some time to
acclimatize to the new location before its temperature predictions are
accurate. Later in Section 5, we have empirically determined that this
acclimatization period (“settling time”) can vary from 3 minutes to 18
minutes depending on the phone vendor, model, and temperature dif-
ference. This implies that the longer a phone stays at a location, the
longer its temperature sensor has to acclimatize and the more accurate
are its predictions. In practice, the crowdsensed predictions made in the
first 15 minutes that phone is at a new location will have lower accuracy.
Hence, crowdsensing yields data with varying quality of predictions. To
mitigate this effect, we have designed a policy to weigh crowdsensed
predictions by their likely quality.

Our duration-based policy assigns confidence to predictions crowd-
sensed from a phone based on the duration that the phone has been at a
location. The longer the phone has been at a location, the higher the
confidence in its predictions. The assignment of confidence enables a
weighted average computation of the ambient temperature estimate at a
location from multiple crowdsensed measurements. Since some phone
models may be inherently more accurate than others (e.g., due to the
quality of its hardware sensors), we also use a behavior-based policy that
assigns a device confidence to each device based on the accuracy of his-
toric predictions and its prediction accuracy when compared to other co-
located high-confidence phones. The sum of confidence values assigned
using both policies results in a weighted average computation of the
ambient temperature prediction.

Additionally, to avoid the overhead of continuous sensing that can
interfere with battery life and foreground user activities, we judiciously
set the sensing and prediction frequency to once every 5 minutes and
turn off predictions when the battery level drops below a low threshold
to conserve battery life for other phone activities.

4.2. Location determination

Each crowdsensed measurement needs to be accompanied by the
location of the device. Since GPS does not work indoors, we need to
employ an Indoor Positioning System (IPS) technique to handle indoor
localization of phones. We assume that a WiFi-based indoor positioning
system is available for indoor localization—a reasonable assumption
due to the widespread deployment of WiFi in office buildings. Many
WiFi-based IPS approaches have been proposed in the literature, based
on landmark-based localization or RTT-based multilateration, and time-
of-flight approaches [30-32]. Any of these approaches can be used in
our crowdsensing system; our experiments in our office building have
shown the accuracy of around 10m for traditional landmark-based
methods, which improves to less than 2 m when using the newest
802.11mc (aka WiFi 6) access points in our experimental deployment of
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Table 3

Crowdsensing APIs.
Service Description
POST /phone/register Register a phone
POST /phone/localize Localize the phone

GET /phone/{phone_id}/temp
PUT /phone/{phone_id}/temp
GET /room/{room_id}/temp
GET /floor/{floor_id}/temp
GET /building/all

GET /floor/all?building={id}
GET /room/all?floor={id}

Return phone temp.
Upload temperature
Return room temp.
Return all room temp.
Return all buildings
Return all floor
Return all rooms

Table 4
Characteristics of phones used in our evaluation.

Make Model 0S Screen size (in.)
Google/HTC Pixel Android 7.1 5.0
LG Stylo3 Android 7 5.7
Alcatel 5044R Android 7 5.0
Samsung sm-g550t Android 6 5.0
Motorola Moto X Android 5 4.7

CompuLab WiLD APs [33]. We use Anyplace [34], which is a free and
open Indoor Navigation Service and it can embed buildings, floors,
rooms into the indoor coordinate system. The phone derives its location
using IPS, translates it to the indoor coordinate system from any place
system and uses WiFi to upload the location with the measurement.

4.3. Web service

We have implemented a prototype of the system using a RESTful web
service in python to crowdsense temperature measurements from
participating phones. Our web service exposes two types of interfaces:
those to upload new measurements and those to querying prior mea-
surement (see Table 3). The first set of API calls provides various services
for the mobile phone such as authentication, localization, and allows the
phone to share its measurement to the server for data processing and
collection. The second set of interfaces enables other applications to
query uploaded measurements and can be used by energy management
applications to visualize temperature or for HVAC control to optimize
heat in the building.

In this work we do not consider memory related parameters in our
list of 13 parameters stated in Table 2 but we plan on exploring them in
our follow-up work. Additionally, we are considering the use of statis-
tical machine learning approaches such as fractional partial differential
equations (PDE) [35], which is used to estimate diffusion equation
models and predict the evolution of stochastic processes. To generalize
the PDE based model across various manufacturers, makes, models, and
OS we would use transfer learning approach.

5. Experimental results

In this section, we discuss our experimental methodology, followed
by our results.

5.1. Dataset and parameter setting

Dataset: For the evaluation of our model, we use the phone dataset
collected from [15]. The dataset, which is discussed in detail in [15],
comprises data collected across 5 different phones that cover a wide
spectrum of vendors, screen size, battery capacity, and OS as shown in
Table 4. We use Google/HTC Pixel phone as the default phone. Our
model is general and has been validated for a number of phones with
different form factors and battery sizes. We believe the approach should
work for iOS devices as well but we are unable to validate it since access
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to battery temperature is restricted to the OS and not accessible to the
application. For all the evaluations, the ground truth data were collected
from a HOBO temperature logger. For each phone, we collect labeled
datapoints at a sampling rate of 1 min/sample across all states (as
defined in Table 1. We collect data for all combinations of CPU,
Network, Screen and Charging.

Parameter setting: To evaluate the robustness of our proposed
model we use a train-validation-test split of 20-20-60 with 20% data
used as training data, 20% as validation data, and rest 60% as testing
data (reason explained below). To ensure that the train, validation and
test dataset is a reflection of data points across all stages of the battery
temperature curve we select 20% data points from each state — idle,
warming, steady, and cooling sections of the collected dataset as train
dataset, 20% as validation dataset, and rest 60% as test dataset. This
ensures the presence of data points across all sections of the battery
temperature curve in training and testing as well as the stratified dis-
tribution of the data points across the training and testing datasets. This
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stratified selection is important because the observed 4 sections of the
curve may not have an equal number of datapoints hence, the distri-
bution of data points in the training and testing datasets should be
representative of the actual distribution. Additionally, we use a sam-
pling rate of 1 datapoint/min during data collection because of a sam-
pling rate of 1 datapoint/sec results in a lot of duplicate data points due
to similar feature values. Reducing the sampling rate and a 20-20-60
split ensures no data leakage across the training and testing datasets.
For the selection of model hyper-parameters, we use a grid search over
the parameter space. We use MAPE as our evaluation metrics for com-
parison with state-of-the-art and other baseline regressors.

5.2. Baseline comparison

To evaluate the effectiveness of our model, we compare our proposed
model with the state-of-the-art model [15], which is a Physics-based
model based on Newton’s law of cooling to compute the indoor
ambient air temperature. To measure against the physics based model,
we derive 7 models one for each of the most frequent combinations of
the phone features (CPU, Network, Screen, and Charging) as described
in [15] and predict the ambient air temperature on the test dataset. We
run our trained model on the same dataset and we compute the per-
centage error for both the models across all depicted scenarios. Fig. 5
depicts the percentage error, shown as box plots for our model and the
state-of-art model. Our model outperforms the state-of-art 6 times, with
an average error of 0.48% while the state-of-art has an error of 3.32% a
reduction of 2.84% points. Fig. 6 is the KDE of observed and actual
observations of our model on the same dataset. Our model gives a pre-
diction accuracy of 99.52%. As shown in Fig. 6 there is a very strong
correlation between the observed and predicted temperatures.

5.3. Few shot based transfer learning

To evaluate the efficacy of our few shot based transfer learning
technique, we train a model on data collected from Alcatel phone
running Android 7 as the source model and deploy the model on an LG
Stylo3 phone running Android 7. We collect first 10 samples on the LG
Phone at the beginning of the warming state at the rate of 1 sample/min
to create a mini-batch and the first 10 samples at the beginning of
cooling state at the rate of 1 sample/min to create a second mini-batch
for online training. We optimize the thresholds of the Decision Trees
while maintaining the same tree structure as learned from the Alcatel
phone using gradient descent with a very small learning rate of 0.001. As
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Fig. 8. Box plot showing acclimatization time of a phone after getting relocated
to a new location with a different ambient temperature.

shown in Fig. 7 the few shot based transfer learning model has a lower
error (MAPE 0.29) as compared to the error (MAPE 0.71) in prediction
by the model trained on Alcatel phone and deployed on LG phone
without any updates to the pre-trained model. The figure shows that the
few shot based transfer learning model works well for an all the 4 sub-
states of the curve using previously learned model trained on another
phone model and trained with 10 samples from each of warming and
cooling sub-state without having to collect full data for all the sub-states
from a new phone.

5.4. Acclimatization time

Crowdsensing predicted ambient temperatures may result in varying
qualities of ambient temperature predictions. Thus, determining the
quality of the predicted ambient temperature is critical to our system. To
compute a highly accurate temperature from the varying qualities of
crowdsensed temperature values we formulate policies as presented in
Section 4.1. To justify these policies, we conduct two experiments to
empirically measure the acclimatization time taken by phones. We set
up the first experiment in a controlled environment using a temperature
chamber (Model: TestEquity 115A). The temperature chamber is a small
enclosed space that provides an ideal environment where the tempera-
ture is very stable and uniform. We vary the temperature in a controlled
fashion by increasing the temperatures in the range of 1-7 °F and
measure the time taken by the predicted phone temperature to reflect
the ambient temperature, referred to as the settling time of the phone. In
the second experiment, we simulate user movements in the real-world
environment by moving the phone to multiple indoor locations and
measure the settling time. Though, the second experiment seems more
realistic it has many uncontrollable factors. We conduct all experiments
using the same Pixel phone with screen off, low CPU and network load
and charging off.

As shown in Fig. 8, in an ideal environment the phone takes 2-8 min
to converge to the true temperature and takes 14-20 min in the wild.
The controlled chamber is an ideal setting and settling time is lower. In
the real world, many uncontrollable factors impact settling time. Based
on the need for phones to acclimatize we justify the need for the policy to
select high and low quality measurements.

5.5. Crowdsourcing experiments

In this section, we evaluate the system end-to-end with 2 simula-
tions. First, we crowdsense measurements from multiple phones at one
location, with each phone having a different arrival time, and demon-
strate the efficacy of our system to handle varying quality of
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Fig. 10. Crowdsourced temperature prediction after policy evaluation.

crowdsensed data. Second, we crowdsense measurements from a single
mobile phone at multiple locations (15 locations) and demonstrate the
accuracy of predictions of the model under a high user mobility
scenario.

5.6. Crowdsourced measurements of multiple phones at one location

In this experiment, we collect data from 3 mobile phones Google
Pixel (Android 7.1), LG (Android 7), and Samsung (Android 7) at one
location with different arrival times of the 3 phones at the location. We
simulate a scenario where users arrive at a location (Locl) at different
times from different locations (source) and the temperature difference
between source and Locl may be different. Pixell arrives first at Locl.
After 20 min the LG phone is placed at Locl, and after another 20 min,
Samsung phone is also placed at Locl. Each phone makes a prediction
every 5 min and the data is crowdsensed for the entire duration they are
at Locl.

Each of the three phones arrives at Locl from a different source
location with a different temperature than Locl. When the phones arrive
at Locl and are in the settling period getting acclimatized the ambient
temperature predictions may not be of high quality. Hence, crowd-
sensing predictions from all occupants at location Loc1l would result in a
varying range and quality of predictions. Fig 9 shows the ground truth
ambient temperature recorded at Locl using a HOBO (temperature
logger) along with the predictions made by the phones at varying times
the phone owners enter the room. As shown in the figure the initial
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Fig. 11. Heatmap shows the prediction error at 4 locations. The average error
over 4 locations is 1.25%.

predictions of ambient temperature made by the phones are low quality
readings and as the phones get acclimatized to Locl their predictions
converge to ground truth ambient temperature recorded at Loc1.

Next, to mitigate the impact of settling time and compute a single
value of the ambient temperature at a location from the crowdsensed
data, we apply the duration-based and device confidence policies. The
duration-based policy weeds out the lower quality readings while the
device confidence policy takes into account the historic temperature
measurement accuracy of a phone. The device confidence of the three
phones used for the crowdsourcing experiment are Pixel device confi-
dence 95%, LG device confidence 65%, and Samsung device confidence
80%. We normalize the device confidence values based on the number of
phones participating in crowdsensing data collection.

Fig. 10 shows the individual phone readings, observed ambient
temperature, and crowdsensed ambient temperature derived after
applying the policies. On applying the two policies to the crowdsensed
data we find that for the initial 20 minutes when only Pixel phone is
present the predicted crowdsensed policy temperature is the same as the
predicted pixel phone temperature. Also, as the pixel phone acclimatizes
the predicted ambient temperature gets closer to the actual observed
ambient temperature. At 20 mins timeline LG phone — with lower pre-
diction confidence - is introduced and though the LG phone shows low-
quality readings initially the readings from pixel phones are given a
higher weight based on the duration-policy. After 8 min when LG phone
acclimatizes and now we have two ambient temperature predictions
from Pixel and LG phones. We observe that duration and device confi-
dence policies aid in computing highly accurate ambient temperature as
seen in Fig. 10.

5.7. Crowdsourced measurements of a single phone at multiple locations

In this experiment, we place one phone at 4 different locations along
with a temperature sensor, which measures the ground truth data. The
phone predicts the ambient temperature and uploads the predictions to
the server every 5 min for two hours. At each of the locations the phone
screen was off, CPU and network load were low and charging was off.
The result shows that our system can predict the temperature accurately
with an average error of 1.25% across all locations as shown in Fig. 11.
The higher errors were seen near the staircase with a door while the rest
zones such as labs, discussion rooms, offices, and classrooms labs
consistently showed an error of less than 0.72%.

6. Conclusions

In this paper, we presented an ambient temperature prediction
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approach using an on-device ML-based model and Opportunistic
Crowdsensing. We presented a machine learning approach based on a
random forest-based ensemble learning model that uses the phone bat-
tery temperature sensor to infer the ambient air temperature. We also
propose a few-shot based transfer learning approach to deploy a pre-
trained model on new phones. This approach is highly effective in
reducing data collection and training overhead. We also presented a full
prototype of our system implemented as a RESTful web service to
crowdsense in-door temperature measurements in conjunction with an
indoor positioning system (IPS) and designed policies to distinguish
high-quality crowdsourced measurements from lower quality ones.
Finally, we evaluated our approach using multiple devices under
different scenarios and demonstrated the efficacy of our approach.
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