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ABSTRACT

Battery-based energy storage has emerged as an enabling tech-
nology for a variety of grid energy optimizations, such as peak
shaving and cost arbitrage. A key component of battery-driven
peak shaving optimizations is peak forecasting, which predicts the
hours of the day that see the greatest demand. While there has been
significant prior work on load forecasting, we argue that the prob-
lem of predicting periods where the demand peaks for individual
consumers or micro-grids is more challenging than forecasting load
at a grid scale. We propose a new model for peak forecasting, based
on deep learning, that predicts the k hours of each day with the
highest and lowest demand. We evaluate our approach using a two
year trace from a real micro-grid of 156 buildings and show that it
outperforms the state of the art load forecasting techniques adapted
for peak predictions by 11-32%. When used for battery-based peak
shaving, our model yields annual savings of $496,320 for a 4 MWhr
battery for this micro-grid.
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1 INTRODUCTION

Energy storage has emerged as a key enabling technology for vari-
ous grid and energy optimizations such as peak load shaving and
energy cost arbitrage. Energy storage is also becoming popular for
smoothing energy generation from intermittent sources such as
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solar and wind. The cost of battery-based storage has been declin-
ing steadily over the years, and the penetration of battery storage,
while still nascent, is poised to grow sharply in the coming years.

Battery-based storage is particularly attractive for large energy
consumers such as commercial and industrial customers or micro-
grids. Unlike the majority of residential consumers that pay a flat
rate for electricity, such customers pay demand charges, which
is effectively a surcharge based on their peak usage. The use of
batteries to flatten the energy consumption during peak demand
hours can be an effective mechanism for reducing these demand
charges. For example, our campus micro-grid has recently deployed
a 4 MWhr battery for the sole purpose of peak load reduction and
the incurred demand charges.

An essential ingredient of any peak load shaving technique is
the prediction of when the peak demand will occur each day so
that the battery can be operated during those hours to reduce the
peak power draw from the grid. We refer to this problem as peak
forecasting, which is related to, but distinct from, the problem of
load forecasting. Load forecasting is a well studied problem in the
literature [6, 10, 15-17, 22, 25] and involves predicting a time se-
ries of future demand using past history and parameters such as
weather. In contrast, peak forecasting is concerned with predicting
specific hours of the day when the demand will peak. We note
that any load forecasting method can be trivially modified for peak
forecasting by first predicting a time series of the demand and then
sorting the demand to determine the top-k peak hours over the pre-
diction window. However, we argue that load forecasting methods
were designed for grid-level predictions where the demand varies
smoothly. Peak forecasting is applied to individual consumers, or
micro-grids, where the daily demand exhibits higher variations.
Conventional load forecasting may be less sensitive to peaks in
demand, while a peak forecasting method that is solely concerned
with determining peak demand periods, rather than detailed pre-
dictions of a time-series of demand, maybe more effective.

Motivated by these observations, in this paper, we present a
new peak forecasting technique that is designed for predicting the
top-k and bottom-k high and low demand hours for each day. Our
prediction model is based on a deep learning-based Long Short Term
Memory (LSTM) approach that is tailored for micro-grids or large
commercial customers that exhibit higher stochasticity in their
demand than grid-scale demand variations. Such a model can be
directly used for battery control and peak shaving by operating the
battery during the predicted top-k hours and charging the battery
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during the bottom-k off-peak hours. In designing our approach, we
make the following contributions.

First, we formulate the problem of peak forecasting and present
an LSTM model tailored for predicting the k high and low demand
periods during each day for any configurable k. Second, we com-
pare our approach with state of the art load forecasting approaches,
suitably adapted for peak forecasting, using a two-year-long de-
mand trace from our campus microgrid comprising 150 buildings.
Our results show that our approach can outperform the state of
the art methods by 11-32%. We conduct a case study of a campus
micro-grid comprising a 4 MWhr battery where we apply our model
for battery control to perform peak shaving and show annual en-
ergy savings of $496,320. Finally, we implement our approach on a
Raspberry Pi to demonstrate its feasibility of running in embedded
battery controllers for autonomous operations and also provide an
open-source implementation of our model as a library.

2 BACKGROUND

Our work focuses on larger energy consumers such as office or
university campuses, shopping malls, convention centers, or manu-
facturing facilities. We assume that such customers are subjected to
demand charges, also known as peak surcharges, that is a surcharge
paid on the monthly electricity bill based on the peak usage of that
customer. As a result, the customer is financially motivated to flat-
ten the peak usage as much as possible—the smoother the demand,
the lower the peak charge. With the emergence of battery-based
storage technologies, it has become feasible to reduce the grid-
observed peak demand without actually changing the underlying
consumption patterns. This is done by operating the battery during
the peak demand to absorb a portion, or all, of the peak. Our work
assumes that customers who wish to employ such optimizations
have deployed battery-based storage of a certain known capacity.

Past work on using batteries for grid energy optimizations falls
broadly into two categories: energy arbitrate and peak shaving.
When customers are subjected to the time of use (TOU) pricing,
with different prices during pre-defined peak and off-peak periods,
batteries enable energy to arbitrate where the battery charges dur-
ing cheaper off-peak hours and discharges during peak hours to
reduce bills. Past work has cast this problem as an optimization
problem where load forecasting is used to estimate future demand
and the optimization determines the optimal amount of charging or
discharging to maximize savings. Peak shaving [2, 3, 20, 21, 24] is
a different type of energy optimization that is designed to address
peak demand charges—in this case, the customer needs to predict
when their demand is likely to peak, and operate the battery during
this period to “clip” the peak. In this case, it is more critical to deter-
mine when the local demand from the customer will peak during
each day, a problem we refer to as peak forecasting. As noted earlier,
the problem of peak forecasting is a related but distinct problem
from load forecasting—in the former, we need to predict the top-k
hours when demand will be the greatest, while in the latter, we
need to predict a time-series of estimated demand.

Load forecasting is a well-studied problem with many decades of
research. Past work in the area falls into two broad categories: use
of time series forecasting methods [8, 19, 23] and, more recently,
use of neural nets and deep learning methods [7, 18, 22]. Regardless
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Figure 1: LSTM based demand predictor

of the method, all load forecasting techniques use past history
and parameters such as weather to estimate future demand. Load
forecasting methods are known to be very accurate for predicting
grid-scale demand where the variations are “smooth” but have
higher errors when predicting demand for individual consumers
where demand has higher stochasticity.

Peak forecasting [4, 5] is less well studied than load forecast-
ing. The problem was studied in [14] with the goal of predicting
the top-5 peak days in each year for the region of Ontario [13];
we seek to perform peak forecasting at the shorter time-scale of
hours, which is more challenging since hourly individual demand
has higher variations than aggregated daily grid demand. As men-
tioned earlier, one baseline approach is to take any load forecasting
approach and trivially modify it for peak forecasting by sorting
the predicted time series and choosing the top-k hours. As we will
show experimentally, such an approach can yield higher errors.

3 PEAK FORECASTING MODEL

In this section, we present our model for peak forecasting,.

3.1 Peak Forecasting using LSTM

The main objective of the peak forecasting model is to predict the
top-k and bottom-k hours of daily demand. Figure 1 shows the
architecture diagram of our model. Our model has 2 main modules
the Feature Extractor and Peak Predictor.

Feature Extractor : We use the historic demand as the input
to the model along with few engineered features to improve the
accuracy of the model. We add deterministic influencers such as
holidays, the hour of the day, season type (Fall, Winter, Spring,
Summer), holidays and exogenous influencers such as weather
and humidity to improve the accuracy of our model. We encode all
influencer features using One Hot Encoding, a method of converting
categorical variables to vector form and normalize the historic
hourly demand. Then, the one hot encoded features and normalized
historic demand are concatenated and fed as input to the peak
predictor.

Peak Predictor : The peak predictor is a stack of 4-layer Long
Short Term Memory(LSTM), which is a variant of a Recurring
Neural Network (RNN) and a Min-Max Layer. The objective of the
peak predictor is to predict the top-k and bottom-k hours over the
next 24 hours given the historic hourly demand for the past 2 days
along with other engineered features. To predict the hourly demand
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we use a variant of a Recurring Neural Network (RNN) called LSTM
(Long Short Term Memory) since it is well known that an LSTM
[11, 12] shows superior performance in learning sequential and
long term dependencies in data.

As shown in [9], grid demand displays a high degree of temporal
correlations along with sequential dependency. RNNs have been
shown to capture the sequential dependencies very well. However,
as the sequence length increases, long term dependencies can be
lost due to the vanishing gradient problem [11]. To overcome this,
we follow previous work and use the Long Short Term Memory
(LSTM) variant of RNN [12] in our LSTM based demand prediction
model. The LSTM incorporates three additional matrices inside the
recurrence which act as a gating mechanism, selectively allowing
information flow from previous timesteps as a function of the cur-
rent timestep. The gates f;, i; and o; are defined as functions of
the input x; and previous hidden representation h;_1 as follows.

fr = O'g(fot + Ufht_l + bf) (1)
iy = og(Wixy + Uih—1 + bi) @)
0r = og(Wox: + Ushs—1 + bo) 3

Here, matrices W and U and bias vectors b are all model parame-
ters learned through supervised training. o4 denotes the sigmoid
activation function, which normalizes the outputs to have values in
[0, 1]. These representations are combined to produce the hidden
representation h; as follows:

¢t =froci—1+irooce(Wexy + Uche—1 + be) 4)
he = 0 o op(ct) (5)

where o denotes element-wise vector multiplication. Activations o,
and oy, use the tanh function to normalize outputs into the range
[-1, 1], following previous work.

The final layer of our model is a min-max layer that labels each
hour as T (if it is a top-k hour), B (if it is a bottom-k hour), or N (for
neither). As shown in Figure 1, our models can optionally output
the predicted hourly demand (load forecast) in addition to the top-k
and bottom-k hour labels.

3.2 Applying the Model for Battery Control

Our peak forecasting model can then be used for battery-based
peak shaving. For example, the model output can be used to di-
rectly control the battery, where the battery discharges during the
top-k hours and charges back to full in the bottom-k hours. Model
predictions can also be incorporated into more sophisticated bat-
tery control algorithms that incorporate solar renewables, battery
lifetime, and other factors for energy optimizations.

4 EVALUATION

In this section, we experimentally evaluate our model using a real
2-year demand trace from a campus micro-grid of 156 buildings.
The trace sees a temperature range of -9.5F to 97F and demand
variations between 9,934 kW to 26,219 kW. For our evaluation, we
use two LSTM models, a 2 layer model and a 4 layer model that we
implement using Keras with TensorFlow [1] backend. The 2 layer
NN has 100 and 80 neurons, while 4 layer NN has 100, 90, 80, and 70
neurons in the hidden layers ordered from lower to the upper layer.
A grid search was performed for the selection of hyper-parameters.

e-Energy '20, June 22-26, 2020, Virtual Event, Australia

For training, we use Adam optimizer with an adaptive learning rate
0f 0.1 to 0.005 with 0.2 drop out.

For the purpose of comparison, we use 4 load forecasting models
that we adapt for peak forecasting by sorting their outputs and
choosing the top and bottom k values. We use a linear regression
model as baseline and two state-of-the-art load forecasting models
Custom ARIMA [16], and Artificial Neural Network (ANN) model.
We tune the ANN hyper-parameters using grid-search and train all
models using the same campus microgrid dataset.

Model MAPE

LSTM-2 Layer 41 s, <
LSTM-4 Layer 3.7 T . %
Linear Regression 5.9 g ) : gi
ANN 3.8 = ]
ARIMA 5.0

Jané Juns  Jani7 Juni7  Janig Junig

Table 1: Demand Pre-
diction Accuracy Figure 2: Dataset temperature

range and variance

4.1 Baseline Evaluation

Although our focus is on peak forecasting, we first compare the
Mean Absolute Percentage Error (MAPE) of all approaches for
predicting the demand time series. As shown in Table 1 we find that
our 4-layer LSTM model has the least MAPE and outperforms even
state of the art load forecasting approaches. The ANN approach,
with a MAPE of 3.8, is a close second, while linear regression has the
highest error. Minor improvements in MAPE score has a significant
impact on peak prediction, which results in substantial cost savings.
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Figure 3: Sample peak forecasts for (a)uni-modal demand
peak and (b) bi-modal demand peak.

4.2 Peak Predictions

Next, we show the sample output of our LSTM model for forecasting
top and bottom-k hours. Figure 3 show the campus micro-grid
demand on two different days and shows the labeled top-k and
bottom-k hours in each day. Note that some days can be unimodal
where the top/bottom k hours occur contiguously, while other days
can be bimodal where these hours are non-contiguous. Our model
can handle both scenarios, as shown.

4.3 DPeak Forecast Accuracy

Next, we compare the peak forecasting accuracy of various models.
Tables 2 and 3 show the accuracy of various approaches for pre-
dicting the top-k and bottom-k hours of each day, respectively, for
various values of k. We evaluate model accuracy as the percentage
of the correct number of peak hours captured by each model.
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Model 1 2 3 4 5

LSTM-2 Layer 16% 26% 74% 79% 84%
LSTM-4 Layer 47% 74% 89% 95% 100%
Linear Regression 42% 68% 84% 89% 100%
ANN (SOTA) 26% 42% 53% 63% 719%

Custom ARIMA [16] 42% 63% 74% 84% 95%

Table 2: Top-k peak prediction accuracy, k range 1 to 5

Model 1 2 3 4 5

LSTM-2 Layer 42% 50% 58% 75% 92%
LSTM-4 Layer 42% 50% 67% 83% 92%
Linear Regression 33% 42% 50% 58% 67%
ANN (SOTA) 25% 58% 67% 75% 83%

Custom ARIMA [16] 33% 42% 50% 83% 92%

Table 3: Bottom-k Peak prediction accuracy, k range 1to 5

First, we observe that the accuracy is lower for small values of
k since the chances of making mistakes is higher for small k (e.g.,
if the top two hours are close to one another, for k = 1, a model
may choose the wrong hour due to prediction error). The accuracy
of all approaches increases with a higher k since each approach
only needs to find all hours in the top k regardless of the order. The
table shows that the 4 layer LSTM approach outperforms all other
approaches. For k > 4, it yields an accuracy of 95% and 100%, respec-
tively. For k = 1, its accuracy is only 47% but it is still greater than
all other approaches. Overall, it has 11-32% better accuracy than the
state of the art ANN and Custom ARIMA approaches. Interestingly,
linear regression performs quite well despite its simplicity and is
able to outperform ANN and custom ARIMA for top-k predictions.

Table 3 shows bottom-k prediction accuracy. Note that top-k
forecasts are more critical than bottom-k predictions since an er-
ror in top-forecasts directly impacts incurred the demand charges,
while error in bottom-k forecast implies that the battery may charge
in different hours than the true bottom and we can tolerate more
errors in bottom k predictions. Again, 4 layer LSTM approach out-
performs all other approaches. However, its accuracy is slightly
lower than when making top-k forecasts. The accuracy of all meth-
ods increases for higher values of k, like before. However, the two
states of the art methods and the linear regression have much lower
accuracy than our LSTM models.

4.4 Prototype Implementation and Efficiency

We have implemented a full prototype of our peak forecasting
model. One of the goals of our work is to develop compact, efficient
models that can be deployed and executed on embedded processors
that are common in the battery control system—with the goal of
using the models to drive autonomous operation of batteries for
peak shaving. Our 4 layer model has a memory footprint of 300KB,
while the 2 layer model has footprint 150KB, which allows them
to fit into low-end devices with small amounts of RAM. We ran
both models on a Raspberry PI 3 device running 32-bit Linux and
measured the execution latency. Both are able to predict the top
and bottom 5 peaks of an entire day in less than 1.8 seconds. We
have released our model as an open-source library on GitHub:
http://github.com/umassos/peak-prediction
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Figure 4: Battery payback and savings for varying battery
sizes

5 PEAK SHAVING CASE STUDY

Finally, we present a case study to evaluate the efficacy of our peak
forecasting for peak shaving. To do so, we assume that the model
peak predictions are used to directly drive the battery charging and
discharging. To evaluate the overall cost efficacy of our approach,
we consider various battery sizes 1MWhr, 2MWhr, 4MWhr). For
each battery size, we compute the savings over a period of k hours
per day, where k € {1,2,3,4,5} represents the number of hours of
battery discharge operation per day. Since the model captures
all peaks at k=5 we compute the savings till k=5. The per-hour
battery discharge (BD) for a specific value of k is assumed to be
Battery Capacity

Our cgmpus has recently installed a 4MWhr battery for peak
shaving. The local utility company imposes a $22/kW demand
charge for usage during peak hours. The cost of a 4MWhr battery
installed is approximately $800,000, with a unit cost of $200/kWhr.
Figure 4 shows the computed savings in demand charges for all 3
battery sizes. We find that k=1 gives us the best savings and payback
irrespective of the battery size. The model accuracy in predicting
the peak increases with increasing values of k. So, model accuracy
is higher for k=2 than k=1 but as k increases the battery discharge
per hour reduces. This drop in battery discharge offsets the cost
savings substantially as k becomes greater than 2 resulting in a
drop in the savings. The figure shows annual savings of $496,320
for a 4 MWhr battery for k = 1 and annual savings of nearly
$200,000 for k = 5. Overall the figure shows the efficacy of our peak
forecasting approach for extracting real-world savings by shaving
peak demand. Based on this case study and the above experiments,
we are deploying of our model for the day-to-day control of the
campus battery for peak shaving.

6 CONCLUSIONS

In this paper, we presented a peak forecasting model for battery-
based peak shaving. Our deep learning-based model predicts the
top and bottom-k hours of each day, which can then be used to
control a battery for peak shaving. We showed that our approach
outperforms the state of the art load forecasting techniques adapted
for peak predictions by 11-32%. When used for battery-based peak
shaving, our model yields annual savings of $496,320 for a 4 MWhr
battery for a campus micro-grid.
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