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Abstract—The service function chaining paradigm links
ordered service functions via network virtualization, in support of
applications with severe network constraints. To provide wide-
area (federated) virtual network services, a distributed archi-
tecture should orchestrate cooperating or competing processes
to generate and maintain virtual paths hosting service function
chains, while guaranteeing performance and fast asynchronous
consensus even in the presence of failures. To this end, we propose
a prototype of an architecture for robust service function chain
instantiation with convergence and performance guarantees. To
instantiate a service chain, our system uses a fully distributed
asynchronous consensus mechanism that has bounds on conver-
gence time and leads to a (1 − 1/e)-approximation ratio with
respect to the Pareto optimal chain instantiation, even in the
presence of (non-byzantine) failures. Moreover, we show that
a better optimal chain approximation cannot exist. To estab-
lish the practicality of our approach, we evaluate the system
performance, policy tradeoffs, and overhead via simulations and
through a prototype implementation. We then describe our exten-
sible management object model and compare our asynchronous
consensus’s overhead against Raft, a recent decentralized con-
sensus protocol, showing superior performance. We furthermore
discuss a new management object model for distributed service
function chain instantiation.

Index Terms—Network virtualization, service function chains,
NFV, consensus algorithms, guarantees.

I. INTRODUCTION

THE GROWING number of networked services and appli-
cations increased the complexity of network manage-

ment. Network virtualization has however simplified many
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aspects of such complexity, while also enabling new busi-
ness models; the key idea is to abate infrastructure and
service providers’ operational costs [1]. The research com-
munity has also gained interest in this technology as it allows
simpler management of multi-tenant, wide-area and complex
networks; see, for example, large scale virtual network testbeds
such as Chamaleon [2], or Fabric [3]. To offer such wide-area
network services, physical resources from multiple federated
providers or research institutions are required. Managing these
services is, however, very complex. The management com-
plexity is brought by the scale and constraints required by
the applications, as well as by multiple virtual network func-
tions that coexist to build a service function chain. Such
functions range from management tasks, such as load balanc-
ing (sometimes also considered a data plane task), firewalls,
intrusion detection systems, network address translators or
deep-packet inspection [4] and Quality-of-Service [5]–[7], to
data plane tasks such as congestion control, and network
scheduling [8], [9].

To orchestrate such complex environments, chain policies
need to be instantiated on multiple (physical or virtual) hosting
machines, spanning multiple federated providers, and being
dynamically reprogrammed to quickly adapt to the dynamic
nature of the service. By policy, we mean a variant aspect of
any network mechanism, e.g., a desirable high-level goal dic-
tated by users, applications, infrastructure or service providers.
Many systems for centralized service function chain orches-
tration are actively being developed, e.g., [10], [11]. It is still
unknown, however, how multiple (virtualized) instances of the
infrastructure could cooperate or compete to orchestrate sev-
eral network management mechanisms to offer a wide-area
service function chain.

In this article, we focus on a subset of all possible (dis-
tributed) chain orchestration mechanisms. In particular, we
present the design and implementation of Necklace, an archi-
tecture that solves the distributed chain instantiation problem
with performance guarantees via distributed asynchronous
consensus, even in the presence of a small number of random
failing processes or communication links. Necklace solves
the problem of reaching a distributed allocation agreement
among processes running on all chain hosting nodes, while
maximizing all providers’ utilities.

Motivating applications: Solutions that provide resilient
decentralized asynchronous consensus that could be used for
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the chain instantiation problem already exist, e.g., the Paxos
consensus algorithm [12], a version of which is used even
by Google data centers [13], or the more recent Raft [14],
adopted by the Open Network Operating System (ONOS) [10].
The design behind these protocols is sound, but although
these approaches have been subject to recent optimizations
and improvements (e.g., [15], [16]), none of them simultane-
ously provides: (i) guarantees on the Pareto optimality of the
elected leader, (ii) bounds on the agreement convergence time,
and (iii) resilience to random failures of processes and/or com-
munication links, via a fully distributed solution (as opposed
to a decentralized one as in [14]). Our Necklace architecture
bridges this gap with the following three contributions.

Architectural contributions: Leveraging stochastic
optimization theory, we identify the mechanisms and
the interactions within what we call the complete resilient
service function chain instantiation problem. The three nec-
essary and sufficient sets of invariances to instantiate a chain
are: (i) state retrieval, (ii) chain mapping, and (iii) resource
binding. Necklace connects these three mechanisms via a
Chain Instantiation Protocol (CIP) that modifies states within
each phase.

Algorithmic contributions: To solve the service chain map-
ping problem, we propose a fully Distributed Asynchronous
Chain Consensus Algorithm (DACCA) that is guaranteed to
converge and has probabilistic guarantees (i.e., guarantees on
the expected value) on the quality of the chain instantiation,
with respect to a Pareto optimal network utility.

System contributions: We analyze some policy tradeoffs
of the DACCA mechanism with simulations, and we con-
firm the simulated results over a prototype implementation
of Necklace within the Mininet virtual network testbed [17].
Using a large available dataset of requests to the Facebook dat-
acenter, we also compare the performance of several predictors
used to provision a chain, and deploy such chains after run-
ning DACCA using an OpenSource MANO (OSM) physical
network testbed using production-level hardware to establish
the practicality of our approach.

Paper Organization: The rest of this article is organized as
follows: in Section II we relate our contributions to existing
work; in Section III we define our complete resilient chain
instantiation problem as a stochastic optimization problem,
that served as architecture design tool; our Necklace archi-
tecture and its core mapping mechanism DACCA are then
described in Sections IV and V, respectively, while the details
of the management object model, a superset of the Chain
Instantiation Protocol are described in Section IV. The ana-
lytical results are highlighted in Section VI. In Section VII,
instead, we present the traffic forecast analysis, performed
using the Facebook dataset [18]. Finally, our prototype evalu-
ation results are presented in Section VIII and conclusions are
drawn in Section IX.

II. RELATED WORK

Service chain orchestration systems: The idea of provid-
ing a resilient chain in a distributed environment has been
floated at the ETSI NFV ISG group [19], proposing a system
in which chains are deployed with automatic failover and

reinstallation of failed instances. Moreover, their proof-of-
concept include redundancy with middleware that provides
state replication and synchronization services between chain
instances. Necklace does not yet support chain reinstallation
upon failover but its focus is on an algorithm for instanti-
ating a chain, that is resilient during the instantiation phase.
Necklace’s asynchronous consensus mechanism does not dis-
tinguish failed hosting nodes from silent nodes unable to take
the “hosting leadership”. Moreover, ETSI’s solution does not
allow each provider to specify their own instantiation policies
(utility or voting strategy) privately, and their system does not
have bounds on suboptimalities. Although also without guar-
antees, a discussion of an optimal distribution of chains in a
multi-provider environment is discussed in [20]. A use case by
the IETF service function chaining working group [21] consid-
ers instantiating chains across federated domains; however, no
system has been implemented yet in support of those use cases.
MIDAS [22] and Cloud4NFV [23] are other two approaches
for multi-cloud environments chain provisioning (MIDAS also
considers discovery). These approaches are sound, but many
of them do not allow policy tuning on the chain (middlebox)
instantiation mechanism and do not discuss any guarantees.

Several other NFV orchestration system designs have been
proposed [24], e.g., OpenBaton [25], FROG [26], and several
other solutions [27] have been built upon the service func-
tion chain working group proposal, to explore, expand and
identify new abstractions, especially at the intent-specification
level [28]. Differently from OpenBaton, FROG, nf.io and
others, the design of Necklace does not depend on the
(flawed [29]) naming and addressing architecture, i.e., it does
not need to use IP addresses. Finally, Necklace shares the dis-
tributed and unifying approach design principles with [27], but
the implementation of our prototype is limited to the man-
agement of the lifetime of a service function chain; other
proposed orchestrators (e.g., OpenBaton [25]) have other very
useful features. OpenNF [30] achieves service chain orchestra-
tion using the forwarding mechanism. It assumes that dynamic
service chaining is provided by updating how SDN switches
forward packets. OpenNF’s key points are its efficiency and
ability to coordinate control of forwarding changes and mid-
dlebox state migration, so that middleboxes can be replaced
quickly and safely. The more recent Dysco [31], like the
Chain Instantiation Protocol (CIP) of Necklace, is a session
protocol and places no constraints on the choice of the con-
trol plane (i.e., it works also without SDN), hence avoiding
performance risk problems with (OpenNF) controllers because
they are responsible for packet buffering. Other architectures,
including [32], focus on the deployment of a pre-allocated
chain, without covering resource allocation mechanisms. To
conclude, none of these proposed architectures or orchestra-
tors is based on a mechanism design able to provide guarantees
on both convergence of a chain instantiation, and guarantees
on performance utilization of a set of chains to be instantiated.

Constrained path finder algorithms: Since a chain is a
(directed) constrained path, approaches to find a (resilient)
physical path with multiple constraints are also related. Due
to its NP-complete [33] nature, the problem of finding a con-
strained path has inspired many heuristics. As in our approach,
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most of these heuristics group multiple metrics into a single
function to reduce the optimization problem to a single con-
strained formulation, e.g., [34], and then solve it using, e.g.,
Lagrangian relaxation. Our architecture uses a mechanism that
performs a fully distributed resource discovery with the voting
system, before mapping the path on the hosting infrastructure,
and then a subsequent phase assigns the best candidate, given
by the Pareto optimal mechanism design.

Other path finder suboptimal solutions that use k-shortest
paths like Necklace also exist: for instance, in [35] the authors
propose a k-path constraints heuristic solution. Moreover, the
exact pseudo-polynomial algorithm proposed by Jaffa [33]
offers a distributed path finder alternative, but restricted to
a two-paths constraint. Differently from all these solutions,
to our knowledge, we are the first to propose a constrained
path finder mechanism that is policy-based, fully distributed,
and has guarantees with respect to a Pareto optimal chain
instantiation.

III. MODEL AND ARCHITECTURE DESIGN

In this section, we describe the complete resilient chain
instantiation as a centralized stochastic optimization problem.
We then use our model to design a system architecture in
support of its resilient system implementation. In particular,
we model each subproblem individually as a building block
of our architecture, and we model the interfaces among such
mechanisms with coupling (or complicating) variables.

Before running a chain of (virtual) services on a shared
(physical) infrastructure, service and infrastructure providers
need to either cooperatively or independently run three
interacting mechanisms: (i) chain state retrieval, (ii) service
chain mapping, and (iii) resource binding.

The state retrieval mechanism involves querying a subset
of all the available hosting resources, among those that satisfy
the constraints of the requested service chain. These resources
are physical, in case an infrastructure provider is processing
the instantiation, or virtual, in case a service provider acts as
a broker and rents resources on top of a virtual overlay. We
refer to such underlying resources simply as hosting nodes or
links.

If a set of hosting resources has been found, a resource
mapping protocol has to be executed. It is known that find-
ing unconstrained shortest paths can be solved in polynomial
time [36]. However, due to the combination of node and link
constraints, this path finding problem is the most complex
step in the chain instantiation setup, and it has been shown
to be NP-hard when several path Service Level Objective
(SLO) constraints are enforced [37]. A SLO is a technical
requirement within a Service Level Agreement (the full legal
contract). Underlying or requested SLO constraints include
intra-node, e.g., desired physical location, processor speed
or storage capacity, as well as inter-node constraints, e.g.,
physical network topology.

Before data plane packets can flow on the newly instantiated
service chain, an additional hosting-hosted resource binding
step is necessary to reserve the resources and update all the
network states. A system component dedicated to this phase

has to check for additional capacity constraints or topological
dependencies, as described in the RFC [38], and choose among
all solutions available, if any, from the previous two phases.
In this work, we model a chain with a constrained virtual
path, for ease of notation denoted as a (directed) graph with a
linear topology H = (VH ,EH ,CH ), to be instantiated on a
physical network graph G = (VG ,EG ,CG), where V is a set
of nodes, E is a set of links, and each node or link e ∈ V ∪E
is associated with a capacity constraint C(e).1

A. Hosting Node State Retrieval (Resource Discovery)

A chain hosting element is available if a discovery (or state
retrieval) operation is able to find it, given a set of protocol
parameters. For example, an application may wish to find the
k-shortest paths from node n to node m, or it may wish to
find as many available Virtual Machines (VMs) capable of
hosting a given middlebox service, e.g., a NAT or a parental
control application, within a given number of hops to minimize
latency. We assume that a chain request j is a path that contains
ηj > 0 (virtual) nodes (we omit the trivial case of a chain
composed of a single virtual machine), and ηj−1 virtual links.
We limit the discovery overhead of physical nodes and paths
with parameters ANj ≥ ηj and APj ≥ ηj − 1, respectively.
This means that at least one candidate for each resource to be
instantiated within the chain needs to be found. Otherwise, the
chain allocation process gets rejected. Since Necklace handles
multiple simultaneous chain instantiations, we identify with
j ∈ J each request, where J is the set of all Service Function
Chains (SFC) to instantiate. Among all possible resources, the
state retrieval phase returns the subset that maximizes a given
notion of utility. Such utilities may have the role of selecting
resources that are closer — with respect to some notion of
distance — to the given set of constraints Cj (e).

Let us introduce two sets of binary variables, nP
ij and pkj .

nP
ij is equal to 1 if the i th physical node, on which the chain

instance subset may be deployed is available, and zero other-
wise. Similarly, pkj is equal to 1 if the k th physical path, is
available to host the direct virtual link, and zero otherwise. If
we denote by uij ∈ R and ωkj ∈ R the utility of hosting nodes
and paths, respectively, then the state retrieval mechanism can
be modeled as follows:

maximize
nP ,p

∑

j∈J

⎛

⎝
∑

i∈VG

uijnP
ij +

∑

k∈P
ωkj pkj

⎞

⎠

subject to
∑

i∈VG

∑

j∈J

nP
ij −

∑

j∈J

ANj ≤ 0,

∑

k∈P

∑

j∈J

pkj −
∑

j∈J

APj
≤ 0,

nP
ij , pkj ∈ {0, 1}, ∀i , j , k , (1)

where P is the set of all physical paths in G. After this
phase is completed, architecturally, the set of available physi-
cal resources {nP

ij , pkj } are passed to the SFC mapper via an
interface.

1Each constraint could be an (ordered) set of constraints containing, e.g.,
restrictions on location, delays, or even node capabilities, such as installed
packages or firewall rules.
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B. Service Function Chain (SFC) Mapping

Among the subset of all physical resources potentially avail-
able to host a node of the chain, we now seek a non-empty
subset of all feasible hosting paths. Note that finding a con-
strained (shortest) path may have polynomial or exponential
time complexity, depending on the number of physical path
and physical link constraints [37]. The chain mapping is the
problem of finding a matching of H in G, such that each
service instance in H is mapped onto one hosting node (under-
lying server or VM), and each virtual link is mapped onto at
least a physical path p. Note that since hosting paths may
span across different federated providers, packets may be
forced to pass through a third party firm offering deep packet
inspection as a service. Formally, the mapping is a function
Q : H → (VG ,P), where Q is called a valid mapping if
all constraints of H are satisfied, and for each virtual link
lH = (sH , rH ) ∈ EH , sH , rH ∈ VH , ∃ at least one physical
path (i.e., sequence of physical nodes) p = (sG , . . . , rG) such
that p ∈ P and virtual nodes sH and rH are mapped onto
physical nodes sG and rG , respectively.

We model the sets of available paths and nodes at the time of
the chain instantiation request j with P ′

j ⊆ P and V ′
Gj
⊆ VG ,

respectively. The mapper returns a list of candidate nodes and
links to the resource binder which decides the final binding
between hosting and hosted resources.

The mapping phase can hence be modeled by the following
optimization problem:

maximize
nV ,l

E

⎡

⎢⎣
∑

j∈J

⎛

⎜⎝
∑

i∈V ′
Gj

ΘijnV
ij +

∑

k∈P ′
j

Φkj lkj

⎞

⎟⎠

⎤

⎥⎦

subject to
∑

i∈V ′
Gj

nV
ij = ρj , ∀j ∈ J ,

∑

k∈P ′
j

lkj = γj , ∀j ∈ J ,

nV
ij , lkj ∈ {0, 1}, ∀ i , j , k , (2)

where Θij is the utility that the system would get if the chain
request j gets assigned to virtual node i, and Φkj is the system’s
utility when j gets the virtual link k, ρj > 0 is the number of
virtual nodes, and γj ≥ 0 the number of virtual links, respec-
tively, requested with the chain request j. Note that ρj and γj

differ from ANj
and APj

defined in the resource discovery
problem (1), as we may not need to use all physical nodes or
physical paths that we have discovered in the mapping phase.
Also, nV

ij and lkj are binary variables that are respectively set
to one if virtual node i (nV

ij ) or virtual link k (lkj ) are assigned
to chain request j, and zero otherwise.

The first two constraints enforce that all the virtual resources
requested by each user are mapped, i.e., at least one host-
ing node (path) is going to be assigned to each virtual node
(link) of the requested chain, respectively. The third con-
straint ensures that the one-to-one mapping between virtual
and hosting nodes is satisfied.

C. Chain Resource Binding

After all mapping candidates have been identified, Necklace
solves a bin packing problem considering both chain priori-
ties and additional physical constraints. As multiple chains for
multiple tenants may be simultaneously requested, the SFC
instantiation solver needs to invoke the appropriate policies
on each individual request. We model this policy enforcement
in this last phase. Each resource type may have its own bind-
ing policy (e.g., it could follow either a guaranteed 99.999%
Service Level Agreement model or a best-effort allocation).
This phase only ensures that chain requests will be unable to
exceed physical limits or their authorized resource usage. The
weight wj assigned to each chain request j, represent the pol-
icy used (e.g., in first-come first-serve, wj = w ∀ j ), or the
priority or importance of allocating chain j for the system or
application. For example, the system may assign null weight
to a request that has not yet been authorized, even though the
resources to map it exist.

Similarly to a standard set packing problem, e.g., [39], we
model the resource binding phase as follows:

maximize
x

∑

j∈J

wj xj

subject to
∑

j∈J

nV
ij xj ≤ C n

i , ∀i ∈ V ′
Gj ,

∑

j∈J

lkj xj ≤ C l
k , ∀k ∈ P ′

j ,

xj ∈ {0, 1}, ∀j , (3)

where C n
i and C l

k represent the capacities, i.e., the number
of virtual nodes and links, respectively, that can be simulta-
neously hosted on the hosting node i and physical path k,
respectively. The binary variable xj instead is equal to 1 if
chain j has been successfully bound and zero otherwise. Note
that it is possible for a chain request to be denied due to
insufficient resources or to its lowest priority.

D. Modeling Chain Subproblems Interactions

Building on previous optimization problems, we now for-
mulate a unified centralized stochastic optimization problem
that considers the various aspects of the SFC instantiation
problem. The optimization problem also provides insights on
the interactions among each phase and how they may impact
efficiency in network virtualization. In formulating a unified
centralized stochastic optimization problem, we assume that
processes cooperate to instantiate as many chains as the infras-
tructure can host seeking a Pareto optimality. Informally, a
chain instantiation is optimal if no infrastructure provider
hosting at least a virtual node achieves a better utility with
another mapping. We give more details on the utility function
in Section V. The optimization problem is stochastic since
we assume failures. This means that the Pareto optimal chain
instantiation is not always achievable, due to suboptimality in
the greedy leader election protocol, and due to system and
link (temporarily) failures. In particular, we model the three
phases of the complete resilient chain instantiation problem in
the following Problem (4). We represent with nP

ij (or pkj ) the
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Fig. 1. Necklace architecture overview: the core components support the three
coupled mechanisms for a resilient Service Function Chain Instantiation, and
their interactions with the network operating system and the applications.

probability of hosting node i (or hosting path k) being avail-
able after a state retrieval operation; nV

ij is the probability
that a virtual instance of node i is selected as a valid mapping
solution relative to the chain request j, while lkj represents the
probability that a virtual instance of the path k is selected to
be hosting a virtual link within chain request j. Finally, vari-
able xj represents the probability of chain j being successfully
allocated on the hosting infrastructure; C n

i and C l
k represent

the hosting capacity vectors, i.e., the number of virtual nodes
and links, respectively, that can be simultaneously hosted on
node i and physical path k, respectively. ρj is the number of
virtual nodes, and γj the number of virtual links, respectively,
requested within chain j.

For Problem (4), constraints (4a) and (4b) represent the
physical state retrieval constraints, (4c) and (4d) refer to the
mapping subproblem, while (4g) and (4h) describe the bind-
ing phase. Constraints (4i) and (4j) instead capture the final
binding subproblem: these constraints ensure that each chain
request is not considered for binding unless all virtual nodes
and all virtual links requested in the path can be (if no fail-
ures occurs) successfully mapped (nV

ij = 1 and lkj = 1). In
optimization theory, constraints like (4e), (4f), (4i) and (4j) are
often called complicating constraints, as they “complicate” the
problem binding the three mechanisms together; without those
constraints, each of the chain instantiation mechanism could
be solved independently from the other two, e.g., by a different
architecture component.

maximize
nP ,p,nV ,l ,x

E

⎡

⎣
∑

j∈J

∑

i∈VH

Ui

(
nP
ij , pkj ,n

V
ij , lkj , xj

)
⎤

⎦

subject to
∑

i∈VG

∑

j∈J

nP
ij −

∑

j∈J

ANj ≤ 0, (4a)

∑

k∈P

∑

j∈J

pkj −
∑

j∈J

APj
≤ 0, (4b)

∑

i∈V ′
Gj

nV
ij − ρj = 0 ∀j , (4c)

∑

k∈P ′
j

lkj − γj = 0 ∀j , (4d)

nV
ij − nP

ij ≤ 0 ∀i ∀j , (4e)

lkj − pkj ≤ 0 ∀k ∀j , (4f)
∑

j∈J

nV
ij xj − C n

i ≤ 0 ∀i , (4g)

∑

j∈J

lkj xj − C l
k ≤ 0 ∀k , (4h)

xj − 1
ρj

∑

i∈Np

nV
ij ≤ 0 ∀j , (4i)

xj − 1
γj

∑

k∈P
lkj ≤ 0 ∀j , (4j)

xj ,nP
ij , pkj ,n

V
ij , lkj ,∈ [0, 1] ∀ i , j , k . (4k)

IV. NECKLACE PROTOTYPE ARCHITECTURE

In this section, we introduce the architecture of our
Necklace system, as depicted in Figure 1. Being located
between the network operating system and the application,
Necklace manages all chain instantiation states, shared across
federated domains, via a novel management protocol that we
call CIP (Chain Instantiation Protocol.) The message design
of CIP is not only used to implement the consensus strat-
egy used during the crucial chain mapping phase, but also
to manage the inter-process communication among Necklace
processes. CIP is inspired by classical network management
protocols [40]–[42]; it is simpler, and so less general than
CMIP [42] or HEMS [41], but more complex than SNMP [40],
and specific to the service chain instantiation problem.

The core components of Necklace refer to the three coupled
mechanisms necessary and sufficient to instantiate a (resilient)
chain, as described in Section III: state retrieval (or resource
discovery), chain mapping and resource binding. All other
architecture components support such mechanisms along with
their interactions, as well as the interface with the underlying
network operating system and the application policy or intent
requests.

In the rest of this section we describe the building blocks
of Necklace (Figure 1).

Management Object Model: Historically [40]–[42], a man-
agement object model has been characterized by a (i) set of
objects along with their attributes, to define the manageable
states, (ii) an interface to modify such object attributes locally,
and a (iii) set of protocol messages, to modify attributes
remotely. Our approach to define a chain instantiation manage-
ment object model was no exception. Every process participat-
ing in the distributed chain instantiation protocol stores all the
relevant states locally into its Chain Information Base (CIB).
The CIB is similar in design to the Forward Information Base
(FIB), a Routing Information Base (RIB) or a more general
Management Information Base (MIB). Instead of storing, e.g.,
routing states as in a RIB, the CIB stores in a partially repli-
cated database all the states necessary to instantiate a chain.
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The Chain Information Base Daemon task is to keep the CIB
consistent across instances belonging to the same network
participating in the chain instantiation process. The daemon
works together with the message parser and serializer, an
interpreter for the CIP protocol that uses Google Protocol
Buffers [43]. We describe in details the distributed consen-
sus chain instantiation protocol (implemented using the CIP
management protocol messages) in Section V.

Necklace was designed and built to orchestrate virtual
function chains, but its architecture is extendable to other vir-
tual (network) function management mechanisms by merely
extending the object model. New objects would have to be
then managed by the Chain Instantiation Protocol (CIP) and
by the application logic. To define our objects, our protocol
implementation uses the Google Protocol Buffers [43] (GPB)
as abstract syntax notation, and JSON for our OpenSource
Mano (OSM) deployment, where processing efficiency is not
as crucial. Many systems today use XML to define policies,
intents or objects, but XML is a text-based syntax notation,
and so much less efficient than binary-based alternative like
GPB and BSON. BSON was also a very good option but the
compiler (that converts string objects into binary and API)
is yet unavailable; also, protocols written in GPB appear to
be easily extendable. An abstract syntax notation is needed
to serialize and de-serialize messages in a protocol. This is
needed so that a system prototype is both language and plat-
form neutral, that is, different processes may implement our
protocol to host chain nodes using, e.g., Java, C++, Python,
on machines whose processor architectures are little-endian or
big-endian, without needing additional code refactoring.

Chain Manager Service: In our Necklace architecture, this
component is similar to a classical Network Management
System (NMS), and it is responsible for the monitoring, nam-
ing and addressing resolution mechanisms. By monitoring,
we mean the ability to parametrize and interpret keep-alive
messages. The Chain Manager Service orchestrates also the
authentication, enrollment and entitlement mechanisms, that
we represent in a separate block in Figure 1.

Authentication, Entitlement and Enrollment: Before a chain
can be instantiated, the processes participating in the leader
election protocol need to authenticate. To do so, they enroll
in an overlay with private addressing scheme, and subscribe
to each-other updates. The Authentication, Entitlement and
Enrollment (AEE) component deals with such authorizations
mechanisms. Currently, the architecture only supports a basic
user and password authentication, but we modularized this
block to allow independent evolution.

Why another network management protocol? As shown in
Figure 2, existing management protocols such as CMIP [42]
or HEMS [41] could have been used as well, but they are
either too complex for merely a chain instantiation, and so
they would bring unnecessary complexity and overhead, or,
like SMNP [40], are not expressive enough and they do not
support authentication (that our CIP protocol enrollment phase
provides).

In the upcoming sections we describe the distributed asyn-
chronous max-consensus, core mechanism of the Necklace
architecture, used as a chain mapping mechanism. We

Fig. 2. Existing network management protocols are suboptimal for virtual
network function chain management given their low expressiveness or their
high overhead.

then describe how, under realistic assumptions, it guaran-
tees performance and convergence even in the presence of
non-byzantine failures during a chain instantiation process.

V. DISTRIBUTED ASYNCHRONOUS CHAIN CONSENSUS

ALGORITHM (DACCA)

Next, we describe our proposed chain mapping mechanism
viz. Distributed Asynchronous Chain Consensus Algorithm
(DACCA). The mechanism’s goal is to reach in a distributed
fashion an agreement on which network resource will host
the chain, weather such resources are controlled by a single,
or by multiple infrastructure providers. The main idea behind
the chain mapping procedure is to have (federated) hosting
nodes independently run an election process using a private
utility function, that we formally define later in this section.
Such utility is a policy, i.e., a variant aspect of the invari-
ant mapping mechanism. Although our Necklace architecture
supports any utility function, we provide recommendations on
which utility processes running DACCA should use to obtain
bounds on convergence time and guarantees with respect to
the Pareto optimal chain instantiation.

DACCA overview: Consider a chain request by an appli-
cation or a service provider, where each potentially hosting
node belongs to a different infrastructure provider. The ser-
vice provider may send to (a subset of) all hosting nodes a
request for the entire chain, or, if it has preferences, it may split
the request into multiple contiguous subsets. Each potentially
hosting node receiving the request then uses a private function
to decide what is its utility in hosting the chain (subset). After
a first asynchronous voting procedure (in which each host tries
if possible to elect himself as a leader or remains silent), each
voter exchanges its utility values (votes) only with its first-hop
neighbors, for a distributed leader election. An asynchronous
conflict resolution phase is then run to propagate only the high-
est utility on each chain element, also considering the times
at which the votes were generated (as opposed to the receiv-
ing times). In our system implementation each hosting process
runs a standard time synchronization protocol (TSP) set with
a third party unique server. DACCA can simultaneously elect
multiple leaders, maximizing the sum of the utilities (Pareto
optimality) of the hosting nodes. The elected leaders commu-
nicate the mapping to the service provider that, if possible,
releases the next chain request, if any, or the next virtual node
of the service chain.

Before describing DACCA in details, we need few defini-
tions that we will use in the rest of this article:

Definition 1 (Utility Function fi ): Given a chain H to be
instantiated on a hosting network G with a voting procedure
among |VG | hosting nodes, we define utility function of voter
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i, and we denote it with fi ∈ R
|VH |
+ , the utility that hosting

node i assigns to chain node j during the chain mapping phase.
Notation R

|VH |
+ represents a vector of positive real numbers

with size |VH |.
The value assumed by the utility function eventually

becomes a vote. One example of fij is the residual capacity
(stress profile) on the hosting node, that we define as:

fij =

(
Ti − Sij

)

δ +
∑

i∈N Sij
· 1

Ti
(5)

where δ is a small positive constant, 1/Ti is a normalization
constant, Sij represents the stress on the host node i, namely,
the sum of the chain node (CPU) capacity already allocated on
node i, including chain node j; Ti is the desired load on host
node i. A service chain provider may not necessarily want to
balance the load: e.g., it may be desirable to force mapping on
data center nodes where energy is cheaper. Note how, due to
the normalization factor Ti , in this particular case fij ∈ [0, 1].

Definition 2 (Vote Vector vi ): Given a chain H to be
instantiated on a hosting network G with a leader election
process among |VG | hosting nodes, we define as vote vec-

tor vi ∈ R
|VH |
+ , where i ∈ I Δ= {1, . . . , |VG |}, the vector

of current winning votes on chain nodes, i.e., each ele-
ment vij is a positive real number representing the highest
vote known by hosting node i, made so far on chain node

j ∈ J Δ= {1, . . . , |VH |}.
Note that even though vi could contain votes for at most

|VH | virtual nodes, we leave its maximum length as a policy.
Until an agreement on the chain instantiation is reached,

DACCA iterates multiple voting and consensus phases asyn-
chronously, in what we call a round. Hosting nodes act upon
messages received at different time during each consensus
phase, and messages may arrive out of order. In the rest of
our paper, we denote those rounds or iterations with t.

Definition 3 (Eligible Resource Indicator hi ): Given a
chain instantiation of H on a hosting network G with a multi-
election process among |VG | hosting nodes, a private utility
function fij and a vote vij of hosting node i on chain element
j, we define hi(t) = (hij (t) | hij (t) = I(fij (t) > vij (t)) ∀j ∈
VH ), that is, the list of chain elements eligible to receive votes.
I(·) is the indicator function that is unitary if the argument is
true and zero otherwise.

Definition 4 (Assignment Vector ai ): Given a set of
processes VG voting on a set of chain elements VH , we define
the assignment vector ai ∈ V |VH |

G , as the vector containing the
latest information that i ∈ VG has on the current assignment
of all chain elements.

Depending on the level of information that it contains, the
assignment vector ai may assume two different policies —
single or least informative and multiple, or most informative.
In its least informative form, ai is a vector storing the probabil-
ity that process i hosts chain element j. In its most informative
form, ai is the vector of winning voters so far, i.e., each ele-
ment represents the identifier of the hosting process that has
the highest utility so far to host element j.

When ai is in its most informative policy form, the vector
gives to a hosting process i information on which is the winner

Algorithm 1 DACCA for Process i at Iteration t
1: for all k ∈ Ni do
2: voting(ai (t − 1), vi (t − 1), mi (t − 1))
3: send(k, t) ∀k ∈ Ni // vote message for round t
4: receive(k, t) ∀k ∈ Ni

5: agreement(k, t)
6: end for

Algorithm 2 Voting for Process i at Iteration t

1: Input: ai (t − 1), vi (t − 1), mi (t − 1),
2: Output: ai (t), vi (t), mi (t),
3: ai (t) = ai (t − 1)
4: vi (t) = vi (t − 1)
5: mi (t) = mi (t − 1)
6: while (C(mi (t)) < Ti ) do
7: if hi 
= 0 then
8: vote(ai (t), vi (t),mi (t))
9: end if

10: end while

of the leader election, where in its least informative policy,
process i only knows if it is the winner of a resource j or not.
In the evaluation section we show how the assignment vector
policy generates an interesting tradeoff analysis.

Definition 5 (Bundle Vector mi (t)): Given a process i ∈
VG voting on a set of chain elements VH , and a bundle tar-
get size Ti that is, the maximum number of elements that
i is required or willing to host, we define the bundle vector
mi (t) ∈ V Ti

H to be the list of chain element identifiers that
hosting node i is currently voting on during iteration t. We use
C(mi (t))) to denote the cardinality of mi (t), i.e., the number
of chain nodes currently in the bundle mi at iteration t.

Note how both the bundle target size Ti and C(mi(t)) can
be expressed either in terms of total number of virtual nodes,
e.g., C(mi(t)) = |mi(t)| or in terms of sum of their requested
capacity: C(mi(t)) =

∑
j∈mi (t)

Cij (t), where Cij (t) is the
requested capacity of virtual node j to hosting node i at
iteration t.

We are now ready to describe the consensus-based dis-
tributed chain mapping mechanism: each hosting node i ∈ VG
performs a voting phase; then, the vote vector vi and, when
specified by the policy, the allocation vector ai are exchanged
among neighboring nodes for a distributed consensus-based
winner determination (Algorithm 1).

A. Phase 1: DACCA Voting Phase

After the initialization of both vectors ai , vi and mi to the
current iteration t (Algorithm 2, lines 3-5), each potentially
hosting node checks its current available capacity C(mi(t)),
given what it already has in its bundle, to verify if the target
capacity has been reached. Note that this does not mean that
there is room to host another chain node. In fact, hosting node i
may have still residual capacity, but not to host any chain node
in the current round. Assume for example that C(mi (t)) =
Ti − ε, where ε > 0 and that the requested capacity Cj > ε
for every virtual node j still to be mapped. If not, the voting
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Algorithm 3 AgreementPhase of i at Iteration t

1: Input: ai (t), vi (t), mi (t)
2: Output: ai (t), vi (t), mi (t)
3: for all k ∈ Ni do
4: for all j ∈ VH do
5: if IsUpdated(vkj ) then
6: update(ai , vi ,mi )
7: end if
8: end for
9: end for

phase terminates (line 6), otherwise the hosting node verifies
if it can vote higher than some other hosting node. If there is
at least an acquirable chain node (i.e., if hi 
= 0), the function
vote(·) registers a vote for the chain node whose reward is
the highest in the vector vi , updates the assignment vector ai

with itself (node i) as a winner of that virtual node, and finally,
the chain node’s identifier is appended to the bundle vector,
i.e., mi ← mi+j . At the end of this phase, the current winning
vector vi and, when the policy allows it, the assignment vector
ai are exchanged with each neighbor Ni .

Remark: Note that bundle mi is an ordered list where the
order represents the preference of hosting node i. If multiple
chain nodes are allowed to be elected simultaneously, a vote on
the highest rewarding chain node is inserted first in mi , while
subsequent chain nodes are assigned with the new value of
utility recomputed assuming that former entries in the bundle
will be won (elected). If we use the residual capacity as util-
ity (and voting function), this means that hosting nodes are
only allowed to vote using their residual capacity to acquire
subsequent resources. This in turn means that their votes is a
diminishing marginal gain function. A relaxed version of this
diminishing marginal gain property is a key notion that we
use to show bounds on optimality in the next section.

B. Phase 2: DACCA Consensus

In this phase, hosting nodes make use of a max-consensus
strategy to converge to the winning vote vector b̄, and to
compute the allocation vector ā (Algorithm 3).

The standard definition of max-consensus [44], applied to
the chain instantiation problem becomes:

Definition 6 (Max-Consensus): Given a host-
ing network G, an initial vector of hosting nodes
v(0) := (v1(0), . . . , v|VG |(0))T , and the consensus algorithm
for the communication instance t + 1

vi (t + 1) = max
j∈Ni∪{i}

{
vj (t)

}
, ∀i ∈ I, (6)

max-consensus among the hosting nodes is said to be achieved
if ∃ l ∈ N such that ∀t ≥ l and ∀i , i ′ ∈ I,

vi (t) = vi ′(t) = max
{

v1(0), . . . , v|VG |(0)
}

. (7)

The agreement (or consensus) for each hosting node i, for
example on the vector vi received from each hosting node
k in the neighborhood of i, is performed comparing vij with
vkj for all k members of Ni . This evaluation is performed

by the function IsUpdated(·) (line 5). In case the policy
requires consensus only on a single chain node at the time,
i .e., |mi | = 1, the function IsUpdated(·) returns always
true, since when a hosting nodes i receives from k a higher util-
ity for a chain node j (vij < vkj ), the receiver hosting node is
always required to update its vote vector vi (vij ← vkj ). When
instead hosting nodes are allowed to vote on multiple chain
nodes in the same election round —the size of the bundle is
|mi | > 1, even if the received utility for a chain node is higher
than what is currently known, the information received may
not be up to date. In other words, the standard max-consensus
strategy may not work. Each hosting node is in fact required
to evaluate the function IsUpdated that compares the time-
stamps of the received vote and updates the bundle, the utility
and the assignment vector accordingly (Algorithm 3 line 6).
Note that a requirement of the DACCA protocol is to forbid
hosting nodes to vote (for itself) again after it has received
a valid higher utility from another hosting node. Malicious
nodes may abuse of this feature to attack the protocol; we
leave the question on how to secure a correct functionality of
DACCA even in the presence of byzantine failures open and
outside the scope of this work.

Remark: If a hosting node i received a more recent higher
vote for chain node j, deleting node j from its bundle mi is
not enough: all utilities and winners of subsequent nodes in
the bundle (built appending subsequent allocation attempts)
need to be released as they were obtained using an out of date
utility (e.g., the residual capacity was out-of-date).

Note also that our protocol does not violate the FLP impos-
sibility result [45] (no consensus can be guaranteed in an
asynchronous communication system in the presence of any
failures). Our assumption is that our asynchronous consensus
is achieved among the processes that are participating before
a tunable timeout, started after receiving the first vote.

C. Pseudo Sub-Modular Utility Functions

As we will see in Section VI, our DACCA mechanism
guarantees convergence allowing hosting nodes to use their
own utility function as a private policy, as long as the
function appears to be sub-modular to other bidders [46]. Sub-
modularity is a well studied concept in mathematics [47], and
applied to the distributed chain instantiation problem, can be
defined as follows:

Definition 7 (Sub-Modular Function): The marginal utility
function U(j, m) obtained by adding a virtual resource j to an
existing bundle m, is sub-modular if and only if

U
(
j ,m′) ≥ U (j ,m) ∀ m′ | m′ ⊂ m. (8)

This means that if a hosting node uses a sub-modular util-
ity function, a value of a particular virtual resource j cannot
increase because of the presence of other chain nodes in the
bundle.

Why do we need sub-modular functions? Consider two host-
ing nodes PN1 and PN2 trying to instantiate two chain nodes
C1 and C2 using (the same) sub-modular utility function to
vote. In the first voting phase, the bundle m and voting vector
v for PN1 and PN2 are:

mPN1 = (C1,C2), vPN1 = (v , v − ε)
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mPN2 = (C2,C1), vPN2 = (v , v − ε).

After the consensus phase, PN1 releases C2 and PN2
releases C1 as they are outbid and we have a converge to an
assignment. If instead PN1 and PN2 use a non sub-modular
function, after the first voting phase they could end up with
the following bundle and bid vectors:

mPN1 = (C1,C2), vPN1 = (v , v + ε)
mPN2 = (C2,C1), vPN2 = (v , v + ε).

After exchanging their bid vectors, the agreement phase would
require PN1 and PN2 to reset their bundle, and a second voting
phase would bring exactly the same initial case. This cycle
would repeat forever breaking convergence.

Although having sub-modular utility functions may be
realistic in many resource allocation problems [48], in the dis-
tributed chain instantiation problem this assumption may be
too restrictive, as the value of a chain node may increase as
new resources are added to the bundle, e.g., the cost of map-
ping a directed virtual link between two virtual nodes part of
the chain decreases if a hosting node is elected leader on both
virtual source and destination.

For this reason, we use the notion of pseudo sub-modularity,
that is, each hosting node may use any utility function, as long
as the bids communicated to the other bidders appear as if they
were obtained using a sub-modular function.

To guarantee convergence without using a sub-modular util-
ity function, we let each hosting node communicate its vote
on virtual node j obtained from a vote “bending” function:

Bij
(
Uij , vi

)
= min

z∈{1,...,|vi |}
{Biz ,Uij

}
, (9)

where Biz is the value of the bending function for the z th

element of vi . Note how by definition, applying the function
B to the vote before sending it is equivalent to communicating
a bid that is never higher than any previously communicated
bids. In other words, bids appear to other hosting nodes to be
obtained from a sub-modular utility function.

D. Contiguous Virtual Path Mapping Policy

In this section, we discuss the problem of a chain mapping
request that results in logical allocation of middleboxes that are
physically far away. When a chain of virtual network functions
is instantiated in a distributed fashion, hosting nodes located on
hubs, i.e., highly central node, may quickly congest the entire
hosting network. Moreover, if the chain request is mapped
on a path that would include physical nodes not hosting any
virtual node, two problems may arise: (i) the hosting network
will map virtual links onto hosting paths that are unnecessarily
long, with a consequent over-provisioning, additional delays
or energy waste; (ii) perhaps more importantly, in a feder-
ated chain instantiation, virtual link requests may require to
be hosted between non-neighboring hosting nodes belonging
to different providers, expecting intermediate hosts to relay
data traffic. This may be acceptable for some applications or
merely undesirable for others.

Necklace handles this potential problem by supporting vir-
tual path auction policies. Such policy allows processes to

instantiate a chain in a distributed mapping, by avoiding relays,
i.e., attempting to host either contiguous or non-contiguous
virtual paths. By contiguous virtual path we mean that neigh-
boring chain nodes are mapped onto neighboring (or identical)
hosting nodes. This means that each virtual link is allocated
on a single (physical) link, as opposed to being allocated on
any generally longer hosting path. This path restriction obvi-
ously forces additional pruning, but may save infrastructure
providers additional costs, for example, those arising when
we leave the mapping decision to a more classical k-shortest
path. During the voting phase, hosting nodes applying the con-
tiguous virtual path policy are allowed to attempt hosting a
chain node j only if the chain nodes adjacent to j are currently
mapped by the node itself, or by an adjacent hosting node. By
enforcing the contiguous virtual path policy, a chain of length
L > 0 will be mapped onto physical paths of length at most
L, avoiding node relays.

E. Handling Failures

In this subsection we analyze the resiliency rationale behind
Necklace. In particular, we describe how Necklace considers
and handles node and link failures.

Necklace is based on the DACCA mechanism, an
asynchronous max-consensus protocol. Fischer, Lynch and
Paterson showed that it is impossible to achieve asynchronous
consensus within a system with failing processes. (FLP impos-
sibility result [45]). Many practical solutions have been
proposed to cope with the FLP impossibility result: from using
randomized algorithms to failure detectors [44], to name a few;
we employ an engineering approach and merely adopt a time-
out to forcefully terminate the asynchronous max-consensus
even if we have not received the minimum number of mes-
sages to ensure that we have converged to a solution; this is to
avoid having to wait indefinitely for messages that are delayed
by lossy or congested paths. The DACCA timeout could be
estimated using an average of round-trip-time values across
the overlay, similarly to how TCP does [49], or it could be
dynamically set by the SDN controller; in our prototype, how-
ever, we statically set it from a configuration file. In DACCA,
new votes received from first-hop neighbors propagate hop by
hop traversing the entire (virtual) network overlay. When a
resource cannot be outvoted, nodes remain silent. This means
that by merely considering application-level states, DACCA
nodes hence cannot distinguish between silent and unavailable
nodes. This is an advantage, as it means that the mechanism
is resilient to silent (unavailable) nodes.

Note that timing-out in a fully distributed max-consensus
approach, as DACCA does, does not require majority con-
sensus; this is different than Paxos-like protocols [12], [15],
[16] or Raft [14] that need both a leader and a majority of
node participating in the consensus, i.e., they are intolerant to
failures of the majority of nodes.

F. Traffic Forecast to Provision NFV Chain Requests

Real system measurements can be exploited to extract
knowledge about future traffic patterns. These insights can in
turn be utilized to effectively provision the underlying infras-
tructure resources and accommodate all NFV chain requests. A
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responsive and effective network management requires a sharp
decision-making process, especially in dynamic settings. An
accurate estimation of the incoming future traffic is valuable to
provide such responsiveness within dynamic SFC provision-
ing, to optimize node utilization and link capacities. Traffic
volume awareness allows a responsive proactive provisioning
approach. To this aim, the Request Predictor block of our
architecture deals with traffic forecasts. We validated a few
traffic prediction policies over a real dataset of requests [18]
in Section VII.

VI. CONVERGENCE AND PERFORMANCE GUARANTEES

In this section, we show results on the convergence proper-
ties of the DACCA mechanism adopted by Necklace. By con-
vergence we mean that a valid mapping (Section V-B) is found
in a finite number of steps (Definition 6). Moreover, leverag-
ing well-known results on sub-modular functions [47], [50],
we show that under the assumption of pseudo sub-modularity
of the utility function, DACCA guarantees an optimal (1− 1

e )-
approximation, that is, a better approximation does not exist
unless P = NP.

Convergence Analysis: A necessary condition for conver-
gence of the max-consensus is that, to make all hosting nodes
aware of what is the node that has the highest (maximum)
utility on each single chain node, this information needs to
traverse all the physical network, which we assume has diam-
eter D. Our convergence results (Theorem 1) states that, in
the absence of failures, this single hosting network travers-
ing is also sufficient. This claim is inspired by [51, Th. 1],
which deals with a distributed task allocation problem for a
fleet of robots. We relax, however, their Diminishing Marginal
Gain (DMG) property in [51] since in our problem a hosting
node utility does not depend on the order of insertion of chain
nodes in the bundle, while ordering is crucial in the mission
allocation problem in robotic networks.

Theorem 1 (Convergence of synchronous DACCA): Given
a chain of virtual network functions H of length |VH | and a
hosting network with diameter D, the utility function of each
hosting node is pseudo sub-modular, and the communications
occur over reliable channels, then the DACCA mechanism
converges in a number of iterations bounded above by D ·|VH |.

Proof (Sketch): We use Bij (Uij , vi ) as a voting function
(pseudo sub-modular by definition). If a vote is generated
with a pseudo sub-modular function, then it appears to be
DMG and so sub-modular to other processes. From [51], we
know that by induction, a consensus-based auction run by a
fleet of Nu processes, each assigned at most T tasks, so as
to allocate Nt tasks, converges in at most Nmin · D where
Nmin = min{Nt ,Nu · T}. Since for DACCA to converge,
every chain node needs to be assigned, Nmin = Nt ≡ |VH |,
and therefore we have the claim.

As a direct corollary of Proposition 1, we compute a
bound on the number of messages that hosting nodes have
to exchange in order to reach an agreement on a chain instan-
tiation. Because we only need to traverse the hosting network
once for each node, the following result holds:

Corollary 1 (DACCA Communication Overhead): The
number of messages exchanged to reach an agreement with

reliable channels and non-failing hosts using the DACCA
mechanisms is at most D · |SG | · |VH |, where D is the diam-
eter of the hosting network, |SG | is the number of edges in
the hosting network minimum spanning tree, and |VH | is the
length of the chain.

Performance Guarantees: The following results holds:
Theorem 2 (Asynchronous DACCA Approximation): The

DACCA consensus algorithm yields an (1− 1
e )-approximation

(circa 0.63) with respect to the optimal chain assignment.
Proof: The DACCA asynchronous consensus algorithm

assumes that each hosting node i does not vote on a chain
node j unless it brings a positive utility, therefore Uij and so
Bij are positive. Moreover, if we append to the vector vi an
additional set of chain nodes v resulting in vector v′i , we have:

Bij
(
Uij , v

′
i

) ≤ Bij
(
Uij , vi

) ∀ v 
= ∅ (10)

which means that Bij is monotonically non-increasing.
Since the sum of the utilities of each hosting node, and

since the bending function Bij (Uij , vi ) of DACCA is a pos-
itive, monotone (non-increasing) and sub-modular function,
Nemhauser et al. [47, Th. 1] on sub-modular functions holds.
Therefore the claim holds.

Moreover, the following approximation bound holds:
Theorem 3 (Approximation Bound): The DACCA approxi-

mation bound of (1− 1
e ) is optimal, unless P = NP.

Proof: To show that the optimal chain instantiation can-
not be approximated in polynomial time within a ratio
of (1− 1

e − ε) ∀ ε > 0, we use a recent result by
Feige [50]. The result shows that it is NP-hard to achieve
a (1− 1

e + ε)-approximation ∀ε > 0 for the maximum k-
coverage problem [52]. Given m subsets V1, . . . ,Vm of V and
k processes with different weight functions Ui : V → R+, the
maximum k-coverage is the problem of allocating each set Vj

to some process i, in order to maximize
∑k

i=1 Ui (
⋃

j∈Si
Vj ),

where Si are the indices of sets allocated to hosting node i. We
reduce the DACCA assignment problem from the maximum
k-coverage problem by considering V1, . . . ,Vm to be subsets
of bundles that any k hosting node wins according to their
voting function. Note that all final assigned bundles are nec-
essarily disjoint by definition of consensus, i.e., there cannot
be two hosting nodes for each node of the chain. The maxi-
mum k-coverage is a special case of the maximum coverage
problem for monotone sub-modular functions, a problem for
which the approximation bound for the greedy heuristic was
proven [47]. As the DACCA consensus strategy is a greedy
heuristic that maximizes a monotone sub-modular function,
the max-consensus greedy heuristic is the best approximation
algorithm for the node mapping phase that we can possibly
hope for, unless P = NP.

VII. TRAFFIC PREDICTION ANALYSIS

In this section, we evaluate the performance of the predictor
used in our implementation, a specific module of our archi-
tecture. Since our system uses this predictor as a policy, we
separate the evaluation of this component from the evaluation
of the entire system (Section VIII).

We used a dataset composed of real traffic requests to the
Facebook datacenter to assess the forecasting capabilities of
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Fig. 3. (abc) Prototype. (d) Simulations. (a) Hosting single chain nodes helps balancing the load and hence accepting more chain. (b) Similar results were
obtained at a larger scale in simulations. (c) Single allocation helps faster response time. (d) Host utilization tradeoffs across different hosting network sizes.

several learning algorithms. This forecast is an input to our
DACCA algorithm that runs chain allocation request prior to
their potential arrival and pre-launches real physical instances,
when needed.

Facebook dataset description: We used the data collected
from the Facebook datacenter located in Altoona to predict
traffic size and hence requests. The dataset contains traffic
from three separate clusters that refer to requests to Database
(cluster A), Web servers (cluster B), and Hadoop (cluster C).

Learning models: We tested seven forecast models apply-
ing a standard 70% train, 30% test ratio. All tested mod-
els and their acronyms are denoted as follows: Random
Forest (RF), Linear Regressor (LR), Ridge Regressor (RR),
Multi-layer Perceptron (MLP), Decision Tree (DT), Support
Vector Regression (SVR) and Long Short-Term Memory
(LSTM)-neural network. In Figure 4, we report the Root Mean
Square Error (RMSE) obtained by the seven algorithms with
a 1-step ahead prediction model. Note that signals’ range is
in [0, 1]: feature scaling is commonly applied to avoid issues
during model training.

We observe that the normalized RMSE of all but LSTM is
less than 0.1 showing that the maximum forecasting error is
10% of the real values. In Figure 5, we show the predicted
and real values of the average packet length over the next
minute, for a period of 300-minutes. Due to their similarities,
we only show the three representative (and best performing)
prediction algorithms: multilayer perceptron, support vector
regressor, and linear regressor for cluster B.

VIII. EVALUATION

To test our proposed distributed chain instantiation pro-
tocol we developed our own event-driven simulator and we
implemented a prototype of Necklace. We also assessed the
deployment time of service chains on a real-hardware testbed
using the OpenSource MANO (OSM) orchestrator.

Hosting Network Model: With the BRITE topology genera-
tor [53], we obtain a topology that we use as hosting processes.
We use the top-down generation model of BRITE which is
based on two phases. In the first phase, an Autonomous-
System (AS) topology is generated using the Barabasi-Albert
model with incremental growth type and preferential connec-
tivity. In the second phase, a node level topology is generated
for each AS, where hosting nodes are placed randomly on the
2D-plane and connected using the Waxman model. The sizes

Fig. 4. Forecasting capability (quantitative): it is reported the RMSE of the
predictions for all the 7 models tested (1-step ahead predictions).

Fig. 5. Forecasting capability (qualitative): predictions of the average packet
length obtained using MLP, SVR, and LR over a period of 300 minutes.

of our chains (virtual network with a linear topology) were
obtained sampling from a uniform distribution with an aver-
age of 50 nodes. The physical network, synthetically generated
with BRITE has 500 nodes.

We compared three policies of our DACCA’s mechanism:
(i) single if a single chain node is allowed to be mapped at
a time (i.e., |mi | = 1), (ii) multiple when multiple chain
nodes are allowed to be mapped simultaneously, i.e., |mi | > 1
(even if we have to create Generic Routing Encapsulation
(GRE) tunnels among elected leaders), and (iii) contiguous,
when relays are forbidden (see Section V-D). Unless other-
wise stated, we used a k-shortest path with k = 2 to map
virtual endpoints.

Chain Model: Although a chain request may have several
constraints, we focus our evaluation solely on CPU and band-
width constraints. We synthetically generate requests for chain
instantiations sampling uniform distributions ranging between
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1 and 20 for the number of virtual CPU units, and between
1 and 50 Mbps for the requested bandwidth, respectively. We
ensure that each chain node is able to support at least the
capacity of its adjacent virtual links, and we impose ratios
between chain-host node and link capacity of 200 and 500,
respectively.

Evaluation metrics: Our evaluation results quantify the ben-
efits of our approach across two metrics: mapping efficiency
and time required to find a solution, and across two plat-
forms: a simulator and our Necklace prototype tested over
Mininet [17]. In particular, the time to find a solution is evalu-
ated through the response time, namely, the number of one-hop
communications that the DACCA protocol needs to realize a
chain can or cannot be instantiated (since we found bounds on
convergence time). Efficiency is instead evaluated through the
chain allocation ratio within our prototype, namely, the ratio
between the number of chains requested and those successfully
instantiated, and with resource utilization in our simulations,
namely, the hosting node capacity utilized in the mapping.

Evaluation Results: We attempt to map 100 chains with
increasing lengths over a testbed of 50 (mininet) hosting
nodes running a Necklace prototype (Figure 3a-c). We then
repeat the same experiments with a simulated (more scal-
able) version of DACCA and evaluate the physical (hosting)
network utilization. We present our results by summarizing
the key observations. Moreover, results are shown with a 95%
confidence interval.

Physical testbed deployment over OpenSource MANO
(OSM): Our testbed implemented on real-hardware is man-
aged by the OpenSource MANO (OSM) orchestrator (Release
7). The orchestrator controls three OpenStack clusters (Stein
Release), each including two compute nodes, for a total of six
individually-addressable nodes onto which the chain can be
mapped. Although from the algorithm’s point of view this is
a much smaller scenario than the one emulated with mininet,
it is still scaled down within a single order of magnitude with
respect to the emulated testbed (50 mininet nodes vs. 6 hard-
ware nodes). Moreover, the physical testbed is composed of
full-fledged servers, making their performance comparable to
the one that would be achieved in a production environment.

We defined a format for the exchange of information
between the allocation algorithm and the hardware orchestra-
tor, using the JSON formalism:

{ "sfc-id": "id_value",
"vnfs": [

{
"type": "type_value",
"node": "node_value"

}, ...]
}

where: sfc-id is a unique identifier associated with the spe-
cific chain, in the form of a text string id_value; vnfs is
the ordered list of service functions forming the chain; each
service function is described by fields type and node, with
type_value and node_value being strings identifying a
predefined Virtual Network Function Descriptor in the orches-
trator, and the physical node the service function has been
mapped onto, respectively.

(1) Multiple virtual resources allocated on the same hosting
node lead to smaller chain allocation ratios. This is because
central hosting paths become quickly congested, leaving no
room for future chain requests (Figures 3a and 3b).

(2) Allowing multiple chain nodes to be mapped onto
the same hosting node leads to a slower convergence time.
Although we showed that the worst case convergence bound
is the same, our results show that practically there is a dif-
ference. This can be understood in an extreme case where a
single chain node cannot be allocated, hence the entire chain
request is rejected, without trying to elect a leader to host other
elements of the chain (Figure 3c). The contiguous path instan-
tiation policy has the same response time as the multi-node
mapping policy. This is because the response time does not
depend on the constraints on the links, but merely on the num-
ber of nodes (see how the curve in Figure 3c related to multiple
votes overlaps with the contiguous path).

(3) Instantiating contiguous virtual paths may increase the
chain acceptance rate when multiple chain nodes are allowed
to be hosted on the same host. This result is surprising and
counterintuitive. We were expecting that by adding the con-
tiguous additional constraint, on average, instantiating multiple
chains on the same distributed multi-provider infrastructure
would prune solutions. Our evaluation results instead revealed
that, when multiple chain nodes are allowed to be hosted by
the same hosting node, it is better (in terms of allocation ratio)
if virtual paths are allocated on contiguous (physical) paths,
avoiding long path stretches. This is because, intuitively, a pair
of hosting nodes that are distant in terms of number of hops
but both with higher similar residual capacity may end up
winning alternatively multiple chain nodes, forcing multiple
longer hosting paths (Figure 3ab). Figure 3b shows that the
main responsibility for non allocating chains is due to a lower
link mapping, i.e., node utilities that do not take into account
full paths may lead to suboptimal chain allocations. This in
turn suggests that further exploration of distributed constraint
path vectors is needed to instantiate a chain, and that node
agreement strategies alone are insufficient to guarantee optimal
chain instantiations.

(4) With Necklace, providers can tune load profiles by bal-
ancing the load or packing hosts. Allowing a single chain node
per host balances the overall host network load and lowers uti-
lization. These results were confirmed across different hosting
network sizes (Figure 3d). On the contrary, allowing multiple
chain nodes on the same host packs resources and has a “bin
packing” effect, potentially reducing energy costs by leaving
unused hosting machines idle. The load packing effect is par-
tially mitigated when we increase the virtual link mapping
policy k, allowing virtual link splitting across up to k = 4
hosting paths when available. Our experiments show that (in
BRITE generated topologies) there very rarely no more than
4 disjoint paths available.

(5) Necklace outperforms the (decentralized) Raft consensus
protocol in terms of overhead, with or without failures. As we
show in Figure 6a , Raft has a higher overhead with respect to
DACCA, as we increase the number of processes that need to
reach an asynchronous consensus. Note that DACCA inherits
the properties of the max-consensus and so converges with the
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Fig. 6. (a) Overhead of our DACCA consensus protocol compared to Raft: DACCA’s overhead is lower, especially as the number of hosting nodes that need
to reach consensus grows. (b) Raft overhead dissected by phase: DACCA does not have to commit logs and does not have to elect a leader. (c) OpenSource
MANO (OSM) deployment time as a function of chain length and number of hosting nodes.

minimum possible number of messages, but more importantly,
when a leader fails in Raft (as well as in similar consensus
protocols such as Paxos [12] or its improvements), processes
have to re-elect a new leader. Instead, our fully distributed
consensus-based auction does not need a leader and so it
has less overhead in case any of the processes fails. Raft (or
Paxos) were not designed to deal with resilient network func-
tion orchestration and Necklace could work even replacing
DACCA with Raft; by doing so, however, also the performance
guarantees would be lost. Finally, Raft was not designed to be
partition tolerant, while DACCA can still instantiate a chain
as long as the majority of hosting nodes agree on a maximum
objective vote set. Figure 6b shows that the overall overhead
of Raft increases with an increasing number of hosting nodes
that need to reach the consensus. In this plot we dissect the
overhead of Raft: note that DACCA does not have to commit
logs and thus does not have to elect a leader, hence it has a
lower overhead. In summary, being a leader-based decentral-
ized protocol and not a fully distributed one, Raft has higher
overhead compared to DACCA because not only the maxi-
mum vote needs to propagate, but also the entire log needs to
be pushed from the leader to all the followers.

(6) A larger number of hosting nodes ensures a faster
deployment. In our physical experimental testbed using OSM,
we injected a progressively larger number of chain deploy-
ment requests, allowing service functions to be mapped onto
one, then three, then all six physical nodes. For each case, we
submitted requests for twenty different values of chain length,
ranging from 1 to 20. We measured the deployment time of
each chain, then removed the chain before running the next
experiment, so as to obtain independent measurements. We
performed 30 measurements per chain length, and plotted the
average deployment time with confidence intervals. Each mea-
surement campaign took anywhere between 8 and 14 hours.
As Figure 6c shows, having more hosting nodes results in a
better chain resource management, as service functions can
be allocated on more nodes thus balancing loads, therefore
resulting in a shorter chain deployment time. While this is
an expected result, it demonstrates that the proof-of-concept
implementation with OSM is functional, and hence Necklace
can be used to deploy service chains on real systems within
reasonable time scales (tens of seconds).

IX. CONCLUSION

In this article we proposed Necklace, an architecture for
service function chain instantiation with programmable poli-
cies. Through this architecture, we modeled the separation and
interaction of functionalities of the service function chains
instantiation problem via a stochastic optimization model,
and then used such model to design our Necklace system.
DACCA, the core mechanisms of Necklace, is a decentralized
max-consensus protocol that allows providers to coopera-
tively instantiate wide-area service function chains. Hosting
processes running DACCA have guarantees on convergence
and on performance bounds with respect to a Pareto optimal
instantiation, even in the presence of (non-byzantine) failures.
Our Necklace’s performance evaluation showed a few surpris-
ing results, among which the higher acceptance rate when the
chain request is released for instantiation sequentially, i.e.,
each hosting process must allocate a single chain node at a
time. Our Necklace prototype can be used by the commu-
nity interested in providers mechanism design or in tradeoff
analysis. Our work leaves several open questions, e.g., how to
design a path vector protocol with the same allocation guar-
antees, while being fully distributed (not decentralized) and
resilient to byzantine failures as well.
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