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Abstract

Cross-lingual language tasks typically require
a substantial amount of annotated data or par-
allel translation data. We explore whether
language representations that capture relation-
ships among languages can be learned and
subsequently leveraged in cross-lingual tasks
without the use of parallel data. We gener-
ate dense embeddings for 29 languages using
a denoising autoencoder, and evaluate the em-
beddings using the World Atlas of Language
Structures (WALS) and two extrinsic tasks in
a zero-shot setting: cross-lingual dependency
parsing and cross-lingual natural language in-
ference1.

1 Introduction

Recent efforts to leverage multilingual datasets in
language modeling (Conneau and Lample, 2019;
Devlin et al., 2019) and machine translation (John-
son et al., 2017; Lu et al., 2018) highlight the po-
tential of multilingual models that can perform
well across various languages, including ones for
which training sets are scarce. Most of the current
multilingual research focuses on learning invariant
representations or removing language-specific fea-
tures after training (Libovický et al., 2020; Bjerva
and Augenstein, 2021). Despite recent advances,
there are still limitations. Previous work has shown
that similar languages can benefit from sharing pa-
rameters, but less similar languages do not help
(Zoph et al., 2016; Pires et al., 2019). However,
in spite of some interests in typology (Ponti et al.,
2019), identifying similar languages is nontrivial,
especially for less studied ones. In addition, as
Zhao et al. (2019) suggest, learning invariant rep-
resentations can actually harm model performance.

∗Equal contribution.
1Our learned language embeddings and code avail-

able at https://github.com/DianDYu/language_
embeddings

Therefore, in order to leverage language agnostic
and language specific information effectively, we
propose to generate language representations and
examine the interactions among different language
representations.

One way to represent language identity within
a multilingual model is the use of language codes,
or dense vectors representing language embed-
dings. If languages are represented with vectors
that capture cross-lingual similarities and differ-
ences across different dimensions, this information
can guide a multilingual model regarding what and
how much of the information in the model should
be shared among specific languages. Much of the
previous research focused on generating language
embeddings using prior knowledge such as word or-
der (Ammar et al., 2016; Littell et al., 2017), using
a parallel corpus (Bjerva et al., 2019b; Östling and
Tiedemann, 2017), and using language codes as an
indicator to distinguish input and output words in a
shared vocabulary into different languages (John-
son et al., 2017; Conneau and Lample, 2019). In
contrast, our work focuses on generating and us-
ing language embeddings more effectively as soft-
sharing (de Lhoneux et al., 2018) of parameters
among various languages in a single model. Fur-
thermore, we are motivated by a more difficult set-
ting where the properties of each language are not
known in advance, and no parallel data is available.

We investigate whether we can generate lan-
guage embeddings to represent typological infor-
mation derived solely from corpora in each lan-
guage without the use of any parallel text, trans-
lation models, or prior knowledge. Inspired by
the findings that structural similarity, especially
word ordering, is crucial in large pretrained multi-
lingual language models (K et al., 2020), we pro-
pose an unsupervised method leveraging denois-
ing autoencoders (Vincent et al., 2008) to gener-
ate language embeddings. We show that our ap-
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proach captures typological information by com-
paring the information in our language embeddings
to language-specific information in the World At-
las of Language Structures (WALS, Dryer and
Haspelmath, 2013). In addition, to address the
question of whether the learned language embed-
dings can help in downstream language tasks, we
plug-in the language embeddings to cross-lingual
dependency parsing and natural language inference
(XNLI, Conneau et al., 2018) in a zero-shot learn-
ing setting, obtaining performance improvements.

2 Related Work

Previous related research approached language rep-
resentations by using prior knowledge, dense lan-
guage embeddings with multilingual parallel data,
or no prior knowledge about languages but hav-
ing language embeddings primarily as a signal to
identify different languages.

2.1 Feature-based language representations

An intuitive method to represent language informa-
tion is through explicit information such as known
word order patterns (Ammar et al., 2016; Little,
2017), part-of-speech tag sequences (Wang and
Eisner, 2017), and syntactic dependencies (Östling,
2015). Littell et al. (2017) propose sparse vec-
tors using pre-defined language features such as
known typological and geographical information
for a given language. However, linguistic features
may not be available for less studied languages.
Our proposed approach assumes no prior knowl-
edge about each language, deriving typological in-
formation from plain text alone. Once a vector for
a target language is created, it contains many typo-
logical features of the target language, and can be
used for transfer learning in downstream tasks.

2.2 Dense representation with parallel data

Other previous work has also explored dense con-
tinuous representations of languages. One method
is to append a language token to the beginning of
a source sentence and train the language embed-
dings with a many-to-one neural machine trans-
lation model (Malaviya et al., 2017; Tan et al.,
2019). Another method is to concatenate language
embedding vectors to a character level language
model (Östling and Tiedemann, 2017; Bjerva and
Augenstein, 2018; Bjerva et al., 2019a). These
two methods require parallel translation data such
as Bible and TED Talk. Rabinovich et al. (2017)

derive typological information in the form of phylo-
genetic trees from translation of different languages
into English and French using the European Par-
liament speech corpus (Koehn, 2005), based on
the assumption that unique language properties are
present in translations (Baker et al., 1993; Toury,
1995). Bjerva et al. (2019b) abstract the translated
sentences from other languages to English with
part-of-speech tags, function words, dependency
relation tags, and constituent tags, and train the
embedding vectors by concatenating a language
representation with a symbol representation. In
comparison, we generate our language embeddings
using no parallel corpora or linguistic annotation,
which is suitable for a wider variety of languages,
including in situations where no parallel data or
prior knowledge is available.

2.3 Language vectors without parallel data

The approach that is closest to ours is XLM (Con-
neau and Lample, 2019), which adds language
embeddings to each byte pair embedding using
Wikipedia data in various languages with a masked
language modeling objective. However, similar
to Johnson et al. (2017), the trained language em-
beddings only serve as an indicator to the encoder
and decoder to identify input and output words in
the vocabulary as belonging to different languages.
In fact, in a follow up paper, XLM-R (Conneau
et al., 2020), language embeddings are removed
from the model for better code-switching, which
suggests that the learned language embeddings may
not be optimal for cross-lingual tasks. In this paper,
following the finding that structural similarity is
critical in multilingual language models (K et al.,
2020), we generate language embeddings from a
denoising autoencoder objective and demonstrate
that they can be effectively used in cross-lingual
zero-shot learning.

3 Generating Language Embeddings

We first present the data used to generate language
embeddings, then introduce our approach inspired
by denoising autoencoders (Vincent et al., 2008).

3.1 Data and preprocessing

To train our multilingual model, we use the Com-
monCrawl dataset from the CoNLL 2017 shared
task (Ginter et al., 2017) to obtain monolingual
plain text in various languages. To represent words
across different languages in a shared space, we
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use the unsupervised pretrained aligned word em-
beddings from MUSE (Lample et al., 2018). We
choose the 29 languages from the CoNLL 2017
monolingual text dataset for which MUSE pre-
trained embeddings are available.2 A subset of
200K sentences are selected randomly for each
language. The languages we use are: English,
French, Romanian, Arabic, German, Russian, Bul-
garian, Greek, Slovak, Catalan, Hebrew, Slovene,
Croatian, Hungarian, Spanish, Czech, Indonesian,
Swedish, Danish, Italian, Turkish, Dutch, Norwe-
gian Bokmål, Ukrainian, Estonian, Polish, Viet-
namese, Finnish, and Portuguese, which cover ten
language genera.

We experiment with two types of word repre-
sentations in training language embeddings. The
most straightforward way is to use the pretrained
MUSE embedding for each specific language (we
refer to this setting as Spe.). We also experimented
with mapping word embeddings from different lan-
guages into one language (English in our experi-
ments because it is used as the pivot language in
MUSE embeddings, Eng.) for three reasons. First,
because MUSE is mainly trained by an orthogonal
rotation matrix and the distances among words in
each language are still maintained thereafter, lan-
guage identities can potentially be revealed. The re-
sult is that the learned language embeddings reflect
the features incorporated in the unsupervised word
mapping methods instead of the intrinsic language
features. Second, we hypothesize that mapping to
a single language space requires the model to en-
code more information in language embeddings as
their language identities instead of relying on their
revealed ones. Finally, using shared word embed-
dings can reduce the vocabulary size for memory
concerns by effectively reducing both the lookup
table size and the output softmax dimension size.

For Eng. word embedding mapping, we align
words from different languages to English embed-
dings using cross-domain similarity local scaling
(CSLS, Lample et al., 2018). The vocabulary of
our model is restricted to the words in the English
MUSE embeddings, and all unknown words are
replaced with a special unknown token. Although
imperfect mapping from each language to English
tokens may introduce noise (see scores in Appendix
D) and result in a coarse approximation of the orig-
inal sentences, crucial syntactic and semantic infor-

2https://github.com/facebookresearch/

MUSE

mation should still be present.
In our experiments, a language code is appended

to each token according to the original language of
the sentence. For instance, the German sentence
“Er hat den roten Hund nicht gesehen" would be
represented in our Spe. condition as

Er_de hat_de den_de roten_de Hund_de nicht_de gesehen_de

and in the Eng. condition as

he_de has_de the_de red_de dog_de not_de seen_de

Intuitively, the idea is to have the words themselves
be the same across languages (either through the
aligned MUSE embeddings or by direct mapping
to English words), and let the additional language
code provide to the model the information that
would explain the structural differences observed
across languages in the training data.

3.2 Denoising autoencoder

Given a multilingual plain text corpus with sen-
tences in each language (and no parallel text), we
first perturb each sentence to create a noisy ver-
sion of the sentence where its words are randomly
shuffled. The training objective is to recover the
original sentences, which requires the model to
learn how to order words in each language. We hy-
pothesize that compared to language modeling, this
will encourage the language embeddings to learn
more structural information instead of relying on
topics or word co-occurrence to generate meaning-
ful training sentences. We implement our multilin-
gual denoising autoencoder with an LSTM-based
(Hochreiter and Schmidhuber, 1997) sequence-to-
sequence model (Sutskever et al., 2014). The in-
put strings are perturbed sentences and the output
strings are the original sentences. See Appendix
A.1 for implementation details.

After preprocessing the data, we concatenate a
language embedding vector initialized from normal
distribution as a language identity feature (the lan-
guage code mentioned in Section 3.1) to each of
the pretrained word embeddings. Since certain lan-
guages are more similar to, or more different from,
each other, the model will learn how to reorder a
sequence of words depending on the specific lan-
guage. For example, reordering an Italian sentence
should be more similar to reordering a Spanish sen-
tence than it is to reordering a German sentence.
Because the decoder captures the actual word order
of the sentences in each target language, whereas
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the language codes in the encoder are meant to
capture only language identity and no word order
information, we use the extracted language em-
beddings from the decoder in our experiments.3

Each word is represented with a pretrained 300-
dimensional vector, and each language embedding
is represented with a 50-dimensional vector4. The
input token is thus a 350-dimensional vector from
the concatenation.

4 Experiments

To examine the quality of the typological infor-
mation captured by the language embeddings, we
perform intrinsic and extrinsic evaluations. Our
intrinsic evaluation consists of predicting linguistic
typology and language features from the World
Atlas of Language Structures (WALS, Dryer and
Haspelmath, 2013). Our extrinsic evaluations are
based on cross-lingual dependency parsing and
cross-lingual natural language inference (XNLI,
Conneau et al., 2018) in a zero-shot learning
setting, where a trained model makes predictions
on a language not seen during training, but for
which a language embedding has been learned
from plain monolingual text. In contrast with
previous research which applies learned typology
to cluster similar languages and train machine
translation tasks in clusters (Tan et al., 2019), we
explore if we can apply the learned embeddings
directly into downstream tasks. We compare three
different sets of embeddings based on our approach
with three sets of embeddings from previous work:

Spe. lang_emb represents language embed-
dings from our proposed denoising autoencoder
trained with language specific MUSE embeddings,
using CommonCrawl text.

Eng. lang_emb represents language embed-
dings trained with English MUSE embeddings
after mapping words from different languages to
English, using CommonCrawl text.

Wiki lang_emb represents language embed-
dings trained with English MUSE embeddings
using Wikipedia. We use the same data selection
and preprocessing process as detailed in Section
3.1. We use these embeddings to show the

3To confirm our assumption about the embeddings for the
language codes in the encoder and the decoder, we also per-
formed experiments using the encoder language embeddings.
As expected, the results obtained with embeddings from the
encoder were inferior in every case tested.

4We experimented with different dimensions for language
embedding and did not observe performance difference.

impact of training data. In addition, we use these
embeddings to compare with XLM embeddings
trained with Wikipedia.

Malaviya represents language embeddings from
Malaviya et al. (2017), trained with a many-to-one
machine translation model using Bible parallel
data. It has 26 languages in common with our 29
languages except English, Hebrew, and Norwegian.
We use these embeddings to represent previous
methods of learning language representations from
parallel data.5

XLM mono represents language embeddings
trained with XLM model using the same monolin-
gual data as Wiki lang_emb on 29 languages.

XLM parallel represents language embeddings
trained with XLM using monolingual and parallel
data from 15 XNLI languages. We extract the
embeddings from the publicly available model.

4.1 Linguistic typology prediction

We first inspect the language embeddings qualita-
tively through principle component analysis (PCA)
visualization. We also use spectral clustering to
recover the language genus (language family sub-
group) information from the embeddings. To com-
pare the quality of the clusterings quantitatively,
we calculate the adjusted Rand index (Hubert and
Arabie, 1985) between the generated clusters and
the actual language genera.

4.2 WALS feature prediction

We evaluate the language embeddings on predict-
ing language features in WALS. Each WALS fea-
ture describes a characteristic of languages, such as
the order of subject, object, and verb. We consider
the features for which information is available for
more than 50% of the languages we use and cast
each feature prediction as a multi-class classifica-
tion task. We then classify the features into the
following categories (see details in Appendix B).

• Lexicon: usage of specific words, e.g.
whether the language has separate words for
“hand” and “arm”, etc.;

• Syntax: mostly related to the relative orders
between various types of constituents, includ-
ing order of subject, object and verb, adpo-

5We do not evaluate the embeddings from Malaviya et al.
(2017) on parsing and XNLI because they do not include En-
glish embeddings, which are necessary for a direct comparison.
In XNLI, in particular, there is only training data for English.
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sitions and noun phrases, and also features
related to syntactic constructions;

• Partially Morphological (Part. Morph.):
features that mainly concern syntax or seman-
tics but either usually relate to morphology
(such as inflectional morphemes), or have mor-
phological information coded in the values of
the features, e.g. gender systems, order of
negative morphemes and verbs;

• Non-learnable: features that mainly concern
morphology, phonology, or phonotactics, and
are not learnable from reordering plain text.

The categories make it easier to evaluate what
the language embeddings capture. We train linear
classifiers to predict WALS results. For each fea-
ture, we hold out one language and train a classifier
on the language embeddings of the rest of the lan-
guages to predict the corresponding feature values
on the held-out language embedding, in a leave-
one-out cross-validation scheme. We then average
the accuracy of the features within each category
to report the results. In addition to comparing dif-
ferent language embeddings, we also compare to
two baselines: a Random baseline, and a Majority

baseline (which predicts the most common value
for each feature). We repeat this procedure 100

times while randomly permuting the orders of the
input vectors to the classifiers to eliminate possible
effects due to initial states and report the average
and significant scores.

Compared to a recent shared task where the
input is some features of a language (e.g. lan-
guage family and various WALS features), with
optionally pre-computed language embeddings to
develop models to predict other features (Bjerva
et al., 2020), we investigate if trained language
embeddings alone can be used to predict WALS
features. In addition, we showed that our language
embeddings outperformed a frequency baseline
among other baselines (see Section 5.2) compared
to Bjerva et al. (2020).

4.3 Cross-lingual dependency parsing

Since our language embeddings are trained using
a word ordering task, we hypothesize that they
capture syntactic information. To verify that mean-
ingful syntactic information is captured in the lan-
guage embeddings, we use a dependency parsing
task where sentences for each target language are
parsed with a model trained with treebanks from

other languages, but no training data for the target
language. This can be seen as a form of cross-
lingual parsing or zero-shot parsing, where multi-
ple source languages are used to train a model for
a new target language. Without annotated training
data for parsing a target language, the model is ex-
pected to leverage treebanks from other languages
through language embeddings.

We use 16 languages from Universal Dependen-
cies v2.6 (Zeman et al., 2020), representing five
distinct language genera (Table 2). We modified Yu
Zhang’s implementation6 of biaffine dependency
parser (Dozat and Manning, 2017). In specific,
we freeze word embeddings, concatenate a 50-
dimensional embedding (either the corresponding
Eng. language embedding or a random embedding)
to the embedding of each token, and not use part-
of-speech information (since we are assuming no
annotated data is available for the target language).
The goal of this evaluation is not to obtain state-
of-the-art attachment scores, but to find whether
a model that uses our language embeddings pro-
duces higher attachment scores than a model that
instead uses random embeddings of the same size7.
While our embeddings should capture syntactic ty-
pology, random embeddings would simply indicate
to the model the language for each sentence with
no information about how languages are related.

4.4 XNLI

Natural language inference (NLI) is a language un-
derstanding task where the goal is to predict textual
entailment between a premise and a hypothesis as
a three-way classification: neutral, contradiction,
and entailment. The XNLI dataset (Conneau et al.,
2018) translates English NLI validation and test
data into 14 other languages. We evaluate on ten
of the XNLI languages which we trained language
embeddings with.

State-of-the-art models on XNLI are Transform-
ers (Vaswani et al., 2017) pretrained on large cor-
pora (Hu et al., 2020). To evaluate if our learned
language embeddings (from an LSTM model) can
be plugged off-the-shelf into other architectures
such as Transformer, we compare with two strong
Transformer-based baselines, XLM (Conneau and
Lample, 2019. L = 12, H = 1024, 250M params)

6https://github.com/yzhangcs/parser
7Random embeddings are used to eliminate the effect of

different dimensionality. In our preliminary experiments, we
found that adding a random embedding performs better than
not adding any embedding.
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tion of the learned language embeddings. Due to
space limitations, we only show the projection of
the language embeddings using words mapped to
English embeddings; using language-specific em-
beddings produces similar results. We can clearly
see the clustering of Slavic languages on the lower
left, Romance on the right, and Germanic on the
upper left. Our dataset also contains two Finnic
languages, which appear right above the Slavic
languages, and two Semitic languages, which ap-
pear on the lower right. The other languages, Viet-
namese, Indonesian, Turkish, and Greek, are from
language groups underrepresented in our dataset,
and appear either mixed with the Germanic lan-
guages (in the case of Hungarian, Turkish and
Greek), or far on the lower right corner (Viet-
namese, Indonesian). Romanian, a Romance lan-
guage, appears miscategorized by our language
embeddings. While it is close to the cluster of ro-
mance languages, it appears closer to the singleton
languages in the dataset and to the two Semitic
languages.

In addition to actual language relationships rep-
resented by color, we also present the result of
spectral clustering with four categories through dif-
ferent shapes. Results illustrate that our language
embeddings can capture similarities and dissimi-
larities among language families. In comparison,
language embeddings generated by Malaviya et al.
(2017) do not capture clearly visible language rela-
tionships (see Appendix C.3). Quantitatively, clus-
ters from our learned language embeddings (Eng.)
achieve a much higher Rand score (0.58) compared
to previous language embeddings, as shown in Ta-
ble 1 (last column). This indicates that our clusters
closely align with true language families.

5.2 WALS predictions

Table 1 shows the prediction accuracy for WALS
features, averaged within each category. Unlike the
language representations generated by Bjerva et al.
(2019b), which do not outperform the majority
baseline without finetuning, our derived language
embeddings perform significantly better than the
baselines and previous methods in lexicon, syntax,
and partially morphological categories. Note that
even though the training objective of the denois-
ing autoencoder is to recover a language-specific
word order, the model does not use linguistic fea-
tures such as grammatical relation labels or subject-
verb-object order information. Instead, it derives

typological information from text alone through the
word reordering task. The language embeddings
generated with words mapped to English embed-
dings (Wiki and Eng.) generally produce more
accurate predictions, with the models trained from
Wikipedia producing slightly better results likely
due to cleaner training data. We show WALS re-
sults comparison on 29 languages and comparison
to XLM parallel in Appendix C.1. Results from
different settings show that we do not need clean
data (e.g. Wiki) to generate language embeddings.

Language Baseline Language Emb.

Finnic

Estonian 56.19 61.68 (+5.49)

Finnish 59.59 62.91 (+3.32)

Germanic

Danish 63.31 69.62 (+6.31)

English 74.51 74.08 (-0.43)

German 64.36 65.67 (+1.31)

Norwegian 77.19 78.20 (+1.01)

Slovene 67.92 67.91 (-0.01)

Romance

Catalan 72.41 80.76 (+8.35)

French 68.75 79.37 (+10.62)

Spanish 74.42 81.74 (+7.32)

Portuguese 71.11 79.57 (+8.46)

Semitic

Arabic 48.44 52.51 (+4.07)

Hebrew 41.87 33.66 (-8.21)

Slavic

Bulgarian 62.91 67.00 (+1.09)

Czech 65.62 66.98 (+1.36)

Russian 62.10 66.45 (+4.35)

Average 64.61 68.01 (+3.40)

Table 2: Zero-shot parsing results (UAS), where each
of 16 languages are parsed using annotated language
from the other 15 languages. In the Language Emb.

column, results were obtained by concatenating the lan-
guage embedding to each token’s MUSE embedding.
In the Baseline column, results were obtained using a
random embedding instead. Boldface indicates a statis-
tically significant difference (p < 0.05).

5.3 Cross-lingual dependency parsing

The cross-lingual dependency parsing results in Ta-
ble 2 indicate that our language embeddings are in
fact effective in allowing a parsing model to lever-
age information from different languages to parse a
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fr es de el bg ru tr ar vi avg.

Selected with English development set

XLM 77.3 77.9 75.9 74.3 75.3 73.8 70.4 70.9 73.2 74.3
XLM + lang_emb 78.3 79.0 76.5 75.6 76.6 74.8 71.3 72.3 74.4 75.4

Selected with averaged development set

XLM 77.4 78.2 76.1 75.4 76.3 74.4 70.3 71.7 73.5 74.8
XLM + lang_emb 78.5 79.0 76.7 75.9 76.8 75.3 71.5 72.4 74.8 75.7

XLM-RBase 77.9 78.7 76.9 76.0 77.9 75.9 72.4 72.2 74.8 75.9
XLM-RBase + lang_emb 78.8 79.4 77.4 76.2 78.2 76.1 73.2 72.6 75.4 76.4

XLM-RLarge 83.6 84.6 83.0 82.4 83.3 80.3 79.1 79.0 80.0 81.7
XLM-RLarge + lang_emb 83.9 84.8 83.7 82.8 84.2 81.1 80.3 79.4 80.3 82.3

Table 3: Results on XNLI test set with zero-shot prediction. The results show that adding language embeddings
outperforms the baselines in all settings.

new language. Substantial accuracy improvements
were observed for 13 of the 16 languages used in
the experiment, while accuracy degradation was
observed for two languages. Notably, there were
large improvements for each of the four Romance
languages used (ranging from 7.32 to 10.62 ab-
solute points), and a steep drop in accuracy for
Hebrew (-8.21). Although a sizeable improvement
was observed for the only other language from the
same genus in our experiment (Arabic, with a 4.07
improvement), accuracy for the two Semitic lan-
guages was far lower than the accuracy for the other
genera. This is likely due to the over-representation
of Indo-European languages in our dataset, and the
lower quality of the MUSE word alignments for
these languages (Appendix D).

While our accuracy results are well below cur-
rent results obtained with supervised methods (i.e.
using training data for each target language), the
average accuracy improvement of 3.4 over the base-
line, which uses the exact same parsing setup but
without language embeddings, shows that our lan-
guage embeddings encode actionable syntactic in-
formation, corroborating our results using WALS.

5.4 XNLI prediction

The XNLI results in Table 3 indicate that our lan-
guage embeddings, which capture relationships
between each test language and the training lan-
guage (English), are also effective in tasks involv-
ing higher-level semantic information. We observe
consistent performance gains over very strong base-
lines in all settings and models for each language.
Specifically, in the fully zero-shot setting where

we select the best model based on the English de-
velopment data, adding our learned language em-
beddings increases 1.1 absolute points on average
for XLM. The same trend holds for XLM-R re-
sults, not shown due to space limits. On the other
hand, if we select the best model on the averaged
development set following Conneau et al. (2020),
we observe averaged performance gain of 0.9, 0.5,
and 0.6 absolute points for XLM, XLM-RBase, and
XLM-RLarge, respectively. We conjecture that the
lower improvement on XLM-R models compared
to XLM is due to that XLM-R was pretrained with-
out language embeddings. When we add our lan-
guage embeddings to the original word and po-
sitional embeddings, the distribution of the over-
all input embedding such as variance is changed.
Hence, the language embeddings can be considered
as noise at the beginning, making it hard to learn
and incorporate additional information. However,
the improvement is consistent over all strong base-
lines, suggesting that our language embeddings,
which are not optimized towards any specific task,
can be leveraged off-the-shelf in large pretrained
models and achieve better zero-shot transfer ability
in downstream tasks.

5.5 Discussion

Our results in each of the intrinsic and extrinsic
evaluation settings demonstrate that our denoising
autoencoder objective, which has been shown to
be effective in various language model pre-training
tasks (Lewis et al., 2020; Raffel et al., 2020), is
effective for learning language embeddings that
capture typological information and can be used to
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improve cross-lingual inference. Even though re-
constructing the original sentence from a randomly
ordered string is the direct training objective, our
evaluation of the resulting embeddings is not based
simply on word order.

The grammar of a language is of course an im-
portant factor in determining the order of words in
a sentence in that language, although it is not the
only factor. The syntax area features in our WALS
evaluation, which are largely related to relative or-
ders of constituents and syntactic constructions and
therefore clearly relevant to our training objective,
confirm that part of what our embeddings capture
is in fact related to word ordering. However, our
results on the lexicon and morphology areas in-
dicate that language-specific information capture
in our embeddings goes beyond ordering informa-
tion. Although it may seem that the model only has
access to information about word ordering during
training, text in the various languages also provides
information about word usage, co-occurrence, and
to some extent even inflection through the word
embeddings. As a result, language embeddings
trained with our approach capture interpretable and
useful typological information beyond word order.
Because language embeddings are the only sig-
nal to the model indicating what each of the lan-
guages that are mixed within the training data reads
like, we conjecture that our denoising autoencoder
objective encourages the embeddings to encode
language-specific information necessary to distin-
guish each language from the others.

6 Conclusion

Language embeddings have the potential to con-
tribute to our understanding of language and lin-
guistic typology, and to improve the performance
of downstream multilingual NLP applications. Our
proposed method to generate dense vectors to cap-
ture language features is relatively simple, based
on the idea of denoising autoencoders. The model
does not require any labeled or parallel data, which
makes it promising for cross-lingual learning in
situations where no task-specific training datasets
are available.

We showed that the trained language embed-
dings represent typological information, and can
also benefit the downstream tasks in a zero-shot
learning setting. This is an encouraging result that
indicates that task-specific annotated data for var-
ious languages can be leveraged more effectively

for improved task performance in situations where
language-specific resources may be scarce. At the
same time, our results indicate that the effective-
ness of our approach is sensitive to the set of lan-
guages used, highlighting the importance of using
a more balanced variety of languages than is cur-
rent practice, our work included. We will pursue
an investigation of the impact of language selection
in multilingual and cross-lingual models as future
work, to our understanding of these methods and
their broader applicability.
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A Implementation Details

A.1 Denoising autoencoder

We use the CommonCrawl dataset from the CoNLL
2017 shared task (Ginter et al., 2017): http://

hdl.handle.net/11234/1-1989. We implement
the denoising autoencoder with a two-layer LSTM
with 500 hidden units and global attention (Luong
et al., 2015) using a modified version of Open-
NMT (Klein et al., 2017). We use a batch size of
16 and Adam optimization (Kingma and Ba, 2015)
for training with initial learning rate of 1, 0.85 de-
cay applied every 25,000 steps after the first 10,000
steps. The word embedding size if 300 pretrained
from MUSE and the language embedding size is 50.
We apply global attention (Lu et al., 2018) between
the decoder and the encoder.

For experiment with XLM (Conneau and Lam-
ple, 2019), we use the provided code base 8 fol-
lowing the suggested preprocessing processes and
training details.

A.2 XNLI

For XNLI experiments with both XLM and XLM-
R, we follow the hyper-parameter tuning sugges-
tions in the code base and author response. We tune
the hyper-parameters on the English development
set to match the scores reported in the correspond-
ing papers, and use the same hyper-parameters for
all runs.

Specifically, for XLM, we fine-tuned the
mlm_tlm_xnli15_1024model with the imple-
mentation from the XLM code base (Conneau and
Lample, 2019). We use a learning rate of 5e-6
(from a suggested range of [5e-6, 2.5e-5, 1.25e-4]),
a batch size of 8 (from suggested range of [4, 8]),
and run 150 epochs (with early stopping if the val-
idation accuracy does not improve for 5 epochs)
where each epoch size is 20000 examples, taking
510s on a single TITAN RTX GPU.

For XLM-R, we modified the Huggingface im-
plementation (Wolf et al., 2020). We use a learning
rate of 7.5e-6, accumulated batch size of 128, and
run 10 full epochs (with early stopping). We evalu-
ate on the development set every 720 training steps.
For each epoch, XLM-R base takes 6468s on a sin-
gle RTX 2080Ti GPU, and XLM-R takes 18306s
on a single TITAN RTX GPU.

8https://github.com/facebookresearch/

XLM

B WALS Categories

Lexicon: 129A Hand and Arm, 138A Tea;
Syntax: 81A Order of Subject, Object and Verb,

82A Order of Subject and Verb, 83A Order of Ob-
ject and Verb, 84A Order of Object, Oblique, and
Verb, 85A Order of Adposition and Noun Phrase,
86A Order of Genitive and Noun, 87A Order of Ad-
jective and Noun, 88A Order of Demonstrative and
Noun, 92A Position of Polar Question Particles,
93A Position of Interrogative Phrases in Content
Questions, 95A Relationship between the Order
of Object and Verb and the Order of Adposition
and Noun Phrase, 96A Relationship between the
Order of Object and Verb and the Order of Rela-
tive Clause and Noun, 97A Relationship between
the Order of Object and Verb and the Order of Ad-
jective and Noun, 106A Reciprocal Constructions,
110A Periphrastic Causative Constructions, 113A
Symmetric and Asymmetric Standard Negation,
114A Subtypes of Asymmetric Standard Negation,
121A Comparative Constructions, 122A Relativiza-
tion on Subjects, 125A Purpose Clauses, 126A
’When’ Clauses, 127A Reason Clauses, 128A
Utterance Complement Clauses, 144B Position
of negative words relative to beginning and end
of clause and with respect to adjacency to verb;

Partially Morphological: 30A Number of Gen-
ders, 31A Sex-based and Non-sex-based Gender
Systems, 32A Systems of Gender Assignment, 34A
Occurrence of Nominal Plurality, 35A Plurality in
Independent Personal Pronouns, 36A The Asso-
ciative Plural, 37A Definite Articles, 38A Indefi-
nite Articles, 41A Distance Contrasts in Demon-
stratives, 43A Third Person Pronouns and Demon-
stratives, 44A Gender Distinctions in Independent
Personal Pronouns, 45A Politeness Distinctions
in Pronouns, 46A Indefinite Pronouns, 47A In-
tensifiers and Reflexive Pronouns, 48A Person
Marking on Adpositions, 49A Number of Cases,
50A Asymmetrical Case-Marking, 51A Position of
Case Affixes, 52A Comitatives and Instrumentals,
53A Ordinal Numerals, 54A Distributive Numer-
als, 57A Position of Pronominal Possessive Affixes,
62A Action Nominal Constructions, 65A Perfec-
tive/Imperfective Aspect, 66A The Past Tense, 67A
The Future Tense, 68A The Perfect, 71A The Pro-
hibitive, 72A Imperative-Hortative Systems, 74A
Situational Possibility, 75A Epistemic Possibility,
76A Overlap between Situational and Epistemic
Modal Marking, 77A Semantic Distinctions of Evi-
dentiality, 78A Coding of Evidentiality, 98A Align-
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ment of Case Marking of Full Noun Phrases, 101A
Expression of Pronominal Subjects, 102A Verbal
Person Marking, 103A Third Person Zero of Verbal
Person Marking, 111A Nonperiphrastic Causative
Constructions, 112A Negative Morphemes, 115A
Negative Indefinite Pronouns and Predicate Nega-
tion, 116A Polar Questions, 117A Predicative Pos-
session, 118A Predicative Adjectives, 119A Nomi-
nal and Locational Predication, 120A Zero Copula
for Predicate Nominals, 124A ’Want’ Complement
Subjects, 143A Order of Negative Morpheme and
Verb, 143F Postverbal Negative Morphemes, 144A
Position of Negative Word With Respect to Sub-
ject, Object, and Verb, 144D The Position of Nega-
tive Morphemes in SVO Languages, 144I SNegVO
Order, 144J SVNegO Order, 144K SVONeg Or-
der; Non-learnable: 1A Consonant Invento-
ries, 2A Vowel Quality Inventories, 3A Consonant-
Vowel Ratio, 4A Voicing in Plosives and Frica-
tives, 5A Voicing and Gaps in Plosive Systems,
6A Uvular Consonants, 9A The Velar Nasal, 11A
Front Rounded Vowels, 12A Syllable Structure,
14A Fixed Stress Locations, 15A Weight-Sensitive
Stress, 16A Weight Factors in Weight-Sensitive
Stress Systems, 17A Rhythm Types, 19A Presence
of Uncommon Consonants, 21A Exponence of Se-
lected Inflectional Formatives, 21B Exponence of
Tense-Aspect-Mood Inflection, 22A Inflectional
Synthesis of the Verb, 23A Locus of Marking in
the Clause, 24A Locus of Marking in Possessive
Noun Phrases, 25A Locus of Marking: Whole-
language Typology, 26A Prefixing vs. Suffixing
in Inflectional Morphology, 27A Reduplication,
29A Syncretism in Verbal Person/Number Mark-
ing, 69A Position of Tense-Aspect Affixes, 70A
The Morphological Imperative, 79A Suppletion
According to Tense and Aspect, 79B Suppletion in
Imperatives and Hortatives, 104A Order of Person
Markers on the Verb, 136A M-T Pronouns, 142A
Para-Linguistic Usages of Clicks.

C Additional Results

C.1 WALS

Additional comparison on WALS with different
language embedding baselines.

C.2 Cross-lingual dependency parsing

Lexicon Syntax Part. Morph. Non-learn. Rand
n features 2 13 46 21 -

Random 0.56 0.61 0.52 0.52 -
Majority 0.68 0.76 0.68 0.68 -

XLM mono 0.68 0.76 0.64 0.67 0.11

Spe. CC 0.66 0.77∗ 0.67 0.67 0.58
Eng. CC 0.86∗ 0.80∗ 0.72∗ 0.70∗ 0.62

Wiki 0.82∗ 0.80∗ 0.70∗ 0.70∗ 0.62

Table 4: Results on the WALS prediction task and lin-
guistic typology on 29 languages across 10 language
genera. ∗indicates statistical significance (p < 0.01)
over the Majority baseline.

Lexicon Syntax Part. Morph. Non-learn.
n features 1 13 38 25

Eng. 0.71 0.61 0.53 0.51
XLM parallel 0.28 0.57 0.56 0.50

Table 5: Results on the WALS prediction task and
linguistic typology on 10 languages in comparison to
XLM language embeddings trained from XNLI lan-
guage parallel data (MLM + TLM objectives).

Language Spe. Wiki XLM mono

Finnic
Estonian 60.27 61.36 53.51
Finnish 62.49 62.32 55.65

Germanic
Danish 68.81 70.37 66.48
English 73.00 69.68 70.96
German 63.64 65.49 64.01
Norwegian 77.76 75.42 74.24
Slovene 71.17 71.19 64.29

Romance
Catalan 81.72 81.95 79.13
French 78.57 79.27 72.52
Spanish 83.38 82.09 81.40
Portuguese 79.65 80.09 80.40

Semitic
Arabic 52.58 51.26 50.58
Hebrew 38.93 33.01 47.56

Slavic
Bulgarian 66.22 64.57 62.09
Czech 67.31 59.15 64.66
Russian 62.92 62.08 62.04

Average 68.02 66.83 65.60

Table 6: Zero-shot parsing results (UAS) comparing
Spe., Wiki, and XLM mono language embeddings. Re-
sults show that using language embeddings can im-
prove parsing performance, and our methods outper-
form previous methods by a large margin (2.4 absolute
points).




