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ABSTRACT

Battery-based energy storage has emerged as an enabling tech-

nology for a variety of grid energy optimizations, such as peak

shaving and cost arbitrage. A key component of battery-driven

peak shaving optimizations is peak forecasting, which predicts the

hours of the day that see the greatest demand. While there has been

significant prior work on load forecasting, we argue that the prob-

lem of predicting periods where the demand peaks for individual

consumers or micro-grids is more challenging than forecasting load

at a grid scale. We propose a new model for peak forecasting, based

on deep learning, that predicts the k hours of each day with the

highest and lowest demand. We evaluate our approach using a two

year trace from a real micro-grid of 156 buildings and show that it

outperforms the state of the art load forecasting techniques adapted

for peak predictions by 11-32%. When used for battery-based peak

shaving, our model yields annual savings of $496,320 for a 4 MWhr

battery for this micro-grid.
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1 INTRODUCTION

Energy storage has emerged as a key enabling technology for vari-

ous grid and energy optimizations such as peak load shaving and

energy cost arbitrage. Energy storage is also becoming popular for

smoothing energy generation from intermittent sources such as
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solar and wind. The cost of battery-based storage has been declin-

ing steadily over the years, and the penetration of battery storage,

while still nascent, is poised to grow sharply in the coming years.

Battery-based storage is particularly attractive for large energy

consumers such as commercial and industrial customers or micro-

grids. Unlike the majority of residential consumers that pay a flat

rate for electricity, such customers pay demand charges, which

is effectively a surcharge based on their peak usage. The use of

batteries to flatten the energy consumption during peak demand

hours can be an effective mechanism for reducing these demand

charges. For example, our campus micro-grid has recently deployed

a 4 MWhr battery for the sole purpose of peak load reduction and

the incurred demand charges.

An essential ingredient of any peak load shaving technique is

the prediction of when the peak demand will occur each day so

that the battery can be operated during those hours to reduce the

peak power draw from the grid. We refer to this problem as peak

forecasting, which is related to, but distinct from, the problem of

load forecasting. Load forecasting is a well studied problem in the

literature [6, 10, 15–17, 22, 25] and involves predicting a time se-

ries of future demand using past history and parameters such as

weather. In contrast, peak forecasting is concerned with predicting

specific hours of the day when the demand will peak. We note

that any load forecasting method can be trivially modified for peak

forecasting by first predicting a time series of the demand and then

sorting the demand to determine the top-k peak hours over the pre-

diction window. However, we argue that load forecasting methods

were designed for grid-level predictions where the demand varies

smoothly. Peak forecasting is applied to individual consumers, or

micro-grids, where the daily demand exhibits higher variations.

Conventional load forecasting may be less sensitive to peaks in

demand, while a peak forecasting method that is solely concerned

with determining peak demand periods, rather than detailed pre-

dictions of a time-series of demand, maybe more effective.

Motivated by these observations, in this paper, we present a

new peak forecasting technique that is designed for predicting the

top-k and bottom-k high and low demand hours for each day. Our

predictionmodel is based on a deep learning-based Long Short Term

Memory (LSTM) approach that is tailored for micro-grids or large

commercial customers that exhibit higher stochasticity in their

demand than grid-scale demand variations. Such a model can be

directly used for battery control and peak shaving by operating the

battery during the predicted top-k hours and charging the battery
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