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Abstract—Developing accurate solar performance models,
which infer solar power output in real time based on the
current environmental conditions, are an important prerequisite
for many advanced energy analytics. Recent work has developed
sophisticated data-driven techniques that generate customized
models for complex rooftop solar sites by combining well-known
physical models with both system and public weather station data.
However, inferring solar generation from public weather station
data has two drawbacks: not all solar sites are near a public
weather station, and public weather data generally quantifies
cloud cover—the most significant weather metric that affects
solar—using highly coarse and imprecise measurements.

In this paper, we develop and evaluate solar performance
models that use satellite-based estimates of downward shortwave
(solar) radiation (DSR) at the Earth’s surface, which NOAA
began publicly releasing after the launch of the GOES-R geo-
stationary satellites in 2017. Unlike public weather data, DSR
estimates are available for every 0.5km2 area. As we show, the
accuracy of solar performance modeling using satellite data and
public weather station data depends on the cloud conditions, with
DSR-based modeling being more accurate under clear skies and
station-based modeling being more accurate under overcast skies.
Surprisingly, our results show that, overall, pure satellite-based
modeling yields similar accuracy as pure station-based modeling,
although the relationship is a function of conditions and the local
climate. We also show that a hybrid approach that combines the
best of both approaches can also modestly improve accuracy.

I. INTRODUCTION

Solar energy generation has grown at nearly an exponential

rate over that past 30 years, and is now cheaper than the retail

price of electricity in many locations [1]. The goal for the U.S.

Department of Energy’s SunShot initiative is for solar to satisfy

14% of U.S. electricity demand by 2030 and 27% by 2050 [2],

or a factor of 10× and 20×, respectively, greater than the 1.4%

it satisfied in 2018 [3]. Reaching these targets will require

improving solar performance models, which infer solar power

output in real time based on current environmental conditions.

These models are a prerequisite for a wide range of energy

analytics, including solar forecasting, energy disaggregation,

and grid simulations, that are necessary for grid operations and

planning to accommodate higher solar penetrations.

To address the problem, recent work develops sophisticated

data-driven modeling techniques that automatically derive a

solar performance model for small-scale sites from public

weather data, and thus are more scalable than prior manual

approaches [4]–[7]. Once built, the model estimates a site’s

solar output at any time given the current weather conditions.

Such data-driven models are highly accessible and useful for

modeling any solar site in the U.S., as they rely only on well-

known physical models of solar generation and public weather

station data that is released in real-time for every location in

the U.S. by the National Weather Service (NWS).

Unfortunately, using public weather station data has two

primary drawbacks: not all solar sites are near a public weather

station, and public weather station data generally quantifies

cloud cover—the most significant metric that affects solar—

using highly coarse and imprecise measurements [8], [9]. This

measurement is in oktas and is often taken using a circular

sky mirror placed on the ground that divides the sky into eight

equal slices, such that the number of slices that contain a cloud

translates to the number of oktas. The NWS then quantifies

cloud cover using textual descriptions that map to a specific

range of oktas. For example, “scattered clouds” maps to 3-5

oktas [9]. The imprecision of cloud cover measurements is by

far the largest source of inaccuracy in large-scale data-driven

solar performance modeling. Of course, while more accurate

cloud cover measurements are possible using a pyranometer,

which directly measures solar irradiance at the Earth’s surface,

only a few public weather stations include pyranometers.

Recently, National Oceanic and Atmospheric Agency

(NOAA) in the U.S. has begun, as of 2018, releasing data

products derived from a new generation of remote sensing

geostationary satellites—the GOES-R series [10]. One of the

secondary data products is the Downward Shortwave Radiation

(DSR) that is incident at the Earth’s surface, which estimates

both the direct and diffuse solar radiation. Thus, DSR estimates

the solar radiation available at the surface to generate solar

power [11]. DSR is derived from the raw satellite data using a

state-of-the-art algorithm that analyses the reflectance measure-

ments of GOES-R’s Advanced Baseline Imager (ABI) [12].

These DSR estimates account for cloud albedo, or the solar

radiation reflected by clouds, and atmospheric conditions, and

are available for any 0.5-2km2 area within the satellite’s view.

In contrast, the distance between a solar site and the nearest

public weather station varies widely, and can be up to dozens

of kilometers. In addition, unlike coarse okta measurements,

DSR is a fine-grained measurement. Thus, using satellite

data for solar performance modeling has the potential to

address the drawbacks of public weather station data. However,

satellite data also has drawbacks. While public weather station

measurements are taken at the surface and represent ground

truth, satellite measurements are taken from geostationary orbit,

which is 35,800km above the Earth’s surface. Satellites also978-1-7281-6127-3/20/$31.00 ©2020 IEEE



can only measure the solar radiation reflected by the top of

clouds, but cannot accurately assess cloud depth, height, or

temperature, all of which affect the radiation that reaches the

Earth’s surface. As a result, unlike public weather station data,

satellite data does not represent ground truth. Thus, while oktas

provide coarse but direct measurements of surface radiation,

satellites provide fine-grained but indirect measurements.

In this paper, we develop and evaluate a solar performance

model that uses DSR, and compare it to a similar modeling

framework that uses oktas. In doing so, we show how to

integrate satellite data into an existing data-driven solar

performance model from prior work [7], and examine multiple

model variants that i) incorporate satellite data in lieu of public

weather station data, and ii) use a combination of both. We

have made our satellite-based modeling framework publicly

available along with a solar and DSR dataset from nearly 50

sites that we have curated as part of our evaluation. To the

best of our knowledge, this is the first use and evaluation of

DSR for solar performance modeling, in part, because NOAA

only began making this data product available in 2018.

Our work identifies strengths and weaknesses in using DSR

satellite data for solar performance modeling. In particular,

and contrary to our intuition, we find that using satellite-based

DSR measurements does not improve the accuracy of solar

performance models compared to using public weather station

data. While DSR estimates provide slightly better accuracy

during mostly clear skies, the estimates are much worse under

overcast conditions. In most cases, DSR measurements are not

even available during overcast periods due to these known

limitations in accuracy under these conditions [12]. Thus,

despite DSR’s promise in other areas, especially long-term

climate modeling, using public weather station data for solar

performance modeling yields similar accuracy and is much

more accessible. We do show that a hybrid approach that

strategically uses satellite DSR data during mostly clear skies

can modestly increase accuracy. In performing our data analysis,

this paper makes the following contributions.

Satellite Data Background. We present background on the

GOES-R series of satellites and the DSR data product, including

its availability, accessibility, and ground truth accuracy. We

also curate a new dataset that consists of hourly readings of

solar generation, cloud cover in oktas, and DSR estimates for

each of the 47 solar sites we analyze in our evaluation.

Exploiting DSR for Solar Performance Modeling. We show

how to modify an existing data-driven solar performance

model that uses cloud cover measurements from public weather

stations to instead use satellite-based DSR measurements. We

then illustrate salient differences between okta- and satellite-

based measurements for a representative solar site. We define

multiple model variants that combine satellite and okta data in

different ways to understand their strengths and weaknesses.

Implementation and Evaluation. We implement the solar

performance models above and evaluate them across the

47 solar sites in our dataset. Our evaluation shows that a

physical model that uses okta-based measurements yields

similar accuracy as using satellite DSR data, and that a hybrid

approach can offer a modest improvement in accuracy.

II. BACKGROUND

We provide background on measuring the impact of clouds

using DSR and oktas, as well as on data-driven solar modeling.

A. Satellite-based DSR

There has been significant prior work on inferring solar

irradiance incident at the Earth’s surface using satellites. Much

of this work, including the Heliosat family of algorithms [13]–

[15], infers solar irradiance from visible satellite imagery,

assuming a pixel’s intensity is related to cloud cover. In contrast,

GOES-R satellites include an Advanced Baseline Imager (ABI)

that takes images of the Earth across 16 different spectral bands,

which include two visible channels, four near-infrared channels,

and ten infrared channels [16]. These 16 bands compare to only

5 bands from the previous generation of weather satellites and

offer 4× greater spatial and 5× greater temporal resolution [17].

Specifically, the spatial resolution of contiguous U.S. (CONUS)

is 0.5-2km2 and the temporal resolution is every five minutes.

NOAA publicly releases the raw spectral data in near

real time, as well as a large number of higher-level data

products derived from this raw data. The raw data only began

being released in 2018 (for GOES-16) and 2019 (for GOES-

17) with higher-level data products being released later. Our

work focuses specifically on a Level 2b+ data product that

estimates the downward shortwave radiation (DSR) at the

Earth’s surface [11], which includes the ground-level direct

and diffuse solar radiation in the visible, infrared, and near-

infrared spectrums. Solar cells convert some fraction of DSR

to electrical power based on their physical characteristics,

e.g., power conversion efficiency, temperature coefficient, tilt,

orientation, etc. DSR derives from a sophisticated physical

model built on lower-level data products, e.g., for cloud optical

depth, particle size, height, etc., that estimates cloud albedo

and the atmosphere’s composition, and represents the state-

of-the-art in estimating radiation at the Earth’s surface. That

said, the DSR documentation quantifies its accuracy, which can

vary widely depending on many factors, including the cloud

characteristics, solar zenith angle, and latitude [11].

B. Ground-level Cloud Cover Measurements

Prior work on data-driven solar performance modeling

combines clear sky solar irradiance models with ground-

level cloud cover measurements in oktas, which are publicly

available, to infer surface irradiance. Public weather stations

typically report cloud cover as one of five weather strings,

including clear skies (CLR), few clouds (FEW), scattered

clouds (SCT), broken clouds (BKN), and overcast skies (OVC).

These strings map directly to specific ranges of okta values [9].

Specifically, CLR maps to 0-1 oktas, FEW maps to 1-3 oktas,

SCT maps to 3-5 oktas, BKN maps to 5-7 oktas, and OVC maps

to 7-8 oktas. Prior work captures the relationship between cloud

cover measured in oktas, and the clear sky index (CSI), which

is the ratio between the actual irradiance at the surface divided

by the irradiance at the surface under clear skies. For example,
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Fig. 1: Depiction of bounding solar generation using Equation 2.

in prior work, Kasten and Czeplak derived the empirical model

below, which is widely used in textbooks [18].

CSI = 1−0.75×n3.4 (1)

Here, n represents the fraction of cloud cover, e.g., by

taking the midpoint of the okta range and dividing by 8.

Chen et al. recently refined this empirical model using a much

larger dataset [5]. Note that clear sky solar irradiance is a

deterministic function of location, i.e., latitude and longitude,

and time, and can thus be accurately estimated without any

external inputs [19]. There are many software libraries, such

as pysolar [20] and pvlib [21], that compute the clear sky solar

irradiance given a location and timestamp. Thus, we can infer

ground-level solar irradiance simply by multiplying the clear

sky solar irradiance by the CSI from Equation 1 above, which

is based on the cloud cover reported by public weather stations.

C. Data-driven Solar Performance Modeling

Our work builds on a simple data-driven solar performance

modeling approach from prior work to quantify the accuracy

of using satellite DSR estimates to infer solar generation [4],

[5], [7]. We briefly summarize this approach, which we show

how to modify in §III to incorporate DSR estimates. As input,

the approach only requires a site’s location and some historical

generation data. The approach leverages the fact that a solar

site’s generation is always bounded by its maximum generation

Pmax(t) described by the physical model below.

Pmax(t) = Iclearsky(t)× k× (1+ c×|Tbaseline −Tair(t)|)×

[cos(90−Θ)× sin(β )×cos(Φ−α)+ sin(90−Θ)×cos(β )]
(2)

Here, Iclearsky(t) is the clear sky solar irradiance at time t, and

k is the solar site’s efficiency parameter, which is a product of

its size and solar conversion efficiency. Since solar conversion

efficiency is a function cell temperature, the model multiplies k

by an additional term. Here, c is the solar modules’ temperature

coefficient, while Tbaseline represents the baseline temperature

when the conversion efficiency is k. Solar efficiency varies

linearly with temperature, so the model multiplies the absolute

value of the difference between the current temperature Tair(t)
and the baseline by the temperature coefficient. Typical values

of c are ∼0.5%, such that efficiency increases this amount

for every 1C drop in temperature. Finally, the lower term

captures the impact of solar geometry: Θ and α represent
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Fig. 2: Relationship between DSR and clear sky irradiance

the Sun’s zenith and azimuth angles, respectively, while β
and Φ represent the solar modules’ tilt and orientation angles,

respectively. These solar angles are a function of location and

time, and can be computed using a library.

Prior work describes an efficient method for searching for

values of k, c, Tbaseline, β , and Φ in the equation above that yield

the closest upper bound on the historical generation data [7].

The insight is that under clear skies, solar generation should

conform to the model above (for some constant values of k, c,

Tbaseline, β , and Φ), while under cloudy skies, solar generation

should be strictly less than the model above. Figure 1 depicts

an example of bounding generation data using Equation 2.

After bounding the equation above to the data, we can

compute Pmax(t) at any time t. The model then leverages the

relationship below, which follows directly from Equation 2.

Pactual(t)

Pmax(t)
∼

Iactual(t)

Iclearsky(t)
=CSI (3)

To understand the relationship, observe that the only change

in Equation 2 when computing actual solar output under

cloudy skies is that we must replace Iclearsky(t) with the actual

solar irradiance under cloudy skies (assuming no change in

temperature). All other parameters are independent of the

cloudiness. As a result, when dividing Pactual(t) by Pmax(t),
everything on the right side of Equation 2 cancels out, which

simply leaves Iactual(t)/Iclearsky(t) or the clear sky index CSI.

Thus, given a model of Pmax(t) and the CSI, we can infer

Pactual(t) by simply multiplying the CSI by Pmax(t).

III. SATELLITE-BASED SOLAR PERFORMANCE MODELING

We show how to use the data-driven solar modeling frame-

work from the previous section to leverage both oktas and

DSR, as well as a hybrid approach that uses both. Importantly,

we use the same approach described in the previous section

for each of these solar performance models, but where the

clear sky index (CSI) is computed from different sources. In

particular, satellite-based modeling computes the CSI using

DSR data, while the okta-based approach computes it from

the improved Kasten-Czeplank model [5]. As a result, any

differences in modeling accuracy are only due to changing

this input. In addition, since these models derive directly from

the physical relationships in §II, they do not take into account

any site-specific characteristics. Thus, for comparison, we also

develop solar performance models using machine learning (ML)

that can learn site-specific characteristics.



A. Satellite-based Model

Our satellite-based model is simple: to derive CSI, we take

DSR directly from NOAA and divide it by a solar site’s

clear sky irradiance based on its location and time using a

clear sky model. Note that this is a purely physical model

that does not perform any regression to learn the relationship

between DSR and solar output. Figure 2 shows the clear sky

irradiance and DSR at a particular site. The graph shows DSR

in watts per meter squared (W/m2) and the corresponding

clear sky irradiance over a representative clear day. The graph

demonstrates that the clear sky irradiance is a strict upper

bound on the DSR, such that the values are close when the

sky is clear as expected. Interestingly, the values are nearly

equal at solar noon, while the clear sky irradiance is slightly

greater than DSR before and after solar noon.

Figure 3(left) shows the relationship between normalized

DSR, or DSR/Iclearsky, and normalized solar generation, or

Pactual/Pmax, across many locations. The graph shows the

normalized DSR on the x-axis and the normalized solar gener-

ation on the y-axis. As the graph shows, the the relationship

is roughly linear, albeit noisy. This noise is largely due to

inaccuracy in the DSR measurement, but may also result from

unaccounted variables in our model, such as the presence

of shading and topography at a solar site. We evaluate this

relationship more fully for DSR in §V. A benefit of this

approach, as discussed earlier, is that DSR is available every

0.5-2km2, and thus provides more precise measurements than

weather stations.

B. Oktas-based Model

In our oktas-based model, we compute the CSI using the

ground-level cloud cover measurements provided by public

weather stations. In this case, we use the mapping of each

weather string—CLR, FEW, SCT, BKN, and OVC—to an

oktas range. Since the NWS only specifies a coarse range for

these values [9], we simply use the average of each range and

map it to a number when computing the CSI. As explained

above, we use this okta value for CSI in our data-driven solar

model to infer the solar output. Again, this is a pure physical

model that does not require learning a model from generation

and weather data that is specific to a site. Figure 3(right)

shows the relationship between oktas and the actual CSI for a

particular location. Here, the x-axis is the ground-level cloud

cover measurements (okta) and the y-axis is the actual CSI

derived from the solar data (as discussed in §II). The graph

shows that the okta-based measurements, while also noisy, do

roughly follow the expected trend of the empirical models

defined in prior work [5], [18]. In this case, the increased noise

is largely due to the coarseness and imprecision of okta-based

cloud cover measurements, which are derived from weather

stations that are an unknown distance from each site.

C. Hybrid Model

As we show in §V, the satellite-based DSR model tends to be

much less accurate than the oktas-based model when the cloud

conditions are broken (BKN) or overcast (OVC), and slightly

more accurate otherwise. The DSR documentation explicitly

states this limitation of DSR, and, as a result, often does not

even provide DSR readings when skies are cloudy [12]. To

address this problem, we also design a hybrid solar performance

model that leverages both oktas and DSR. This model uses the

ground-level public weather station data as a filter by using

the observed cloud cover to decide whether to use the satellite-

based model or the oktas-based model. When the ground-level

observation is CLR, FEW, or SCT, we use the satellite-based

model (as described above), while we use the oktas-based

model when the ground-level observation is BKN or OVC.

This approach combines the best attributes of both models.

D. Machine Learning Models

The satellite-based, oktas-based, and hybrid models above

all use physical models that are general and applicable to all

solar sites. We also develop machine learning (ML) models

that are specific to the characteristics of each site. ML models

naturally capture unmodeled variables that are unique to each

site, such as shading, which our physical models above cannot

capture. However, one drawback of ML models is that they

require sufficient data for training. Since some characteristics,

such as shading, change throughout the year due to the seasons,

this may require multiple years of data for solar models.

We train our ML models based on historical energy gener-

ation from each solar site. As with the hybrid model, these

models combine DSR and oktas as input variables, as well as

the clear sky irradiance and time-of-day/year. The dependent

output variable is the site’s actual solar generation under these

conditions. We train our ML models using data from all of 2018,

and use the data in 2019 for testing. Since DSR from the GOES

satellites only recently became available, this is the maximum

amount of training and test data that is available. In addition,

since we train our ML models on each site individually, they

implicitly incorporate site-specific physical characteristics that

affect solar generation, which the physical models above do not,

including the site-specific impact of non-ideal solar geometry

(i.e., different panel tilts and orientations) and shading. The

ML models are purely a black box and do not incorporate any

of the physical models above in their training.

We evaluate two different common ML models: decision

tree and support vector machines (SVMs). Decision trees are a

flow chart-like structure where each internal node represents a

test on a feature for classification and each leaf node represents

a class label, while the branches represent features responsible

for the class labels. In our decision tree, we used 10-fold cross-

validation to select the tree depth from a maximum depth of

20 to avoid over-fitting. We also compare with SVMs, which

attempt to fit as many datapoints with the kernel function while

limiting margin violations. Under SVM with regression, we

define a margin of tolerance (ε), a regularization co-efficient

C, and use the radial basis function (RBF) as the kernel. The

tolerance ε and co-efficient C are estimated using 10-fold cross-

validation in the following range: ε ∈ {0.01,0.05,0.1,0.2} and

C ∈ {1,10,100,1000}. For both ML models, we also add the

hour of the day as an additional feature.
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Fig. 3: Scatter plot of normalized solar generation versus normalized satellite DSR (left) and okta-based measurements (right) across many solar sites.

IV. IMPLEMENTATION

We implemented the solar performance models from the

previous section as a python module, which we have publicly

released as open source.1 We use python’s scikit-learn ML

library to build the ML models in the previous section. We also

used the numpy and pandas python packages to decode the

NetCDF-formatted satellite data described below. Our module

only requires a site’s latitude and longitude as input, which

it uses to compute clear sky irradiance using pysolar [20], a

python library for simulating the solar irradiance at any point

on Earth at any time. Similarly, our module programmatically

fetches current and historical hourly temperature and cloud

cover data from Weather Underground, a commonly used

online weather website that maintains historical weather

archives. Given a location, Weather Underground automatically

determines the nearest weather station to that location. We

also have access to two years of solar generation data from 47

homes. While we do not have physical access to all 47 homes,

we can visibly observe many of their physical characteristics,

e.g., size, shading, tilt, orientation, etc., in satellite imagery.

We use a web service provided by NOAA to access the

satellite DSR data. Currently, users must download NetCDF-

formatted files from an FTP server or via Amazon S3 buckets,

as NOAA does not offer access to it via a web service with

a programmatic interface. NetCDF is a common machine-

independent data format for array-oriented scientific data.

Users submit requests for data products, such as the ABI L2+

DSR product for the GOES-16 satellite, via NOAA’s Archive

Information Request System (AIRS) for up to 30 days. Once

approved, NOAA sends the user a link via email to download

the requested files (typically within an hour). Each file includes

data for the entire contiguous U.S. for a single hour. As a result,

our python module must decode the NetCDF data, and extract

the DSR value for the sites of interest based on their latitude

and longitude. Since extracting the DSR value for a site from

the NetCDF file is non-trivial, we describe the process below.

Extracting Satellite Data. To extract a site’s DSR, we must

project the data file onto a geographic map. There is a summary

option in each NetCDF file that gives all the variables available

in the file. Specifically, the variable goes_imager_projection

is essential for converting (x,y) coordinates for latitude and

longitude in degrees to radians. Our python module uses this

variable to extract the satellite sweep, longitude, and satellite

1https://github.com/sustainablecomputinglab/satellite-dsr

height. The projected x and y coordinates equal the product

of the scanning angle (in radians) and the satellite height.

Following this projection, we can extract the latitude-longitude

pairs in the form of a matrix from the NetCDF file. We

calculate the nearest pair of coordinates from this matrix with

our specified location using the Vincenty formula [22], which

calculates the distance between two points on the surface of a

spheroid. For the nearest computed location, we then extract

the corresponding DSR value for the latitude-longitude pair.

As with the weather data, the satellite DSR is released

hourly. Thus, we focus on solar performance modeling at an

hourly resolution. Our python module combines the hourly

temperature, cloud cover, satellite DSR, and solar generation

for each location into a tabular format, e.g., a CSV file, with a

corresponding timestamp for each reading. These data sources

are stored in many different formats, particularly with different

timestamps and time zones. As a result, our python module

normalizes all timestamps and time zones to UTC time. Since

our models currently do not account for snow, we focus on

periods with no snow: May to October in 2018 and 2019.

Incorporating snow is future work. Our primary metric is the

Mean Absolute Percentage Error (MAPE) between our models

and the ground truth, where a lower MAPE indicates less error.

MAPE =
1

n

n

∑
t=0

|
St −Pt

St

|

Here St and Pt are the ground truth and model-inferred solar

generation, respectively, at hour t, and n is total number of

hourly data points. We use MAPE because it is an intuitive

metric that is comparable across solar sites of different sizes.

However, note that MAPE is highly sensitive to periods of

low absolute solar generation. For example, if solar generation

for a 10kW site is only 10W early in the morning, and our

model infers 40W, we record a 400% error, even though the

30W error is only 0.3% of the site’s capacity. Thus, when

evaluating any single solar site, an absolute error metric, such

as the Mean Absolute Error (MAE) or Root Mean Squared

Error (RMSE) may be more appropriate. However, since our

primary focus is comparing across sites with different sizes

and characteristics, we continue to use MAPE, and mitigate

its drawbacks by focusing on the 10am-3pm time period to

eliminate periods that always have low absolute generation.

Our primary focus is on the relative difference between the

MAPEs of models in §III and not the absolute value.
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Fig. 6: MAPE for satellite-based, okta-based, and hybrid model 2018-19.

V. EVALUATION

We evaluate our solar performance model using DSR on 47

solar sites. Unfortunately, however, DSR is unavailable during

periods when its physical model is too uncertain [12]. On

average, across our 47 sites, DSR is only available 55.4% of

the time, although this differs across sites. Figure 4 shows the

data availability across all 47 sites with a horizontal line at

the 55.4% average. Figure 5 shows DSR’s unavailability under

different cloud conditions, and shows that this unavailability

is higher during clear and overcast skies. This unavailability is

currently a drawback to using DSR, especially during overcast

skies as modeling solar performance is most important during

these periods. Given this lack of availability, we restrict our

analysis below to only those periods where DSR is available.

Physical Models. We first analyze the MAPE for our satellite-

based, okta-based, and hybrid models from §III. Since these

are physical models and do not require training, we can use the

entire two-year dataset to evaluate their accuracy across all 47

sites. Figure 6 shows the overall results, as well as the MAPE

under different cloud conditions. We find that, overall, the

hybrid approach slightly outperforms the okta-based approach,

and, surprisingly, the DSR approach performs the worst. As

shown, the inaccuracy of the satellite-based DSR approach is

due to its low accuracy during overcast conditions.

To emphasize the point, Figure 7 shows the MAPE under

overcast cloud conditions for all 47 sites, and demonstrates

that this performance for DSR is consistent across almost all

of the sites with some sites reporting MAPEs in excess of

100% using DSR. However, as shown in Figure 5, since there

are few overcast time periods where DSR is available, this

inaccuracy does not contribute a significant amount to the

overall results. Under all other cloud conditions, we observe a

similar accuracy across the three techniques. Since our hybrid

approach uses DSR when skies are not overcast and the okta-

based approach otherwise, it slightly outperforms the pure okta-

based approach. While our focus is on the relative difference

between the models, the absolute MAPEs we find are similar

to the okta-based models evaluated in prior work [5].
Machine Learning Models. For our ML models, we use

2018’s data for training and 2019 for testing our decision tree

(DT) and support vector machine (SVM) regression models.

Figure 8 shows the overall MAPE for both our physical

and ML models in 2019 under all cloud conditions, only

overcast conditions, and all cloud conditions except overcast.

We separate out overcast conditions since they are the most

challenging conditions to model. We see that the ML models

do not significantly improve upon our hybrid physical model,

which does not require training. Overall, the hybrid model

performs the best in all three cases, and is slightly better than

the oktas-based model. The DT and SVM models actually

perform worse than the satellite-based DSR model in overcast

conditions. This poor performance may be due to the lack of

training data in our dataset, as prior work uses multiple years

of training data. Since DSR has only been available for two

years, there is limited data available for training our models.
Key Point. The key takeaway point of our evaluation is that the

current DSR data product released by NOAA, which represents

the state-of-the-art in satellite-based estimates of surface

irradiance, does not substantially improve solar performance

modeling when compared with using okta-based measurements

from weather stations. While DSR is slightly more accurate

under non-overcast cloud conditions, it is significantly less

accurate under overcast skies. In addition, DSR is also

frequently unavailable, which is a significant drawback.

VI. RELATED WORK

Solar performance modeling that infers a site’s solar genera-

tion from its location, time, physical characteristics, and weather

is a foundation for performing a wide range of solar analytics.

There has been significant prior work on solar modeling and

forecasting. Recent work on data-driven modeling develops

techniques to automatically derive solar performance models

for small-scale sites using public data, such as aerial imagery
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and weather data and thus are more scalable than prior manual

approaches [4]–[7]. Using satellite data to infer ground-level

irradiance has also been well-studied. For example, the Heliosat

algorithm [23] is nearly 30 years old and uses visible satellite

imagery to infer the global horizontal irradiance based on cloud

cover. Our work differs from this and other work on this topic

by specifically evaluating NOAA’s DSR data product derived

from the new generation of GOES satellites. These satellites

were not launched until late 2017 and this data product did not

become available until 2018. While recent work has compared

DSR to ground-level irradiance measurements [24], we know of

no work that has evaluated it for solar performance modeling.

VII. CONCLUSION AND FUTURE WORK

This paper evaluates the use of DSR estimates from the new

generation of GOES satellites for use in solar performance

modeling. We show how to leverage DSR for solar performance

modeling and compare it with okta-based and ML-based

models. We show that the accuracy of satellite-based models

depends on the cloud conditions. Surprisingly, our results show

that pure satellite-based modeling yields similar accuracy as

pure okta-based modeling with a hybrid approach that uses

both showing only a modest improvement in accuracy. We

also show that ML models are less accurate than physical

models, although this may be due to limited training data. In

future work, we plan to explore using the raw satellite data for

solar performance modeling, rather than the secondary-level

DSR data product, especially given DSR’s high unavailability.

By comparison, the raw hyperspectral satellite data is always

available at a higher resolution (every 15 minutes).
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