1022

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 29, NO. 3, JUNE 2021

Edge Computing in the Dark: Leveraging
Contextual-Combinatorial Bandit and
Coded Computing

Chien-Sheng Yang"“, Graduate Student Member, IEEE, Ramtin Pedarsani, Member, IEEE,
and A. Salman Avestimehr, Fellow, IEEE

Abstract— With recent advancements in edge computing capa-
bilities, there has been a significant increase in utilizing the edge
cloud for event-driven and time-sensitive computations. However,
large-scale edge computing networks can suffer substantially
from unpredictable and unreliable computing resources which
can result in high variability of service quality. We consider the
problem of computation offloading over unknown edge cloud
networks with a sequence of timely computation jobs. Motivated
by the MapReduce computation paradigm, we assume that each
computation job can be partitioned to smaller Map functions
which are processed at the edge, and the Reduce function is
computed at the user after the Map results are collected from the
edge nodes. We model the service quality of each edge device as
function of context. The user decides the computations to offload
to each device with the goal of receiving a recoverable set of
computation results in the given deadline. By leveraging the coded
computing framework in order to tackle failures or stragglers
in computation, we formulate this problem using contextual-
combinatorial multi-armed bandits (CC-MAB), and aim to max-
imize the cumulative expected reward. We propose an online
learning policy called online coded edge computing policy, which
provably achieves asymptotically-optimal performance in terms
of regret loss compared with the optimal offline policy for
the proposed CC-MAB problem. In terms of the cumulative
reward, it is shown that the online coded edge computing
policy significantly outperforms other benchmarks via numerical
studies.

Index Terms— Edge computing, coded computing, online learn-
ing, multi-armed bandits.

Manuscript received May 7, 2020; revised December 8, 2020; accepted
January 17, 2021; approved by IEEE/ACM TRANSACTIONS ON NETWORK-
ING Editor G. Iosifidis. Date of publication February 24, 2021; date of
current version June 16, 2021. This work was supported in part by the
Defense Advanced Research Projects Agency (DARPA) under Contract
HRO01117C0053, in part by the Army Research Office (ARO) under Award
WOT1INF1810400, in part by NSF under Grant CCF-1703575, Grant CCF-
1763673, Grant CNS-2003035, and Grant CNS-2002874, in part by the
Office of Naval Research (ONR) under Award NOOO14-16-1-2189, in part
by UC Office of President under Grant LFR-18-548175, and in part by
Intel. A preliminary part of this work was presented in IEEE ISIT 2020.
(Corresponding author: Chien-Sheng Yang.)

Chien-Sheng Yang and A. Salman Avestimehr are with the Depart-
ment of Electrical and Computer Engineering, University of Southern
California, Los Angeles, CA 90089 USA (e-mail: chienshy@usc.edu;
avestimehr @ee.usc.edu).

Ramtin Pedarsani is with the Department of Electrical and Computer
Engineering, University of California at Santa Barbara, Santa Barbara,
CA 93106 USA (e-mail: ramtin@ece.ucsb.edu).

This article has supplementary downloadable material available at
https://doi.org/10.1109/TNET.2021.3058685, provided by the authors.

Digital Object Identifier 10.1109/TNET.2021.3058685

I. INTRODUCTION

ECENT advancements in edge cloud has enabled users

to offload their computations of interest to the edge for
processing. Specifically, there has been a significant increase
in utilizing the edge cloud for event-driven and time-sensitive
computations (e.g., [oT applications and cognitive services),
in which the users increasingly demand timely services with
deadline constraints, i.e., computations of requests have to
be finished within specified deadlines. However, large-scale
distributed computing networks can substantially suffer from
unpredictable and unreliable computing infrastructure which
can result in high variability of computing resources, i.e., ser-
vice quality of the computing resources may vary over time.
The speed variation has several causes including hardware
failure, co-location of computation tasks, communication bot-
tlenecks, etc [2], [3]. While edge computing has offered a
novel framework for computing service provisioning, a careful
design of task scheduling policy is still needed to guarantee
the timeliness of task processing due to the increasing demand
on real-time response of various applications and the unknown
environment of the network.

To take advantage of the parallel computing resources for
reducing the total latency, the applications are often modeled
as a MapReduce computation model, i.e., the computation job
can be partitioned to some smaller Map functions which can
be distributedly processed by the edge devices. Since the data
transmissions between the edge devices can result in large
latency delay, it is often the case that the user computes the
Reduce function on the results of the Map functions upon
receiving the computation results of edge devices to complete
the computation job.

In this article, we study the problem of computation
offloading over edge cloud networks with particular focus
on unknown environment of computing resources and timely
computation jobs. We consider a dynamic computation model,
where a sequence of computation jobs needs to be computed
over the (encoded) data that is distributedly stored at the
edge nodes. More precisely, in an online manner, computation
jobs with given deadlines are submitted to the edge network,
i.e., each computation has to be finished within the given
deadline. We assume the service quality (success probability
of returning results back to the user in deadline) of each edge
device is parameterized by a context (collection of factors

1558-2566 © 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on October 05,2021 at 18:39:35 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-3753-8491
https://orcid.org/0000-0002-1126-0292

YANG et al.: EDGE COMPUTING IN THE DARK: LEVERAGING CONTEXTUAL-COMBINATORIAL BANDIT AND CODED COMPUTING

that affect each edge device). The user aims at selecting edge
devices from the available edge devices such that the user
can receive a recoverable set of computation results in the
given deadline. Our goal is then to design an efficient edge
computing policy that maximizes the cumulative expected
reward, where the expected reward collected at each round
is a linear combination of the success probability of the
computation and the amount of computational resources used
(with negative sign).

One significant challenge in this problem is the joint
design of (1) data storage scheme to provide robustness
against unknown behaviors of edge devices; (2) computation
offloading to edge device; and (3) an online learning pol-
icy for making the offloading decisions based on the past
observed events. In our model, the computation capacities
of the devices (e.g., how likely the computation can be
returned to the user within the deadline) are unknown to the
user.

As the main contributions of the article, we introduce a
coded computing framework in which the data is encoded
and stored at the edge devices in order to provide robustness
against unknown computation capabilities of the devices. The
key idea of coded computing is to encode the data and
design each worker’s computation task such that the fastest
responses of any k£ workers out of total of n workers suffice
to complete the distributed computation, similar to classical
coding theory where receiving any k symbols out of n
transmitted symbols enables the receiver to decode the sent
message. Under coded computing framework, we formulate a
contextual-combinatorial multi-armed bandit (CC-MAB) prob-
lem for the edge computing problem, in which the Lagrange
coding scheme is utilized for data encoding [4].

Then, we propose a policy called online coded edge com-
puting policy, and show that it achieves asymptotically opti-
mal performance in terms of regret loss compared with the
optimal offline policy for the proposed CC-MAB problem
by the careful design of the policy parameters. To prove the
asymptotic optimality of online coded edge computing policy,
we divide the expected regret to three regret terms due to
(1) exploration phases, (2) bad selections of edge devices in
exploitation phases, and (3) good selections of edge devices
in exploitation phases; then we bound these three regrets
separately.

In addition to proving the asymptotic optimality of online
coded edge computing policy, we carry out numerical studies
using the real world scenarios of Amazon EC2 clusters.
In terms of the cumulative reward, the results show that the
online coded edge computing policy significantly outperforms
other benchmarks.

In the following, we summarize the key contributions in this
article:

o We formulate the problem of coded edge computing using

the CC-MAB framework.

o We propose online coded edge computing policy, which

is provably asymptotically optimal.

o We show that the online coded edge computing policy

outperforms other benchmarks via numerical studies.

1023

A. Related Prior Work

Next, we provide a brief literature review that covers three
main lines of work: task scheduling over cloud networks,
coded computing, and the multi-armed bandit problem.

In the dynamic task scheduling problem, jobs arrive to the
network according to a stochastic process, and get scheduled
dynamically over time. The first goal in task scheduling is to
find a throughput-optimal scheduling policy (see e.g., [5]), i.e.
a policy that stabilizes the network, whenever it can be sta-
bilized. For example, Max-Weight scheduling, first proposed
in [6], [7], is known to be throughput-optimal for wireless
networks, flexible queueing networks [8], data centers net-
works [9] and dispersed computing networks [10]. Moreover,
there have been many works which focus on task scheduling
problem with deadline constraints over cloud networks (see
e.g., [11]).

Coded computing broadly refers to a family of tech-
niques that utilize coding to inject computation redundancy
in order to alleviate the various issues that arise in large-
scale distributed computing. In the past few years, coded
computing has had a tremendous success in various prob-
lems, such as straggler mitigation and bandwidth reduction
(e.g., [12]-[21]). Coded computing has also been expanded in
various directions, such as heterogeneous networks (e.g., [22]),
partial stragglers (e.g., [23]), secure and private comput-
ing (e.g., [4], [24]-[27]), distributed optimization (e.g., [28]),
federated learning (e.g., [29]-[31]), blockchains (e.g., [32],
[33]). In a dynamic setting, [34], [35] consider the coded
computing framework with deadline constraints and develops a
learning strategy that can adaptively assign computation loads
to cloud devices. In this article, we go beyond the two states
Markov model considered in [34], [35], and make a sub-
stantial progress by combining the ideas of coded computing
with contextual-combinatorial MAB, which is a more general
framework that does not make any strong assumption (e.g.,
Markov model) on underlying model for the speed of edge
devices.

The multi-armed bandit (MAB) problem has been widely
studied to address the critical tradeoff between exploration and
exploitation in sequential decision making under uncertainty of
environment [36]. The goal of MAB is to learn the single opti-
mal arm among a set of candidate arms of a priori unknown
rewards by sequentially selecting one arm each time and
observing its realized reward [37]. Contextual bandit problem
extends the basic MAB by considering the context-dependent
reward functions [38]-[40]. The combinatorial bandit problem
is another extension of the MAB by allowing multiple-play
(select a set of arms) each time [41], [42]. The contextual-
combinatorial MAB problem considered in this article has also
received much attention recently [43]-[46]. However, [44],
[46] assume that the reward of an action is a linear function
of the contexts different from the reward function considered
in our article. [45] assumes the arm set is fixed throughout the
time but the arms (edge devices) may appear and disappear
across the time in edge networks.

[43] considers a CC-MAB problem for the vehicle cloud
computing, in which the tasks are deadline-constrained. How-

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on October 05,2021 at 18:39:35 UTC from IEEE Xplore. Restrictions apply.

1024

E Deadline d'

/" = @

Input Function " b 4 s \\‘
9 = Mu(fi(X1), .-, fi(Xi)) ~ Xy |
il ft |

vos ; —3

© : ,ft :

User | |

s |

fi(X0), o ful(X) =7 N - |
1 £ e :

VE 0 -

Y X

Edge Network

Fig. 1. Overview of online computation offloading over an edge network
with timely computation requests. In round ¢, the goal of user is to compute
the Map functions fi(X1),..., ft(X%) by the deadline d* using the edge
devices.

ever, the task replication technique used in [43] is to replicate
the “whole job” to multiple edge devices without taking
advantage of parallelism of computational resources. Coded
computing is a more general technique which allows the
dataset to be first partitioned to smaller datasets and then
encoded such that each device has smaller computation com-
pared to [43]. Moreover, the success probability term (for
receiving any k results out of n results) of reward function
considered in our paper is more general than the success
probability term (for receiving any 1 result out of n results)
of reward function considered in [43].

II. SYSTEM MODEL
A. Computation Model

We consider an edge computing problem, in which a user
offloads its computation to an edge network in an online
manner, and the computation is executed by the edge devices.
In particular, there is a given deadline for each round of
computation, i.e., computation has to be finished within the
given deadline.

As shown in Fig. 1, the considered edge network is com-
posed of a user node and a set of edge devices. There is a
dataset Xy, Xo,..., X where each X; is an element in a
vector space V over a sufficiently large finite field IF. Each
edge device prestores the data which can be possibly a function
of Xl,XQ,...,Xk.

Let {1,2,...,T} be the index of the user’s computation
jobs received by the edge network over T' time slots. In each
round ¢ (or time slot in a discrete-time system), the user has a
computation job denoted by function g;. Especially, we assume
that function g, can be computed by

9t(X1, Xo, ..o, Xi) = by (fe(X1), fr(Xa2), ..o, fu(X))

where function ¢, and f; (with degree deg(f;)) are
multivariate polynomial functions with vector coefficients.
In such edge network and motivated by a MapReduce set-
ting, the user is interested in computing Map functions
fe(X1), fe(X2),..., f(X}) in each round ¢ and the user com-
putes Reduce function h; on those results of Map functions
to obtain g; (X1, Xo, ..., Xi).

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 29, NO. 3, JUNE 2021

Remark 1: We note that the considered computation model
naturally appears in many machine learning applications
which use gradient-type algorithms. For example, in linear
regression problems given ij; which is the vector of observed
labels for data X;, each worker j computes fi(X;) =
X;'—(ij} — ;) which is the gradient of the quadratic loss
function || X 0, — §;||* with respect to the weight vector 1,
in round t. To complete the update W11 = gi(X1,..., X)) =
Wy — [y Z?:1 [i(X;), the user has to collect the computation
results fi(X1), fe(X2), ... fe(Xk).

Moreover, the considered computation model also holds for
various edge computing applications. For example, in a mobile
navigation application, the goal of user is to compute the
fastest route to its destination. Given a dataset containing the
map information and the traffic conditions over a period of
time, edge devices compute map functions which output all
possible routes between the two end locations. After collecting
the intermediate results from edge devices, the user computes
the best route.

B. Network Model

In an edge computing network, whether a computation result
can be returned to the user depends on many factors. For
example, the computation load of an edge device influences
its runtime; the output size of the computation task affects
the transmission delay, etc. Such factors are referred to as
context throughout the article. The impact of each context on
the edge devices is unknown to the user. More specifically,
the computation service of each edge device is modeled as
follows.

Let &1 be the context space of dimension D7 includes
D7 different information of computation task, e.g., size of
input/output, size of computation, and deadline, etc. Let ®g
be the context space of dimension Dg for edge devices
which includes the information related to edge devices such
as computation speed, bandwidth, etc. Let ® = &7 x &g be
the joint context space which is assumed to be bounded and
thus can be defined by ® = [0,1]” and D = D7 + Dg is the
dimension of context space ® without loss of generality.

In each round ¢, let V! denote the set of edge devices
available to the user for computation, i.e., the available set of
devices might change over time. Moreover, we denote by bf the
budget (maximum number of devices to be used) in round t.
The service delay (computation time plus transmission time)
of each edge device v is parameterized by a given context
¢!, € ®. We denote by ¢!, the service delay of edge device v,
and d' the computation deadline in round ¢. Let ¢}, = Lot <qt}
be the indicator that the service delay of edge device v is
smaller than or equal to the given deadline d* in round ¢. Also,
let p(¢l) = E[g)] = P(c!, < d") be the success probability
that edge device v returns the computation result back to
the user within deadline d*, and p! = {u(¢%)},eve be the
collection of success probabilities of edge devices in round t.
Let us illustrate the model through a simple example.

Example 1: In [22], the shifted exponential distributions
have been demonstrated to be a good fit for modeling the
execution time of a node in cloud networks. Thus, we can

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on October 05,2021 at 18:39:35 UTC from IEEE Xplore. Restrictions apply.

YANG et al.: EDGE COMPUTING IN THE DARK: LEVERAGING CONTEXTUAL-COMBINATORIAL BANDIT AND CODED COMPUTING

model the success probability of an edge device as follows:

=P <d") = {(1)

where the context space ® consists of the deadline d, the shift
parameter a' > 0, and the straggling parameter X' > 0
associated with an edge device.

_ e—A‘(d‘—af) , dt > at

,at >db >0,

n(¢')

C. Problem Statement

Let V = {1,2,...,|V|} be the set of all edge devices in the
network. Given context ¢' = {¢L},cy+ of the edge devices
available to the user in round ¢, the goal of the user is to select
a subset of edge devices from the available set of edge devices
Yt C V, and decide what to be computed by each selected
edge device, such that a recoverable (or decodable as will be
clarified later) set of computation results f;(X1),... fi(Xk)
can be returned to the user within deadline d'.

III. ONLINE CODED EDGE COMPUTING

In this section, we introduce a coded computing framework
for the edge computing problem, and formulate the problem
as a contextual-combinatorial multi-armed bandit (CC-MAB)
problem. Then, we propose a policy called online coded edge
computing policy, which is a context-aware learning algorithm.

A. Lagrange Coded Computing

For the data storage of edge devices, we leverage a linear
coding scheme called the Lagrange coding scheme [4] which
is demonstrated to simultaneously provide resiliency, security,
and privacy in distributed computing. We start with an illus-
trative example.

In each round ¢, we consider a computation job which con-
sists of computing quadratic functions f;(X,;) = X jT (X,w, —
;) over available edge devices V' = {1,2,...,6}, where
input dataset X 1is partitioned to Xi, Xo. Then, we define
function m as follows:

m(z)éXlg z-0

1
1T
in which m(0) = X; and m(1) = X,. Then, we encode
)gl and X5 to Xl, = m(l/— 1), ie., X1 = Xy, X2 = Xo,
X3 =—-X1 +2Xo, X4 = —2X7 +3X,, X5 —3X1 +4X
and Xg = —4X,; + 5X,. Each edge device v € {1,2,...,6}
prestores an encoded data chunk X, locally. If edge device v
is selected in round ¢, it computes ft(f(u) = X,,T(f(uu'it — 1)
and returns the result back to the user upon its completion.
We note that f,(X,) = f;(m(v — 1)) is an evaluation of
the composition polynomial f;(m(z)), whose degree at most
2, which implies that f;(m(z)) can be recovered by any 3
results via polynomial interpolation. Then we have f;(X;) =
ft(m(0)) and fi(X2) = fe(m(1)).

Formally, we describe Lagrange coding scheme as follows:

We first select k distinct elements (31, Oo, ..., 0k from F,
and let m be the respective Lagrange interpolation polynomial

DRI

j=1 k]\{J}

2(Xo — X1)+ X1, (D

2
ﬁl @

1025

where u : F — V is a polynomial of degree £ — 1 such that
m(B;) = X;. Recall that V = U, V" which is the set of
all edge devices. To encode input X, Xo,..., Xy, we select
|V| distinct elements aq,s,...,a)y from F, and encode

X1, X5,..., X to X, = m(ay,) for all v € [|V]], i.e

k
X, =m(a,) & ZX H ﬁl (3)
j=1

le[k] \{J}
Each edge device v € V stores X, locally. If edge device
v is selected in round ¢, it computes f;(X,) and returns the
result back to the user upon its completion. Then, the optimal
recovery threshold Y using Lagrange coding scheme is

V= (k= 1)deg(f:) + 1 @)
which guarantees that the computation tasks
fi(X1), ..., fi(Xk) can be recovered when the user receives

any Y! results from the edge devices. The encoding of
Lagrange coding scheme is oblivious to the computation task
ft. Also, decoding and encoding process in Lagrange coding
scheme rely on polynomial interpolation and evaluation which
can be done efficiently.

Remark 2: We note that the data newly generated in edge
device can be encoded and distributed to other devices at
off-peak time. Especially, a key property of LCC is that the
encoding process can be done incrementally, i.e., when there
are some new added datasets, the update of encoded data
can be done incrementally by encoding only on the new
data instead of redoing the encoding on all the datasets.
For example, let us consider the case that each data X; is
represented by a vector. When there is a new generated data
element x; added to each data X, we just encode new data
elements x1,x2,...,x t0 T1,To... and the new encoded
data can be obtained by appending the new encoded data
to old encoded data vectors Xl,)~(2, R

B. CC-MAB for Coded Edge Computing

Now we consider a coded computing framework in which
the Lagrange coding scheme is used for data encoding,
i.e., each edge device v prestores encoded data X,,. The encod-
ing process is only performed once for dataset Xy,..., Xj.
After Lagrange data encoding, the size of input data and
computation of each user do not change, i.e., context ¢f, of
each edge device v remains the same.

More specifically, we denote by A’ the set of devices which
are selected in round ¢ for computation. In each round ¢,
the user picks a subset of devices A" from all available devices
Vi, and we call A* C V' the “offloading decision”. The
reward function r(A") achieved by offloading decision A
is composed of the reward term and the cost term, which is
defined as follows:

1 _ t f . t > Yt

T(At) — 77|tA |a 1 ZyeA Q: - ,
A, i e aedy <Y

where the term |A*| captures the cost of using offloading

decision A" with the unit cost 1 for using one edge device,
and Y is the optimal recovery threshold defined in (4). More

)

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on October 05,2021 at 18:39:35 UTC from IEEE Xplore. Restrictions apply.

1026

precisely, the reward term is equal to 1 if the total number of
received results is greater than the optimal recovery threshold,
ie, Y e qt, > Y'; otherwise the reward term is equal to 0.
On the other hand, the cost term is defined as —n|.A?| which
is the cost of using A?.

Then, the expected reward denoted by u(u!,.A") in round
t can be rewritten as follows:

A
u(ph, A= >] wel) T[] (—neh)
s=Yt ACAL | Al=s vEA vEAN\A
—n|A"l(6)

where the first term of the expected reward of an offloading
decision is the success probability that there are at least Y
computation results received by the user for LCC decoding.

Consider an arbitrary sequence of computation jobs indexed
by {1,2,...,T} for which the user makes offloading deci-
sions { A}, To maximize the expected cumulative reward,
we introduce a contextual-combinatorial multi-armed bandit
(CC-MAB) problem for coded edge computing defined as
follows:

1) CC-MAB for Coded Edge Computing:

max LA (7
s.t. At C vt, |Af| < bt Wt € [T (8)

where the constraint (8) indicates that the number of edge
devices in A" cannot exceed the budget b’ in round ¢. The
proposed CC-MAB problem is equivalent to solving an inde-
pendent subproblem in each round ¢ as follows:

[T @—ul)

ve AN\ A

A

m > > [Luel)

s=Yt ACA? |A|l=svEA
s.t. AP C VAT < b

—] A"l

Remark 3: We note that the proposed CC-MAB not only
works for LCC but also for any other coding schemes. In this
article, we focus on LCC since LCC is a universal and opti-
mal encoding technique for arbitrary multivariate polynomial
computations.

C. Optimal Offline Policy

We now assume that the success probability of each edge
device v € V! is known to the user. In round ¢, to find the
optimal A%, we present the following intuitive lemma proved
in Appendix E.

Lemma 1: Without loss of generality, we assume j(¢%) >
u(ph) > - > “(‘éfvt\) in round t. Considering all possible
sets AL, C V' with fixed cardinality ng, the optimal A%
with cardinality ng that achieves the largest expected reward
u(pt, AY) is

Al =1{1,2,... ng} 9)

which represents the set of ng edge devices having largest
success probability j1(¢l) among all the edge devices.

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 29, NO. 3, JUNE 2021

Algorithm 1: Optimal Offline Policy

Input: V¢, 0!, Y, pu(ol), v € VY
Initialization: A = 0, Aoy = 0, uop = 0;

Sort pu* = pu(@1) = pu(¢h) = -+ = Py):
A—{1,2,....Y"};
Aopt<—{1,2,...,Yt} 5

Uopt — u(pt, A);
for z — Y'+1 to b’ do
A— Au{z}
if u(p®, A) >)y then
-Aopt — A,
Uopt ~— U’(Nta 'A)
end
end
return Ay

By Lemma 1, to find the optimal set A'*, we can only focus on
finding the optimal size of .A’. Since there are only b! choices
for size of |A'| (i.e., 1,2,...,b"), this procedure can be done
by a linear search with the complexity linear in the number
of edge devices [V!|. We present the optimal offline policy in
Algorithm 1.

Remark 4: We note that the expected reward function con-
sidered in [43] is a submodular function, which can be
maximized by a greedy algorithm. However, the expected
reward function defined in (6) is more general which cannot be
maximized by the greedy algorithm. More specifically, one can
show that the expected reward defined in equation (6) is not
submodular by checking the property of submodular functions,
i.e., for all possible subsets A C B C V, u(p,{r} UA) —
u(p, A) > u(p, {v}UB) —u(w, B) does not hold. Without the
property of submodularity, Lemma [enables us to maximize
equation (6) by a linear search.

Let {A'}1 be the offloading decisions derived by a
certain policy. The performance of this policy is evaluated by
comparing its loss with respect to the optimal offline policy.
This loss is called the regret of the policy which is formally
defined as follows:

T
B[r(A") —r(A")] (10)
t=1
T
= u(p', A™) —u(pt, AY). a1
t=1

In general, the user does not know in advance the success
probabilities of edge devices due to the uncertainty of the
environment of edge network. In the following subsection,
we will propose an online learning policy for the proposed
CC-MAB problem which enables the user to learn the success
probabilities of edge devices over time by observing the
service quality of each selected edge device, and then make
offloading decisions adaptively.

D. Online Coded Edge Computing Policy

Now, we describe the proposed online edge computing
policy. The proposed policy has two parameters hp and K (t)

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on October 05,2021 at 18:39:35 UTC from IEEE Xplore. Restrictions apply.

YANG et al.: EDGE COMPUTING IN THE DARK: LEVERAGING CONTEXTUAL-COMBINATORIAL BANDIT AND CODED COMPUTING

Algorithm 2: Online Coded Edge Computing Policy
Input: T, hr, K(t);
Initialization: Pr; C(p) =0, i(p) =0, Vp € Pr ;
fort — 1to T do
Observe edge device V! and contexts ¢' ;
Find p* = {p! },cve, pl, € Pr such that ¢, € pl, ;
Identify P“¢t and Vv,
if Puet £ () then
if |Vue!| > b then
| A" — randomly pick b’ edge devices in V"
else
At «— pick all edge devices in V**! and other
(b" — [Vut|) ones with the largest ji(pl,) in
Vt\vue,t
end
else
| A? — obtained by Algorithm 1 based on ji’ and bt
end
for each edge device v € A’ do
Observe ¢!, of edge device v;
Update i(p) = u(p,é)(ig:_)rq,,;
Update C(p,) = C(p,) + 1;
end
end

to be designed, where hp decides how we partition the
context space, and K (t) is a deterministic and monotonically
increasing function, used to identify the under-explored con-
text. The proposed online coded edge computing policy (see
Algorithm 2) is performed as follows:

Initialization Phase: Given parameter hp, the proposed
policy first creates a partition denoted by Pr for the context
space ®, which splits ® into (h7)” sets. Each set is a
D-dimensional hypercube of size % X - X % For each
hypercube p € Pr, the user keeps a counter C*(p) which is
the number of selected edge devices that have context ¢! in
hypercube p before round ¢. Moreover, the policy also keeps an
estimated success probability denoted by fi*(p) for each hyper-
cube p. Let Q'(p) ={q) : 9T epve A", 7=1,...,t — 1}
be the set of observed indicators (successful or not) of edge
devices with context in p before round ¢. Then, the estimated
success probability for edge devices with context ¢! € p is
computed by jit(p) = c+<m 2 geot(p) -

In each round ¢, the proposed policy has the following
phases:

Hypercube Identification Phase: Given the contexts of all
available edge devices ¢' = {¢! }, v+, the policy determines
the hypercube p!, € Pr for each context ¢!, such that ¢, is
in p!,. We denote by p' = {pl},cy+ the collection of these
identified hypercubes in round ¢. To check whether there exist
hypercubes p € p' that have not been explored sufficiently,
we define the under-explored hypercubes in round ¢ as follows:

Prot = {pePr:w eV ¢l ep, Clp) < K(1)}. (12)

Also, we denote by V¥ the set of edge devices which fall in
the under-explored hypercubes, i.e., V¢! = {v € V! : pl, €

1027

Pu"}. Depending on V! in round ¢, the proposed policy
then either enters an exploration phase or an exploitation
phase.

Exploration Phase: If V“*! is non-empty, the policy enters
an exploration phase. If set V“®! contains at least b' edge
devices (i.e., V¢! > b'), then the policy randomly selects b’
edge devices from Vu¢!, If V¥ contains fewer than b edge
devices (|V“!| < b'), then the policy selects all edge devices
from Vv&t To fully utilize the budget b', the remaining
(b" — |[VUet]) ones are picked from the edge devices with
the highest estimated success probability among the remaining
edge devices in V'\Vuel,

Exploitation Phase: If V“*! is empty, the policy enters
an exploitation phase and it selects A’ using the optimal
offline policy based on the estimated success probabilities
it = {0 ey

Update Phase: After selecting the edge devices, the pro-
posed policy observes whether each selected edge device
returns the result within the deadline; then, it updates ji!(p!)
and C*(pl,) of each hypercube p!, € Pr.

The following example illustrates how the policy works
given parameters hp and K (t).

Example 2: Consider the edge computing network in which
the success probability of an edge device is defined by a shifted
exponential distribution as defined in Example 1. It can be
shown that the Holder condition with o« = 1 holds. Then,
we have parameters hy = [T%] and K(t) = t3 log (t).
We assume that the online coded edge computing policy is run
over time horizon T = 1000. Then, we have hy = 4. Before
running the policy, we create Pr by partitioning the domain of
each context (i.e., deadlines, shift parameters and straggling
parameters) into hp = 4 intervals, which generates totally 64
sets. We keep a counter C*(p) for each generated hypercube
p € Pr. In hypercube identification phase, if there exists edge
device v with ¢! such that ¢! is located in hypercube p
and the counter C'(p) is smaller than K (t), then p is the
under-explored hypercube. The policy will proceed to either
exploration phase or exploitation phase depending on whether
under-explored hypercube exists.

IV. ASYMPTOTIC OPTIMALITY OF ONLINE CODED
EDGE COMPUTING POLICY

In this section, by providing the design of policy parameters
hr and K(t), we show that the online coded edge comput-
ing policy achieves a sublinear regret in the time horizon
T which guarantees an asymptotically optimal performance,
ie., limp o @ = 0.

To conduct the regret analysis for the proposed CC-MAB
problem, we make the following assumption on the success
probabilities of edge devices in which the devices’ success
probabilities are equal if they have the same contexts. This
natural property is formalized by the Holder condition defined
as follows:

Assumption 1 (Holder Condition): A real function f on
D-dimensional Euclidean space satisfies a Holder condition,
when there exist L > 0 and o > 0 for any two contexts
¢, ¢ € ®, such that |f(p) — f(&')| < L || ¢ — ¢ ||* where

| - || is the Euclidean norm.

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on October 05,2021 at 18:39:35 UTC from IEEE Xplore. Restrictions apply.

1028

Under Assumption 1, we choose parameters hp = [TﬁW
for the partition of context space ® and K (t) = t5aiD log (t)
in round ¢ for identifying the under-explored hypercubes of
the context. We present the following theorem which shows
that the proposed online coded edge computing policy has a
sublinear regret upper bound.

Theorem 1 (Regret Upper Bound): Let K(t) =
t51D log (t) and hy = fTSmirD]. If the Holder condition
holds, the regret R(T') is upper-bounded as follows:

R(T) < (14 nB)2P(T5+7 log (T) + T577)

+(1+ B)B”—QXB: vi

I Ak

o« b6a+2D 204D
+(3LD2 =+ m)BMT3 +D,

where B = maxi<i<T bt and M = maxi<;<r (ﬁ:ll). The
dominant order of the regret R(T) is O(T% log (T")) which
is sublinear to T
Proof: We first define the following terms. For each
hypercube p € Pr, we define 7i = supye, 1(¢) and p =
infye, (@) as the best and worst success probabilities over
all contexts ¢ € p. Also, we define the context at center of a
hypercube p as ¢, and its success probability i(p) = u(bp).
Given a set of available edge devices V?, the corresponding
context set ®' = {¢! }, ¢ and the corresponding hypercube
set Pt = {p'}, cy+ for each round ¢, we also define ' =
{70} veve, p' = {p())}veve and f° = {fi(p})}vev:. For
each round ¢, we define set .A* which satisfies
At = argmax 4yt | 4| <pt u(ixt, A) (13)
We then use set A’ to identify the set of edge device which
are bad to select. We define

£={G:G V|G| < u(p', A —u(@, G) > A’}

to be the set of suboptimal subsets of arms for hypercube
set P!, where A > 0 and § < O are the parameters which
will be used later in the regret analysis. We call a subset
G € L' suboptimal and A} _\L" near-optimal for P’, where
A!_ denotes the subset of V' with size less than b'. Then the
expected regret R(T') can be divided into three summands:

R(T) = E[Re(T)] + E[Rs(T)] + E[Ra(T)], (14)
where E[R.(T)] is the regret due to exploration phases
and E[Rs(T)] and E[R,(T)] both correspond to regret in
exploitation phases: E[R;(T)] is the regret due to suboptimal
choices, i.e., the subsets of edge devices from L; are selected;
E[R,(T)] is the regret due to near-optimal choices, i.e., the
subsets of edge devices from A! \L’. In the following,
we prove that each of the three summands is bounded.

First, the following lemma (see the proof in Appendix A)
gives a bound for E[R,(T)], which depends on the choice of
two parameters z and 7.

Lemma 2 (Bound for E[R.(T)]): Let K(t) = t*log(t)
and hy = [T7], where 0 < z < 1 and 0 < v < 3. If the

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 29, NO. 3, JUNE 2021

algorithm is run with these parameters, the regret E[R.(T)]
is bounded by

E[R.(T)] < (14 nB)2P (T Plog (T) + T7P) (15)

where B = maxi<i<7 b".

Next, the following lemma (see the proof in Appendix B)
gives a bound for E[R,(7")], which depends on the choice of z
and v with an additional condition of these parameters which
has to be satisfied.

Lemma 3 (Bound for E[Rs(T)]): Let K(t) = t*log(t)
and hy = [T7], where 0 < z < 1 and 0 < v < 3. If the
algorithm is run with these parameters, Assumption 1 holds,
and the additional condition 2BMt~3 < At is satisfied for
all 1 <t < T, the regret E[Rs(T)] is bounded by

B
E[R,(T)] < (1+nB)B%QZ (':'), (16)

k=1

where B = maxi<;<7 b', and M = maxj<i<r (5[_11).
Lastly, the following lemma (see the proof in Appendix C)
gives a bound for E[R,, (T")], which depends on the choice of
z and .
Lemma 4 (Bound for B[R, (T)]): Let K(t) = t*log(t)
and hy = [T7], where 0 < z < 1 and 0 < v < +.
If the algorithm is run with these parameters and Assumption

1 holds, the regret E[R,,(T')] is bounded by

o A
E[R,(T)] < 3BMLD:T' 7 4 ——T'*0,

1+46 (17)

where B = maxi<;<7 b" and M = maxj<;<r (11/3;—_11)_

Now, let K (t) = t*log (t) and hp = [T7], where 0 < z <
land 0 <y < &;let H(t) = BMt~%. Also, we assume that
Assumption 1 holds and the additional condition 2B M 7% <
At? is satisfied for all 1 < ¢ < T. By Lemma 2, 3, and 4,
the regret R(T') is bounded as follows:

R(T) < (1 +nB)2P(T**Plog (T) + T7P)
5 B
T V|
+(1+nB)B§; < k>

o A
+3BMLD>T' =7 4 ——_T1+6,
1+6

Now, we select the parameters z,+, A, 6 according to the
following values z = 3a2f_‘D € (0,1), v = ﬁ € (0, %),
0 = —ﬁ and A = 2BM. It is clear that condition
2BMt~> < AtY is satisfied. Then, the regret R(T) can be
bounded as follows:

(18)

R(T) < (1 +nB)22 (T35 log (T) + T5+D)

(14 0B)BE sz Vi
PP 2k
o b6a+2D 204D
+(3LD2 + m)BMT3 D (19)
which has the dominant order O(T' Satm log (T)). O

Remark 5: Based on Assumption 1, the parameters hr and
K (t) are designed such that the regret achieved by the policy is
sublinear as stated in Theorem 1. In the following, we provide

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on October 05,2021 at 18:39:35 UTC from IEEE Xplore. Restrictions apply.

YANG et al.: EDGE COMPUTING IN THE DARK: LEVERAGING CONTEXTUAL-COMBINATORIAL BANDIT AND CODED COMPUTING

some intuitions behind the choices of hr and K(T'). We first
assume that the parameters are chosen as hy = [T7] and
K (t) = t*log (t), in which v and z are designed later. In the
proof of Lemma 2, to bound E[R.(T)], our main task is
designing T*T7P log (T)+T"P to be a sublinear term. In the
proof of Lemma 3, one of key steps is to bound Pr(V%, W*) by
the term of t=2 such that E[R(T)] is bounded by the term of
Zfi 1 t=2 which converges to a constant. In particular, we first

bound Pr(E1) and Pr(E>) by the terms of exp WIB?%*W,

and choose H(t) to be BMt~ 2. By Lemma 4, we bound

E[Ry] by 3BBMLD%T'=7 + 25T which can be sublin-

ear by selecting the appropriate v and z. By carefully selecting
1 2a

parameters hp = [T'3+D] and K(t) = t3«+D, the regret

upper bound is shown to be subliear in Theorem 1.

V. EXPERIMENTS

In this section, we demonstrate the impact of the online
coded edge computing policy by simulation studies. In par-
ticular, we carry out extensive simulations using the shifted
exponential models which have been demonstrated to be a
good model for Amazon EC2 clusters [22].

Given a dataset partitioned to Xi, Xo,..., X5, we con-
sider the linear regression problem using the gradient algo-
rithm. It computes the gradient of quadratic loss function
|| X1, — §7;]|* with respect to the weight vector @ in round
t, ie. fi(X;) = X} (X;@, — ;) forall 1 < j < 5. The
computation is executed over a set of edge devices)V, where
each edge device v € V stores an encoded data chunk X,
using Lagrange coding scheme. In such setting, we have the
optimal recovery threshold Y* = 9. The penalty parameter 7
is 0.01.

Motivated by the distribution model proposed in [22] for
total execution time in cloud networks, we model the success
probability of each edge device v € V as a shifted exponential
function defined as follows:

1— ef)\f,(dtfa,f;) dt > qt
ty P t < dt — ’ = Y
Hol) =Pl <) =40 o

(20)

where the context of each edge device consists of the deadline
d*, the shift parameter a!, > 0, and the straggling parameter
AL > 0 associated with edge device v. Under this model,
the dimension of context space D is 3. Moreover, for function
1 defined in (20), it can be shown that the Holder condition
with @« = 1 holds. Thus, we run the online coded edge
computing policy with parameters hy = [T'5] and K (t) =
t3 log (t).

By the empirical analysis in [22], the instance of type
r4.2xlarge is shown to have the shift parameter a = 1.37
and the straggling parameter A = 120. And, the instance of
type r4 .xlarge has the shift parameter a = 2 and the strag-
gling parameter A = 115. Based on the real-world parameters
for Amazon EC2 clusters, the deadline d* € [diin, dmax] (s€C),
the shift parameter a, € [1.37,2] (sec), and the straggling
parameter \!, € [115,120] (1/sec) are chosen uniformly at
random in each round ¢t. We consider the following four
scenarios for the simulations:

1029
—Online coded compuitng policy
00~ |—Optimal offline policy 1
LinuCB
Saw- | —UCB i
& —Random
g
-5 3000~ =
:
© 2000~ m|
1000— -
o —T I I I I I I
o 1000 2000 3000 2000 5000 5000 7000 5000 9000 10000
Round t
Fig. 2. Numerical evaluations for cumulative reward for Scenario 1.
—Online coded compuitng policy
% |—oOptimal offline policy 7]
5 LinuCB
§ a0l |—UCB i
K] —Random
g
-5 30001~ -
:
© 2000~ 4
1000— -
0 Il L L L L L L
o 1000 2000 3000 2000 5000 5000 7000 5000 9000 10000
Round t
Fig. 3. Numerical evaluations for cumulative reward for Scenario 2.
e Scenario 1: |V| = 20, (dmin, dmax) = (1,2), and b = 12.
« Scenario 2: |V| = 15, (dmin, dmax) = (1,2), and b = 12.
« Scenario 3: |V| = 20, (dmin, dmax) = (1,2), and b = 15.

o Scenario 4: |V| = 20, (dmin, dmax) = (0.5,3), and b =
12.
For each scenario, the following benchmarks are considered
to compare with the online coded edge computing policy:

1) Optimal Offline policy: Assuming knowledge of
the success probability of each edge device in each
round, the optimal set of edge devices is selected via
Algorithm 1.

2) LinUCB [38]: LinUCB is a contextual-aware bandit
algorithm which picks one arm in each round. We obtain
a set of edge devices by repeating b times of Lin-
UCB. By sequentially removing selected edge devices,
we ensure that the b' chosen edge devices are distinct.

3) UCB [37]: UCB algorithm is a non-contextual and non-
combinatorial algorithm. Similar to LinUCB, we repeat
UCB b times to select edge devices.

4) Random: A set of edge devices with size of b’ is
selected randomly from the available edge devices in
each round ¢.

Fig. 2 to Fig. 5 provide the cumulative rewards comparison
of the online coded edge computing policy with the other 4
benchmarks. We make the following conclusions from Fig. 2
to Fig. 5:

o The optimal offline policy achieves the highest reward
which gives an upper bound to the other policies. After
a period of exploration, the proposed online policy is
able to exploit the learned knowledge, and the cumulative
reward approaches the upper bound.

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on October 05,2021 at 18:39:35 UTC from IEEE Xplore. Restrictions apply.

1030

—Online coded compuitng policy
—Optimal offline policy

LinuCB
s00- |—UCB B
—Random

5000

3000 -

Cumulative Reward

2000

1000

o 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Round t

Fig. 4. Numerical evaluations for cumulative reward for Scenario 3.

T T T T T
—Online coded compuitng policy
s [——Optimal offline policy i
LinuCB
v —UucB
g% |—Random 7
&
v
2 3000~ -
n
S
E
E
O 2000 -
1000} E
Il Il Il Il Il Il Il Il Il
o 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Round t
Fig. 5. Numerical evaluations for cumulative reward for Scenario 4.
as0l- s
400 B
350 =
g
) 300 -
o
=
@ 250 -
i
S 200 -
w
150~ -
100~ =
50— =
0 Il Il Il Il Il Il Il Il Il
o 1000 2000 3000 4000 5000 G000 7000 5000 3000 10000
Round t
Fig. 6. Expected regret of the online coded edge computing policy for
Scenario 1.

o The proposed online coded edge computing policy sig-
nificantly outperforms other benchmarks by taking into
account the context of edge computing network.

o Random and UCB algorithms are not effective since
they do not take the context into account for the deci-
sions. Although LinUCB is a contextual-aware algorithm,
it achieves similar cumulative regret as random and
UCB algorithms. That is because the success probability
model is more general here than the linear functions that

LinUCB is tailored for.
Fig. 6 presents the expected regret of the proposed policy for
Scenario 1. We can conclude that the proposed policy achieves
a sublinear regret in the time horizRo(I%)T demonstrates the
=0.

asymptotic optimality, i.e., limp_, oo ==

VI. CONCLUDING REMARKS AND FUTURE DIRECTIONS
Motivated by the volatility of edge devices’ computing
capabilities and the quality of service, and increasing demand

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 29, NO. 3, JUNE 2021

for timely event-driven computations, we consider the problem
of online computation offloading over unknown edge cloud
networks without the knowledge of edge devices’ capabil-
ities. Under the coded computing framework, we formu-
late a combinatorial-contextual multiarmed bandit (CC-MAB)
problem, which aims to maximize the cumulative expected
reward. We propose the online coded edge computing policy
which provably achieves asymptotically-optimal performance
in terms of timely throughput, since the regret loss for the
proposed CC-MAB problem compared with the optimal offline
policy is sublinear. Finally, we show that the proposed online
coded edge computing policy significantly improves the cumu-
lative reward compared to the other benchmarks via numerical
studies.

ACKNOWLEDGMENT

The views, opinions, and/or findings expressed are those of
the author(s) and should not be interpreted as representing the
official views or policies of the Department of Defense or the
U.S. Government.

REFERENCES

[1] C.-S. Yang, R. Pedarsani, and A. S. Avestimehr, “Coded computing in
unknown environment via online learning,” in Proc. IEEE Int. Symp.
Inf. Theory (ISIT), Jun. 2020, pp. 185-190.

[2] M. Zaharia, A. Konwinski, A. D. Joseph, R. H. Katz, and I. Stoica,
“Improving mapreduce performance in heterogeneous environments,” in
Proc. Osdi, vol. 8, 2008, p. 7.

[3] G. Ananthanarayanan, A. Ghodsi, S. Shenker, and I. Stoica, “Effective
straggler mitigation: Attack of the clones,” in Proc. NSDI, vol. 13, 2013,
pp. 185-198.

[4] Q. Yu, S. Li, N. Raviv, S. M. Mousavi, M. Soltanolkotabi, and
A. S. Avestimehr, “Lagrange coded computing: Optimal design for
resiliency, security and privacy,” in Proc. Artif. Intell. Statist., 2019,
pp. 1215-1225.

[5] A. Eryilmaz, R. Srikant, and J. R. Perkins, “Stable scheduling policies
for fading wireless channels,” IEEE/ACM Trans. Netw., vol. 13, no. 2,
pp. 411424, Apr. 2005.

[6] L. Tassiulas and A. Ephremides, “Stability properties of constrained
queueing systems and scheduling policies for maximum throughput in
multihop radio networks,” IEEE Trans. Autom. Control, vol. 37, no. 12,
pp. 1936-1948, Dec. 1992.

[71 J. G. Dai and W. Lin, “Maximum pressure policies in stochastic
processing networks,” Oper. Res., vol. 53, no. 2, pp. 197-218, Apr. 2005.

[8] M. J. Neely, E. Modiano, and C. E. Rohrs, “Dynamic power allocation
and routing for time-varying wireless networks,” IEEE J. Sel. Areas
Commun., vol. 23, no. 1, pp. 89-103, Jan. 2005.

[9]1 S. T. Maguluri, R. Srikant, and L. Ying, “Stochastic models of load
balancing and scheduling in cloud computing clusters,” in Proc. [EEE
INFOCOM, Mar. 2012, pp. 702-710.

[10] C.-S. Yang, R. Pedarsani, and A. S. Avestimehr, “Communication-aware
scheduling of serial tasks for dispersed computing,” IEEE/ACM Trans.
Netw., vol. 27, no. 4, pp. 1330-1343, Aug. 2019.

[11] M. Hoseinnejhad and N. J. Navimipour, “Deadline constrained task
scheduling in the cloud computing using a discrete firefly algorithm,”
Int. J. Next-Gener. Comput., vol. 8, no. 3, pp. 198-209, 2017.

[12] K. Lee, M. Lam, R. Pedarsani, D. Papailiopoulos, and K. Ramchandran,
“Speeding up distributed machine learning using codes,” IEEE Trans.
Inf. Theory, vol. 64, no. 3, pp. 1514-1529, Mar. 2018.

[13] S.Li, M. A. Maddah-Ali, Q. Yu, and A. S. Avestimehr, “A fundamental
tradeoff between computation and communication in distributed comput-
ing,” IEEE Trans. Inf. Theory, vol. 64, no. 1, pp. 109-128, Jan. 2018.

[14] S. Dutta, V. Cadambe, and P. Grover, “Short-dot: Computing large linear
transforms distributedly using coded short dot products,” in Proc. Adv.
Neural Inf. Process. Syst., 2016, pp. 2100-2108.

[15] K. Lee, C. Suh, and K. Ramchandran, “High-dimensional coded matrix
multiplication,” in Proc. IEEE Int. Symp. Inf. Theory (ISIT), Jun. 2017,
pp. 2418-2422.

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on October 05,2021 at 18:39:35 UTC from IEEE Xplore. Restrictions apply.

YANG et al.: EDGE COMPUTING IN THE DARK: LEVERAGING CONTEXTUAL-COMBINATORIAL BANDIT AND CODED COMPUTING

[16] Q. Yu, M. Maddah-Ali, and S. Avestimehr, “Polynomial codes: An opti-
mal design for high-dimensional coded matrix multiplication,” in Proc.
Adv. Neural Inf. Process. Syst., 2017, pp. 4403-4413.

[17] R. Tandon, Q. Lei, A. G. Dimakis, and N. Karampatziakis, “Gradient
coding: Avoiding stragglers in distributed learning,” in Proc. Int. Conf.
Mach. Learn., 2017, pp. 3368-3376.

[18] S.Li, M. A. Maddah-Ali, and A. S. Avestimehr, “Coding for distributed
fog computing,” IEEE Commun. Mag., vol. 55, no. 4, pp. 34-40,
Apr. 2017.

[19] S. Li et al., “Coded computing,” Found. Trends Commun. Inf. Theory,
vol. 17, no. 1, pp. 1-148, 2020.

[20] S. Prakash, A. Reisizadeh, R. Pedarsani, and A. S. Avestimehr, “Coded
computing for distributed graph analytics,” IEEE Trans. Inf. Theory,
vol. 66, no. 10, pp. 6534-6554, Oct. 2020.

[21] Q. Yu, M. A. Maddah-Ali, and A. S. Avestimehr, “Straggler mitigation
in distributed matrix multiplication: Fundamental limits and optimal
coding,” [EEE Trans. Inf. Theory, vol. 66, no. 3, pp. 1920-1933,
Mar. 2020.

[22] A. Reisizadeh, S. Prakash, R. Pedarsani, and A. S. Avestimehr, “Coded
computation over heterogeneous clusters,” IEEE Trans. Inf. Theory,
vol. 65, no. 7, pp. 4227-4242, Jul. 2019.

[23] N. Ferdinand and S. C. Draper, “Hierarchical coded computation,” in
Proc. IEEE Int. Symp. Inf. Theory (ISIT), Jun. 2018, pp. 1620-1624.

[24] L. Chen, H. Wang, Z. Charles, and D. Papailiopoulos, *“Draco:
Byzantine-resilient distributed training via redundant gradients,” in Proc.
Int. Conf. Mach. Learn., 2018, pp. 903-912.

[25] C.-S. Yang and A. S. Avestimehr, “Coded computing for secure
Boolean computations,” IEEE J. Sel. Areas Inf. Theory, early access,
Jan. 29, 2021, doi: 10.1109/JSAIT.2021.3055341.

[26] J. So, B. Guler, A. S. Avestimehr, and P. Mohassel, “CodedPrivateML:
A fast and privacy-preserving framework for distributed machine
learning,” 2019, arXiv:1902.00641. [Online]. Available: http:/arxiv.org/
abs/1902.00641

[27] J. So, B. Guler, and A. S. Avestimehr, “A scalable approach for privacy-
preserving collaborative machine learning,” 2020, arXiv:2011.01963.
[Online]. Available: http://arxiv.org/abs/2011.01963

[28] C. Karakus, Y. Sun, S. Diggavi, and W. Yin, “Straggler mitigation in
distributed optimization through data encoding,” in Proc. Adv. Neural
Inf. Process. Syst., 2017, pp. 5434-5442.

[29] J. So, B. Guler, and A. S. Avestimehr, “Turbo-aggregate: Breaking the
quadratic aggregation barrier in secure federated learning,” IEEE J. Sel.
Areas Inf. Theory, early access, Jan. 26, 2021, doi: 10.1109/JSAIT.2021.
3054610.

[30] S. Prakash et al., “Coded computing for low-latency federated learning
over wireless edge networks,” IEEE J. Sel. Areas Commun., vol. 39,
no. 1, pp. 233-250, Jan. 2021.

[31] S. Prakash, A. Reisizadeh, R. Pedarsani, and A. S. Avestimehr, “Hier-
archical coded gradient aggregation for learning at the edge,” in Proc.
IEEE Int. Symp. Inf. Theory (ISIT), Jun. 2020, pp. 2616-2621.

[32] M. Yu, S. Sahraei, S. Li, S. Avestimehr, S. Kannan, and P. Viswanath,
“Coded merkle tree: Solving data availability attacks in blockchains,”
in Proc. Int. Conf. Financial Cryptogr. Data Secur. Cham, Switzerland:
Springer, 2020, pp. 114-134.

[33] S.Li, M. Yu, C.-S. Yang, A. S. Avestimehr, S. Kannan, and P. Viswanath,
“PolyShard: Coded sharding achieves linearly scaling efficiency and
security simultaneously,” IEEE Trans. Inf. Forensics Security, vol. 16,
pp. 249-261, 2021.

[34] C.-S. Yang, R. Pedarsani, and A. S. Avestimehr, “Timely-throughput
optimal coded computing over cloud networks,” in Proc. 20th ACM Int.
Symp. Mobile Ad Hoc Netw. Comput., Jul. 2019, pp. 301-310.

[35] C.-S. Yang, R. Pedarsani, and A. S. Avestimehr, “Timely coded
computing,” in Proc. IEEE Int. Symp. Inf. Theory (ISIT), Jul. 2019,
pp. 2798-2802.

[36] T. L. Lai and H. Robbins, “Asymptotically efficient adaptive allocation
rules,” Adv. Appl. Math., vol. 6, no. 1, pp. 422, Mar. 1985.

[37] P. Auer, N. Cesa-Bianchi, and P. Fischer, “Finite-time analysis of the
multiarmed bandit problem,” Mach. Learn., vol. 47, no. 2, pp. 235-256,
2002.

[38] L. Li, W. Chu, J. Langford, and R. E. Schapire, “A contextual-bandit
approach to personalized news article recommendation,” in Proc. 19th
Int. Conf. World Wide Web (WWW), 2010, pp. 661-670.

[39] R. Sen, K. Shanmugam, M. Kocaoglu, A. Dimakis, and S. Shakkottai,
“Contextual bandits with latent confounders: An NMF approach,” in
Proc. Artif. Intell. Statist., 2017, pp. 518-527.

[40] R. Shariff and O. Sheffet, “Differentially private contextual linear
bandits,” in Proc. Adv. Neural Inf. Process. Syst., 2018, pp. 4296—4306.

1031

[41] Y. Gai, B. Krishnamachari, and R. Jain, “Combinatorial network opti-
mization with unknown variables: Multi-armed bandits with linear
rewards and individual observations,” IEEE/ACM Trans. Netw., vol. 20,
no. 5, pp. 1466-1478, Oct. 2012.

[42] F. Li, J. Liu, and B. Ji, “Combinatorial sleeping bandits with fairness
constraints,” in Proc. IEEE Conf. Comput. Commun. (INFOCOM),
Apr. 2019, pp. 1702-1710.

[43] L. Chen and J. Xu, “Task replication for vehicular cloud: Contextual
combinatorial bandit with delayed feedback,” in Proc. IEEE Conf.
Comput. Commun. (INFOCOM), Apr. 2019, pp. 748-756.

[44] S. Li, B. Wang, S. Zhang, and W. Chen, “Contextual combinatorial
cascading bandits,” in Proc. 33rd Int. Conf. Mach. Learn., vol. 48, 2016,
pp- 1245-1253.

[45] S. Muller, O. Atan, M. van der Schaar, and A. Klein, “Context-aware
proactive content caching with service differentiation in wireless net-
works,” IEEE Trans. Wireless Commun., vol. 16, no. 2, pp. 1024-1036,
Feb. 2017.

[46] L. Qin, S. Chen, and X. Zhu, “Contextual combinatorial bandit and its
application on diversified online recommendation,” in Proc. SIAM Int.
Conf. Data Mining, Apr. 2014, pp. 461-469.

Chien-Sheng Yang (Graduate Student Member, IEEE) received the B.S.
degree in electrical and computer engineering from National Chiao Tung
University (NCTU), Hsinchu, Taiwan, in 2015. He is currently pursuing the
Ph.D. degree in electrical and computer engineering with the University of
Southern California (USC), Los Angeles. His interests include information
theory, machine learning, and edge computing. He received the Annenberg
Graduate Fellowship in 2016. He was a finalist of the ACM International
Symposium on Mobile Ad Hoc Networking and Computing (MobiHoc) Best
Paper Award in 2019.

Ramtin Pedarsani (Member, IEEE) received the B.Sc. degree in electrical
engineering from the University of Tehran, Tehran, Iran, in 2009, the M.Sc.
degree in communication systems from the Swiss Federal Institute of Technol-
ogy (EPFL), Lausanne, Switzerland, in 2011, and the Ph.D. degree in electrical
engineering and computer sciences from the University of California at
Berkeley, Berkeley, CA, USA, in 2015. He is currently an Assistant Professor
with the Department of Electrical and Computer Engineering, University
of California at Santa Barbara, Santa Barbara, CA. His research interests
include machine learning, optimization, information theory, game theory, and
transportation systems.

Dr. Pedarsani was a recipient of the Best Paper Award at the IEEE
International Conference on Communications in 2014, the NSF CRII Award
in 2017, and the Communications Society and Information Theory Society
Joint Paper Award in 2020.

A. Salman Avestimehr (Fellow, IEEE) received the B.S. degree in electrical
engineering from the Sharif University of Technology in 2003, and the M.S.
and Ph.D. degrees in electrical engineering and computer science from the
University of California at Berkeley, Berkeley, in 2005 and 2008, respectively.
He is currently a Professor, also the Inaugural Director of the USC-Amazon
Center on Secure and Trusted Machine Learning (Trusted AI), and also
the Director of the Information Theory and Machine Learning (VITAL)
Research Lab, Electrical and Computer Engineering Department, University
of Southern California. He is also an Amazon Scholar with Alexa AL
His research interests include information theory and coding theory, and
large-scale distributed computing and machine learning, secure and private
computing, and blockchain systems.

Dr. Avestimehr has received a number of awards for his research, including
the James L. Massey Research and Teaching Award from the IEEE Infor-
mation Theory Society, an Information Theory Society and Communication
Society Joint Paper Award, a Presidential Early Career Award for Scientists
and Engineers (PECASE) from the White House, a Young Investigator
Program (YIP) Award from the U.S. Air Force Office of Scientific Research,
a National Science Foundation CAREER Award, the David J. Sakrison
Memorial Prize, and several best paper awards at conferences. He is currently
a General Co-Chair of the 2020 International Symposium on Information
Theory (ISIT). He has been an Associate Editor of the IEEE TRANSACTIONS
ON INFORMATION THEORY.

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on October 05,2021 at 18:39:35 UTC from IEEE Xplore. Restrictions apply.

http://dx.doi.org/10.1109/JSAIT.2021.3055341
http://dx.doi.org/10.1109/JSAIT.2021.3054610
http://dx.doi.org/10.1109/JSAIT.2021.3054610

