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Abstract— With recent advancements in edge computing capa-
bilities, there has been a significant increase in utilizing the edge
cloud for event-driven and time-sensitive computations. However,
large-scale edge computing networks can suffer substantially
from unpredictable and unreliable computing resources which
can result in high variability of service quality. We consider the
problem of computation offloading over unknown edge cloud
networks with a sequence of timely computation jobs. Motivated
by the MapReduce computation paradigm, we assume that each
computation job can be partitioned to smaller Map functions
which are processed at the edge, and the Reduce function is
computed at the user after the Map results are collected from the
edge nodes. We model the service quality of each edge device as
function of context. The user decides the computations to offload
to each device with the goal of receiving a recoverable set of
computation results in the given deadline. By leveraging the coded
computing framework in order to tackle failures or stragglers
in computation, we formulate this problem using contextual-
combinatorial multi-armed bandits (CC-MAB), and aim to max-
imize the cumulative expected reward. We propose an online
learning policy called online coded edge computing policy, which
provably achieves asymptotically-optimal performance in terms
of regret loss compared with the optimal offline policy for
the proposed CC-MAB problem. In terms of the cumulative
reward, it is shown that the online coded edge computing
policy significantly outperforms other benchmarks via numerical
studies.

Index Terms— Edge computing, coded computing, online learn-
ing, multi-armed bandits.
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I. INTRODUCTION

RECENT advancements in edge cloud has enabled users
to offload their computations of interest to the edge for

processing. Specifically, there has been a significant increase
in utilizing the edge cloud for event-driven and time-sensitive
computations (e.g., IoT applications and cognitive services),
in which the users increasingly demand timely services with
deadline constraints, i.e., computations of requests have to
be finished within specified deadlines. However, large-scale
distributed computing networks can substantially suffer from
unpredictable and unreliable computing infrastructure which
can result in high variability of computing resources, i.e., ser-
vice quality of the computing resources may vary over time.
The speed variation has several causes including hardware
failure, co-location of computation tasks, communication bot-
tlenecks, etc [2], [3]. While edge computing has offered a
novel framework for computing service provisioning, a careful
design of task scheduling policy is still needed to guarantee
the timeliness of task processing due to the increasing demand
on real-time response of various applications and the unknown
environment of the network.

To take advantage of the parallel computing resources for
reducing the total latency, the applications are often modeled
as a MapReduce computation model, i.e., the computation job
can be partitioned to some smaller Map functions which can
be distributedly processed by the edge devices. Since the data
transmissions between the edge devices can result in large
latency delay, it is often the case that the user computes the
Reduce function on the results of the Map functions upon
receiving the computation results of edge devices to complete
the computation job.

In this article, we study the problem of computation
offloading over edge cloud networks with particular focus
on unknown environment of computing resources and timely
computation jobs. We consider a dynamic computation model,
where a sequence of computation jobs needs to be computed
over the (encoded) data that is distributedly stored at the
edge nodes. More precisely, in an online manner, computation
jobs with given deadlines are submitted to the edge network,
i.e., each computation has to be finished within the given
deadline. We assume the service quality (success probability
of returning results back to the user in deadline) of each edge
device is parameterized by a context (collection of factors
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that affect each edge device). The user aims at selecting edge
devices from the available edge devices such that the user
can receive a recoverable set of computation results in the
given deadline. Our goal is then to design an efficient edge
computing policy that maximizes the cumulative expected
reward, where the expected reward collected at each round
is a linear combination of the success probability of the
computation and the amount of computational resources used
(with negative sign).

One significant challenge in this problem is the joint
design of (1) data storage scheme to provide robustness
against unknown behaviors of edge devices; (2) computation
offloading to edge device; and (3) an online learning pol-
icy for making the offloading decisions based on the past
observed events. In our model, the computation capacities
of the devices (e.g., how likely the computation can be
returned to the user within the deadline) are unknown to the
user.

As the main contributions of the article, we introduce a
coded computing framework in which the data is encoded
and stored at the edge devices in order to provide robustness
against unknown computation capabilities of the devices. The
key idea of coded computing is to encode the data and
design each worker’s computation task such that the fastest
responses of any k workers out of total of n workers suffice
to complete the distributed computation, similar to classical
coding theory where receiving any k symbols out of n
transmitted symbols enables the receiver to decode the sent
message. Under coded computing framework, we formulate a
contextual-combinatorial multi-armed bandit (CC-MAB) prob-
lem for the edge computing problem, in which the Lagrange
coding scheme is utilized for data encoding [4].

Then, we propose a policy called online coded edge com-
puting policy, and show that it achieves asymptotically opti-
mal performance in terms of regret loss compared with the
optimal offline policy for the proposed CC-MAB problem
by the careful design of the policy parameters. To prove the
asymptotic optimality of online coded edge computing policy,
we divide the expected regret to three regret terms due to
(1) exploration phases, (2) bad selections of edge devices in
exploitation phases, and (3) good selections of edge devices
in exploitation phases; then we bound these three regrets
separately.

In addition to proving the asymptotic optimality of online
coded edge computing policy, we carry out numerical studies
using the real world scenarios of Amazon EC2 clusters.
In terms of the cumulative reward, the results show that the
online coded edge computing policy significantly outperforms
other benchmarks.

In the following, we summarize the key contributions in this
article:

• We formulate the problem of coded edge computing using
the CC-MAB framework.

• We propose online coded edge computing policy, which
is provably asymptotically optimal.

• We show that the online coded edge computing policy
outperforms other benchmarks via numerical studies.

A. Related Prior Work
Next, we provide a brief literature review that covers three

main lines of work: task scheduling over cloud networks,
coded computing, and the multi-armed bandit problem.

In the dynamic task scheduling problem, jobs arrive to the
network according to a stochastic process, and get scheduled
dynamically over time. The first goal in task scheduling is to
find a throughput-optimal scheduling policy (see e.g., [5]), i.e.
a policy that stabilizes the network, whenever it can be sta-
bilized. For example, Max-Weight scheduling, first proposed
in [6], [7], is known to be throughput-optimal for wireless
networks, flexible queueing networks [8], data centers net-
works [9] and dispersed computing networks [10]. Moreover,
there have been many works which focus on task scheduling
problem with deadline constraints over cloud networks (see
e.g., [11]).

Coded computing broadly refers to a family of tech-
niques that utilize coding to inject computation redundancy
in order to alleviate the various issues that arise in large-
scale distributed computing. In the past few years, coded
computing has had a tremendous success in various prob-
lems, such as straggler mitigation and bandwidth reduction
(e.g., [12]–[21]). Coded computing has also been expanded in
various directions, such as heterogeneous networks (e.g., [22]),
partial stragglers (e.g., [23]), secure and private comput-
ing (e.g., [4], [24]–[27]), distributed optimization (e.g., [28]),
federated learning (e.g., [29]–[31]), blockchains (e.g., [32],
[33]). In a dynamic setting, [34], [35] consider the coded
computing framework with deadline constraints and develops a
learning strategy that can adaptively assign computation loads
to cloud devices. In this article, we go beyond the two states
Markov model considered in [34], [35], and make a sub-
stantial progress by combining the ideas of coded computing
with contextual-combinatorial MAB, which is a more general
framework that does not make any strong assumption (e.g.,
Markov model) on underlying model for the speed of edge
devices.

The multi-armed bandit (MAB) problem has been widely
studied to address the critical tradeoff between exploration and
exploitation in sequential decision making under uncertainty of
environment [36]. The goal of MAB is to learn the single opti-
mal arm among a set of candidate arms of a priori unknown
rewards by sequentially selecting one arm each time and
observing its realized reward [37]. Contextual bandit problem
extends the basic MAB by considering the context-dependent
reward functions [38]–[40]. The combinatorial bandit problem
is another extension of the MAB by allowing multiple-play
(select a set of arms) each time [41], [42]. The contextual-
combinatorial MAB problem considered in this article has also
received much attention recently [43]–[46]. However, [44],
[46] assume that the reward of an action is a linear function
of the contexts different from the reward function considered
in our article. [45] assumes the arm set is fixed throughout the
time but the arms (edge devices) may appear and disappear
across the time in edge networks.

[43] considers a CC-MAB problem for the vehicle cloud
computing, in which the tasks are deadline-constrained. How-
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Fig. 1. Overview of online computation offloading over an edge network
with timely computation requests. In round t, the goal of user is to compute
the Map functions ft(X1), . . . , ft(Xk) by the deadline dt using the edge
devices.

ever, the task replication technique used in [43] is to replicate
the “whole job” to multiple edge devices without taking
advantage of parallelism of computational resources. Coded
computing is a more general technique which allows the
dataset to be first partitioned to smaller datasets and then
encoded such that each device has smaller computation com-
pared to [43]. Moreover, the success probability term (for
receiving any k results out of n results) of reward function
considered in our paper is more general than the success
probability term (for receiving any 1 result out of n results)
of reward function considered in [43].

II. SYSTEM MODEL

A. Computation Model

We consider an edge computing problem, in which a user
offloads its computation to an edge network in an online
manner, and the computation is executed by the edge devices.
In particular, there is a given deadline for each round of
computation, i.e., computation has to be finished within the
given deadline.

As shown in Fig. 1, the considered edge network is com-
posed of a user node and a set of edge devices. There is a
dataset X1, X2, . . . , Xk where each Xj is an element in a
vector space V over a sufficiently large finite field F. Each
edge device prestores the data which can be possibly a function
of X1, X2, . . . , Xk.

Let {1, 2, . . . , T} be the index of the user’s computation
jobs received by the edge network over T time slots. In each
round t (or time slot in a discrete-time system), the user has a
computation job denoted by function gt. Especially, we assume
that function gt can be computed by

gt(X1, X2, . . . , Xk) = ht(ft(X1), ft(X2), . . . , ft(Xk))

where function gt and ft (with degree deg(ft)) are
multivariate polynomial functions with vector coefficients.
In such edge network and motivated by a MapReduce set-
ting, the user is interested in computing Map functions
ft(X1), ft(X2), . . . , ft(Xk) in each round t and the user com-
putes Reduce function ht on those results of Map functions
to obtain gt(X1, X2, . . . , Xk).

Remark 1: We note that the considered computation model
naturally appears in many machine learning applications
which use gradient-type algorithms. For example, in linear
regression problems given �yj which is the vector of observed
labels for data Xj , each worker j computes ft(Xj) =
X�

j (Xj �wt − �yj) which is the gradient of the quadratic loss
function 1

2�Xj �wt − �yj�2 with respect to the weight vector �wt

in round t. To complete the update �wt+1 = gt(X1, . . . , Xk) =
�wt−βt

∑k
j=1 ft(Xj), the user has to collect the computation

results ft(X1), ft(X2), . . . ft(Xk).
Moreover, the considered computation model also holds for

various edge computing applications. For example, in a mobile
navigation application, the goal of user is to compute the
fastest route to its destination. Given a dataset containing the
map information and the traffic conditions over a period of
time, edge devices compute map functions which output all
possible routes between the two end locations. After collecting
the intermediate results from edge devices, the user computes
the best route.

B. Network Model

In an edge computing network, whether a computation result
can be returned to the user depends on many factors. For
example, the computation load of an edge device influences
its runtime; the output size of the computation task affects
the transmission delay, etc. Such factors are referred to as
context throughout the article. The impact of each context on
the edge devices is unknown to the user. More specifically,
the computation service of each edge device is modeled as
follows.

Let ΦT be the context space of dimension DT includes
DT different information of computation task, e.g., size of
input/output, size of computation, and deadline, etc. Let ΦS

be the context space of dimension DS for edge devices
which includes the information related to edge devices such
as computation speed, bandwidth, etc. Let Φ = ΦT × ΦS be
the joint context space which is assumed to be bounded and
thus can be defined by Φ = [0, 1]D and D = DT + DS is the
dimension of context space Φ without loss of generality.

In each round t, let Vt denote the set of edge devices
available to the user for computation, i.e., the available set of
devices might change over time. Moreover, we denote by bt the
budget (maximum number of devices to be used) in round t.
The service delay (computation time plus transmission time)
of each edge device ν is parameterized by a given context
φt

ν ∈ Φ. We denote by ct
ν the service delay of edge device ν,

and dt the computation deadline in round t. Let qt
ν = �{ct

ν≤dt}
be the indicator that the service delay of edge device ν is
smaller than or equal to the given deadline dt in round t. Also,
let μ(φt

ν) = E[qt
ν ] = P(ct

ν ≤ dt) be the success probability
that edge device ν returns the computation result back to
the user within deadline dt, and μt = {μ(φt

ν)}ν∈Vt be the
collection of success probabilities of edge devices in round t.
Let us illustrate the model through a simple example.

Example 1: In [22], the shifted exponential distributions
have been demonstrated to be a good fit for modeling the
execution time of a node in cloud networks. Thus, we can
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model the success probability of an edge device as follows:

μ(φt) = P(ct ≤ dt) =

{
1− e−λt(dt−at) , dt ≥ at

0 , at > dt ≥ 0,

where the context space Φ consists of the deadline dt, the shift
parameter at > 0, and the straggling parameter λt > 0
associated with an edge device.

C. Problem Statement

Let V = {1, 2, . . . , |V|} be the set of all edge devices in the
network. Given context φt = {φt

ν}ν∈Vt of the edge devices
available to the user in round t, the goal of the user is to select
a subset of edge devices from the available set of edge devices
Vt ⊆ V , and decide what to be computed by each selected
edge device, such that a recoverable (or decodable as will be
clarified later) set of computation results ft(X1), . . . ft(Xk)
can be returned to the user within deadline dt.

III. ONLINE CODED EDGE COMPUTING

In this section, we introduce a coded computing framework
for the edge computing problem, and formulate the problem
as a contextual-combinatorial multi-armed bandit (CC-MAB)
problem. Then, we propose a policy called online coded edge
computing policy, which is a context-aware learning algorithm.

A. Lagrange Coded Computing

For the data storage of edge devices, we leverage a linear
coding scheme called the Lagrange coding scheme [4] which
is demonstrated to simultaneously provide resiliency, security,
and privacy in distributed computing. We start with an illus-
trative example.

In each round t, we consider a computation job which con-
sists of computing quadratic functions ft(Xj) = X�

j (Xj �wt−
�yj) over available edge devices Vt = {1, 2, . . . , 6}, where
input dataset X is partitioned to X1, X2. Then, we define
function m as follows:

m(z) � X1
z − 1
0 − 1

+ X2
z − 0
1− 0

= z(X2 −X1) + X1, (1)

in which m(0) = X1 and m(1) = X2. Then, we encode
X1 and X2 to X̃ν = m(ν − 1), i.e., X̃1 = X1, X̃2 = X2,
X̃3 = −X1 + 2X2, X̃4 = −2X1 + 3X2, X̃5 = −3X1 + 4X2

and X̃6 = −4X1 + 5X2. Each edge device ν ∈ {1, 2, . . . , 6}
prestores an encoded data chunk X̃ν locally. If edge device ν
is selected in round t, it computes ft(X̃ν) = X̃�

ν (X̃ν �wt−�yν)
and returns the result back to the user upon its completion.
We note that ft(X̃ν) = ft(m(ν − 1)) is an evaluation of
the composition polynomial ft(m(z)), whose degree at most
2, which implies that ft(m(z)) can be recovered by any 3
results via polynomial interpolation. Then we have ft(X1) =
ft(m(0)) and ft(X2) = ft(m(1)).

Formally, we describe Lagrange coding scheme as follows:
We first select k distinct elements β1, β2, . . . , βk from F,

and let m be the respective Lagrange interpolation polynomial

m(z) �
k∑

j=1

Xj

∏
l∈[k]\{j}

z − βl

βj − βl
, (2)

where u : F → V is a polynomial of degree k − 1 such that
m(βj) = Xj . Recall that V = ∪T

t=1Vt which is the set of
all edge devices. To encode input X1, X2, . . . , Xk, we select
|V| distinct elements α1, α2, . . . , α|V| from F, and encode
X1, X2, . . . , Xk to X̃v = m(αv) for all v ∈ [|V|], i.e.,

X̃v = m(αv) �
k∑

j=1

Xj

∏
l∈[k]\{j}

αv − βl

βj − βl
. (3)

Each edge device ν ∈ V stores X̃ν locally. If edge device
ν is selected in round t, it computes ft(X̃ν) and returns the
result back to the user upon its completion. Then, the optimal
recovery threshold Y t using Lagrange coding scheme is

Y t = (k − 1)deg(ft) + 1 (4)

which guarantees that the computation tasks
ft(X1), . . . , ft(Xk) can be recovered when the user receives
any Y t results from the edge devices. The encoding of
Lagrange coding scheme is oblivious to the computation task
ft. Also, decoding and encoding process in Lagrange coding
scheme rely on polynomial interpolation and evaluation which
can be done efficiently.

Remark 2: We note that the data newly generated in edge
device can be encoded and distributed to other devices at
off-peak time. Especially, a key property of LCC is that the
encoding process can be done incrementally, i.e., when there
are some new added datasets, the update of encoded data
can be done incrementally by encoding only on the new
data instead of redoing the encoding on all the datasets.
For example, let us consider the case that each data Xj is
represented by a vector. When there is a new generated data
element xj added to each data Xj , we just encode new data
elements x1, x2, . . . , xk to x̃1, x̃2 . . . and the new encoded
data can be obtained by appending the new encoded data
to old encoded data vectors X̃1, X̃2, . . . .

B. CC-MAB for Coded Edge Computing

Now we consider a coded computing framework in which
the Lagrange coding scheme is used for data encoding,
i.e., each edge device ν prestores encoded data X̃ν . The encod-
ing process is only performed once for dataset X1, . . . , Xk.
After Lagrange data encoding, the size of input data and
computation of each user do not change, i.e., context φt

ν of
each edge device ν remains the same.

More specifically, we denote by At the set of devices which
are selected in round t for computation. In each round t,
the user picks a subset of devicesAt from all available devices
Vt, and we call At ⊆ Vt the “offloading decision”. The
reward function r(At) achieved by offloading decision At

is composed of the reward term and the cost term, which is
defined as follows:

r(At) =

{
1− η|At|, if

∑
ν∈At qt

ν ≥ Y t

−η|At|, if
∑

ν∈At qt
ν < Y t

(5)

where the term |At| captures the cost of using offloading
decision At with the unit cost η for using one edge device,
and Y t is the optimal recovery threshold defined in (4). More
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precisely, the reward term is equal to 1 if the total number of
received results is greater than the optimal recovery threshold,
i.e.,

∑
ν∈At qt

ν ≥ Y t; otherwise the reward term is equal to 0.
On the other hand, the cost term is defined as −η|At| which
is the cost of using At.

Then, the expected reward denoted by u(μt,At) in round
t can be rewritten as follows:

u(μt,At) =
|At|∑

s=Y t

∑
A⊆At,|A|=s

∏
ν∈A

μ(φt
ν)

∏
ν∈At\A

(1− μ(φt
ν ))

−η|At| (6)

where the first term of the expected reward of an offloading
decision is the success probability that there are at least Y t

computation results received by the user for LCC decoding.
Consider an arbitrary sequence of computation jobs indexed

by {1, 2, . . . , T} for which the user makes offloading deci-
sions {At}Tt=1. To maximize the expected cumulative reward,
we introduce a contextual-combinatorial multi-armed bandit
(CC-MAB) problem for coded edge computing defined as
follows:

1) CC-MAB for Coded Edge Computing:

max
{At}T

t=1

T∑
t=1

u(μt,At) (7)

s.t. At ⊆ Vt, |At| ≤ bt, ∀t ∈ [T ] (8)

where the constraint (8) indicates that the number of edge
devices in At cannot exceed the budget bt in round t. The
proposed CC-MAB problem is equivalent to solving an inde-
pendent subproblem in each round t as follows:

max
At

|At|∑
s=Y t

∑
A⊆At,|A|=s

∏
ν∈A

μ(φt
ν)

∏
ν∈At\A

(1− μ(φt
ν ))− η|At|

s.t. At ⊆ Vt; |At| ≤ bt.

Remark 3: We note that the proposed CC-MAB not only
works for LCC but also for any other coding schemes. In this
article, we focus on LCC since LCC is a universal and opti-
mal encoding technique for arbitrary multivariate polynomial
computations.

C. Optimal Offline Policy

We now assume that the success probability of each edge
device ν ∈ Vt is known to the user. In round t, to find the
optimal At∗, we present the following intuitive lemma proved
in Appendix E.

Lemma 1: Without loss of generality, we assume μ(φt
1) ≥

μ(φt
2) ≥ · · · ≥ μ(φt

|Vt|) in round t. Considering all possible
sets At

g ⊆ Vt with fixed cardinality ng, the optimal At∗
g

with cardinality ng that achieves the largest expected reward
u(μt,At

g) is

At∗
g = {1, 2, . . . , ng} (9)

which represents the set of ng edge devices having largest
success probability μ(φt

ν) among all the edge devices.

Algorithm 1: Optimal Offline Policy

Input: Vt, bt, Y t, μ(φt
ν), ν ∈ Vt;

Initialization: A = ∅, Aopt = ∅, uopt = 0;
Sort μt : μ(φt

1) ≥ μ(φt
2) ≥ · · · ≥ μ(φt

|Vt|);
A ← {1, 2, . . . , Y t} ;
Aopt ← {1, 2, . . . , Y t} ;
uopt ← u(μt,A);
for z ← Y t + 1 to bt do
A ← A∪ {z};
if u(μt,A) > uopt then
Aopt ← A;
uopt ← u(μt,A)

end
end
return Aopt

By Lemma 1, to find the optimal set At∗, we can only focus on
finding the optimal size of At. Since there are only bt choices
for size of |At| (i.e., 1, 2, . . . , bt), this procedure can be done
by a linear search with the complexity linear in the number
of edge devices |Vt|. We present the optimal offline policy in
Algorithm 1.

Remark 4: We note that the expected reward function con-
sidered in [43] is a submodular function, which can be
maximized by a greedy algorithm. However, the expected
reward function defined in (6) is more general which cannot be
maximized by the greedy algorithm. More specifically, one can
show that the expected reward defined in equation (6) is not
submodular by checking the property of submodular functions,
i.e., for all possible subsets A ⊆ B ⊆ V , u(μ, {ν} ∪ A) −
u(μ,A) ≥ u(μ, {ν}∪B)−u(μ,B) does not hold. Without the
property of submodularity, Lemma 1 enables us to maximize
equation (6) by a linear search.

Let {At}Tt=1 be the offloading decisions derived by a
certain policy. The performance of this policy is evaluated by
comparing its loss with respect to the optimal offline policy.
This loss is called the regret of the policy which is formally
defined as follows:

R(T ) = E
[ T∑

t=1

r(At∗)− r(At)
]

(10)

=
T∑

t=1

u(μt,At∗)− u(μt,At). (11)

In general, the user does not know in advance the success
probabilities of edge devices due to the uncertainty of the
environment of edge network. In the following subsection,
we will propose an online learning policy for the proposed
CC-MAB problem which enables the user to learn the success
probabilities of edge devices over time by observing the
service quality of each selected edge device, and then make
offloading decisions adaptively.

D. Online Coded Edge Computing Policy

Now, we describe the proposed online edge computing
policy. The proposed policy has two parameters hT and K(t)
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Algorithm 2: Online Coded Edge Computing Policy

Input: T, hT , K(t);
Initialization: PT ; C(p) = 0, μ̂(p) = 0, ∀p ∈ PT ;
for t← 1 to T do

Observe edge device Vt and contexts φt ;
Find pt = {pt

ν}ν∈Vt , pt
ν ∈ PT such that φt

ν ∈ pt
ν ;

Identify Pue,t and Vue,t;
if Pue,t �= ∅ then

if |Vue,t| ≥ bt then
At ← randomly pick bt edge devices in Vue,t;

else
At ← pick all edge devices in Vue,t and other
(bt − |Vue,t|) ones with the largest μ̂(pt

ν) in
Vt\Vue,t

end
else
At ← obtained by Algorithm 1 based on μ̂t and bt

end
for each edge device ν ∈ At do

Observe qt
ν of edge device ν;

Update μ̂(pt
ν) = μ̂(pt

ν)C(pt
ν)+qt

ν

C(pt
ν)+1 ;

Update C(pt
ν) = C(pt

ν) + 1;
end

end

to be designed, where hT decides how we partition the
context space, and K(t) is a deterministic and monotonically
increasing function, used to identify the under-explored con-
text. The proposed online coded edge computing policy (see
Algorithm 2) is performed as follows:

Initialization Phase: Given parameter hT , the proposed
policy first creates a partition denoted by PT for the context
space Φ, which splits Φ into (hT )D sets. Each set is a
D-dimensional hypercube of size 1

hT
× · · · × 1

hT
. For each

hypercube p ∈ PT , the user keeps a counter Ct(p) which is
the number of selected edge devices that have context φt

ν in
hypercube p before round t. Moreover, the policy also keeps an
estimated success probability denoted by μ̂t(p) for each hyper-
cube p. Let Qt(p) = {qτ

ν : φτ
ν ∈ p, ν ∈ Aτ , τ = 1, . . . , t− 1}

be the set of observed indicators (successful or not) of edge
devices with context in p before round t. Then, the estimated
success probability for edge devices with context φt

ν ∈ p is
computed by μ̂t(p) = 1

Ct(p)

∑
q∈Qt(p) q.

In each round t, the proposed policy has the following
phases:

Hypercube Identification Phase: Given the contexts of all
available edge devices φt = {φt

ν}ν∈Vt , the policy determines
the hypercube pt

ν ∈ PT for each context φt
ν such that φt

ν is
in pt

ν . We denote by pt = {pt
ν}ν∈Vt the collection of these

identified hypercubes in round t. To check whether there exist
hypercubes p ∈ pt that have not been explored sufficiently,
we define the under-explored hypercubes in round t as follows:

Pue,t
T = {p ∈ PT : ∃ν ∈ Vt, φt

ν ∈ p, Ct(p) ≤ K(t)}. (12)

Also, we denote by Vue,t the set of edge devices which fall in
the under-explored hypercubes, i.e., Vue,t = {ν ∈ Vt : pt

ν ∈

Pue,t
T }. Depending on Vue,t in round t, the proposed policy

then either enters an exploration phase or an exploitation
phase.

Exploration Phase: If Vue,t is non-empty, the policy enters
an exploration phase. If set Vue,t contains at least bt edge
devices (i.e., |Vue,t| ≥ bt), then the policy randomly selects bt

edge devices from Vue,t. If Vue,t contains fewer than bt edge
devices (|Vue,t| < bt), then the policy selects all edge devices
from Vue,t. To fully utilize the budget bt, the remaining
(bt − |Vue,t|) ones are picked from the edge devices with
the highest estimated success probability among the remaining
edge devices in Vt\Vue,t.

Exploitation Phase: If Vue,t is empty, the policy enters
an exploitation phase and it selects At using the optimal
offline policy based on the estimated success probabilities
μ̂t = {μ̂t(pt

ν)}ν∈Vt .
Update Phase: After selecting the edge devices, the pro-

posed policy observes whether each selected edge device
returns the result within the deadline; then, it updates μ̂t(pt

ν)
and Ct(pt

ν) of each hypercube pt
ν ∈ PT .

The following example illustrates how the policy works
given parameters hT and K(t).

Example 2: Consider the edge computing network in which
the success probability of an edge device is defined by a shifted
exponential distribution as defined in Example 1. It can be
shown that the Hölder condition with α = 1 holds. Then,
we have parameters hT = �T 1

6 � and K(t) = t
1
3 log (t).

We assume that the online coded edge computing policy is run
over time horizon T = 1000. Then, we have hT = 4. Before
running the policy, we create PT by partitioning the domain of
each context (i.e., deadlines, shift parameters and straggling
parameters) into hT = 4 intervals, which generates totally 64
sets. We keep a counter Ct(p) for each generated hypercube
p ∈ PT . In hypercube identification phase, if there exists edge
device ν with φt

ν such that φt
ν is located in hypercube p

and the counter Ct(p) is smaller than K(t), then p is the
under-explored hypercube. The policy will proceed to either
exploration phase or exploitation phase depending on whether
under-explored hypercube exists.

IV. ASYMPTOTIC OPTIMALITY OF ONLINE CODED

EDGE COMPUTING POLICY

In this section, by providing the design of policy parameters
hT and K(t), we show that the online coded edge comput-
ing policy achieves a sublinear regret in the time horizon
T which guarantees an asymptotically optimal performance,
i.e., limT→∞

R(T )
T = 0.

To conduct the regret analysis for the proposed CC-MAB
problem, we make the following assumption on the success
probabilities of edge devices in which the devices’ success
probabilities are equal if they have the same contexts. This
natural property is formalized by the Hölder condition defined
as follows:

Assumption 1 (Hölder Condition): A real function f on
D-dimensional Euclidean space satisfies a Hölder condition,
when there exist L > 0 and α > 0 for any two contexts
φ, φ	 ∈ Φ, such that |f(φ) − f(φ	)| ≤ L � φ − φ	 �α, where
� · � is the Euclidean norm.
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Under Assumption 1, we choose parameters hT = �T 1
3α+D �

for the partition of context space Φ and K(t) = t
2α

3α+D log (t)
in round t for identifying the under-explored hypercubes of
the context. We present the following theorem which shows
that the proposed online coded edge computing policy has a
sublinear regret upper bound.

Theorem 1 (Regret Upper Bound): Let K(t) =
t

2α
3α+D log (t) and hT = �T 1

3α+D �. If the Hölder condition
holds, the regret R(T ) is upper-bounded as follows:

R(T ) ≤ (1 + ηB)2D(T
2α+D
3α+D log (T ) + T

D
3α+D )

+(1 + ηB)B
π2

3

B∑
k=1

(|V|
k

)

+(3LD
α
2 +

6α + 2D

2α + D
)BMT

2α+D
3α+D ,

where B = max1≤t≤T bt and M = max1≤t≤T

(
B−1
Y t−1

)
. The

dominant order of the regret R(T ) is O(T
2α+D
3α+D log (T )) which

is sublinear to T .
Proof: We first define the following terms. For each

hypercube p ∈ PT , we define μ = supφ∈p μ(φ) and μ =
infφ∈p μ(φ) as the best and worst success probabilities over
all contexts φ ∈ p. Also, we define the context at center of a
hypercube p as φ̃p and its success probability μ̃(p) = μ(φ̃p).
Given a set of available edge devices Vt, the corresponding
context set Φt = {φt

ν}ν∈Vt and the corresponding hypercube
set Pt = {pt

ν}ν∈Vt for each round t, we also define μt =
{μ(pt

ν)}ν∈Vt , μt = {μ(pt
ν)}ν∈Vt and μ̃t = {μ̃(pt

ν)}ν∈Vt . For
each round t, we define set Ãt which satisfies

Ãt = argmaxA⊆Vt,|A|≤bt u(μ̃t,A) (13)

We then use set Ãt to identify the set of edge device which
are bad to select. We define

Lt =
{
G : G ⊆ Vt, |G| ≤ bt, u(μt, Ãt)− u(μt, G) ≥ Atθ

}
to be the set of suboptimal subsets of arms for hypercube
set Pt, where A > 0 and θ < 0 are the parameters which
will be used later in the regret analysis. We call a subset
G ∈ Lt suboptimal and At

b−\Lt near-optimal for Pt, where
At

b− denotes the subset of Vt with size less than bt. Then the
expected regret R(T ) can be divided into three summands:

R(T ) = E[Re(T )] + E[Rs(T )] + E[Rn(T )], (14)

where E[Re(T )] is the regret due to exploration phases
and E[Rs(T )] and E[Rn(T )] both correspond to regret in
exploitation phases: E[Rs(T )] is the regret due to suboptimal
choices, i.e., the subsets of edge devices from Lt are selected;
E[Rn(T )] is the regret due to near-optimal choices, i.e., the
subsets of edge devices from At

b−\Lt. In the following,
we prove that each of the three summands is bounded.

First, the following lemma (see the proof in Appendix A)
gives a bound for E[Re(T )], which depends on the choice of
two parameters z and γ.

Lemma 2 (Bound for E[Re(T )]): Let K(t) = tz log (t)
and hT = �T γ�, where 0 < z < 1 and 0 < γ < 1

D . If the

algorithm is run with these parameters, the regret E[Re(T )]
is bounded by

E[Re(T )] ≤ (1 + ηB)2D(T z+γD log (T ) + T γD) (15)

where B = max1≤t≤T bt.
Next, the following lemma (see the proof in Appendix B)

gives a bound for E[Rs(T )], which depends on the choice of z
and γ with an additional condition of these parameters which
has to be satisfied.

Lemma 3 (Bound for E[Rs(T )]): Let K(t) = tz log (t)
and hT = �T γ�, where 0 < z < 1 and 0 < γ < 1

D . If the
algorithm is run with these parameters, Assumption 1 holds,
and the additional condition 2BMt−

z
2 ≤ Atθ is satisfied for

all 1 ≤ t ≤ T , the regret E[Rs(T )] is bounded by

E[Rs(T )] ≤ (1 + ηB)B
π2

3

B∑
k=1

(|V|
k

)
, (16)

where B = max1≤t≤T bt, and M = max1≤t≤T

(
B−1
Y t−1

)
.

Lastly, the following lemma (see the proof in Appendix C)
gives a bound for E[Rn(T )], which depends on the choice of
z and γ.

Lemma 4 (Bound for E[Rn(T )]): Let K(t) = tz log (t)
and hT = �T γ�, where 0 < z < 1 and 0 < γ < 1

D .
If the algorithm is run with these parameters and Assumption
1 holds, the regret E[Rn(T )] is bounded by

E[Rn(T )] ≤ 3BMLD
α
2 T 1−γα +

A

1 + θ
T 1+θ. (17)

where B = max1≤t≤T bt and M = max1≤t≤T

(
B−1
Y t−1

)
.

Now, let K(t) = tz log (t) and hT = �T γ�, where 0 < z <
1 and 0 < γ < 1

D ; let H(t) = BMt−
z
2 . Also, we assume that

Assumption 1 holds and the additional condition 2BMt−
z
2 ≤

Atθ is satisfied for all 1 ≤ t ≤ T . By Lemma 2, 3, and 4,
the regret R(T ) is bounded as follows:

R(T ) ≤ (1 + ηB)2D(T z+γD log (T ) + T γD)

+(1 + ηB)B
π2

3

B∑
k=1

(|V|
k

)

+3BMLD
α
2 T 1−αγ +

A

1 + θ
T 1+θ. (18)

Now, we select the parameters z, γ, A, θ according to the
following values z = 2α

3α+D ∈ (0, 1), γ = 1
3α+D ∈ (0, 1

D ),
θ = − α

3α+D and A = 2BM . It is clear that condition
2BMt−

z
2 ≤ Atθ is satisfied. Then, the regret R(T ) can be

bounded as follows:

R(T ) ≤ (1 + ηB)2D(T
2α+D
3α+D log (T ) + T

D
3α+D )

+(1 + ηB)B
π2

3

B∑
k=1

(|V|
k

)

+(3LD
α
2 +

6α + 2D

2α + D
)BMT

2α+D
3α+D , (19)

which has the dominant order O(T
2α+D
3α+D log (T )). �

Remark 5: Based on Assumption 1, the parameters hT and
K(t) are designed such that the regret achieved by the policy is
sublinear as stated in Theorem 1. In the following, we provide
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some intuitions behind the choices of hT and K(T ). We first
assume that the parameters are chosen as hT = �T γ� and
K(t) = tz log (t), in which γ and z are designed later. In the
proof of Lemma 2, to bound E[Re(T )], our main task is
designing T z+γD log (T )+T γD to be a sublinear term. In the
proof of Lemma 3, one of key steps is to bound Pr(V t

G, W t) by
the term of t−2 such that E[Rs(T )] is bounded by the term of∑∞

t=1 t−2 which converges to a constant. In particular, we first

bound Pr(E1) and Pr(E2) by the terms of exp −2tz log (t)H(t)2

B2M2 ,
and choose H(t) to be BMt−

z
2 . By Lemma 4, we bound

E[Rn] by 3BMLD
α
2 T 1−αγ + A

1+θ T 1+θ which can be sublin-
ear by selecting the appropriate γ and z. By carefully selecting
parameters hT = �T 1

3α+D � and K(t) = t
2α

3α+D , the regret
upper bound is shown to be subliear in Theorem 1.

V. EXPERIMENTS

In this section, we demonstrate the impact of the online
coded edge computing policy by simulation studies. In par-
ticular, we carry out extensive simulations using the shifted
exponential models which have been demonstrated to be a
good model for Amazon EC2 clusters [22].

Given a dataset partitioned to X1, X2, . . . , X5, we con-
sider the linear regression problem using the gradient algo-
rithm. It computes the gradient of quadratic loss function
1
2�Xj �wt−�yj�2 with respect to the weight vector �wt in round
t, i.e., ft(Xj) = X�

j (Xj �wt − �yj) for all 1 ≤ j ≤ 5. The
computation is executed over a set of edge devices V , where
each edge device ν ∈ V stores an encoded data chunk X̃ν

using Lagrange coding scheme. In such setting, we have the
optimal recovery threshold Y t = 9. The penalty parameter η
is 0.01.

Motivated by the distribution model proposed in [22] for
total execution time in cloud networks, we model the success
probability of each edge device ν ∈ V as a shifted exponential
function defined as follows:

μ(φt
ν) = P(ct

ν ≤ dt) =

{
1− e−λt

ν(dt−at
ν), dt ≥ at

ν ,

0, at
ν > dt ≥ 0,

(20)

where the context of each edge device consists of the deadline
dt, the shift parameter at

ν > 0, and the straggling parameter
λt

ν > 0 associated with edge device ν. Under this model,
the dimension of context space D is 3. Moreover, for function
μ defined in (20), it can be shown that the Hölder condition
with α = 1 holds. Thus, we run the online coded edge
computing policy with parameters hT = �T 1

6 � and K(t) =
t

1
3 log (t).

By the empirical analysis in [22], the instance of type
r4.2xlarge is shown to have the shift parameter a = 1.37
and the straggling parameter λ = 120. And, the instance of
type r4.xlarge has the shift parameter a = 2 and the strag-
gling parameter λ = 115. Based on the real-world parameters
for Amazon EC2 clusters, the deadline dt ∈ [dmin, dmax] (sec),
the shift parameter at

ν ∈ [1.37, 2] (sec), and the straggling
parameter λt

ν ∈ [115, 120] (1/sec) are chosen uniformly at
random in each round t. We consider the following four
scenarios for the simulations:

Fig. 2. Numerical evaluations for cumulative reward for Scenario 1.

Fig. 3. Numerical evaluations for cumulative reward for Scenario 2.

• Scenario 1: |V| = 20, (dmin, dmax) = (1, 2), and bt = 12.
• Scenario 2: |V| = 15, (dmin, dmax) = (1, 2), and bt = 12.
• Scenario 3: |V| = 20, (dmin, dmax) = (1, 2), and bt = 15.
• Scenario 4: |V| = 20, (dmin, dmax) = (0.5, 3), and bt =

12.

For each scenario, the following benchmarks are considered
to compare with the online coded edge computing policy:

1) Optimal Offline policy: Assuming knowledge of
the success probability of each edge device in each
round, the optimal set of edge devices is selected via
Algorithm 1.

2) LinUCB [38]: LinUCB is a contextual-aware bandit
algorithm which picks one arm in each round. We obtain
a set of edge devices by repeating bt times of Lin-
UCB. By sequentially removing selected edge devices,
we ensure that the bt chosen edge devices are distinct.

3) UCB [37]: UCB algorithm is a non-contextual and non-
combinatorial algorithm. Similar to LinUCB, we repeat
UCB bt times to select edge devices.

4) Random: A set of edge devices with size of bt is
selected randomly from the available edge devices in
each round t.

Fig. 2 to Fig. 5 provide the cumulative rewards comparison
of the online coded edge computing policy with the other 4
benchmarks. We make the following conclusions from Fig. 2
to Fig. 5:

• The optimal offline policy achieves the highest reward
which gives an upper bound to the other policies. After
a period of exploration, the proposed online policy is
able to exploit the learned knowledge, and the cumulative
reward approaches the upper bound.
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Fig. 4. Numerical evaluations for cumulative reward for Scenario 3.

Fig. 5. Numerical evaluations for cumulative reward for Scenario 4.

Fig. 6. Expected regret of the online coded edge computing policy for
Scenario 1.

• The proposed online coded edge computing policy sig-
nificantly outperforms other benchmarks by taking into
account the context of edge computing network.

• Random and UCB algorithms are not effective since
they do not take the context into account for the deci-
sions. Although LinUCB is a contextual-aware algorithm,
it achieves similar cumulative regret as random and
UCB algorithms. That is because the success probability
model is more general here than the linear functions that
LinUCB is tailored for.

Fig. 6 presents the expected regret of the proposed policy for
Scenario 1. We can conclude that the proposed policy achieves
a sublinear regret in the time horizon T demonstrates the
asymptotic optimality, i.e., limT→∞

R(T )
T = 0.

VI. CONCLUDING REMARKS AND FUTURE DIRECTIONS

Motivated by the volatility of edge devices’ computing
capabilities and the quality of service, and increasing demand

for timely event-driven computations, we consider the problem
of online computation offloading over unknown edge cloud
networks without the knowledge of edge devices’ capabil-
ities. Under the coded computing framework, we formu-
late a combinatorial-contextual multiarmed bandit (CC-MAB)
problem, which aims to maximize the cumulative expected
reward. We propose the online coded edge computing policy
which provably achieves asymptotically-optimal performance
in terms of timely throughput, since the regret loss for the
proposed CC-MAB problem compared with the optimal offline
policy is sublinear. Finally, we show that the proposed online
coded edge computing policy significantly improves the cumu-
lative reward compared to the other benchmarks via numerical
studies.
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