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Abstract

The time required to recover from cold exposure (chill coma recovery time) may represent an important metric of perfor-
mance and has been linked to geographic distributions of diverse species. Chill coma recovery time (CCRT) has rarely been
measured in bumble bees (genus Bombus) but may provide insights regarding recent changes in their distributions. We
measured CCRT of Bombus vosnesenskii workers reared in common garden laboratory conditions from queens collected
across altitude and latitude in the Western United States. We also compared CCRTs of male and female bumble bees because
males are often overlooked in studies of bumble bee ecology and physiology and may differ in their ability to respond to
cold temperatures. We found no relationship between CCRT and local climate at the queen collection sites, but CCRT varied
significantly with sex and body mass. Because differences in the ability to recover from cold temperatures have been shown
in wild-caught Bombus, we predict that variability in CCRT may be strongly influenced by plasticity.
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Introduction

For many invertebrates, prolonged exposure to low tempera-
tures results in chill coma, a reversible state of paralysis
(Hazell and Bale 2011; MacMillan and Sinclair 2011; Mel-
lanby 1939; Overgaard and MacMillan 2017). Chill coma
is both a physiological and an ecological threshold. With
loss of central nervous system (CNS) and muscle function
at low temperatures, organisms are no longer able to feed
(Harrington and Taylor 1990), reproduce (Larsson 1989),
or evade predation (Hughes et al. 2010). Therefore, the time
required for recovery of muscle and CNS function following
chill coma, chill coma recovery time (CCRT), often rep-
resents an important physiological metric of performance,
particularly for species that are distributed across broad
environmental gradients (Gibert and Huey 2001; Castafieda
et al. 2005; Sisodia and Singh 2010). Cold tolerance met-
rics often shift in parallel in many species (Andersen et al.
2015; Sunday et al. 2012; Terblanche et al. 2006). For exam-
ple, both critical thermal minimum (CT,;,, the temperature
at which an organism loses critical muscle function) and
CCRT are lower in Drosophila from cooler temperate cli-
mates relative to Drosophila from lower latitudes (Gibert
and Huey 2001; Hoffmann et al. 2002; David et al. 2003;
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Ayrinhac et al. 2004; Sisodia and Singh 2010). Although
CT i, and CCRT often vary in parallel and are both used
to estimate cold tolerance, their underlying physiological
mechanisms are different. The onset of chill coma is driven
by temperature-dependent spreading depolarization in the
central nervous system (CNS) usually followed by muscle
membrane depolarizaion; recovery from chill coma requires
reestablishment of extracellular and intracellular ion homeo-
stasis necessary for the restoration of both CNS and muscle
function (Overgaard and MacMillan 2017; Andersen and
Overgaard 2019).

Following CT,;,, which is characterized by immediate
silencing in the CNS, prolonged chill coma leads to a redis-
tribution of ions throughout the body (Findsen et al. 2014;
Des Marteaux and Sinclair 2016; Robertson et al. 2017). At
benign temperatures, ion and water balance are sustained by
the dynamic interplay between secretion by the Malpighian
tubules and reabsorption in the hindgut. Prolonged exposure
to low temperatures reduces the capacity of temperature-
sensitive ion pumps, leading to ion imbalance (MacMil-
lan et al. 2014, 2015; Gerber and Overgaard 2018). This
temperature-driven redistribution of ions is caused by leak-
age of extracellular Na* into the gut with water following,
which reduces hemolymph volume and subsequently con-
centrates extracellular K* (hyperkalemia; Kostal et al. 2004;
Andersen et al. 2017a; Overgaard and MacMillan 2017).
As concentrations of extracellular ions (particularly K*)
increase, muscles depolarize, potentially opening voltage-
sensitive Ca®* channels, leading to increased intracellular
Ca”* levels which initiate apoptotic pathways and eventual
cell death (Bayley et al. 2018). More recent data suggest that
apoptosis is less indicative of whole-animal chilling injury
than is hemolymph hyperkalemia, suggesting a direct link
between ion imbalance and cold-induced cell death (Car-
rington et al. 2020). Therefore, the ability to defend intra-
and extracellular ion concentrations and quickly re-establish
ion homeostasis following cold exposure directly impacts
adaptation to low temperatures in insects (MacMillan et al.
2015; Andersen and Overgaard 2020). Enhanced function
of osmoregulatory organs (both the Malpighian tubules and
the hindgut) may therefore facilitate faster recovery from
chill coma (lower CCRT) in cold-adapted insect populations
(MacMillan et al. 2015; Andersen et al. 2017a, b; Andersen
and Overgaard 2020).

Differences in cold tolerance traits, including CT,;, and
CCRT, often correlate with the geographic distributions of
diverse organisms (Sunday et al. 2012; Pimsler et al. 2020).
For many species, CCRT decreases with increasing alti-
tude and latitude (Angert et al. 2011; Sinclair et al. 2012).
Links between CCRT and geographic distributions are most
compelling in Drosophila, which have been measured in
both common garden (demonstrating adaptation) and field
experiments (possibly encompassing both acclimation and
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adaptation) across multiple geographic gradients (Hoffmann
et al. 2001, 2003; David et al. 2003). CCRT of Drosophila
melanogaster decreased by nearly 20 min along a 28° latitu-
dinal gradient in Eastern Australia (Hoffmann et al. 2002),
and by 45 min in Drosophila ananassae across a latitudi-
nal gradient in India (Sisodia and Singh 2010). These stud-
ies suggest local adaptation in CCRT in flies as they were
reared in common-garden conditions prior to testing. Simi-
lar geographic variation in CCRT has been shown in other
organisms, including woodlice (Castafieda et al. 2005), but-
terflies (Zeilstra and Fischer 2005), triatomine bugs (Vega
et al. 2015), and damselflies (Stoks and Block 2011). Given
the clear links between geographic gradients and CCRT in
diverse species, bumble bees (genus Bombus), which are
broadly distributed throughout the Northern Hemisphere
(Williams et al. 2014) and show pronounced geographic
variation in CT_;, (Pimsler et al. 2020), may also show geo-
graphic variation in CCRT. Further, analyses of bumble bee
specimen records and associated climate data suggest that
recent range shifts and population declines may reflect mis-
matches between changing temperatures and thermal toler-
ance limits (Kerr et al. 2015; Soroye et al. 2020). Direct
measurements of geographic variation in bumble bee ther-
mal tolerance will likely enable more robust predictions of
the impacts of climate change on these important pollinators
(Woodard 2017).

Building on a long history of research on thermal biol-
ogy of bumble bees (Heinrich 1972, 1974, 1975,1979,1993),
more recent work has measured thermal tolerance in the
group (Owen et al. 2013; Martinet et al. 2015; Oyen and Dil-
lon 2018) and begun to document variation in thermal phys-
iology across environmental gradients (Oyen et al. 2016;
Hamblin et al. 2017; Pimsler et al. 2020). The temperature at
which bumble bees lose their righting response and the tem-
perature at which they recover from chill coma co-vary with
altitude among species, with those from high altitude having
lower CT,;, and chill coma recovery temperatures (Oyen
et al. 2016). However, this study was conducted on wild
bees tested within 2 h of their collection in the field, so it is
unclear if these differences in cold tolerance reflect adaptive
evolution or are the product of adult phenotypic plasticity,
developmental, or even epigenetic effects. More recently,
Pimsler et al. (2020) found pronounced variation in CT,;,
among bumble bees reared in common-garden conditions
from queens captured across latitudinal and altitudinal gra-
dients. Bees with origins in the coldest environments (high
latitude, high altitude sites) tolerated temperatures nearly
10 °C colder than did bees from the warmest environments
(low latitude lowlands), providing compelling evidence for
local adaptation in CT,;, (and epigenetic effects may also
be at play). Because CCRT can be easily measured (Sinclair
et al. 2015), varies with altitude and latitude in many insects
(Gibert and Huey 2001; David et al. 2003), can respond to
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selection (Anderson et al. 2005), and has a different under-
lying mechanism relative to CT,,,, it may provide a useful
metric (complementary to CT,;,) for estimating the influ-
ence of plasticity and local adaptation in thermal tolerance
on current and future distributions of bumble bees (Goulson
et al. 2008).

Male bumble bees are often overlooked when consider-
ing the ecology and physiology of social pollinators because
female workers are primarily responsible for brood care, cell
building, hive maintenance, and foraging (Goulson 2003).
However, given the considerable life history differences
between male and female bumble bees, the advantage of
broad thermal tolerance is potentially greater for males
than females. Upon emergence, male bumble bees leave the
nest in search of queens with which to mate. In contrast
to females which spend nights in thermoregulated nests,
male bumble bees rarely return to the nest, instead spending
their nights exposed to potentially cold conditions (Goulson
2003). On cool mornings, typically reported between 0 and
2 °C, drones are often found completely inactive, hanging
by their mandibles from leaves and twigs (Heinrich 1979).
Throughout the geographic range of bumble bees measured
in our study, ambient temperatures can dip below — 6 °C,
even during growing seasons which can extend from April to
September, depending on seasonality at various sites. Given
the cool conditions that male bumble bees likely experience
while overnighting outside the nest at high altitudes and lati-
tudes, male bumble bees may require increased tolerance to
cold exposure as compared to females.

We measured CCRT of male and female Bombus
vosnesenskii reared in common garden conditions from
queens collected at sites across western North America
(Fig. 1). We hypothesized that variation in climate experi-
enced by these populations would be matched by variation
in CCRT, allowing bumble bees to cope with local climate
conditions. We predicted that bumble bees from colder cli-
mates would recover from cold exposure more quickly (have
shorter CCRT) than those from warmer climates. We also
predicted that, given their different life history, males would
be more cold-tolerant (have shorter CCRT) than workers
(females).

Materials and methods
Bumble bee collection and husbandry

Bombus vosnesenskii queens were collected in the spring
of 2016 during queen emergence from winter dormancy. A
total of six sites across three regions were sampled (Fig. 1,
Table 1): four sites at low and high elevation in central Cali-
fornia, USA (LCA and HCA, respectively, average latitude

Fig. 1 Bombus vosnesenskii queen collection sites (A—F, see Table 1)
with map color scale indicating minimum annual temperatures

of 36.581 +0.459° N) and two sites at low elevation in Ore-
gon, USA (LOR, average latitude of 45.258 +0.568° N).
Low elevation queens from both CA and OR were collected
at an average elevation of 371 m (+311 m), and high eleva-
tion queens from CA were collected at 2154 m (Table 1).
Queens were collected by net while foraging or flying, then
kept in vials in a cooler for transport to the USDA-ARS Pol-
linating Insect Research Unit’s (PIRU) bumble bee rearing
facility (Logan, Utah USA).

At PIRU, queens were induced to produce colonies fol-
lowing Strange (2010) with modifications. Each queen was
given a unique identification code and placed in a 2.25 L
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Table 1 Collection localities

- Site Region State Latitude Longitude Elevation (m) Collection date January, July mini-
of queen B. Yosnesensku from mum temperatures
which colonies were r'ejclred in (°C)
common garden conditions

A LOR OR 45.696 —121.339 70 1-Apr-16 -1.7,13.9
B LOR OR 45.535 —121.208 441 2-Apr-16 —-43,9.6
B LOR OR 45.535 —121.208 441 4-Apr-16 —-43,9.6
B LOR OR 45.535 —121.208 441 3-Apr-16 —-43,9.6
B LOR OR 45.535 —121.208 441 3-Apr-16 —43,9.6
C LCA CA 37.036 —119.527 351 26-Feb-16 1.7,17.4
D HCA CA 36.631 —118.804 2154 13-May-16 —-4.6,9.3
D HCA CA 36.631 —118.804 2154 13-May-16 —4.6,9.3
D HCA CA 36.631 —118.804 2154 13-May-16 —4.6,9.3
E LCA CA 36.400 —118.991 225 25-Feb-16 2.5,17.6
F LCA CA 35.689 — 121.288 7 24-Feb-16 4.2,9.9

Region abbreviations indicate elevation and state, with LOR and LCA indicating low elevation sites in
Oregon and California, respectively and HCA representing high elevation sites in California

plastic queen initiation box (Biobest, Leamington, ON)
with approximately 500 mg pollen and sugar solution pro-
vided in a 60 mL plastic reservoir ad libitum. The initiation
boxes were then placed in a dark, climate-controlled room
that was kept at 27 +1 °C and 55-60% humidity (Strange
2010). Queens were checked daily for nesting signs such
as wax secretion, honey pot construction, and presence of
brood. Once five workers had eclosed, the small colony was
moved into a 7.75 L plastic hive box (Biobest, Leamington,
ON). Once colonies had more than 20 workers, they were
transported to the University of Wyoming for physiologi-
cal experiments. From nest initiation through to their use in
experiments, queens and colonies were checked daily for the
presence of disease and pests, fed as needed, and managed
to maximize colony growth.

Measurement of CCRT

To measure CCRT, bumble bees were removed from col-
onies with forceps and weighed to the nearest mg. Once
weighed, 12 bumble bees at a time were placed individually
in five dram plastic vials, which were submerged in a cir-
culator chiller (Lauda Brinkmann RC6, Division of Sybron
Corporation, Westbury, NY). Pilot experiments revealed that
over 50% of bees held at — 6 °C for 4 h did not fully recover
motor function within 5 h, suggesting that these conditions
caused chilling injury (Sinclair et al. 2015). Bees held at
0 °C for 4 h recovered motor function within 1-3 min, sug-
gesting that these conditions did not fully induce chill coma
(Macdonald et al. 2004; Sinclair et al. 2015). Therefore, to
avoid chilling injury and ensure that all bees were below
the chill coma threshold, we exposed bees to — 4 °C for 2
h; all bees exposed to these conditions were unresponsive
to perturbations for several minutes after being returned to
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room temperature but also fully recovered from chill coma
within ~ 20 min. Further, these are likely ecologically real-
istic temperature exposures, given that bumble bees begin
foraging early in the morning, even at high latitude sites
(Stelzer and Chittka 2010), when daily minimum tempera-
tures are often below 0 °C.

Following the 2-h exposure, bumble bees were removed
from the water bath and placed individually into the 12 wells
of tissue culture microplates (CELLTREAT, USA, Houston
TX) on the benchtop at room temperature (22 +0.05 °C;
Omega Multi-Channel Digital Thermocouple Thermometer,
Omega Engineering Inc., Norwalk, CT, USA). The clear
microplate lid permitted easy visualization of each bum-
ble bee during recovery. The microplate was placed on a
white sheet of paper and filmed from above with a digital
camcorder (Handycam CX405, SONY Corporation, Tokyo,
Japan) on a tripod. A stopwatch started immediately after
bumble bees were removed from the cold was placed within
the camera view to record the time at which bumble bees
recovered from chill coma, as indicated by coordinated fore-
and hindleg movement, which was clearly distinguishable
from twitches of the limbs observed during rewarming
(MacMillan et al. 2012).

Climate data

Mean temperatures (annual, minimum, maximum) and bio-
climatic variables (Bioclim1-19) within a 1 km radius of
each queen collection site (Table 1) were estimated using
‘WorldClim’, a global climate database with high spatial res-
olution produced through interpolation of average monthly
climate data from weather stations on a 30 arc-s resolution
grid (Version 1.4, www.worldclim.org; Hijmans et al. 2005).
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Analyses

ANOVA was used to compare mass and CCRT among sites
and between sexes. Pairwise analyses revealed significant
collinearity among many individual climate variables and
bumble bee mass; smaller bumble bees were typically from
warmer sites. Because mass strongly influenced CCRT
and varied among sites and colonies, we used the residuals
from the regression of CCRT on mass for climate model
comparisons.

To identify factors affecting recovery rates for bum-
ble bees, we performed linear mixed effects regression
analyses using the R package nlme (Pinheiro et al. 2013).
We evaluated the relationships between (1) body mass, sex,
and CCRT; and, (2) the regressed residuals of CCRT on
mass, sex, and climate variables. CCRT was evaluated with
respect to multiple factors: site (a fixed factor), body mass
(a fixed factor), sex (a fixed factor), the interaction between
body mass and sex, colony (a random factor), and January
minimum temperature or July minimum temperature or
annual mean temperature or annual precipitation or tempera-
ture seasonality (all fixed factors, see below). During model
selection, Akaike’s information criterion (AIC), biological
significance of fixed effects, and parsimony were used to
distinguish among competing models (Warren and Seifert
2011; Lancaster et al. 2015).

Because climate variables were highly correlated, we
used cluster analysis in the R package psych (Revelle 2020)
to choose representative temperature and Bioclim factors for
inclusion in models. Item cluster analysis is an algorithm
that hierarchically clusters predictors based on the extent
that they covary (Revelle 1979). The resultant proximity
matrix reflects Pearson correlations where the most corre-
lated factors fall closest within the matrix. Two metrics, a
and f, provide estimates of reliability within each cluster,
with a representing the highest correlations between vari-
ables within the cluster and f being based upon the two
least correlated items within each cluster. To show the most
conservative estimates of clustering reliability, we report
minimum /3 values.

Minimum temperatures clustered into two groups whereas
Bioclim variables clustered into three groups (Supplemental
Figs. 1 and 2). Based on clusters, we selected July minimum
temperature, which clustered tightly with August minimum
temperature (f=1.0), and January minimum temperature,
which clustered tightly with ten other minimum tempera-
tures ($=0.96). Together, July minimum temperature and
January minimum temperature characterize the annual tem-
perature variability at our sites and were selected to rep-
resent cool summer and winter temperatures experienced
by bumble bees in these regions. We also selected annual
mean temperature (BIO 1), which clustered with seven other
variables (#=0.68), annual precipitation (BIO 12), which
clustered with three other variables (f=1.0), maximum
temperature of the warmest month (BIO 5), which clustered
with three variables (8=0.95), and temperature seasonality
(BIO 4), which clustered with two other variables (3=0.92).
Together these variables capture site differences in tempera-
ture and precipitation, which have both been shown to influ-
ence cold tolerance metrics (Whitford and Ettershank 1975;
Terblanche et al. 2006; Vega et al. 2015).

Following model selection, pairwise analyses confirmed
no collinearity between variables included in models (all
variance inflation factors < 3). A Tukey HSD test for une-
qual sample size was used a posteriori. Prior to analyses,
we checked assumptions of normality and homoscedasticity
of raw data using Q-0 plots and Bartlett tests, respectively.
Post hoc analyses revealed normal distribution of model
residuals, and a Fligner—Killeen test confirmed homogene-
ity of model residuals. All analyses and figures were done in
R version 3.1.3 (R Development Core Team 2017).

Results

CCRT was measured for 509 B. vosnesenskii including
284 females and 225 males. The bees came from 11 colo-
nies reared from queens collected from six sites spanning
from ~ 35 to 45° N latitude and from 7 to 2154 m in elevation
(Table 1; Fig. 1). Across all bees, CCRT ranged from 5.7 to

Table 2 Variation in body mass

! 4 Region Site Females Males
and chill coma recovery time
(CCRT) among populations and n Mass (mg) CCRT (min) n Mass (mg) CCRT (min)
between sexes for bumble bees
reared in common garden LOR A 48 111.6+30.9? 12.6+2.5 - — —
conditions fr(?m queens LOR B 72 150.7+31.7° 11.4+1.8 60 143.1 +£32.0* 13.1+2.2
co'llected at six different sites LCA C B _ _ 53 8944245 112426
(Fig. 1, Table 1)
HCA D 70 126.4 +28.8° 11.0+1.9 83 131.5+27.8% 11.0+1.9
LCA E 34 60.9+16.0 11.5+14 - - -
LCA F 60 101.8 +£27.8* 10.6 +1.7 41 113.5+23.0 11.6+1.8

Values are mean + SD. Significant differences in mass are indicated by letters (female) or symbols (male).

See text for statistical details
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Table 3 Effects of body mass and sex on CCRT among all bees and among bees within each site with mass:sex interaction for those sites with both sexes represented
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Site D* Site E Site F Overall**

Site C

Site B*

Effect on CCRT  Site A

Females and males

Males only

Females and males

Males only

Females and males

Females only

AIC

(d.H) (d.H) (d.

(d.f)

(d.H)
0328 3.01 (1,39)

<0.001 -

(d.H

(8]

0.019 2246.74
0.002 222222

5.50 (1,514)
5.86 (3,97) 0.003 2.69(1,507) 0.102 2212.68

0.337

5.86 (3,97)
5.86 (3,97)

0.002

11.22 (1,32)

1.05 (1,147)  0.307

0.091

0.96 (1,126)
15.44 (1,126)

0.047

4.17 (1,46)

Mass

0.018 9.93 (1,509)

0.691 -

0.02 (1.147) 0.876

0.16 (1,147)

Sex

0.006 -

7.86 (1,126)

Mass* sex

Results are from linear mixed effects models with mass, sex and CCRT as fixed effects and colony as a random effect for sites B and D in which multiple colonies were tested. We did not assess

the effect of colony for sites A, E, or F because 2 or fewer colonies were represented at those sites (Table 1). We did not assess effect of sex for sites A, C, and E, which only had either males or

females represented. Significant effects in bold

*Colony was included as a random effect because bees came from more than two colonies

**Includes all bumble bees at all sites

19 min. Because mass may significantly influence thermal
tolerance traits (Baudier et al. 2015; Oyen et al. 2016), we
assessed whether CCRT varied with mass and whether mass
varied between sexes or among sites (Tables 2 and 3). Over-
all, males and females did not differ significantly in mass
(Fi510= 2.27, P=0.133), but mass, sex, and their interaction
influenced CCRT of bees from some sites (Table 3).

Overall, a linear mixed effects model with colony as a
random effect and mass and sex as fixed effects showed
that CCRT significantly increased with mass for all bees
(F514=5.50, P=0.02) (Table 3). For every 100 mg increase
in mass, CCRT was approximately 6.7 min longer. Further-
more, CCRT varied significantly between the sexes, driven
by a tendency for males to recover from cold more slowly
than females across all sites (F 5;3=13.60, P=0.0002).
Overall, female CCRT increased approximately 2.2 min for
every 100 mg increase in body mass, and male CCRT only
increased approximately 1 min for every 100 mg increase in
mass. However, the effect of mass on CCRT for both sexes
varied among sites (Fig. 2; Table 3). CCRT increased with
mass for females at sites LOR-A, LOR-B, and LCA-E and
for males at site LCA-F, but did not change significantly with
mass at other sites (Table 3). CCRT only differed signifi-
cantly between the sexes at site LOR-B, with males recov-
ering from chill coma significantly more slowly than their
female counterparts (Table 3).

Sex, body mass, site, climate variables, and interac-
tions were included as fixed factors in models, with colony
included as a random factor. The best model (minimum
AIC) did not include any climate variables (Tables 3 and 4,
Fig. 3). All climate variables listed in Table 4 were signifi-
cantly related to the mass-corrected CCRTs (all P <0.003)
in simple linear models without random or interaction effects
but no climate variable explained more than two percent of
the variability in CCRT (all R*<0.02). Models including
climate variables with colony as a random effect and sex as
an interaction term had significantly lower AIC values than
simple linear models without random or interaction effects.
However, all models with climate variables had larger AIC
values than those without (Tables 3 and 4). Figure 3 shows
mean CCRTs of male and female bumble bees in relation to
representative climate variables (minimum annual tempera-
ture and minimum July temperature); neither of these vari-
ables explained significant variation in CCRT for females
(minimum annual temperature: F; ;=0.24, P=0.67; mini-
mum July temperature: F; 5¢=38.15, P=0.10) or males (min-
imum annual temperature: F; ;=0.38, P=0.58; minimum
July temperature: F; 3=0.18, P=0.70).
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Fig.2 CCRT varied with mass and sex for bumble bees reared in
common garden conditions from queens collected across sites in
western North America (see Fig. 1). Significant variation in CCRT
with mass for workers (filled circles, n=248) and males (open cir-
cles, n=225) indicated by gray and black regression lines, respec-
tively. Site elevations are given in meters above sea level (asl)

Table 4 Effects of representative climate variables on mass-corrected
chill coma recovery time (CCRT), with colony as a random factor
(see text for details)

Effect on CCRT F P AIC
(d.f)
Minimum July Temperature 0.949 0.356 2232.15
(1,9
Annual mean temperature BIO 1 0.583 0.465 2232.71
(1,0)
Minimum January temperature 0.038 0.850 2233.07
(1,9
Annual precipitation BIO 12 0.122 0.735 2236.75
(1,9
Max temperature of the warmest 1.034 0.682 2237.03
month BIO 5 (1,9)
Temperature seasonality BIO 4 1.230 0.296 2239.45
(1,9

We also examined the influence of sex on each model, but in every
case AIC values were greater and the interaction between sex and the
climate variable was not significant

Discussion

Contrary to our prediction, variation in CCRTs of bum-
ble bees reared in common garden conditions was not
explained by the climate of queen collection sites (Fig. 3).
We did, however, observe different trends among sites. For
instance, at the most northern sites (LOR-A and LOR-B),
female bees tended to have longer CCRTs. Interestingly,
females from the coastal site, LCA-F, had relatively short
CCRTs given their warmer origins, but this could be driven
by abnormally cool summer temperatures (Fig. 1). Site
HCA-D, the site with the coldest minimum annual and July
temperatures, displayed expected results with short male
and female CCRTs. Although some climate variables were
related to mass-corrected CCRTSs in simple linear regres-
sions, none explained more than two percent (> <0.02) of
the variation in CCRT. Given that our analyses include only
six unique sites, we hesitate to interpret these marginally
significant results. In contrast, local climate explained nearly
68% of the variation among populations in CT,;, of common
garden reared bumble bees (Pimsler et al. 2020).

Two variables, minimum July temperature and minimum
January temperature, captured much of the temperature
variability at our sites and serve as proxies for the seasonal
cold thresholds that may influence CCRT. However, nei-
ther of these were significantly related to CCRT in mixed
effects models. Furthermore, annual precipitation, annual
mean temperature, and temperature seasonality were also
unrelated to CCRT. These inconsistent patterns are difficult

@ Springer
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Fig.3 CCRT did not vary consistently with local climate of queen
collection sites. A Lines depict minimum monthly temperatures aver-
aged from 1 km buffers (WorldClim1.4; Hijmans et al. 2005) around
queen collection sites. Mean CCRT for female (filled circles, n=248)
and male (open circles, n=225) bumble bees compared to minimum
annual temperature (B) and minimum July temperatures (C) at queen
collection sites. Point colors in B and C match colors in A, with
darker blues indicating colder climates
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to explain but may reflect differences in plasticity between
common garden bumble bees used in this study and their
wild counterparts. This underlines the importance of indi-
vidual variation as opposed to regional variation and sug-
gests the need to sample more sites, which is unfortunately
challenging in this system, given the difficulty of large-scale
collection and rearing of queens from many regions.

One reason CCRT may be unrelated to local climate is
that bumble bees regulate nest microclimates and may, there-
fore, be less influenced by ambient temperatures (Weiden-
miiller et al. 2002). Furthermore, bumble bees could shift
activity times to avoid exposure to temperature extremes
(as do ants; Guo et al. 2020) and, given sufficient energy
reserves, may be able to sustain high body temperatures
long enough to return to the nest, thereby avoiding cold
extremes. However, several studies have linked local climate
with bumble bee thermal tolerance (Hamblin et al. 2017,
Oyen et al. 2016; Pimsler et al. 2020) as well as variation in
population genetic structuring (Jackson et al. 2018, 2020).
Future work investigating the importance of microclimates
and behavior will strengthen our understanding of the link
between thermal tolerance and bumble bee distributions (see
e.g. Braschler et al. 2020).

We predicted that male bumble bees would have shorter
CCRTs than females, given that they spend nights out-
side, rather than in the thermoregulated nest with females.
However, at every site, common garden female workers
had shorter CCRTs relative to male drones of comparable
mass. Another study found a similar difference in cold tol-
erance for a different species, B. huntii: females recovered
from chill coma at significantly colder temperatures than
their male counterparts (Oyen et al. 2016). And this find-
ing is consistent with sex effects on cold tolerance in other
insects: studies in locusts, flies, moths and honey bees have
shown that females are generally more cold tolerant than
males (Andersen et al. 2017a; Boersma et al. 2018; David
et al. 1998; Davidson 1990; Goller and Esch 1990). The
mechanisms underlying these consistent differences in cold
tolerance between males and females remain unclear. One
possibility is that high [Na™] in ovaries (see Des Marteaux
and Sinclair 2016) delays cold-induced ion imbalance in
the hemolymph, but this hypothesis has not been explicitly
tested to our knowledge.

The strongest trend we found was an increase in CCRT
with body mass. Few studies have explicitly measured the
effects of body mass on CCRT or other cold tolerance met-
rics and results are generally mixed: for both woodlice and
Temnothorax ants, larger individuals recovered from chill
coma more slowly (Castafieda et al. 2005; Modlmeier et al.
2012), whereas CCRT was independent of body mass in
winter ants (Tonione et al. 2020). Across ectotherm species,
a meta-analysis suggests that cold tolerance decreases with
increasing body size, as larger ectotherms reach CT;, at
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warmer temperatures (Leiva et al. 2019). By contrast, Oyen
et al. (2016) found that larger bumble bees had lower CT,,;.;
and core temperature measurements in lab-reared bees sug-
gest that this pattern was not driven by differences in ther-
mal inertia (Oyen and Dillon 2018). However, in the current
study, the increase in CCRT with mass may relate to thermal
inertia because bees were moved directly from — 4 to 22 °C
in contrast to the ramping approach used in the CT,;, study.
An additional possibility is that body size-related differ-
ences in CT,;, and CCRT reflect the allometry of key organs
involved in defending ion balance after cold exposure.

Several studies suggest that regaining muscle function
during chill coma recovery requires the reestablishment
of ion balance in the hemolymph by both the Malpighian
tubules and the hindgut (Alvarado et al. 2015; MacMil-
lan et al. 2015; Gerber and Overgaard 2018; Andersen and
Overgaard 2020). Although the influence of Malpighian
tubule size on CCRT is unknown, individuals with larger
osmoregulatory organ to hemolymph ratios may reestablish
ion gradients more rapidly than those with smaller ratios.
Hymenoptera have unusual organ allometry compared to
other insects, with the relative size of the Malpighian tubules
decreases with increasing body size (Polilov and Makarova
2017). Larger bees may therefore have relatively smaller
osmoregulatory organs. If transport capacity is related to
size, relatively large hemolymph volumes and relatively
small Malpighian tubules may slow the rate at which larger
bees can recover ion balance, leading to longer CCRTs com-
pared to smaller bees. Although allometric relationships of
organ size and hemolymph volume in relation to CT,;, and
CCRT are virtually unstudied, both the ability of insects
to maintain function of osmoregulatory organs during cold
exposure (Andersen et al. 2017b), and the ability to restore
ion balance after rewarming are tightly coupled to cold toler-
ance (Andersen and Overgaard 2020). Differences in these
capacities may therefore underly sex and size-related differ-
ences in CCRT of bumble bees.

In conclusion, bumble bee CCRTs are strongly influenced
by body mass, perhaps due to organ allometry. The influence
of body mass and allometry on thermal tolerance metrics is
an understudied relationship and may be an interesting ave-
nue for future research. Male bumble bees had significantly
longer CCRTs than females which may be related to ovaries
being enriched in Na™, buffering the effects of cold tempera-
tures. Surprisingly, we found no relationship between local
climate at the queens’ collection sites and CCRT. Given that
several other studies have linked local climate to bee thermal
tolerance limits (Gonzalez et al. 2020; Hamblin et al. 2017,
Oyen et al. 2016; Pimsler et al. 2020), it is possible a low
CT i, allows bumble bees to avoid chill coma altogether,
thus relaxing selection on CCRT. During the growing sea-
son, bumble bees only experience cold temperatures outside
the nest, where entrance into chill coma increases the risk of

predation and reduces foraging time, so a low CT,;, may be
more advantageous than the ability to quickly recover from
chill coma. As such, in contrast to other insects, CCRT may
not be an ecologically relevant metric of cold tolerance in
bumble bees.
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