

Body mass and sex, not local climate, drive differences in chill coma recovery times in common garden reared bumble bees

K. Jeannet Oyen^{1,2} · Laura E. Jardine^{1,3} · Zachary M. Parsons¹ · James D. Herndon^{4,5} · James P. Strange^{4,5,7} · Jeffrey D. Lozier⁶ · Michael E. Dillon¹

Received: 17 November 2020 / Revised: 24 May 2021 / Accepted: 14 June 2021 / Published online: 25 June 2021
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021

Abstract

The time required to recover from cold exposure (chill coma recovery time) may represent an important metric of performance and has been linked to geographic distributions of diverse species. Chill coma recovery time (CCRT) has rarely been measured in bumble bees (genus *Bombus*) but may provide insights regarding recent changes in their distributions. We measured CCRT of *Bombus vosnesenskii* workers reared in common garden laboratory conditions from queens collected across altitude and latitude in the Western United States. We also compared CCRTs of male and female bumble bees because males are often overlooked in studies of bumble bee ecology and physiology and may differ in their ability to respond to cold temperatures. We found no relationship between CCRT and local climate at the queen collection sites, but CCRT varied significantly with sex and body mass. Because differences in the ability to recover from cold temperatures have been shown in wild-caught *Bombus*, we predict that variability in CCRT may be strongly influenced by plasticity.

Keywords *Bombus vosnesenskii* · Cold tolerance · Allometry · CCRT · Thermal ecology

Introduction

For many invertebrates, prolonged exposure to low temperatures results in chill coma, a reversible state of paralysis (Hazell and Bale 2011; MacMillan and Sinclair 2011; Mellanby 1939; Overgaard and MacMillan 2017). Chill coma is both a physiological and an ecological threshold. With loss of central nervous system (CNS) and muscle function at low temperatures, organisms are no longer able to feed (Harrington and Taylor 1990), reproduce (Larsson 1989), or evade predation (Hughes et al. 2010). Therefore, the time required for recovery of muscle and CNS function following chill coma, chill coma recovery time (CCRT), often represents an important physiological metric of performance, particularly for species that are distributed across broad environmental gradients (Gibert and Huey 2001; Castañeda et al. 2005; Sisodia and Singh 2010). Cold tolerance metrics often shift in parallel in many species (Andersen et al. 2015; Sunday et al. 2012; Terblanche et al. 2006). For example, both critical thermal minimum (CT_{min} , the temperature at which an organism loses critical muscle function) and CCRT are lower in *Drosophila* from cooler temperate climates relative to *Drosophila* from lower latitudes (Gibert and Huey 2001; Hoffmann et al. 2002; David et al. 2003;

Communicated by K.H. Dausmann.

✉ Michael E. Dillon
Michael.Dillon@uwyo.edu

¹ Department of Zoology and Physiology and Program in Ecology, University of Wyoming, 1000 East University Avenue, Dept 3166, Laramie, WY 82071, USA

² Present Address: Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, USA

³ Department of Biology, Oklahoma City University, Oklahoma City, OK, USA

⁴ Department of Biology, Utah State University, Logan, UT, USA

⁵ Pollinating Insect Biology Management and Systematics Research Unit, USDA-ARS, Logan, UT, USA

⁶ Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL, USA

⁷ Present Address: Department of Entomology, The Ohio State University, Columbus, OH, USA

Ayrinhac et al. 2004; Sisodia and Singh 2010). Although CT_{min} and CCRT often vary in parallel and are both used to estimate cold tolerance, their underlying physiological mechanisms are different. The onset of chill coma is driven by temperature-dependent spreading depolarization in the central nervous system (CNS) usually followed by muscle membrane depolarization; recovery from chill coma requires reestablishment of extracellular and intracellular ion homeostasis necessary for the restoration of both CNS and muscle function (Overgaard and MacMillan 2017; Andersen and Overgaard 2019).

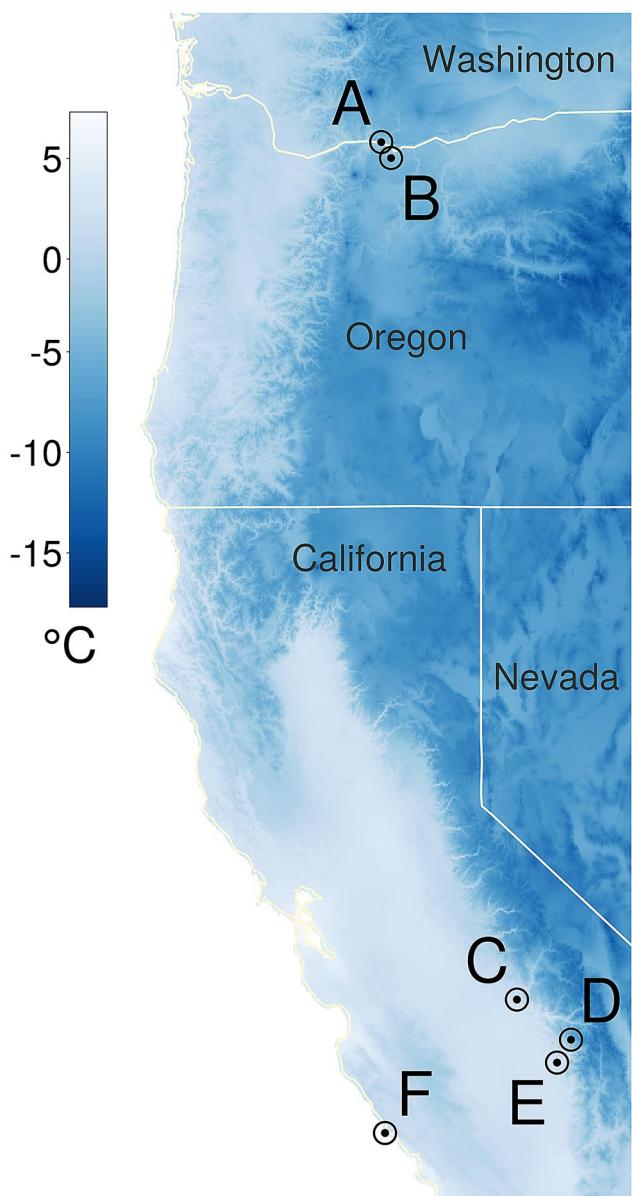
Following CT_{min} , which is characterized by immediate silencing in the CNS, prolonged chill coma leads to a redistribution of ions throughout the body (Findsen et al. 2014; Des Marteaux and Sinclair 2016; Robertson et al. 2017). At benign temperatures, ion and water balance are sustained by the dynamic interplay between secretion by the Malpighian tubules and reabsorption in the hindgut. Prolonged exposure to low temperatures reduces the capacity of temperature-sensitive ion pumps, leading to ion imbalance (MacMillan et al. 2014, 2015; Gerber and Overgaard 2018). This temperature-driven redistribution of ions is caused by leakage of extracellular Na^+ into the gut with water following, which reduces hemolymph volume and subsequently concentrates extracellular K^+ (hyperkalemia; Koštál et al. 2004; Andersen et al. 2017a; Overgaard and MacMillan 2017). As concentrations of extracellular ions (particularly K^+) increase, muscles depolarize, potentially opening voltage-sensitive Ca^{2+} channels, leading to increased intracellular Ca^{2+} levels which initiate apoptotic pathways and eventual cell death (Bayley et al. 2018). More recent data suggest that apoptosis is less indicative of whole-animal chilling injury than is hemolymph hyperkalemia, suggesting a direct link between ion imbalance and cold-induced cell death (Carrington et al. 2020). Therefore, the ability to defend intra- and extracellular ion concentrations and quickly re-establish ion homeostasis following cold exposure directly impacts adaptation to low temperatures in insects (MacMillan et al. 2015; Andersen and Overgaard 2020). Enhanced function of osmoregulatory organs (both the Malpighian tubules and the hindgut) may therefore facilitate faster recovery from chill coma (lower CCRT) in cold-adapted insect populations (MacMillan et al. 2015; Andersen et al. 2017a, b; Andersen and Overgaard 2020).

Differences in cold tolerance traits, including CT_{min} and CCRT, often correlate with the geographic distributions of diverse organisms (Sunday et al. 2012; Pimsler et al. 2020). For many species, CCRT decreases with increasing altitude and latitude (Angert et al. 2011; Sinclair et al. 2012). Links between CCRT and geographic distributions are most compelling in *Drosophila*, which have been measured in both common garden (demonstrating adaptation) and field experiments (possibly encompassing both acclimation and

adaptation) across multiple geographic gradients (Hoffmann et al. 2001, 2003; David et al. 2003). CCRT of *Drosophila melanogaster* decreased by nearly 20 min along a 28° latitudinal gradient in Eastern Australia (Hoffmann et al. 2002), and by 45 min in *Drosophila ananassae* across a latitudinal gradient in India (Sisodia and Singh 2010). These studies suggest local adaptation in CCRT in flies as they were reared in common-garden conditions prior to testing. Similar geographic variation in CCRT has been shown in other organisms, including woodlice (Castañeda et al. 2005), butterflies (Zeilstra and Fischer 2005), triatomine bugs (Vega et al. 2015), and damselflies (Stoks and Block 2011). Given the clear links between geographic gradients and CCRT in diverse species, bumble bees (genus *Bombus*), which are broadly distributed throughout the Northern Hemisphere (Williams et al. 2014) and show pronounced geographic variation in CT_{min} (Pimsler et al. 2020), may also show geographic variation in CCRT. Further, analyses of bumble bee specimen records and associated climate data suggest that recent range shifts and population declines may reflect mismatches between changing temperatures and thermal tolerance limits (Kerr et al. 2015; Soroye et al. 2020). Direct measurements of geographic variation in bumble bee thermal tolerance will likely enable more robust predictions of the impacts of climate change on these important pollinators (Woodard 2017).

Building on a long history of research on thermal biology of bumble bees (Heinrich 1972, 1974, 1975, 1979, 1993), more recent work has measured thermal tolerance in the group (Owen et al. 2013; Martinet et al. 2015; Oyen and Dillon 2018) and begun to document variation in thermal physiology across environmental gradients (Oyen et al. 2016; Hamblin et al. 2017; Pimsler et al. 2020). The temperature at which bumble bees lose their righting response and the temperature at which they recover from chill coma co-vary with altitude among species, with those from high altitude having lower CT_{min} and chill coma recovery temperatures (Oyen et al. 2016). However, this study was conducted on wild bees tested within 2 h of their collection in the field, so it is unclear if these differences in cold tolerance reflect adaptive evolution or are the product of adult phenotypic plasticity, developmental, or even epigenetic effects. More recently, Pimsler et al. (2020) found pronounced variation in CT_{min} among bumble bees reared in common-garden conditions from queens captured across latitudinal and altitudinal gradients. Bees with origins in the coldest environments (high latitude, high altitude sites) tolerated temperatures nearly 10°C colder than did bees from the warmest environments (low latitude lowlands), providing compelling evidence for local adaptation in CT_{min} (and epigenetic effects may also be at play). Because CCRT can be easily measured (Sinclair et al. 2015), varies with altitude and latitude in many insects (Gibert and Huey 2001; David et al. 2003), can respond to

selection (Anderson et al. 2005), and has a different underlying mechanism relative to CT_{min} , it may provide a useful metric (complementary to CT_{min}) for estimating the influence of plasticity and local adaptation in thermal tolerance on current and future distributions of bumble bees (Goulson et al. 2008).


Male bumble bees are often overlooked when considering the ecology and physiology of social pollinators because female workers are primarily responsible for brood care, cell building, hive maintenance, and foraging (Goulson 2003). However, given the considerable life history differences between male and female bumble bees, the advantage of broad thermal tolerance is potentially greater for males than females. Upon emergence, male bumble bees leave the nest in search of queens with which to mate. In contrast to females which spend nights in thermoregulated nests, male bumble bees rarely return to the nest, instead spending their nights exposed to potentially cold conditions (Goulson 2003). On cool mornings, typically reported between 0 and 2 °C, drones are often found completely inactive, hanging by their mandibles from leaves and twigs (Heinrich 1979). Throughout the geographic range of bumble bees measured in our study, ambient temperatures can dip below – 6 °C, even during growing seasons which can extend from April to September, depending on seasonality at various sites. Given the cool conditions that male bumble bees likely experience while overnighting outside the nest at high altitudes and latitudes, male bumble bees may require increased tolerance to cold exposure as compared to females.

We measured CCRT of male and female *Bombus vosnesenskii* reared in common garden conditions from queens collected at sites across western North America (Fig. 1). We hypothesized that variation in climate experienced by these populations would be matched by variation in CCRT, allowing bumble bees to cope with local climate conditions. We predicted that bumble bees from colder climates would recover from cold exposure more quickly (have shorter CCRT) than those from warmer climates. We also predicted that, given their different life history, males would be more cold-tolerant (have shorter CCRT) than workers (females).

Materials and methods

Bumble bee collection and husbandry

Bombus vosnesenskii queens were collected in the spring of 2016 during queen emergence from winter dormancy. A total of six sites across three regions were sampled (Fig. 1, Table 1): four sites at low and high elevation in central California, USA (LCA and HCA, respectively, average latitude

Fig. 1 *Bombus vosnesenskii* queen collection sites (A–F, see Table 1) with map color scale indicating minimum annual temperatures

of $36.581 \pm 0.459^\circ$ N) and two sites at low elevation in Oregon, USA (LOR, average latitude of $45.258 \pm 0.568^\circ$ N). Low elevation queens from both CA and OR were collected at an average elevation of 371 m (± 311 m), and high elevation queens from CA were collected at 2154 m (Table 1). Queens were collected by net while foraging or flying, then kept in vials in a cooler for transport to the USDA-ARS Pollinating Insect Research Unit's (PIRU) bumble bee rearing facility (Logan, Utah USA).

At PIRU, queens were induced to produce colonies following Strange (2010) with modifications. Each queen was given a unique identification code and placed in a 2.25 L

Table 1 Collection localities of queen *B. vosnesenskii* from which colonies were reared in common garden conditions

Site	Region	State	Latitude	Longitude	Elevation (m)	Collection date	January, July minimum temperatures (°C)
A	LOR	OR	45.696	–121.339	70	1-Apr-16	–1.7, 13.9
B	LOR	OR	45.535	–121.208	441	2-Apr-16	–4.3, 9.6
B	LOR	OR	45.535	–121.208	441	4-Apr-16	–4.3, 9.6
B	LOR	OR	45.535	–121.208	441	3-Apr-16	–4.3, 9.6
B	LOR	OR	45.535	–121.208	441	3-Apr-16	–4.3, 9.6
C	LCA	CA	37.036	–119.527	351	26-Feb-16	1.7, 17.4
D	HCA	CA	36.631	–118.804	2154	13-May-16	–4.6, 9.3
D	HCA	CA	36.631	–118.804	2154	13-May-16	–4.6, 9.3
D	HCA	CA	36.631	–118.804	2154	13-May-16	–4.6, 9.3
E	LCA	CA	36.400	–118.991	225	25-Feb-16	2.5, 17.6
F	LCA	CA	35.689	–121.288	7	24-Feb-16	4.2, 9.9

Region abbreviations indicate elevation and state, with LOR and LCA indicating low elevation sites in Oregon and California, respectively and HCA representing high elevation sites in California

plastic queen initiation box (Biobest, Leamington, ON) with approximately 500 mg pollen and sugar solution provided in a 60 mL plastic reservoir ad libitum. The initiation boxes were then placed in a dark, climate-controlled room that was kept at 27 ± 1 °C and 55–60% humidity (Strange 2010). Queens were checked daily for nesting signs such as wax secretion, honey pot construction, and presence of brood. Once five workers had eclosed, the small colony was moved into a 7.75 L plastic hive box (Biobest, Leamington, ON). Once colonies had more than 20 workers, they were transported to the University of Wyoming for physiological experiments. From nest initiation through to their use in experiments, queens and colonies were checked daily for the presence of disease and pests, fed as needed, and managed to maximize colony growth.

Measurement of CCRT

To measure CCRT, bumble bees were removed from colonies with forceps and weighed to the nearest mg. Once weighed, 12 bumble bees at a time were placed individually in five dram plastic vials, which were submerged in a circulator chiller (Lauda Brinkmann RC6, Division of Sybron Corporation, Westbury, NY). Pilot experiments revealed that over 50% of bees held at –6 °C for 4 h did not fully recover motor function within 5 h, suggesting that these conditions caused chilling injury (Sinclair et al. 2015). Bees held at 0 °C for 4 h recovered motor function within 1–3 min, suggesting that these conditions did not fully induce chill coma (Macdonald et al. 2004; Sinclair et al. 2015). Therefore, to avoid chilling injury and ensure that all bees were below the chill coma threshold, we exposed bees to –4 °C for 2 h; all bees exposed to these conditions were unresponsive to perturbations for several minutes after being returned to

room temperature but also fully recovered from chill coma within ~20 min. Further, these are likely ecologically realistic temperature exposures, given that bumble bees begin foraging early in the morning, even at high latitude sites (Stelzer and Chittka 2010), when daily minimum temperatures are often below 0 °C.

Following the 2-h exposure, bumble bees were removed from the water bath and placed individually into the 12 wells of tissue culture microplates (CELLTREAT, USA, Houston TX) on the benchtop at room temperature (22 ± 0.05 °C; Omega Multi-Channel Digital Thermocouple Thermometer, Omega Engineering Inc., Norwalk, CT, USA). The clear microplate lid permitted easy visualization of each bumble bee during recovery. The microplate was placed on a white sheet of paper and filmed from above with a digital camcorder (Handycam CX405, SONY Corporation, Tokyo, Japan) on a tripod. A stopwatch started immediately after bumble bees were removed from the cold was placed within the camera view to record the time at which bumble bees recovered from chill coma, as indicated by coordinated fore- and hindleg movement, which was clearly distinguishable from twitches of the limbs observed during rewarming (MacMillan et al. 2012).

Climate data

Mean temperatures (annual, minimum, maximum) and bioclimatic variables (Bioclim1-19) within a 1 km radius of each queen collection site (Table 1) were estimated using ‘WorldClim’, a global climate database with high spatial resolution produced through interpolation of average monthly climate data from weather stations on a 30 arc-s resolution grid (Version 1.4, www.worldclim.org; Hijmans et al. 2005).

Analyses

ANOVA was used to compare mass and CCRT among sites and between sexes. Pairwise analyses revealed significant collinearity among many individual climate variables and bumble bee mass; smaller bumble bees were typically from warmer sites. Because mass strongly influenced CCRT and varied among sites and colonies, we used the residuals from the regression of CCRT on mass for climate model comparisons.

To identify factors affecting recovery rates for bumble bees, we performed linear mixed effects regression analyses using the R package *nlme* (Pinheiro et al. 2013). We evaluated the relationships between (1) body mass, sex, and CCRT; and, (2) the regressed residuals of CCRT on mass, sex, and climate variables. CCRT was evaluated with respect to multiple factors: site (a fixed factor), body mass (a fixed factor), sex (a fixed factor), the interaction between body mass and sex, colony (a random factor), and January minimum temperature or July minimum temperature or annual mean temperature or annual precipitation or temperature seasonality (all fixed factors, see below). During model selection, Akaike's information criterion (AIC), biological significance of fixed effects, and parsimony were used to distinguish among competing models (Warren and Seifert 2011; Lancaster et al. 2015).

Because climate variables were highly correlated, we used cluster analysis in the R package *psych* (Revelle 2020) to choose representative temperature and Bioclim factors for inclusion in models. Item cluster analysis is an algorithm that hierarchically clusters predictors based on the extent that they covary (Revelle 1979). The resultant proximity matrix reflects Pearson correlations where the most correlated factors fall closest within the matrix. Two metrics, α and β , provide estimates of reliability within each cluster, with α representing the highest correlations between variables within the cluster and β being based upon the two least correlated items within each cluster. To show the most conservative estimates of clustering reliability, we report minimum β values.

Table 2 Variation in body mass and chill coma recovery time (CCRT) among populations and between sexes for bumble bees reared in common garden conditions from queens collected at six different sites (Fig. 1, Table 1)

Region	Site	Females			Males		
		<i>n</i>	Mass (mg)	CCRT (min)	<i>n</i>	Mass (mg)	CCRT (min)
LOR	A	48	111.6 \pm 30.9 ^a	12.6 \pm 2.5	–	–	–
LOR	B	72	150.7 \pm 31.7 ^b	11.4 \pm 1.8	60	143.1 \pm 32.0 [*]	13.1 \pm 2.2
LCA	C	–	–	–	53	89.4 \pm 24.5 [~]	11.2 \pm 2.6
HCA	D	70	126.4 \pm 28.8 ^c	11.0 \pm 1.9	83	131.5 \pm 27.8 [*]	11.0 \pm 1.9
LCA	E	34	60.9 \pm 16.0 ^d	11.5 \pm 1.4	–	–	–
LCA	F	60	101.8 \pm 27.8 ^a	10.6 \pm 1.7	41	113.5 \pm 23.0 [†]	11.6 \pm 1.8

Values are mean \pm SD. Significant differences in mass are indicated by letters (female) or symbols (male). See text for statistical details

Minimum temperatures clustered into two groups whereas Bioclim variables clustered into three groups (Supplemental Figs. 1 and 2). Based on clusters, we selected July minimum temperature, which clustered tightly with August minimum temperature ($\beta=1.0$), and January minimum temperature, which clustered tightly with ten other minimum temperatures ($\beta=0.96$). Together, July minimum temperature and January minimum temperature characterize the annual temperature variability at our sites and were selected to represent cool summer and winter temperatures experienced by bumble bees in these regions. We also selected annual mean temperature (BIO 1), which clustered with seven other variables ($\beta=0.68$), annual precipitation (BIO 12), which clustered with three other variables ($\beta=1.0$), maximum temperature of the warmest month (BIO 5), which clustered with three variables ($\beta=0.95$), and temperature seasonality (BIO 4), which clustered with two other variables ($\beta=0.92$). Together these variables capture site differences in temperature and precipitation, which have both been shown to influence cold tolerance metrics (Whitford and Ettershank 1975; Terblanche et al. 2006; Vega et al. 2015).

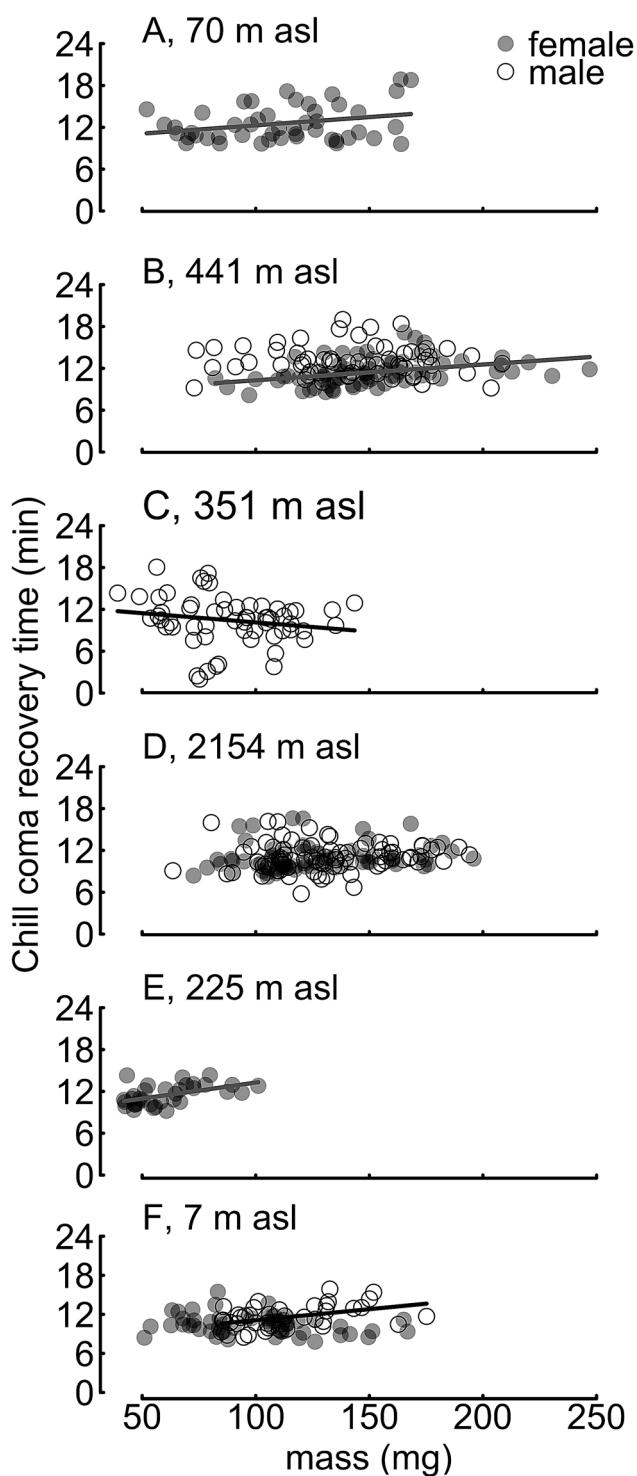
Following model selection, pairwise analyses confirmed no collinearity between variables included in models (all variance inflation factors < 3). A Tukey HSD test for unequal sample size was used a posteriori. Prior to analyses, we checked assumptions of normality and homoscedasticity of raw data using *Q–Q* plots and Bartlett tests, respectively. Post hoc analyses revealed normal distribution of model residuals, and a Fligner–Killeen test confirmed homogeneity of model residuals. All analyses and figures were done in R version 3.1.3 (R Development Core Team 2017).

Results

CCRT was measured for 509 *B. vosnesenskii* including 284 females and 225 males. The bees came from 11 colonies reared from queens collected from six sites spanning from ~ 35 to 45° N latitude and from 7 to 2154 m in elevation (Table 1; Fig. 1). Across all bees, CCRT ranged from 5.7 to

Table 3 Effects of body mass and sex on CCRT among all bees and among bees within each site with mass:sex interaction for those sites with both sexes represented

Effect on CCRT	Site A		Site B*		Site C		Site D*		Site E		Site F		Overall**		
	Females only		Females and males		Males only		Females and males		Males only		Females and males				
	F (d.f)	P	F (d.f)	P	F (d.f)	P	F (d.f)	P	F (d.f)	P	F (d.f)	P			
Mass	4.17 (1,46)	0.047	0.96 (1,126)	0.328	3.01 (1,39)	0.091	1.05 (1,147)	0.307	11.22 (1,32)	0.002	5.86 (3,97)	0.337	5.50 (1,514)	0.019	2246.74
Sex	—	—	15.44 (1,126)	<0.001	—	—	0.16 (1,147)	0.691	—	—	5.86 (3,97)	0.018	9.93 (1,509)	0.002	2222.22
Mass* sex	—	—	7.86 (1,126)	0.006	—	—	0.02 (1,147)	0.876	—	—	5.86 (3,97)	0.003	2.69 (1,507)	0.102	2212.68


Results are from linear mixed effects models with mass, sex and CCRT as fixed effects and colony as a random effect for sites B and D in which multiple colonies were tested. We did not assess the effect of colony for sites A, E, or F because 2 or fewer colonies were represented at those sites (Table 1). We did not assess effect of sex for sites A, C, and E, which only had either males or females represented. Significant effects in bold

*Colony was included as a random effect because bees came from more than two colonies
**Includes all bumble bees at all sites

19 min. Because mass may significantly influence thermal tolerance traits (Baudier et al. 2015; Oyen et al. 2016), we assessed whether CCRT varied with mass and whether mass varied between sexes or among sites (Tables 2 and 3). Overall, males and females did not differ significantly in mass ($F_{1,519}=2.27, P=0.133$), but mass, sex, and their interaction influenced CCRT of bees from some sites (Table 3).

Overall, a linear mixed effects model with colony as a random effect and mass and sex as fixed effects showed that CCRT significantly increased with mass for all bees ($F_{1,514}=5.50, P=0.02$) (Table 3). For every 100 mg increase in mass, CCRT was approximately 6.7 min longer. Furthermore, CCRT varied significantly between the sexes, driven by a tendency for males to recover from cold more slowly than females across all sites ($F_{1,513}=13.60, P=0.0002$). Overall, female CCRT increased approximately 2.2 min for every 100 mg increase in body mass, and male CCRT only increased approximately 1 min for every 100 mg increase in mass. However, the effect of mass on CCRT for both sexes varied among sites (Fig. 2; Table 3). CCRT increased with mass for females at sites LOR-A, LOR-B, and LCA-E and for males at site LCA-F, but did not change significantly with mass at other sites (Table 3). CCRT only differed significantly between the sexes at site LOR-B, with males recovering from chill coma significantly more slowly than their female counterparts (Table 3).

Sex, body mass, site, climate variables, and interactions were included as fixed factors in models, with colony included as a random factor. The best model (minimum AIC) did not include any climate variables (Tables 3 and 4, Fig. 3). All climate variables listed in Table 4 were significantly related to the mass-corrected CCRTs (all $P < 0.003$) in simple linear models without random or interaction effects but no climate variable explained more than two percent of the variability in CCRT (all $R^2 < 0.02$). Models including climate variables with colony as a random effect and sex as an interaction term had significantly lower AIC values than simple linear models without random or interaction effects. However, all models with climate variables had larger AIC values than those without (Tables 3 and 4). Figure 3 shows mean CCRTs of male and female bumble bees in relation to representative climate variables (minimum annual temperature and minimum July temperature); neither of these variables explained significant variation in CCRT for females (minimum annual temperature: $F_{1,3}=0.24, P=0.67$; minimum July temperature: $F_{1,58}=8.15, P=0.10$) or males (minimum annual temperature: $F_{1,3}=0.38, P=0.58$; minimum July temperature: $F_{1,3}=0.18, P=0.70$).

Fig. 2 CCRT varied with mass and sex for bumble bees reared in common garden conditions from queens collected across sites in western North America (see Fig. 1). Significant variation in CCRT with mass for workers (filled circles, $n=248$) and males (open circles, $n=225$) indicated by gray and black regression lines, respectively. Site elevations are given in meters above sea level (asl)

Table 4 Effects of representative climate variables on mass-corrected chill coma recovery time (CCRT), with colony as a random factor (see text for details)

Effect on CCRT	F (d,f)	P	AIC
Minimum July Temperature	0.949 (1,9)	0.356	2232.15
Annual mean temperature BIO 1	0.583 (1,0)	0.465	2232.71
Minimum January temperature	0.038 (1,9)	0.850	2233.07
Annual precipitation BIO 12	0.122 (1,9)	0.735	2236.75
Max temperature of the warmest month BIO 5	1.034 (1,9)	0.682	2237.03
Temperature seasonality BIO 4	1.230 (1,9)	0.296	2239.45

We also examined the influence of sex on each model, but in every case AIC values were greater and the interaction between sex and the climate variable was not significant

Discussion

Contrary to our prediction, variation in CCRTs of bumble bees reared in common garden conditions was not explained by the climate of queen collection sites (Fig. 3). We did, however, observe different trends among sites. For instance, at the most northern sites (LOR-A and LOR-B), female bees tended to have longer CCRTs. Interestingly, females from the coastal site, LCA-F, had relatively short CCRTs given their warmer origins, but this could be driven by abnormally cool summer temperatures (Fig. 1). Site HCA-D, the site with the coldest minimum annual and July temperatures, displayed expected results with short male and female CCRTs. Although some climate variables were related to mass-corrected CCRTs in simple linear regressions, none explained more than two percent ($r^2 < 0.02$) of the variation in CCRT. Given that our analyses include only six unique sites, we hesitate to interpret these marginally significant results. In contrast, local climate explained nearly 68% of the variation among populations in CT_{min} of common garden reared bumble bees (Pimsler et al. 2020).

Two variables, minimum July temperature and minimum January temperature, captured much of the temperature variability at our sites and serve as proxies for the seasonal cold thresholds that may influence CCRT. However, neither of these were significantly related to CCRT in mixed effects models. Furthermore, annual precipitation, annual mean temperature, and temperature seasonality were also unrelated to CCRT. These inconsistent patterns are difficult

Fig. 3 CCRT did not vary consistently with local climate of queen collection sites. **A** Lines depict minimum monthly temperatures averaged from 1 km buffers (WorldClim1.4; Hijmans et al. 2005) around queen collection sites. Mean CCRT for female (filled circles, $n=248$) and male (open circles, $n=225$) bumble bees compared to minimum annual temperature (**B**) and minimum July temperatures (**C**) at queen collection sites. Point colors in **B** and **C** match colors in **A**, with darker blues indicating colder climates

to explain but may reflect differences in plasticity between common garden bumble bees used in this study and their wild counterparts. This underlines the importance of individual variation as opposed to regional variation and suggests the need to sample more sites, which is unfortunately challenging in this system, given the difficulty of large-scale collection and rearing of queens from many regions.

One reason CCRT may be unrelated to local climate is that bumble bees regulate nest microclimates and may, therefore, be less influenced by ambient temperatures (Weidenmüller et al. 2002). Furthermore, bumble bees could shift activity times to avoid exposure to temperature extremes (as do ants; Guo et al. 2020) and, given sufficient energy reserves, may be able to sustain high body temperatures long enough to return to the nest, thereby avoiding cold extremes. However, several studies have linked local climate with bumble bee thermal tolerance (Hamblin et al. 2017; Oyen et al. 2016; Pimsler et al. 2020) as well as variation in population genetic structuring (Jackson et al. 2018, 2020). Future work investigating the importance of microclimates and behavior will strengthen our understanding of the link between thermal tolerance and bumble bee distributions (see e.g. Braschler et al. 2020).

We predicted that male bumble bees would have shorter CCRTs than females, given that they spend nights outside, rather than in the thermoregulated nest with females. However, at every site, common garden female workers had shorter CCRTs relative to male drones of comparable mass. Another study found a similar difference in cold tolerance for a different species, *B. huntii*: females recovered from chill coma at significantly colder temperatures than their male counterparts (Oyen et al. 2016). And this finding is consistent with sex effects on cold tolerance in other insects: studies in locusts, flies, moths and honey bees have shown that females are generally more cold tolerant than males (Andersen et al. 2017a; Boersma et al. 2018; David et al. 1998; Davidson 1990; Goller and Esch 1990). The mechanisms underlying these consistent differences in cold tolerance between males and females remain unclear. One possibility is that high $[Na^+]$ in ovaries (see Des Marteaux and Sinclair 2016) delays cold-induced ion imbalance in the hemolymph, but this hypothesis has not been explicitly tested to our knowledge.

The strongest trend we found was an increase in CCRT with body mass. Few studies have explicitly measured the effects of body mass on CCRT or other cold tolerance metrics and results are generally mixed: for both woodlice and *Temnothorax* ants, larger individuals recovered from chill coma more slowly (Castañeda et al. 2005; Modlmeier et al. 2012), whereas CCRT was independent of body mass in winter ants (Tonione et al. 2020). Across ectotherm species, a meta-analysis suggests that cold tolerance decreases with increasing body size, as larger ectotherms reach CT_{min} at

warmer temperatures (Leiva et al. 2019). By contrast, Oyen et al. (2016) found that larger bumble bees had lower CT_{min} ; and core temperature measurements in lab-reared bees suggest that this pattern was not driven by differences in thermal inertia (Oyen and Dillon 2018). However, in the current study, the increase in CCRT with mass may relate to thermal inertia because bees were moved directly from -4 to 22 °C in contrast to the ramping approach used in the CT_{min} study. An additional possibility is that body size-related differences in CT_{min} and CCRT reflect the allometry of key organs involved in defending ion balance after cold exposure.

Several studies suggest that regaining muscle function during chill coma recovery requires the reestablishment of ion balance in the hemolymph by both the Malpighian tubules and the hindgut (Alvarado et al. 2015; MacMillan et al. 2015; Gerber and Overgaard 2018; Andersen and Overgaard 2020). Although the influence of Malpighian tubule size on CCRT is unknown, individuals with larger osmoregulatory organ to hemolymph ratios may reestablish ion gradients more rapidly than those with smaller ratios. Hymenoptera have unusual organ allometry compared to other insects, with the relative size of the Malpighian tubules decreases with increasing body size (Polilov and Makarova 2017). Larger bees may therefore have relatively smaller osmoregulatory organs. If transport capacity is related to size, relatively large hemolymph volumes and relatively small Malpighian tubules may slow the rate at which larger bees can recover ion balance, leading to longer CCRTs compared to smaller bees. Although allometric relationships of organ size and hemolymph volume in relation to CT_{min} and CCRT are virtually unstudied, both the ability of insects to maintain function of osmoregulatory organs during cold exposure (Andersen et al. 2017b), and the ability to restore ion balance after rewarming are tightly coupled to cold tolerance (Andersen and Overgaard 2020). Differences in these capacities may therefore underly sex and size-related differences in CCRT of bumble bees.

In conclusion, bumble bee CCRTs are strongly influenced by body mass, perhaps due to organ allometry. The influence of body mass and allometry on thermal tolerance metrics is an understudied relationship and may be an interesting avenue for future research. Male bumble bees had significantly longer CCRTs than females which may be related to ovaries being enriched in Na^+ , buffering the effects of cold temperatures. Surprisingly, we found no relationship between local climate at the queens' collection sites and CCRT. Given that several other studies have linked local climate to bee thermal tolerance limits (Gonzalez et al. 2020; Hamblin et al. 2017; Oyen et al. 2016; Pimsler et al. 2020), it is possible a low CT_{min} allows bumble bees to avoid chill coma altogether, thus relaxing selection on CCRT. During the growing season, bumble bees only experience cold temperatures outside the nest, where entrance into chill coma increases the risk of

predation and reduces foraging time, so a low CT_{min} may be more advantageous than the ability to quickly recover from chill coma. As such, in contrast to other insects, CCRT may not be an ecologically relevant metric of cold tolerance in bumble bees.

Supplementary Information The online version contains supplementary material available at <https://doi.org/10.1007/s00360-021-01385-7>.

Acknowledgements We thank L. Rachocki and N. Wojcieszak for help with colony rearing and maintenance.

Author contributions MED, JPS, and JDL originally formulated the idea. KJO, LEJ, ZMP, and MED developed the methodology. JDH and JPS raised colonies from field-collected queens. KJO, LEJ and ZMP collected the data. KJO and MED analyzed the data and led the writing of the manuscript. All authors contributed critically to the drafts and gave final approval for publication.

Funding This material is based upon work supported by the National Science Foundation under Grant Nos. DEB-1457659 to MED and JPS and DEB-1457645 to JDL. MED was additionally supported by Grant Nos. OIS-1826834 and EF-1921562 during the completion of the manuscript. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.

Declarations

Conflict of interest The authors declare that they have no conflict of interest.

References

- Andersen MK, Overgaard J (2019) The central nervous system and muscular system play different roles for chill coma onset and recovery in insects. *Comp Biochem Physiol A Mol Integr Physiol* 233:10–16. <https://doi.org/10.1016/j.cbpa.2019.03.015>
- Andersen MK, Overgaard J (2020) Maintenance of hindgut reabsorption during cold exposure is a key adaptation for *Drosophila* cold tolerance. *J Exp Biol*. <https://doi.org/10.1242/jeb.213934>
- Andersen JL, Manenti T, Sørensen JG, MacMillan HA, Loeschcke V, Overgaard J (2015) How to assess *Drosophila* cold tolerance: chill coma temperature and lower lethal temperature are the best predictors of cold distribution limits. *Funct Ecol* 29:55–65. <https://doi.org/10.1111/1365-2435.12310>
- Andersen MK, Folkersen R, MacMillan HA, Overgaard J (2017a) Cold acclimation improves chill tolerance in the migratory locust through preservation of ion balance and membrane potential. *J Exp Biol* 220:487–496. <https://doi.org/10.1242/jeb.150813>
- Andersen MK, MacMillan HA, Donini A, Overgaard J (2017b) Cold tolerance of *Drosophila* species is tightly linked to the epithelial K^+ transport capacity of the Malpighian tubules and rectal pads. *J Exp Biol* 220:4261–4269. <https://doi.org/10.1242/jeb.168518>
- Anderson AR, Hoffmann AA, McKechnie SW (2005) Response to selection for rapid chill-coma recovery in *Drosophila melanogaster*: physiology and life-history traits. *Genet Res* 85:15–22. <https://doi.org/10.1017/S0016672304007281>
- Angert AL, Sheth SN, Paul JR (2011) Incorporating population-level variation in thermal performance into predictions of geographic

range shifts. *Integr Comp Biol* 51:733–750. <https://doi.org/10.1093/icb/icr048>

Ayrinhac A, Debat V, Gibert P, Kister A-G, Legout H, Moreteau B, Vergilino R, David JR (2004) Cold adaptation in geographical populations of *Drosophila melanogaster*: phenotypic plasticity is more important than genetic variability. *Funct Ecol* 18:700–706

Baudier KM, Mudd AE, Erickson SC, O'Donnell S (2015) Micro-habitat and body size effects on heat tolerance: implications for responses to climate change (army ants: Formicidae, Ecitoninae). *J Anim Ecol* 84:1322–1330. <https://doi.org/10.1111/1365-2656.12388>

Bayley JS, Winther CB, Andersen MK, Grønkjær C, Nielsen OB, Pedersen TH, Overgaard J (2018) Cold exposure causes cell death by depolarization-mediated Ca^{2+} overload in a chill-susceptible insect. *Proc Natl Acad Sci USA* 115:E9737–E9744. <https://doi.org/10.1073/pnas.1813532115>

Boersma N, Boardman L, Gilbert M, Terblanche JS (2018) Sex-dependent thermal history influences cold tolerance, longevity and fecundity in false codling moth *Thaumatomibia leucotreta* (Lepidoptera: Tortricidae). *Agric for Entomol* 20:41–50. <https://doi.org/10.1111/afe.12227>

Braschler B, Duffy GA, Nortje E et al (2020) Realised rather than fundamental thermal niches predict site occupancy: implications for climate change forecasting. *J Anim Ecol* 89:2863–2875. <https://doi.org/10.1111/1365-2656.13358>

Carrington J, Andersen MK, Brzezinski K, MacMillan H (2020) Hyperkalemia, not apoptosis, accurately predicts chilling injury in individual locusts. *bioRxiv*. 2020.07.03.186759. <https://doi.org/10.1101/2020.07.03.186759>

Castañeda LE, Lardies MA, Bozinovic F (2005) Interpopulational variation in recovery time from chill coma along a geographic gradient: a study in the common woodlouse, *Porcellio laevis*. *J Insect Physiol* 51:1346–1351. <https://doi.org/10.1016/j.jinsphys.2005.08.005>

Coello Alvarado LE, MacMillan HA, Sinclair BJ (2015) Chill-tolerant *Gryllus* crickets maintain ion balance at low temperatures. *J Insect Physiol* 77:15–25. <https://doi.org/10.1016/j.jinsphys.2015.03.015>

David JR, Gibert P, Pla E, Petavy G, Karan D, Moreteau B (1998) Cold stress tolerance in *Drosophila*: analysis of chill coma recovery in *D. melanogaster*. *J Therm Biol* 23:291–299. [https://doi.org/10.1016/S0306-4565\(98\)00020-5](https://doi.org/10.1016/S0306-4565(98)00020-5)

David JR, Gibert P, Moreteau B, Gilchrist GW, Huey RB (2003) The fly that came in from the cold: geographic variation of recovery time from low-temperature exposure in *Drosophila subobscura*. *Funct Ecol* 17:425–430

Davidson JK (1990) Nonparallel geographic patterns for tolerance to cold and desiccation in *Drosophila melanogaster* and *Drosophila simulans*. *Aust J Zool* 38:155–161. <https://doi.org/10.1071/zo9900155>

de la Vega GJ, Medone P, Ceccarelli S, Rabinovich J, Schilman PE (2015) Geographical distribution, climatic variability and thermotolerance of Chagas disease vectors. *Ecography* 38:851–860. <https://doi.org/10.1111/ecog.01028>

Des Marteaux LE, Sinclair BJ (2016) Ion and water balance in *Gryllus* crickets during the first twelve hours of cold exposure. *J Insect Physiol* 89:19–27. <https://doi.org/10.1016/j.jinsphys.2016.03.007>

Findsen A, Pedersen TH, Petersen AG, Nielsen OB, Overgaard J (2014) Why do insects enter and recover from chill coma? Low temperature and high extracellular potassium compromise muscle function in *Locusta migratoria*. *J Exp Biol* 217:1297–1306. <https://doi.org/10.1242/jeb.098442>

Gerber L, Overgaard J (2018) Cold tolerance is linked to osmoregulatory function of the hindgut in *Locusta migratoria*. *J Exp Biol* 221:eb173930. <https://doi.org/10.1242/jeb.173930>

Gibert P, Huey RB (2001) Chill-coma temperature in *Drosophila*: effects of developmental temperature, latitude, and phylogeny. *Physiol Biochem Zool* 74:429–434. <https://doi.org/10.1086/320429>

Goller F, Esch HE (1990) Muscle potentials and temperature acclimation and acclimatization in flight muscles of workers and drones of *Apis mellifera*. *J Therm Biol* 15:307–312

Gonzalez VH, Hranitz JM, Percival CR, Pulley KL, Tapsak ST, Tscheulin T, Petanidou T, Barthell JF (2020) Thermal tolerance varies with dim-light foraging and elevation in large carpenter bees (Hymenoptera: Apidae: Xylocopini). *Ecol Entomol* 45:688–696. <https://doi.org/10.1111/een.12842>

Goulson D (2003) Bumblebees: their behaviour and ecology. Oxford University Press, London

Goulson D, Lye GC, Darvill B (2008) Decline and conservation of bumblebees. *Annu Rev Entomol* 53:191–208

Guo F, Guénard B, Economo EP et al (2020) Activity niches outperform thermal physiological limits in predicting global ant distributions. *J Biogeogr* 47:829–842. <https://doi.org/10.1111/jbi.13799>

Hamblin AL, Youngsteadt E, López-Uribe MM, Frank SD (2017) Physiological thermal limits predict differential responses of bees to urban heat-island effects. *Biol Lett* 13:20170125. <https://doi.org/10.1098/rsbl.2017.0125>

Harrington R, Taylor LR (1990) Migration for survival: fine-scale population redistribution in an aphid, *Myzus persicae*. *J Anim Ecol* 59:1177. <https://doi.org/10.2307/5039>

Hazell SP, Bale JS (2011) Low temperature thresholds: are chill coma and CT_{min} synonymous? *J Insect Physiol* 57:1085–1089. <https://doi.org/10.1016/j.jinsphys.2011.04.004>

Heinrich B (1972) Energetics of temperature regulation and foraging in a bumblebee, *Bombus terricola* Kirby. *J Comp Physiol* 77:49–64

Heinrich B (1974) Thermoregulation in bumblebees: I. Brood incubation by *Bombus vosnesenskii* queens. *J Comp Physiol* 88:129–140. <https://doi.org/10.1007/BF00695404>

Heinrich B (1975) Thermoregulation in bumblebees II. Energetics of warm-up and free flight. *J Comp Physiol B* 96:155–166. <https://doi.org/10.1007/BF00706595>

Heinrich B (1979) Bumblebee economics. Harvard University Press, Cambridge

Heinrich B (1993) The hot-blooded insects: strategies and mechanisms of thermoregulation. Harvard University Press

Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. *Int J Climatol* 25:1965–1978. <https://doi.org/10.1002/joc.1276>

Hoffmann AA, Hallas R, Sinclair C, Mitrovski P (2001) Levels of variation in stress resistance in *Drosophila* among strains, local populations, and geographic regions: patterns for desiccation, starvation, cold resistance, and associated traits. *Evolution* 55:1621–1630. <https://doi.org/10.1111/j.0014-3820.2001.tb00681.x>

Hoffmann AA, Anderson A, Hallas R (2002) Opposing clines for high and low temperature resistance in *Drosophila melanogaster*. *Ecol Lett* 5:614–618. <https://doi.org/10.1046/j.1461-0248.2002.00367.x>

Hoffmann AA, Sørensen JG, Loeschke V (2003) Adaptation of *Drosophila* to temperature extremes: bringing together quantitative and molecular approaches. *J Therm Biol* 28:175–216. [https://doi.org/10.1016/S0306-4565\(02\)00057-8](https://doi.org/10.1016/S0306-4565(02)00057-8)

Hughes GE, Owen E, Sterk G, Bale JS (2010) Thermal activity thresholds of the parasitic wasp *Lysiphlebus testaceipes* and its aphid prey: implications for the efficacy of biological control. *Physiol Entomol* 35:373–378. <https://doi.org/10.1111/j.1365-3032.2010.00754.x>

Jackson JM, Pimsler ML, Oyen KJ, Koch-Uhuad JB, Herndon JD, Strange JP, Dillon ME, Lozier JD (2018) Distance, elevation and environment as drivers of diversity and divergence in bumblebees across latitude and altitude. *Mol Ecol* 27:2926–2942. <https://doi.org/10.1111/mec.14735>

Jackson JM, Pimsler ML, Oyen KJ, Strange JP, Dillon ME, Lozier JD (2020) Local adaptation across a complex bioclimatic landscape in two montane bumblebee species. *Mol Ecol* 29:920–939. <https://doi.org/10.1111/mec.15376>

Kerr JT, Pindar A, Galpern P, Packer L, Potts SG, Roberts SM, Rasmont P, Schweiger O, Colla SR, Richardson LL, Wagner DL, Gall LF, Sikes DS, Pantoja A (2015) Climate change impacts on bumblebees converge across continents. *Science* 349:177–180. <https://doi.org/10.1126/science.aaa7031>

Koštál V, Vambera J, Bastl J (2004) On the nature of pre-freeze mortality in insects: water balance, ion homeostasis and energy charge in the adults of *Pyrrhocoris apterus*. *J Exp Biol* 207:1509–1521. <https://doi.org/10.1242/jeb.00923>

Lancaster LT, Dudaniec RY, Hansson B, Svensson EI (2015) Latitudinal shift in thermal niche breadth results from thermal release during a climate-mediated range expansion. *J Biogeogr* 42:1953–1963. <https://doi.org/10.1111/jbi.12553>

Larsson FK (1989) Insect mating patterns explained by microclimatic variables. *J Therm Biol* 14:155–157. [https://doi.org/10.1016/0306-4565\(89\)90038-7](https://doi.org/10.1016/0306-4565(89)90038-7)

Leiva FP, Calosi P, Verberk WCEP (2019) Scaling of thermal tolerance with body mass and genome size in ectotherms: a comparison between water- and air-breathers. *Philos Trans R Soc B Biol Sci* 374:20190035. <https://doi.org/10.1098/rstb.2019.0035>

Macdonald SS, Rako L, Batterham P, Hoffmann AA (2004) Dissecting chill coma recovery as a measure of cold resistance: evidence for a biphasic response in *Drosophila melanogaster*. *J Insect Physiol* 50:695–700. <https://doi.org/10.1016/j.jinsphys.2004.05.004>

MacMillan HA, Sinclair BJ (2011) Mechanisms underlying insect chill-coma. *J Insect Physiol* 57:12–20

MacMillan HA, Williams CM, Staples JF, Sinclair BJ (2012) Reestablishment of ion homeostasis during chill-coma recovery in the cricket *Gryllus pennsylvanicus*. *PNAS* 109:20750–20755. <https://doi.org/10.1073/pnas.1212788109>

MacMillan HA, Findsen A, Pedersen TH, Overgaard J (2014) Cold-induced depolarization of insect muscle: differing roles of extracellular K⁺ during acute and chronic chilling. *J Exp Biol* 217:2930–2938. <https://doi.org/10.1242/jeb.107516>

MacMillan HA, Andersen JL, Davies SA, Overgaard J (2015) The capacity to maintain ion and water homeostasis underlies interspecific variation in *Drosophila* cold tolerance. *Sci Rep*. <https://doi.org/10.1038/srep18607>

Martinet B, Lecocq T, Smet J, Rasmont P (2015) A protocol to assess insect resistance to heat waves, applied to bumblebees (*Bombus* Latreille, 1802). *PLoS ONE* 10:e0118591. <https://doi.org/10.1371/journal.pone.0118591>

Mellanby K (1939) Low temperature and insect activity. *Proc R Soc Lond Ser B Biol Sci* 127:473–487. <https://doi.org/10.1098/rspb.1939.0035>

Modlmeier AP, Paminger T, Foitzik S, Scharf I (2012) Cold resistance depends on acclimation and behavioral caste in a temperate ant. *Naturwissenschaften* 99:811–819. <https://doi.org/10.1007/s00114-012-0963-8>

Overgaard J, MacMillan HA (2017) The integrative physiology of insect chill tolerance. *Annu Rev Physiol*. <https://doi.org/10.1146/annurev-physiol-022516-034142>

Owen EL, Bale JS, Hayward SAL (2013) Can winter-active bumblebees survive the cold? Assessing the cold tolerance of *Bombus terrestris* audax and the effects of pollen feeding. *PLoS ONE* 8:e80061. <https://doi.org/10.1371/journal.pone.0080061>

Oyen KJ, Dillon ME (2018) Critical thermal limits of bumblebees (*Bombus impatiens*) are marked by stereotypical behaviors and are unchanged by acclimation, age or feeding status. *J Exp Biol* 221:jeb165589. <https://doi.org/10.1242/jeb.165589>

Oyen KJ, Giri S, Dillon ME (2016) Altitudinal variation in bumblebee (*Bombus*) critical thermal limits. *J Therm Biol* 59:52–57. <https://doi.org/10.1016/j.jtherbio.2016.04.015>

Pimsler ML, Oyen KJ, Herndon JD, Jackson JM, Strange JP, Dillon ME, Lozier JD (2020) Biogeographic parallels in thermal tolerance and gene expression variation under temperature stress in a widespread bumblebee. *Sci Rep* 10:17063. <https://doi.org/10.1038/s41598-020-73391-8>

Pinheiro J, Bates D, DebRoy S, Sarkar D, R Core Team (2013) nlme: Linear and nonlinear mixed effects models. <https://CRAN.R-project.org/package=nlme>

Polilov AA, Makarova AA (2017) The scaling and allometry of organ size associated with miniaturization in insects: a case study for Coleoptera and Hymenoptera. *Sci Rep* 7:43095. <https://doi.org/10.1038/srep43095>

R Development Core Team (2017) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

Revelle W (1979) Hierarchical cluster analysis and the internal structure of tests. *Multivar Behav Res* 14:57–74. https://doi.org/10.1207/s15327906mbr1401_4

Revelle W (2020) psych: Procedures for psychological, psychometric, and personality research. Northwestern University, Evanston

Robertson RM, Spong KE, Srithiphaphirom P (2017) Chill coma in the locust, *Locusta migratoria*, is initiated by spreading depolarization in the central nervous system. *Sci Rep* 7:10297. <https://doi.org/10.1038/s41598-017-10586-6>

Sinclair BJ, Williams CM, Terblanche JS (2012) Variation in thermal performance among insect populations. *Physiol Biochem Zool* 85:594–606. <https://doi.org/10.1086/665388>

Sinclair BJ, Coello Alvarado LE, Ferguson LV (2015) An invitation to measure insect cold tolerance: methods, approaches, and workflow. *J Therm Biol* 53:180–197. <https://doi.org/10.1016/j.jtherbio.2015.11.003>

Sisodia S, Singh BN (2010) Influence of developmental temperature on cold shock and chill coma recovery in *Drosophila ananassae*: acclimation and latitudinal variations among Indian populations. *J Therm Biol* 35:117–124. <https://doi.org/10.1016/j.jtherbio.2010.01.001>

Soroye P, Newbold T, Kerr J (2020) Climate change contributes to widespread declines among bumblebees across continents. *Science* 367:685–688. <https://doi.org/10.1126/science.aax8591>

Stelzer RJ, Chittka L (2010) Bumblebee foraging rhythms under the midnight sun measured with radiofrequency identification. *BMC Biol* 8:93. <https://doi.org/10.1186/1741-7007-8-93>

Stoks R, Block MD (2011) Rapid growth reduces cold resistance: evidence from latitudinal variation in growth rate, cold resistance and stress proteins. *PLoS ONE* 6:e16935. <https://doi.org/10.1371/journal.pone.0016935>

Strange JP (2010) Nest initiation in three North American bumblebees (*Bombus*): Gyno number and presence of honey bee workers influence establishment success and colony size. *J Insect Sci* 10:130. <https://doi.org/10.1673/031.010.13001>

Sunday JM, Bates AE, Dulvy NK (2012) Thermal tolerance and the global redistribution of animals. *Nat Clim Change* 2:686–690. <https://doi.org/10.1038/nclimate1539>

Terblanche JS, Klok CJ, Krafur ES, Chown SL (2006) Phenotypic plasticity and geographic variation in thermal tolerance and water loss of the tsetse *Glossina pallidipes* (Diptera: Glossinidae): implications for distribution modelling. *Am J Trop Med Hyg* 74:786–794. <https://doi.org/10.4269/ajtmh.2006.74.786>

Tonione MA, Cho SM, Richmond G, Irian C, Tsutsui ND (2020) Intraspecific variation in thermal acclimation and tolerance

between populations of the winter ant, *Prenolepis imparis*. *Ecol Evol* 10:4749–4761. <https://doi.org/10.1002/ece3.6229>

Warren DL, Seifert SN (2011) Ecological niche modeling in Maxent: the importance of model complexity and the performance of model selection criteria. *Ecol Appl* 21:335–342. <https://doi.org/10.1890/10-1171.1>

Weidenmüller A, Kleineidam C, Tautz J (2002) Collective control of nest climate parameters in bumblebee colonies. *Anim Behav* 63:1065–1071. <https://doi.org/10.1006/anbe.2002.3020>

Whitford WG, Ettershank G (1975) Factors affecting foraging activity in Chihuahuan desert harvester ants. *Environ Entomol* 4:689–696. <https://doi.org/10.1093/ee/4.5.689>

Williams PH, Thorp RW, Richardson LL, Colla SR (2014) Bumblebees of North America: an identification guide. Princeton University Press

Woodard SH (2017) Bumblebee ecophysiology: integrating the changing environment and the organism. *Curr Opin Insect Sci* 22:101–108. <https://doi.org/10.1016/j.cois.2017.06.001>

Zeilstra I, Fischer K (2005) Cold tolerance in relation to developmental and adult temperature in a butterfly. *Physiol Entomol* 30:92–95. <https://doi.org/10.1111/j.0307-6962.2005.00430.x>

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.