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ABSTRACT

Solar arrays often experience faults that go undetected for long peri-

ods of time, resulting in generation and revenue losses. In this paper,

we present SunDown, a sensorless approach for detecting per-panel

faults in solar arrays. SunDown’s model-driven approach leverages

correlations between the power produced by adjacent panels to

detect deviations from expected behavior, can handle concurrent

faults in multiple panels, and performs anomaly classification to

determine probable causes. Using two years of solar data from a

real home and a manually generated dataset of solar faults, we show

that our approach is able to detect and classify faults, including

from snow, leaves and debris, and electrical failures with 99.13%

accuracy, and can detect concurrent faults with 97.2% accuracy.

CCS CONCEPTS

• Hardware → Renewable energy; • Computing methodolo-

gies → Anomaly detection.
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1 INTRODUCTION

Recent technological advances and falling prices has led to a signifi-

cant increase in deployments of both large utility-scale and smaller

residential solar arrays. Large utility-scale solar farms tend to be

instrumented with sensors for monitoring real-time generation to

identify production issues. Due to cost reasons, smaller residential-

scale systems lack such sensing and instrumentation and may only
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have coarse-grain monitoring capabilities, at best, to detect system-

level faults. Thus, it is not uncommon for residential solar arrays to

encounter power anomalies or other local faults that go undetected

for long periods, resulting in generation and revenue losses.

To address these challenges, we present SunDown, a sensorless

approach for detecting per-panel faults in small-scale solar arrays.

Prior work on per-panel solar anomaly detection are based on time

series [15] or statistical [3, 30] analysis of a panel’s output or use

of sensors such as a pyranometer [12] to detect faults. In contrast,

our approach uses the actual output from other nearby panels to es-

timate each panel’s expected output and find anomalous deviations

from this estimate. Our model-driven approach is based on machine

learning and, similar to [15], can detect physical anomalies, such as

snow, leaves, and electric faults at panels. In designing, implement-

ing, and evaluating our SunDown system we make the following

contributions.

1. We present a model-driven approach that leverages correlations

in the generated output between adjacent panels to predict the

expected output of a particular panel and flags anomalies when

the model predictions deviate from the expected values. Further,

our approach can handle and detect multiple concurrent faults in

the system, a key challenge that has not been addressed by prior

work. We present a random forest-based classification technique to

classify the probable cause of the observed fault.

2. We construct a real-world labelled dataset of solar anomalies

that we release to the community. Using this dataset, we show that

SunDown has a MAPE of 2.98% when predicting per-panel output,

demonstrating the efficacy of using nearby panels to performmodel-

driven predictions. Furthermore, SunDown is able to detect and

classify faults such as snow cover, leaves, and electrical failures with

99.13% accuracy for single faults and is able to handle concurrent

faults in multiple panels with 97.2% accuracy.

2 BACKGROUND

This section presents background on solar anomaly detection.

Residential Solar Arrays. Our work primarily focuses on resi-

dential solar arrays that are typically small-scale installations with

capacities of 10kW or less and comprise a few to a few dozen solar

panels (see Figure 1). We assume that the power generation of the

array can be monitored at a per panel level. This is a reasonable

assumption since many residential arrays are equipped with micro-

inverters (e.g. Enphase micro-inverters [1]) or DC power optimizers

[2]. As shown in Figure 1, such systems provide real-time per-panel





SunDown: Model-driven Per-Panel Solar Anomaly Detection for Residential Arrays COMPASS ’20, June 15–17, 2020, , Ecuador

f1(PB, PC) f2(PC, PD)

PA

PB PC PD

Compare

Clean

NormalFaulty

P̄A

Prediction

True Output

FaultyNormal

Clean

A
B

C D

Noisy Clean

P̄A

Figure 2: A forecasting model is used to ensure non-noisy

inputs to our Bayesian model.

X . Since P itself is observed, subtracting E[P |X ] from P yields an

estimate of the output loss L̂ due to transient factor and anomalies.

A key difference between the linear regression model of Section

3.2.1 and here is that we use bootstrapping to construct multiple

regression models by subsampling the data (instead of a single re-

gression model) and use an ensemble method based on Random

Forest that uses the mean of multiple models to estimate E[P |X ].

Next, since L̂ contains effects of transient factors such as shade

on panels as well anomalies, we must remove the impact of tran-

sient factors to obtain the “true” anomalies. We can use time series

decomposition to extract the seasonal component that represents

the shading effects that occur daily at set time periods and remove

it from L̂ [17]. The remainder of L̂ then represents production loss

at that panel due to any anomalies. Under normal operation L̂ will

be close to zero (no anomalies and no loss of output). When L̂ is

significant and persistent over a period of time, our model-driven

approach flags an anomaly in the panel.

3.3 Handling Multiple Concurrent Faults

Next we consider the case where k > 1 and multiple panels are

faulty. To handle this case, we construct multiple models for each

panel by choosing different subsets of n panels out of N for each

model. Any model that uses faulty panels as input will have higher

errors while a model that uses all non-faulty inputs will continue

to provide good predictions. Our goal then is to construct multiple

models, and then choose one of these models at each instant that

uses non-faulty inputs. To distinguish between faulty and non-

faulty inputs, we use a solar forecasting approach that predicts

the output of the solar panel based on weather forecasts [6, 18].

Using the forecasting model, we label panels as “normal” or “noisy”

if the model predicted power is close to the observed power or

deviates significantly, respectively. Anymodel that uses one ormore

noisy panels as an input should be eliminated from consideration

for anomaly detection purposes. Figure 2 illustrates the process,

where a model based on B and C panels is discarded as B is noisy.

A model based on panels with normal output, C and D, is used

to make a prediction for panel A. Note that, forecasting models

cannot be directly used for anomaly detection as they exhibit high

error leading to higher false positive as compared to the Bayesian

approach that uses the actual panel output.

4 CLASSIFYING SOLAR ANOMALIES

Given anomalies detected by our Bayesian model we use a random

forest classifier to label the possible cause of the fault for each panel

that is faulty. The classifier needs to distinguish between three

types of faults: snow, partial occlusion and open circuit. Note that
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Figure 3: Machine Learning Model

partial snow over a panel and partial occlusion faults both result in

diminished, but non-zero output. Full snow cover on a panel and

open circuit faults both yield zero output. To distinguish between

these cases, we first sample 40 randomly chosen points over an

entire day and compute the percentage reduction in power output

when compared to the model’s predictions for each of these points.

This power loss vector is a key feature of our classifier. We also use

two other features: month of the year and snow depth values from

NOAA’s weather service.We train our random forest classifier using

a training dataset of real snow and synthetic anomalies. Depending

on the season (winter versus other seasons) and the observed power

loss over a period of time, our classifier can label the probable cause

of the fault for each panel. Our approach can also label system-wide

faults, caused either by a system-wide electrical failure or full snow

cover, both of which cause near total loss of power output.

5 EXPERIMENTAL EVALUATION

We evaluate SunDown by quantifying (1) the accuracy of model-

based power inference where we infer the output of a single panel

using nearby panels and (2) the accuracy of our anomaly classifica-

tion. We quantify the accuracy of predicting a panel’s output using

Mean Absolute Percentage Error (MAPE) between the inferred

output and the actual solar generation, as below.

MAPE =
1

m

m
∑

t=1

�

�

�

PO (t) − PI (t)

¯PO

�

�

�
(2)

Here,m is the number of samples, PO (t) is the observed solar

power at time t , PI (t) is the inferred power at time t , and ¯PO is the

mean of observed power generation. We use three different metrics

to quantify different aspects of the classification task: accuracy,

sensitivity, and specificity.

Solar AnomalyOpenDataset. Since there are no datasets of solar

faults available for research use, we constructed a labelled dataset

using two arrays: a 31-panel production residential site, and a 20-

panel ground-mounted site where we introduced anomalies, such

as dust, leaves, and electrical faults, to mimic real-world faults. Our

dataset is available at http://traces.cs.umass.edu and details of our

dataset construction can be found in [11].

5.1 Prediction Model Accuracy

We begin by evaluating the accuracy of predicting the power output

of an individual panel using neighboring panels.

5.1.1 Machine Learning Model. To evaluate the accuracy of model

inference, we choose test data only from the days where the site

experiences no anomaly. We then use the normal days of the home

dataset to train our linear regression and graphical model. We also

compare their performance with a naive approach that infers the

power output of a panel as the mean output of n other panels. As
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Figure 4: Size of training data required
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Figure 5: Synthetic fault injection of different types.

shown in Figure 3, the MAPE values for the Bayesian model, linear

regression, and naive approach are 3%, 4%, and 8.6%, respectively.

The naive approach has the worst accuracy since it assumes all

panels produce similar output, which is not true in many cases due

to panel level variations. Linear regression works well when the out-

put of different panels is highly correlated, which is not true when

some of the panels experience partial shading. Our graphical model

is able to capture non-linear relationships, and yields the highest ac-

curacy and a tight confidence interval. We use the graphical model

for our subsequent experiments, unless stated otherwise.

5.1.2 Impact of Training Data Size . Next, we evaluate model ac-

curacy for different amounts of training data. If a model requires

a lot of training data for good accuracy, it can hinder its use for

solar sites that have been recently deployed or for the sites where

long-term panel level data is not available. We vary the training

data size and evaluate its accuracy for predicting output using a

test dataset. Figure 4 demonstrates that our model can achieve rea-

sonable accuracy and a 10% MAPE with only one day of per panel

data. If the number of days is increased to 4, the MAPE drops to

3.5% and stays almost constant beyond four days.

5.2 Anomaly Classification Accuracy

We next evaluate the accuracy of our model-driven approach and

classifier in detecting and classifying anomalies, respectively. The

common anomalies we consider include snow fault, open circuit,

and partial occlusions due to leaves.

Our home dataset already includes real snow faults that are la-

belled and we evaluate the accuracy of our classifier on identifying

these snow faults. We then use the synthetic faults from our solar

anomaly datatset and inject them into the home data set by intro-

ducing synthetic single panel faults as well as concurrent fault and

evaluate the accuracy of our classifier. Figure 5 presents per-panel

data for a typical day when an electric fault or object covering

anomaly has been injected into one or many panels.

5.2.1 Snow Fault Detection. We first evaluate the ability of our

classifier in detecting snow faults in the home dataset. We extract

the features from daily power output, which include Pearson’s

correlation coefficient, ratio of maximum observed power and the

nominal panel capacity, and weather data such as snow and cloud

cover and use them as inputs to our random forest classifier. Table

Classification Accuracy Specificity Sensitivity

System level 98.13% 95.12% 100%

Single, panel-level 98.78% 97% 100%

Multiple panel-level 97.2% 97.06% 97.26%

Table 1: Classification Metrics

1 shows that our approach is able identify system-level snow faults

with 99.13% accuracy, sensitivity of 100%, and specificity of 95.12%.

5.2.2 Single and Concurrent Fault Classification. We next show

that our approach is capable of fine-grain anomaly detection and

classification of a single fault and it is also capable of detecting

concurrent faults in a subset of the panels. To do so, we use our

solar anomaly dataset and choose the partial occlusion and open

circuit anomaly from the dataset and inject these faults into a single,

randomly chosen, panel of the array; different panels have faults

injected into them on different days. We use our model to detect

the presence of the fault and our random forest classifier to identify

the type of fault. We next inject multiple concurrent faults of all

types (snow, occlusion, open circuit) into the array using a similar

methodology and attempt to detect and classify each fault using

our model and classifier. Note that, in this case, we need to use our

concurrent fault detection approach. Table 1 shows our model can

classify single faults with an accuracy of 98.78%, specificity of 97%,

and sensitivity of 100%. For concurrent faults, the model obtains

accuracy of 97.2%, specificity of 97.06%, and sensitivity of 97.26%.

6 RELATED WORK

There has been significant work on predicting power output for

solar sites [4, 6, 10, 23, 24, 27, 29]. All of these studies predict only

system level output and generally report 20-30% error. These high

errors and inability to predict panel level output would cause their

prediction for all panels to be the same, and limit their ability to

detect and classify anomalies. There is also significant prior work on

anomaly detection and classification in solar photovoltaic systems,

which can be broadly classified into model-based approaches [9, 13,

16, 19, 20] and machine learning based [7, 8, 12, 14, 21, 22, 25, 26, 31,

32] approaches. Some of these studies use power data from nearby

solar sites [17, 30] to detect and classify anomalies. In [30], authors

compare the performance of different solar arrays at the same site,

but do not do anomaly classification. Our work uses the output of

other nearby panels to predict a panel’s output for detecting faults

and can classify various types of faults, i.e. snow, object covering,

and electrical faults, on a single or multiple panels.

7 CONCLUSIONS

In this paper, we proposed SunDown, a sensorless approach to

detecting per-panel anomalies in residential solar arrays. We take

a model-driven approach that leverages correlations between the

power produced by adjacent panels to detect deviations from ex-

pected behavior. We constructed and released an open dataset of

solar anomaly faults for experimental use. Finally, we showed that

our approach can predict panel level output with a MAPE of 2.98%

and can correctly classify anomalies with >97% accuracy.
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