
This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE/ACM TRANSACTIONS ON NETWORKING 1

CodedReduce: A Fast and Robust Framework for
Gradient Aggregation in Distributed Learning

Amirhossein Reisizadeh , Saurav Prakash , Graduate Student Member, IEEE,
Ramtin Pedarsani , Senior Member, IEEE, and Amir Salman Avestimehr, Fellow, IEEE

Abstract— We focus on the commonly used synchronous
Gradient Descent paradigm for large-scale distributed learning,
for which there has been a growing interest to develop efficient
and robust gradient aggregation strategies that overcome two key
system bottlenecks: communication bandwidth and stragglers’
delays. In particular, Ring-AllReduce (RAR) design has been
proposed to avoid bandwidth bottleneck at any particular node
by allowing each worker to only communicate with its neighbors
that are arranged in a logical ring. On the other hand, Gradient
Coding (GC) has been recently proposed to mitigate stragglers
in a master-worker topology by allowing carefully designed
redundant allocation of the data set to the workers. We propose
a joint communication topology design and data set allocation
strategy, named CodedReduce (CR), that combines the best of
both RAR and GC. That is, it parallelizes the communications
over a tree topology leading to efficient bandwidth utilization,
and carefully designs a redundant data set allocation and coding
strategy at the nodes to make the proposed gradient aggregation
scheme robust to stragglers. In particular, we quantify the
communication parallelization gain and resiliency of the proposed
CR scheme, and prove its optimality when the communication
topology is a regular tree. Moreover, we characterize the expected
run-time of CR and show order-wise speedups compared to
the benchmark schemes. Finally, we empirically evaluate the
performance of our proposed CR design over Amazon EC2 and
demonstrate that it achieves speedups of up to 27.2× and 7.0×,
respectively over the benchmarks GC and RAR.

Index Terms— Distributed learning, communication topology,
gradient aggregation.

I. INTRODUCTION

MODERN machine learning algorithms are now used
in a wide variety of domains. However, training a

large-scale model over a massive data set is an extremely

Manuscript received August 25, 2020; revised April 11, 2021 and
August 3, 2021; accepted August 8, 2021; approved by IEEE/ACM TRANS-
ACTIONS ON NETWORKING Editor R. La. This work was supported in
part by the NSF under Grant CNS-2003035, Grant CCF-1408639, Grant
CCF-1755808, and Grant NETS-1419632; in part by the Office of Naval
Research (ONR) under Award N000141612189; and in part by the
National Security Agency (NSA) Grant, a Research Gift from Intel and
by Defense Advanced Research Projects Agency (DARPA) under Contract
HR001117C0053. A part of this work was presented in IEEE International
Symposium on Information Theory, 2019 [DOI: 10.1109/ISIT.2019.8849431].
(Amirhossein Reisizadeh and Saurav Prakash contributed equally to this
work.) (Corresponding author: Amirhossein Reisizadeh.)

Amirhossein Reisizadeh and Ramtin Pedarsani are with the Department of
Electrical and Computer Engineering, University of California at Santa Bar-
bara, Santa Barbara, CA 93106 USA (e-mail: reisizadeh@ucsb.edu; ramtin@
ece.ucsb.edu).

Saurav Prakash and Amir Salman Avestimehr are with the Department
of Electrical and Computer Engineering, University of Southern California,
Los Angeles, CA 90089 USA (e-mail: sauravpr@usc.edu; avestimehr@
ee.usc.edu).

Digital Object Identifier 10.1109/TNET.2021.3109097

computation and storage intensive task, e.g. training ResNet
with more than 150 layers and hundreds of millions of para-
meters over the data set ImageNet with more than 14 million
images. As a result, there has been significant interest in
developing distributed learning strategies that speed up the
training of learning models (e.g., [2]–[8]).

In the commonly used Gradient Descent (GD) paradigm
for learning, parallelization can be achieved by arranging
the machines in a master-worker setup. Through a series
of iterations, the master is responsible for updating the
underlying model from the results received from the workers,
where they compute the partial gradients using their local
data batches and upload to the master at each iteration. For
the master-worker setup, both synchronous and asynchronous
methods have been developed [2]–[7]. In synchronous settings,
all the workers wait for each other to complete the gradient
computations, while in asynchronous methods, the workers
continue the training process after their local gradient is
computed. While synchronous approaches provide better
generalization behaviors than the asynchronous ones [4], [9],
they face major system bottlenecks due to (1) bandwidth
congestion at the master due to concurrent communications
from the workers to the master [10]; and (2) the delays caused
by slow workers or stragglers that significantly increase the
run-time [5].

To alleviate the communication bottleneck in distributed
learning, various bandwidth efficient strategies have been
proposed [11]–[13]. Particularly, Ring-AllReduce (RAR) [10]
strategy has been proposed by allowing each worker to only
communicate with its neighbors that are arranged in a logical
ring. More precisely, the data set, D, is uniformly distributed
among N workers and each node combines and passes its
partial gradient along the ring such that at the end of the
collective operation, each worker has a copy of the full
gradient g (Figure 1). Due to the master-less topology of
RAR, it avoids bandwidth bottleneck at any particular node.
Furthermore, as shown in [11], RAR is provably bandwidth
optimal and induces O(1) communication overhead that does
not depend on the number of distributed workers. As a result,
RAR has recently become a central component in distributed
deep learning for model updating [14]–[16]. More recent
approaches to mitigate bandwidth bottleneck in distributed
gradient aggregation include compression and quantization of
the gradients [17]–[19].

Despite being bandwidth efficient, AllReduce-type algo-
rithms are inherently sensitive to stragglers, which makes
them prone to significant performance degradation and
even complete failure if any of the workers slows down.

1558-2566 © 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on October 05,2021 at 18:41:27 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-1730-8402
https://orcid.org/0000-0002-1911-4062
https://orcid.org/0000-0002-1126-0292

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

2 IEEE/ACM TRANSACTIONS ON NETWORKING

Fig. 1. Illustration of RAR, GC and CR: In RAR, workers communicate
only with their neighbors on a ring, which results in high bandwidth
utilization; however, RAR is prone to stragglers. GC is robust to stragglers by
doing redundant computations at workers; however, GC imposes bandwidth
bottleneck at the master. CR achieves the benefits of both worlds, providing
high bandwidth efficiency along with straggler resiliency.

Straggler bottleneck becomes even more significant as the
cluster size increases [20], [21].

One approach to mitigate stragglers in distributed computa-
tion is to introduce computational redundancy via replication.
[22] proposes to replicate the straggling task on other available
nodes. In [23], the authors propose a partial data replication
for robustness. Other relevant replication based strategies
have been proposed in [24]–[26]. Recently, coding theoretic
approaches have also been proposed for straggler mitiga-
tion [27]–[37]. Specifically, Gradient Coding (GC) [38] has
been proposed to alleviate stragglers in distributed gradient
aggregation in a master-worker topology (Figure 1). In GC,
the data set D is carefully and redundantly distributed among
the N workers where each worker computes a coded gra-
dient from its local batch. The master node waits for the
results of any N − S workers and recovers the total gra-
dient g, where the design parameter S denotes the maxi-
mum number of stragglers that can be tolerated. Therefore,
GC prevents the master from waiting for all the workers
to finish their computations, and it was shown to achieve
significant speedups over the classical uncoded master-worker
setup [38].

However, as the cluser size gets large, GC suffers from
significant network congestion at the master. In particular,
the communication overhead increases to O(N), as the master
needs to receive messages from O(N) workers. Thus, it is
essential to design distributed learning strategies that alleviate
stragglers while imposing low communication overhead across
the cluster. Consequently, our goal in this paper is to answer
the following fundamental question:

Can we achieve the communication parallelization of
RAR and the straggler toleration of GC simultaneously
in distributed gradient aggregation?

We answer this question in the affirmative. As the main
contribution of this paper, we propose a joint design of
data allocation and communication strategy that is robust to
stragglers, alongside being bandwidth efficient. Specifically,
we propose a scalable and robust scheme for synchronous
distributed gradient aggregation, called CodedReduce (CR).

There are two key ideas behind CR. Firstly, we use a logical
tree topology for communication consisting of a master node,
L layers of workers, where each parent node has n children
nodes (Figure 1). In the proposed configuration, each node
communicates only with its parent node for downloading the
updated model and uploading partial gradients. As in the
classical master-worker setup, the root node (master) recovers
the full gradient and updates the model. Except for the leaf
nodes, each node receives enough number of coded partial
gradients from its children, combines them with its local and
partial gradient and uploads the result to its parent. This dis-
tributed communication strategy alleviates the communication
bottleneck at the nodes, as multiple parents can concurrently
receive from their children. Secondly, the coding strategy
utilized in CR provides robustness to stragglers. Towards this
end, we exploit ideas from GC and propose a data allocation
and communication strategy such that each node needs to only
wait for any n− s of its children to return their results.

The theoretical guarantees of the proposed CR scheme
are two-fold. First, we characterize the computation load
introduced by the proposed CR and prove that for a fixed
straggler resiliency, CR achieves the optimal computation load
(relative size of the assigned local data set to the total data set)
among all the robust gradient aggregation schemes over a fixed
tree topology. Moreover, CR significantly improves upon GC
in the computation load of the workers. More precisely, to be
robust to straggling/failure of α fraction of the children, GC
loads each worker with ≈α fraction of the total data set, while
CR assigns only ≈αL fraction of the total data set, which
is a major improvement. Secondly, we model the workers’
computation times as shifted exponential random variables
and asymptotically characterize the average latency of CR,
that is the expected time to aggregate the gradient at the
master node as the number of workers tends to infinity. This
analysis further demonstrates how CR alleviates the bandwidth
efficiency and speeds up the training process by parallelizing
the communications via a tree.

In addition to provable theoretical guarantees, the proposed
CR scheme offers substantial improvements in practice. As a
representative case, Figure 2 provides the gradient aggre-
gation time averaged over many gradient descent iterations
implemented over Amazon EC2 clusters. Compared to three
benchmarks – classical Uncoded Master-Worker (UMW), GC,
RAR – the proposed CR scheme attains speedups of 22.5×,
6.4× and 4.3×, respectively.

II. PROBLEM SETUP AND BACKGROUND

In this section, we provide the problem setup followed by
a brief background on RAR and GC and their corresponding
straggler resiliency and communication parallelization.

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on October 05,2021 at 18:41:27 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

REISIZADEH et al.: CodedReduce: FAST AND ROBUST FRAMEWORK FOR GRADIENT AGGREGATION 3

Fig. 2. Average iteration time for gradient aggregation in different schemes
CR, RAR, GC and UMW: Training a linear model is implemented on a
cluster of N = 84 t2.micro instances.

A. Problem Setting

Many machine learning tasks involve fitting a model over
a training data set by minimizing a loss function. For a given
labeled data set D = {xj ∈ R

p+1 : j = 1, . . . , d}, the goal is
to solve the following optimization problem:

θ∗ = argmin
θ∈Rp

�
x∈D

� (θ;x) + λR(θ), (1)

where �(·) and R(·) respectively denote the loss and
regularization functions, and the optimization problem is
parameterized by λ. One of the most popular ways of
solving (1) in distributed learning is to use the Gradient
Descent (GD) algorithm. More specifically, under standard
convexity assumptions, the following sequence of model
updates {θ(t)}∞t=0 converges to the optimal solution θ∗:

θ(t+1) = hR

�
θ(t),g

�
, (2)

where hR(·) is a gradient-based optimizer depending on the
regularizer R(·) and

g =
�
x∈D
∇�
�
θ(t);x

�
, (3)

denotes the gradient of the loss function evaluated at the model
at iteration t over the data set D. Under certain assumptions,
the iterations in (2) converge to a local optimum in the non-
convex case, as well. For instance, if all the saddle points
of a smooth non-convex objective are strict-saddle, then the
iterations in (2) converge to a local minimum [39]. The core
component of the iterations defined in (2) is the computation
of the gradient vector g at each iteration. At scale, due to
limited storage and computation capacity of the computing
nodes, gradient aggregation task (3) has to be carried out over
distributed nodes. This parallelization, as we discussed earlier,
introduces two major bottlenecks: stragglers and bandwidth
contention. The goal of the distributed gradient aggregation
scheme is to provide straggler resiliency as well as communi-
cation parallelization. At a high level, straggler resiliency, α,
refers to the fraction of the straggling workers that the dis-
tributed aggregation scheme is robust to, and communication
parallelization gain, β, quantifies the number of simultaneous
communications in the network by distributed nodes compared
to only one simultaneous communication in a single-node
(master-worker) aggregation scheme.

Next, we discuss the data allocation and communication
strategy of two synchronous gradient aggregation schemes

Fig. 3. Illustration of communication strategy in RAR for N = 3 workers.

in distributed learning and their corresponding straggler
resiliency and communication parallelization gain.

B. Ring-AllReduce

In AllReduce-type aggregation schemes, the data set is
uniformly distributed over N worker nodes {W1, . . . , WN}
which coordinate among themselves in a master-less set-
ting to aggregate their partial gradients and compute the
aggregate gradient g at each worker. Particularly in RAR,
each worker Wi partitions its local partial gradient into N
segments v1,i, . . . ,vN,i. In the first round, Wi transmits vi,i

to Wi+1. Each worker then adds up the received segment
to the corresponding segment of its local gradient, i.e., Wi

obtains vi−1,i−1 + vi−1,i. In the second round, the reduced
segment is forwarded to the neighbor and added up to the
corresponding segment. Proceeding similarly, at the end of
N − 1 rounds, each worker has a unique segment of the full
gradient, i.e., Wi has vi+1,1 + . . .+vi+1,N . After the reduce-
scatter phase, the workers execute the collective operation of
AllGather where the full gradient g becomes available at each
node. The RAR operation for a cluster of three workers is
illustrated in Figure 3.

It is clear that RAR cannot tolerate any straggling nodes
since the communications are carried out over a ring and
each node requires its neighbor’s result to proceed in the
ring, i.e., the straggler resiliency for RAR is αRAR = 0.
However, the ring communication design in RAR alleviates
the communication congestion at busy nodes, and achieves
communication parallelization gain βRAR = Θ(N) which is
optimal [10].

C. Gradient Coding

Gradient Coding (GC) [38] was recently proposed to pro-
vide straggler resiliency in a master-worker topology with one
master node and N distributed worker nodes {W1, . . . , WN}
as depicted in Figure 1. We start the description of GC with
an illustrative example.

Example 1 (Gradient Coding): To make gradient aggrega-
tion over N = 3 workers robust to any S = 1 straggler,
GC partitions the data set to {D1,D2,D3} and assigns 2

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on October 05,2021 at 18:41:27 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

4 IEEE/ACM TRANSACTIONS ON NETWORKING

Fig. 4. Illustration of data allocation and communication strategy in GC for
N = 3 workers.

partitions to each worker as depicted in Figure 4. Full gradient
g = g1 + g2 + g3 can be recovered from any N − S = 2
workers, e.g., the master recovers g from W1 and W2 by
combining their results as g = 2

�
1
2g1 + g2

�− (g2 − g3).
In general, to be robust to any S ∈ [N] = {1, . . . , N} strag-

glers, GC uniformly partitions the data set D to {D1, . . . ,Dk}
(e.g. k = N) with corresponding partial gradients g1, . . . ,gk

and distributes them redundantly among the workers such that
each partition is placed in S+1 workers, thus achieving a com-
putation load of rGC = S+1

N . Let matrix G = [g1, . . . ,gk]� ∈
R

k×p denote the collection of partial gradients. Each worker
Wi then computes its local partial gradients and sends biG
to the master, where B = [b1; . . . ;bN] ∈ R

N×k denotes the
encoding matrix, i.e. non-zero elements in bi specifies the
partitions stored in worker Wi. Upon receiving the results of
any N − S workers, the master recovers the total gradient g
by linearly combining the received results, that is g = afBG
where the row vector af ∈ R

1×N corresponds to a particular
set of S stragglers and A = [a1; . . . ;aF] denotes the decoding
matrix with F =

�
N
S

�
distinct straggling scenarios. The GC

algorithm designs encoding and decoding matrices (B,A)
such that, in the worst case, the full gradient g is recoverable
from the results of any N−S out of N workers, i.e. straggler
resiliency αGC = S/N is attained. Although GC prevents the
master to wait for all the workers to finish their computations,
it requires simultaneous communications from the workers
that will cause congestion at the master node, and lead to
parallelization gain βGC = Θ(1) for a constant resiliency.

Having reviewed RAR and GC strategies and their
resiliency and parallelization properties, we now informally
provide the guarantees of our proposed CR scheme in the
following remark.

Remark 1: CR arranges the available N workers via a tree
configuration with L layers of nodes and each parent having n
children, i.e. N = n + · · ·+ nL. The proposed data allocation
and communication strategy in CR results in communication
parallelization gain βCR = Θ(N1−1/L) which approaches
βRAR = Θ(N) for large L. Moreover, given a computation
load 0 ≤ r ≤ 1, CR is robust to straggling of αCR ≈ r1/L

fraction of the children per any parent in the tree, while GC
is robust to only αGC ≈ r fraction of nodes and RAR has no
straggler resiliency. Therefore, CR achieves the best of RAR
and GC, simultaneously. Table I summarizes these results and
Theorems 1 and 2 formally characterize such guarantees.

III. PROPOSED CODEDREDUCE SCHEME

In this section, we first present our proposed Coded-
Reduce (CR) scheme by describing data set allocation and

TABLE I

COMMUNICATION PARALLELIZATION GAIN AND STRAGGLER RESILIENCY
OF THREE DESIGNS RAR, GC, AND CR IN A SYSTEM WITH N NODES

WITH COMPUTATION LOAD r, WHERE CR HAS A TREE

COMMUNICATION TOPOLOGY OF L LAYERS

Fig. 5. (n, L)–regular tree topology.

communication strategy at the nodes followed by an illustra-
tive example. Then, we provide theoretical guarantees of CR
and conclude the section with optimality of CR.

A. Description of CR Scheme
Let us start with the proposed network configuration. CR

arranges the communication pattern among the nodes via a
regular tree structure as defined below. An (n, L)–regular tree
graph T consists of a master node and L layers of worker
nodes. At any layer (except for the lowest), each parent node
is connected to n children nodes in the lower layer, i.e. there
is a total of N = n + · · · + nL nodes (See Figure 5). Each
node of the tree is identified with a pair (l, i), where l ∈ [L]
and i ∈ [nl] denote the corresponding layer and the node’s
index in that layer, respectively. Furthermore, T (l, i) denotes
the sub-tree with the root node (l, i).

We next introduce a notation that eases the algorithm
description. We associate a real scalar b to all the data points in
a generic data set D, denoting it by bD, and define the gradient
over bD as gbD = bgD = b

�
x∈D∇�(θ(t);x). As a building

block of CR, we define the sub-routine COMPALLOC in which
given a generic data set D, n workers are carefully assigned
with data partitions and combining coefficients such that the
full gradient over D is retrievable from the computation results
of any n− s workers (Pseudo-code in Appendix A).

1) CompAlloc: For specified n and s, GC (Algorithm 2
in [38]) constructs the encoding matrix B = [b1; . . . ;
bn] = [biκ]. In COMPALLOC, the input data set D is
partitioned to D = ∪k

κ=1Dκ and distributed among the n
workers along with the corresponding coefficients. That is,
each worker i ∈ [n] is assigned with D(i) = ∪k

κ=1biκDκ

which specifies its local data set and corresponding combining
coefficients. The parent of the n workers is then able to recover

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on October 05,2021 at 18:41:27 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

REISIZADEH et al.: CodedReduce: FAST AND ROBUST FRAMEWORK FOR GRADIENT AGGREGATION 5

Fig. 6. Illustration of task allocation in CR.

the gradient over D, i.e. gD upon receiving the partial coded
gradients of any n− s workers and using the decoding matrix
A designed by GC (Algorithm 1 in [38]).

2) CodedReduce: CR is implemented in two phases. It first
allocates each worker with its local computation task via
CR.ALLOCATE procedure. This specifies each worker with
its local data set and combining coefficients. Then, the com-
munication strategy is determined by CR.EXECUTE.

3) CR.Allocate:

1) Starting from the master, data set DT (1,i) is assigned to
sub-tree T (1, i) for i ∈ [n] via the allocation module
COMPALLOC (Figure 6).

2) In layer l = 1, each worker (1, i), i ∈ [n], picks rCRd
data points from the corresponding sub-tree’s data set
DT (1,i) as its local data set D(1, i) and passes the rest
DT (1,i) = DT (1,i) \ D(1, i) to its children and their
sub-trees (Figure 6).

3) Step (1) is repeated by using the module COMPALLOC

and treating DT (1,i) as the input data set to distribute it
among the children of node (1, i).

4) Same procedure is applied till reaching the bottom layer
(Figure 6). By doing so, the data set D is redundantly
distributed across the tree while all the workers are
equally loaded with rCRd data points, where in The-
orem 1 we will show that rCR is a self-derived pick for
CR given in (5).

4) CR.Execute:

1) All the N nodes start their local partial coded gradient
computations on the current model θ(t), i.e. gD(l,i) for
all nodes (l, i). Note that gD(l,i) is a coded gradient
(i.e. a linear combination of partial gradients) since
D(l, i) carries combining coefficients along with its data
points.

2) Starting from the leaf nodes, they send their partial
coded gradient computation results (messages) m(L,i) =
gD(L,i) up to their parents.

3) Upon receiving enough results from their children
(any n − s of them), workers in layer L − 1
recover a linear combination of their children’s mes-
sages via proper row in the decoding matrix A, e.g.,
parent node (L − 1, 1) recovers from its children’s

Fig. 7. Illustration of data allocation and communication strategy in CR for
a (3, 2)–regular tree.

messages [m(L,1); . . . ;m(L,n)] via the proper decoding
row af(L−1,1).

4) Recovered partial gradient is added to the local partial
coded gradient and is uploaded to the parent, e.g. node
(L− 1, 1) uploads m(L−1,1) to its parent, where

m(L−1,1)=af(L−1,1)[m(L,1); . . . ;m(L,n)]+gD(L−1,1).

5) The same procedure is repeated till reaching the master
node which is able to aggregate the total gradient gD.

The pseudo-code for CR is available in Appendix B.

B. An Example for CR
In this section, we provide a simple example to better

illustrate the proposed CR scheme.
Example 2 (CodedReduce): Consider a (3, 2)–regular tree

with N = 12 nodes and s = 1 straggler per parent. From GC,
we have the decoding and encoding matrices

A =

⎛⎝0 1 2
1 0 1
2 −1 0

⎞⎠ , B =

⎛⎝1/2 1 0
0 1 −1

1/2 0 1

⎞⎠ . (4)

Following CR’s description, we partition the data set of
size d as D = {D1,D2,D3} and assign DT (1,1) = 1

2D1 ∪D2

to sub-tree T (1, 1). Node (1, 1) then picks rCRd = 4
15d data

points fromDT (1,1) as D(1, 1). To do so, DT (1,1) is partitioned
to 5 sub-sets as DT (1,1) = DT (1,1)

1 ∪ · · · ∪ DT (1,1)
5 and node

(1, 1) picks the first two sub-sets, i.e. D(1, 1) = DT (1,1)
1 ∪

DT (1,1)
2 and the rest DT (1,1) = DT (1,1)

3 ∪DT (1,1)
4 ∪DT (1,1)

5 is
passed to layer 2. Note that data points in D(1, 1) carry on
the linear combination coefficients associated with DT (1,1) =
1
2D1∪D2. Figure 7 demonstrates each node in sub-tree T (1, 1)
with its allocated data set along with the encoding coefficients.
Moving to layer 2, DT (1,1) is partitioned to 3 subsets and
according to B in (4), the allocations to nodes (2, 1), (2, 2)
and (2, 3) are as follows:

D(2, 1) =
1
2
DT (1,1)

3 ∪ DT (1,1)
4 ,

D(2, 2) = DT (1,1)
4 ∪ (−1)DT (1,1)

5 ,

D(2, 3) =
1
2
DT (1,1)

3 ∪ DT (1,1)
5 .

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on October 05,2021 at 18:41:27 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

6 IEEE/ACM TRANSACTIONS ON NETWORKING

Similarly for other sub-trees, each node now is allocated
with a data set for which each data point is associated with a
scalar. For instance, node (2, 1) uploads m(2,1) = gD(2,1) =
1
2gDT(1,1)

3
+ gDT(1,1)

4
to its parent (1, 1). Node (1, 1) can

recover from any 2 surviving children, e.g. from (2, 1) and
(2, 1) and using the first row in A, it uploads

m(1,1) = [2,−1, 0][m(2,1);m(2,2);m(2,3)] + gD(1,1)

= 2m(2,1) −m(2,2) + gD(1,1)

=
1
2
gD1 + gD2

to the master. Similarly for other nodes, the master can
recover the full gradient from any two children, e.g. using
the second row of decoding matrix A and surviving children
(1, 1) and (1, 3):

[1, 0, 1][m(1,1);m(1,2);m(1,3)]
= m(1,1) + m(1,3)

=
�

1
2
gD1 + gD2

+
�

1
2
gD1 + gD3

= gD.

C. Theoretical Guarantees of CR

In this section, we formally present the theoretical guar-
antees of CR. We first characterize the computation load
induced by CR and demonstrate its significant improvement
over GC. Then, we consider the commonly-used shifted
exponential run-time computation distribution and a single-
port communication model for workers and asymptotically
characterize the expected run-time of CR and conclude with
a discussion on its communication parallelization gain.

1) Computation Load Optimality: We show that for a fixed
tree topology, the proposed CR is optimal in the sense that
it achieves the minimum per-node computation load for a
target resiliency. This optimality is established in two steps
per Theorem 1: (i) we first show the achievability by charac-
terizing the computation load of CR; and (ii) we establish a
converse showing that CR’s computation load is as small as
possible. Proof is available in Appendix C.

Theorem 1: For a fixed (n, L)–regular tree, any gradient
aggregation scheme robust to any s stragglers per any parent
requires computation load r where

r ≥ rCR =
1�

n
s+1

�
+ · · ·+

�
n

s+1

�L
. (5)

Remark 2: While CR is α-resilient, i.e. robust to any
s = αn stragglers per any parent node, it significantly
improves the per-node computation (and storage) load com-
pared to an equivalent GC scheme with the same resiliency.
In particular, GC loads each worker with rGC = S+1

N =
αN+1

N ≈ α fraction of the data set, while CR considerably

reduces it to rCR = 1/
�L

l=1

�
n

αn+1

�l

≈ αL. For α = 0.5
as an instance, CR reduces the computation load 7× by
rearranging the nodes from 1 layer to 3 layers.

Remark 3: CR makes the distributed GD strategy
α-resilient, that is any s = αn stragglers per any parent
node which sums up to a total of S = αN stragglers – the

same as the worst case number of stragglers in GC. It is
clear than if the stragglers are picked adversarially, for
instance all the nodes in layer 1, then CR fails to recover the
total gradient at the master. However, our experiments over
Amazon EC2 confirm that stragglers are randomly distributed
over the tree and not adversarially picked, which is aligned
with the random stragglers pattern considered in this paper.

2) Total Gradient Computation Complexity: To better char-
acterize the advantages of CR, we characterize its total
gradient computation complexity in order to reach the final
parameter model with predefined accuracy. More precisely,
we focus on learning problems with strongly convex losses and
let TCR denote the total number of iterations to reach a final
model θ such that �θ−θ∗�2 ≤ �. Since in each iteration of CR
the exact gradient on all the d data samples is computed (same
as in GD), therefore TCR = O(log(1/�)). In each iteration,
each of the N worker nodes compute αCR ·d gradients, where
according to Theorem 1, we have αCR ≈ αL. All in all,
in order to reach an �-accurate model, the CR method requires
O(αL ·N · log(1/�) · d) gradient computations in total.

One simple and yet naive approach to mitigate stragglers
is to update the model using the gradient computation results
of only a fraction (α) of worker node (non-stragglers). This
approach can be treated as standard Stochastic Gradient
Descent (SGD) which requires TSGD = O(1/�) iterations
in total to reach an �-accurate model. Since each of the N
worker nodes store d/N samples (i.e. no redundant data allo-
cation), therefore in each iteration, each node computes αd/N
gradients. Putting all together, in order to reach �-accurate
model, SGD requires O(α · 1/� · d) gradient computations in
total. Comparing the two gradient computation complexities
of CR and SGD, we observe that although SGD slashes the
complexity by a linear factor N , however, it suffer from two
exponential factors, that are growing αL to α and log(1/�) to
1/� which significantly increase the total gradient computation
complexities, as αL 	 α and log(1/�)	 1/�.

3) Latency Performance: While we have derived the strag-
gler resiliency of CR, the ultimate goal of a distributed gradi-
ent aggregation scheme is to have small latency which is partly
attained by establishing higher communication parallelization.

a) Computation time model: We consider random com-
putation time model for workers with shifted exponential
distribution which is used in several prior works [40]–[42].
More precisely, for a worker Wi with assigned data set of
size di, we model the computation time as a random variable
with a shifted exponential distribution as follows:

P[Ti ≤ t] = 1− e
− µ

di
(t−adi), for t ≥ adi, (6)

where system parameters a = Θ(1) and μ = Θ(1) respectively
denote the shift and the exponential rate. We assume that Ti’s
are independent.

b) Communication time model: To model the communi-
cation time and bandwidth bottleneck, we assume that each
node is able to receive messages from only one other node at
a time, and the total available bandwidth is dedicated to the
communicating node. We also assume that communicating a
partial gradient vector (of size p) from a child to its parent
takes a constant time tc.

The following theorem asymptotically characterizes the
expected run-time of CR which we denote by TCR

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on October 05,2021 at 18:41:27 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

REISIZADEH et al.: CodedReduce: FAST AND ROBUST FRAMEWORK FOR GRADIENT AGGREGATION 7

(Proof is available in Appendix D). More precisely, we con-
sider the regime of interest where the data set size d and the
number of layers L in the tree are fixed, while the number
of children per parent, i.e. n is approaching infinity with a
constant straggler ratio α = s/n = Θ(1).

Theorem 2: Considering the computation time model in (6)
for workers, the expected run-time of CR on an (n, L)–regular
tree with resiliency α = Θ(1) satisfies the followings:

E [TCR] ≥ rCRd

μ
log
�

1
α

+arCRd

+ (n(1 − α)− o(n)+L− 1) (1−o(1)) tc + o(1),
(7)

E [TCR] ≤ rCRd

μ
log
�

1
α

+ arCRd

+ n (1− o(1)) Ltc + o(1). (8)
Remark 4: Theorem 2 implies that the expected run-time

of the proposed CR algorithm breaks down into two terms:
E [TCR] = Θ(1) + Θ(n), where the two terms Θ(1) and
Θ(n) correspond to computation and communication times,
respectively. As a special case, it also implies that the average
run-time for GC is E [TGC] = Θ(1) + Θ(N). This clearly
demonstrates that CR is indeed alleviating the bandwidth
bottleneck and it improves the communication parallelization
gain from βGC = Θ(1) to βCR = Θ(N/n) = Θ(N1−1/L)
by parallelizing the communications over an L-layer tree
structure.

IV. EMPIRICAL EVALUATION OF CR

In this section, we provide the results of our experiments
conducted over Amazon EC2, for which we used Python
with mpi4py package. Our results demonstrate significant
speedups of CR over baseline approaches. We consider two
sets of machine learning experiments, one with a real data set,
and another with an artificial data set. For each machine learn-
ing setting, we consider two cluster configurations, one with
N = 84 workers, and another with N = 156 workers, using
t2.micro instance for master and all workers. Furthermore,
each experiment is run for 300 rounds. Next, we describe the
experiments in detail and provide the results.

A. Convex Optimization

1) Real Data Set: We consider the machine learning prob-
lem of logistic regression via gradient descent (GD) over the
real data set GISETTE [43]. The problem is to separate the
often confused digits ‘9’ and ‘4’. We use d = 6552 training
samples, with model size p = 5001. The following relative
error rate is considered for model estimation:

Relative Error Rate =

��θ(t) − θ(t−1)
��2��θ(t−1)

��2 , (9)

where θ(t) denotes the estimated model at iteration t. The
following schemes are considered for data allocation and
gradient aggregation:

1) Uncoded Master-worker (UMW): This is the naive
scheme in which the data set is uniformly partitioned
among the workers, and the master waits for results from
all the workers to aggregate the gradient.

Fig. 8. Convergence curves for relative error rate vs wall-clock time for
logistic regression over N = 84 workers. The straggler resiliency is α = 1/4.
CR achieves a speedup of up to 32.8×, 5.3×, 3.8× and 3.2× respectively
over UMW, GC, RAR and SGD.

2) Gradient Coding (GC): We implement GC as described
in Section II-C, with the straggler parameter S = αN .

3) Ring-AllReduce (RAR): The data set is uniformly
partitioned over the workers and the MPI function
MPI_Allreduce() is used for gradient aggregation.

4) Stochastic Gradient Descent (SGD): The data allocation
is the same as UMW. However, the master updates the
model using the partial gradient obtained via aggregating
the results from results of only the first N −S children.
Furthermore, as is typical in SGD experiments, we used
a learning rate of c1/(t + c2) where c1 and c2 were
numerically optimized.

5) CodedReduce (CR): We implement our proposed
scheme as presented in Section III on a tree with
(n, L) = (12, 2), while the straggler parameter s = αn.

Next, we plot the relative error rate defined in (9) as a func-
tion of wall-clock time for our logistic regression experiments
with N = 84 workers and N = 156 workers respectively
in Fig. 8 and Fig. 9. For N = 84, we consider a straggler-
resiliency of α = 1/4, while for N = 156, we consider three
different values of α : 1/12, 2/12 and 3/12.

We make the following observations from the plots:
• As demonstrated by Fig. 8 and 9, CR achieves significant

speedups over the baseline approaches. Specifically, for
(N, α) = (84, 1/4), CR is faster than UMW, GC, RAR
and SGD by 32.8×, 5.3×, 3.8× and 3.2× respectively.
For (N, α) = (156, 1/12), CR achieves speedups of
32.3×, 27.2×, 7.0× and 25.4× respectively over UMW,
GC, RAR and SGD. Similar speedups are obtained
with (N, α) = (156, 2/12) and (N, α) = (156, 3/12),
as demonstrated by Fig. 9(b) and Fig. 9(c) respectively.

• Although GC gains over UMW by avoiding stragglers,
its performance is still bottlenecked by bandwidth con-
gestion, and the increase in computation load at each
worker by a factor of (S + 1) in comparison to UMW.
The bottlenecks are reflected in comparison with SGD,
which has similar or better performance in comparison
to GC due to much less computation load per worker.

• RAR significantly outperforms UMW as well as GC for
N = 84 as well as N = 156 worker settings. Although
RAR achieves similar performance in comparison to

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on October 05,2021 at 18:41:27 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

8 IEEE/ACM TRANSACTIONS ON NETWORKING

Fig. 9. Convergence results for relative error rate vs wall-clock time
for logistic regression over N = 156 workers with different straggler
resiliency α.

SGD for N = 84 workers scenario, it ultimately beats
all the schemes with the generic master-worker topology
when the cluster size is increased to N = 156. Our
proposed CR algorithm combines the best of GC and
RAR by providing straggler robustness via coding and
alleviating bandwidth bottleneck via a tree topology.

Fig. 10. Convergence curves for normalized error rate vs wall-clock time for
linear regression over N = 84 workers. The straggler resiliency is α = 1/4.
CR achieves a speedup of up to 24.1×, 4.6×, 3.0× and 2.8× respectively
over UMW, GC, RAR and SGD.

2) Artificial Data Set: Next we solve a linear regression
problem via GD over a synthetic data set with parameters
(d, p) = (7644, 6500). We generate the data set using the
following model:

xj(p + 1) = xj(1 : p)�θ∗ + zj , for j ∈ [d], (10)

where the true model θ∗ and features xj(1 : p) =
[xj(1); . . . ;xj(p)] are drawn randomly from N (0, Ip) distri-
bution and zj is a standard Gaussian noise. We consider the
following normalized error rate:

Normalized Error Rate =

��θ(t) − θ∗
��2

�θ∗�2
. (11)

In Fig. 10 and 11, we plot the normalized error rate defined
in (11) as a function of wall-clock time for N = 84 and
N = 156 respectively. We consider similar configuration and
schemes as for the experiments with real data set. The follow-
ing observations are made with regard to the experiments:

• As in the previous case of logistic regression with real
data set, CR achieves significant speedups over baseline
approaches for linear regression as well. Particularly, for
(N, α) = (84, 1/4), CR achieves speedups of 24.1×,
4.6×, 3.0× and 2.8× over UMW, GC, RAR and SGD
respectively. When (N, α) = (156, 1/12), CR achieves
speedups of 31.7×, 22.0×, 5.2× and 20.7× in compari-
son to UMW, GC, RAR and SGD respectively. Similar
speedups are obtained for (N, α) = (156, 2/12) and
(N, α) = (156, 3/12).

• GC performs better than UMW by avoiding stragglers.
However, its performance is still bottlenecked by band-
width congestion and the increase in computation load
at each worker by a factor of (S + 1) in comparison to
UMW.

• SGD achieves a gain in per iteration time over UMW
and GC. However, it has higher normalized error with
respect to the true model.

• Combined with the results of logistic regression, our
experiments complement the theoretical gains of CR that
have been established earlier. As demonstrated by the
results, a tree-based topology is well-suited for bandwidth

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on October 05,2021 at 18:41:27 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

REISIZADEH et al.: CodedReduce: FAST AND ROBUST FRAMEWORK FOR GRADIENT AGGREGATION 9

Fig. 11. Convergence results for normalized error rate vs wall-clock time for
linear regression over N = 156 workers with different straggler resiliency α.

bottleneck alleviation in large-scale commodity clusters.
Furthermore, the data allocation and coding strategy
provide resiliency to stragglers.

Remark 5: Till now, we have considered small-scale
datasets in our experiments, which is motivated by the fact
that in edge based devices with non-dedicated resources,
the amount of memory available for computation shall be low.

Fig. 12. Convergence curves for normalized error rate vs wall-clock time for
linear regression over N = 156 workers and (d, p) = (32760, 5000). The
straggler resiliency is α = 1/4 and the number of rounds is 50. CR achieves
a speedup of up to 11.3×, 9.7×, 1.69× and 6.1× respectively over UMW,
GC, RAR and SGD.

TABLE II

DETAILS OF THE NEURAL NETWORK ARCHITECTURE

USED IN THE SIMULATIONS

Nevertheless, our proposed scheme CR can speedup general
machine learning in cloud environments. To illustrate this
point, we have carried out another experiment with a larger
dataset (d, p) = (32760, 500), with (N, α) = (156, 1/4).
As illustrated by Fig. 12, CR outperforms the baseline
approaches by considerable margins. Specifically, CR achieves
a speedup of 11.3×, 9.7×, 1.69× and 6.1× over UMW, GC,
RAR and SGD respectively.

B. Neural Networks

We carry out simulations for evaluating the benefits of CR
in distributed training of neural networks with cross-entropy
loss, which essentially involves non-convex and non-smooth
loss functions due to variety of non-linearities such as ReLUs.
For this, we consider the CIFAR10 dataset [44], which has
10 different categories of images. CIFAR10 has 50000 images
while the test dataset has 10000 images. We provide the details
of the neural network in Table II. We use an initial step size
of 0.02, and a step decay of 0.7 at iterations 1300 and 2100.
We use Glorot uniform initializer for initializing the convolu-
tional layer weights, while for fully connected layers, we use
the default initializer.

We consider a cluster of N = 156 servers, a resiliency of
5/12, and n = 12 children per node for CR. We use a random
subset of d = 49920 training images for training. Accuracy is
reported on test dataset. We use the Pytorch library for neural
network training. Furthermore, we use the computation and
communication model as described earlier, where we assume
tc = 0.05 seconds, a = 5×10−5 seconds/data, and assume
aμ = 1.

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on October 05,2021 at 18:41:27 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

10 IEEE/ACM TRANSACTIONS ON NETWORKING

Fig. 13. Convergence curves for test accuracy vs wall-clock time for neural
network training over N = 156 workers. The neural network model has
p ≈ 120, 000 parameters. The straggler resiliency is α = 5/12 and the
number of rounds is 2500. CR achieves a speedup of up to 6.6×, 4.8×,
1.8× and 4.0× respectively over UMW, GC, RAR and SGD.

In Fig. 13, we plot the accuracy vs wall-clock time curves
for the different approaches, where training is carried out
for a total of 2500 iterations. Clearly, CR outperforms other
approaches by significant margins. Particularly, CR achieves
a speedup of up to 6.6×, 4.8×, 1.8× and 4.0× respectively
over UMW, GC, RAR and SGD.

V. CONCLUSION

To conclude, we discussed two critical bottlenecks in scaling
up Gradient Descent-based distributed learning frameworks:
communication efficiency and stragglers’ delays. We proposed
CodedReduce (CR), that is a joint communication topology
design and data set allocation strategy. CR combines the
best of two existing approaches–Ring-AllReduce (RAR) and
Gradient Coding (GC)–by leveraging communication paral-
lelization of RAR and straggler resiliency of GC. Theoret-
ically, we characterized the computation load and straggler
resiliency of CR and its asymptotic expected run-time. Lastly,
we empirically demonstrated that our proposed CR design
achieves speedups of up to 27.2× and 7.0×, respectively over
the GC and RAR.

We also discussed that although the main goal in the
proposed CR design is to recover the exact total gradient
in each iteration of GD, one can relax this goal to inex-
act gradient aggregation leading to SGD-type optimization
methods. We discussed how straggler resiliency and commu-
nication efficiency in GD-type methods can be improved by
employing the CR design, while requiring lower computation
complexity compared to naive SGD-type procedures. We note
that although SGD has been widely considered for large-scale
training, GD is still the prominent choice in many industry
settings where one wants to make sure that the gradient
computations are done completely so as not to lose even
a little bit of performance. This is very critical since the
model will be used by millions of people and even a slight
improvement by GD would be useful. We note that CR may
not be applicable in SGD settings in its current fashion. The
reason is that the whole coded task allocation and execution
described in the proposed CR algorithm is for the purpose
of exact gradient recovery, i.e. GD. Such elaborate and extra
gradient computation makes less sense if we relax our goal
to inexact gradient recover, i.e. SGD. There are simple and
complexity efficient approaches to deal with stragglers in SGD

settings, such as wait for α fraction of nodes to respond,
as explained in Sections III and IV. It is yet an interesting
future direction to study potential coding opportunities for
straggler mitigation in SGD scenarios.

Lastly, the tree structure proposed in this paper opens up
new interesting directions in order to further improve the
resiliency of distributed gradient aggregation schemes. For
instance, given a fix set of available worker nodes, how can
one find the optimal tree (i.e. optimal depth and width) in
order to minimize the expected run-time.

APPENDIX A
PSEUDO-CODE FOR COMPUTATION

ALLOCATION SUB-ROUTINE

Algorithm 1 Computation Allocation
Input: dataset D, n workers, straggler toleration s,
computation matrix B = [b1; . . . ;bn] ∈ R

n×k

Output: data set allocation {D(1), . . . ,D(n)} for n
workers

1: procedure COMPALLOC(D,B)
2: uniformly partition D = ∪k

κ=1Dκ

3: for worker i← 1 to n do
4: D(i) ← ∪k

κ=1biκDκ � D(i) is assigned to worker Wi

5: end for
6: end procedure

APPENDIX B
PSEUDO-CODE FOR CODEDREDUCE SCHEME

See Algorithm 2.

APPENDIX C
PROOF OF THEOREM 1

A. Achievability

According to the data allocation described in Algorithm 2,
to be robust to any s straggling children of the master, the data
set D is redundantly assigned to sub-trees T (1, 1), . . . , T (1, n)
such that each data point is placed in s + 1 sub-trees, which
yields

|DT (1,i)| =
�

s + 1
n

d, ∀i ∈ [n]. (12)

Then, nodes in layer l = 1 pick rCRd data points as their
corresponding data sets and similarly distribute the remaining
among their children which together with (12) yields

|DT (2,i)| =
�

s + 1
n

��
s + 1

n

d− rCRd

=
�

s + 1
n

��
s + 1

n

− rCR

d, ∀i ∈ [n2].

By the same argument for each layer, we have

|DT (L,i)| =
�

s + 1
n

��
s + 1

n

L−1

−
�

s + 1
n

L−2

rCR

− · · · −
�

s + 1
n

rCR − rCR

�
d, ∀i ∈ [nL].

(13)

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on October 05,2021 at 18:41:27 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

REISIZADEH et al.: CodedReduce: FAST AND ROBUST FRAMEWORK FOR GRADIENT AGGREGATION 11

Algorithm 2 CodedReduce

Input: datasetD, (n, L)–regular tree T , straggler toleration
s (per parent), model θ(t)

Output: gradient gD =
�

x∈D∇�(θ(t);x) aggregated
at the master

1: procedure CR.ALLOCATE

2: GC generates B specified by n, s
3: for l ← 1 to L do
4: for i← 1 to nl−1 do
5: {DT (l,n(i−1)+1), . . . ,DT (l,ni)} =

COMPALLOC(DT (l−1,i),B)
6: end for
7: for i← 1 to nl do
8: pick rCR · d data points of DT (l,i) as D(l, i)
9: DT (l,i) ← DT (l,i) \ D(l, i)

10: end for
11: end for
12: end procedure
13: procedure CR.EXECUTE

14: GC generates A from B
15: all the workers compute their local partial gradients

gD(l,i)

16: for l← L− 1 to 1 do
17: for i← 1 to nl do
18: worker nodes (l, i):
19: receives [m(l+1,n(i−1)+1); . . . ;m(l+1,ni)] from

its children
20: uploads m(l,i) = af(l,i)

[m(l+1,n(i−1)+1); . . . ;m(l+1,ni)] + gD(l,i)

to its parent
21: end for
22: end for
23: master node:
24: receives [m(1,1); . . . ;m(l,n)] from its children
25: recovers g = af(0,1)[m(1,1); . . . ;m(1,n)]
26: end procedure

Putting (13) together with |DT (L,i)| = rCRd yields

rCR =
1�

n
s+1

�
+ · · ·+

�
n

s+1

�L
.

B. Optimality

In an α–resilient scheme, the master node is able to recover
from any s = αn straggling sub-trees T (1, 1), . . . , T (1, n).
Therefore, each data point has to be placed in at least s + 1
of such sub-trees, which yields

|DT (1,1)|+ · · ·+ |DT (1,n)| ≥ (s + 1)d, (14)

where the equality is achieved only if each data point is
assigned to only s + 1 sub-trees. Hence, we can assume
the optimal scheme satisfies (14) with equality. Moving to
the second layer, the following claim bounds the required
redundancy assigned to sub-trees T (2, 1), . . . , T (2, n). Similar
claim holds for any other group of the siblings in this
layer.

Claim 1: The following inequality holds:

|DT (2,1)|+ · · ·+ |DT (2,n)| ≥ (s + 1)
�
|DT (1,1)|−rd

�
.

Proof of Claim 1: First, note that |DT (1,1) \ D(1, 1)| ≥
|DT (1,1)| − rd. If the claim does not hold, then there exists
data point x ∈ DT (1,1)\D(1, 1) such that x is placed in at most
s sub-trees rooting in the node (1, 1), e.g. T (2, 1), . . . , T (2, s).
Note that besides sub-tree T (1, 1), x is placed in only
s more sub-trees, e.g. T (1, 2), . . . , T (1, s + 1). Now con-
sider a straggling pattern where T (1, 2), . . . , T (1, s + 1)
and T (2, 1), . . . , T (2, s) fail to return their results. There-
fore, x is missed at the master and fails the aggregation
recovery. �

By the same logic used in the above proof, Claim 1 holds
for any parent node and its children, i.e. for any layer l ∈ [L]
and i ∈ [nl−1],

|DT (l,n(i−1)+1)|+ · · ·+ |DT (l,ni)| ≥ (s + 1)

×
�
|DT (l−1,i)|−rd

�
. (15)

Specifically applying (15) to layer L and noting that
|DT (L,i)| = |D(L, i)| = rd for any i, we conclude that

rd

��
n

s + 1

+ 1

≥ |DT (L−1,1)|.

We can then use the above inequality and furthermore
write (15) for layer L− 1 which results in

rd

��
n

s + 1

2

+
�

n

s + 1

+ 1

�
≥ |DT (L−2,1)|.

By deriving the above inequality recursively up to the master
node, we get

rd

��
n

s + 1

L−1

+ · · ·+
�

n

s + 1

+ 1

�
≥ s + 1

n
d,

which concludes the optimality in Theorem 1.

APPENDIX D
PROOF OF THEOREM 2

Let us begin with the lower bound

E [TCR]≥ rCRd

μ
log
�

1
α

+arCRd

+ (n(1− α)− o(n)+L− 1) ((1− o(1)) tc+o(1).

Consider the group of siblings1 placed in layer L whose
result reaches their parent nodes first. Let �T denote the time
at which the parent of such group is able to recover the partial
gradient from its fastest children’s computations, i.e. fastest
n − s of them. We also denote by T1, . . . , Tn the partial
gradient computation times for the siblings. According to the
random computation time model described in the paper and
the computation load of CR, each Ti is shifted exponential
with the shift parameter adi = arCRd and the rate parameter
μ
di

= μ
rCRd . Since CR is robust to any s stragglers per parent,

the partial gradient computation time for any group of siblings
is T(n−s), i.e. the (n − s)’th order statistics of {T1, . . . , Tn}.

1A group of siblings refers to n nodes with the same parent.

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on October 05,2021 at 18:41:27 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

12 IEEE/ACM TRANSACTIONS ON NETWORKING

In [29], authors consider coded computation scenarios in a
master-worker topology where the master only needs to wait
for results of the first α fraction of the workers. However,
as in the scenario here, the limited bandwidth at the master
only allows for one transmission at the time. From the latency
analysis in [29], we have the following.

Lemma 1 (Theorem 2, [29]): With probability 1 − o(1),
we have �T ≥ T(n−s) + (n (1− α) − o(n)) tc. (16)

Now, conditioned on the event in (16) we can write

E [TCR] ≥ �
E
�
T(n−s)

�
+ (n (1− α) − o(n)) tc

�
(1− o(1))

+
�
E
�
T(n−s)

�
+ Ltc

�
o(1)

≥ E
�
T(n−s)

�
+ (n(1− α)− o(n) + L− 1) (1− o(1)) tc

(a)

≥ rCRd

μ
log
�

1
α

+ arCRd

+ (n(1− α)− o(n)+L− 1) (1− o(1)) tc+o(1),

where inequality (a) uses the fact that E
�
T(n−s)

�
=

rCRd
μ (Hn −Hs)+arCRd and log(i) < Hi = 1+ 1

2 + · · ·+ 1
i <

log(i + 1) for any positive integer i.
To derive upper bound on E[TCR], that is

E [TCR]≤ rCRd

μ
log
�

1
α

+arCRd + n (1− o(1))Ltc+o(1),

we prove the following concentration inequality on the com-
putation time for any group of siblings.

Lemma 2: Let T1, . . . , Tn denote i.i.d. exponential random
variables with constant rate λ = Θ(1). For ε = Θ

�
1

n1/4

�
and

constant α = s
n , we have the following concentration bound

for the order statistics T(n−s):

P
�
T(n−s) − E

�
T(n−s)

� ≥ ε
� ≤ e−Θ(√n). (17)

Proof of Lemma 2: Given i.i.d. exponentials T1, . . . , Tn ∼
exp(λ), we can write the successive differences of order
statistics as independent exponentials. That is, we have

T(1) = E1 ∼ exp
�

λ

n

,

T(2) − T(1) = E2 ∼ exp
�

λ

n− 1

,

...

T(n−s) − T(n−s−1) = En−s ∼ exp
�

λ

s + 1

,

...

T(n) − T(n−1) = En ∼ exp (λ) ,

where Ei’s are independent. Thus, T(n−s) =
�n−s

i=1 Ei.
We have the following for independent exponentials Ei’s and
λ = Θ(1):

E
�|Ei|k

�
= E

�
Ek

i

�
=
�

λ

n− i + 1

k

k!

=
1
2

E
�
E2

i

�� λ

n− i + 1

k−2

k!

≤ 1
2

E
�
E2

i

�
Bk−2k!,

for B = λ
s = λ

αn = Θ
�

1
n

�
. Moreover,

n−s�
i=1

E
�
E2

i

�
= 2λ2

�
1
n2

+ · · ·+ 1
(s + 1)2

≤ 2λ2 · n− s

s2

=
2λ2(1− α)

α2
· 1
n

= Θ
�

1
n

.

According to Bersterin’s Lemma (See Lemma 3), for ε =
Θ
�

1
n1/4

�
we have

P
�
T(n−s) − E

�
T(n−s)

� ≥ ε
�

≤ exp

⎛⎝− ε2

2
��n−s

i=1 E [E2
i] + εB

�
⎞⎠

≤ exp

�
− ε2

2
�
Θ
�

1
n

�
+ εΘ

�
1
n

���

= e−Θ(√n).

�
As described in Section III-A, in the proposed CR scheme

all the worker nodes start their assigned partial gradient
computations simultaneously; each parent waits for enough
number of children to receive their results; combines with
its partial computation and sends the result up to its parent.
To upper bound the total aggregation time TCR, one can
separate all the local computations from the communications.
Let Tcomp denote the time at which enough number of workers
have executed their local gradient computations and no more
local computation is needed for the final gradient recovery.
Moreover, we assume that all the communications from chil-
dren to parent are pipe-lined. Hence, we have E [TCR] ≤
E [Tcomp]+L(n− s)tc. To bound the computation time Tcomp,
consider the following event which keeps the local compu-
tation times for all the N/n groups of siblings concentrated
below their average deviated by ε = Θ

�
1

n1/4

�
:

E1 :=
�
T gr

(n−s) ≤ E

�
T gr

(n−s)

�
+ε for all the N/n groups gr

�
,

where a group gr is a collection of n children with the same
parent, i.e. there are N/n groups in the (n, L)–regular tree.
For a group gr, {T gr

1 , . . . , T gr
n } denote the random run-times

of the nodes in the group and T gr
(n−s) represents its (n− s)’th

order statistics. Clearly,

E [Tcomp|E1] ≤ E
�
T(n−s)

�
+ o(1). (18)

Now let �T denote the computation time corresponding to
the slowest group of siblings, i.e.�T := max

over all N/n groups gr
T gr

(n−s).

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on October 05,2021 at 18:41:27 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

REISIZADEH et al.: CodedReduce: FAST AND ROBUST FRAMEWORK FOR GRADIENT AGGREGATION 13

Consider the following event:

E2 :=
��T > Θ(log n)

�
.

We can write

E [Tcomp|Ec
1 ∩ Ec

2] ≤ Θ(log n), (19)

and

E [Tcomp|Ec
1 ∩ E2] P [E2]

≤ E

� �T |Ec
1 ∩ E2

�
P [E2]

= E

� �T | �T ≤ Θ(log n)
�

P

� �T ≤ Θ(log n)
�

≤ E

� �T�
≤ E [Tmax]

=
rCRd

μ
HN + arCRd

= Θ (log N)

= LΘ (log n) . (20)

In the above derivation, Tmax denotes the largest computa-
tion time over all the N nodes. Putting (19) and (20) together,
we can write

E [Tcomp|Ec
1] = E [Tcomp|Ec

1 ∩ E2] P [E2]
+ E [Tcomp|Ec

1 ∩ Ec
2] P [Ec

2]

≤ Θ (log n) . (21)

Moreover, using union bound on the N/n groups of work-
ers, we derive the following inequality.

P [Ec
1] ≤ N

n
P
�
T(n−s) ≥ E

�
T(n−s)

�
+ ε
�

≤ Θ
�
nL−1

�
e−Θ(√n). (22)

Putting (18), (21) and (22) together, we have

E [Tcomp] = E [Tcomp|E1] P [E1] + E [Tcomp|Ec
1] P [Ec

1]

≤ E
�
T(n−s)

�
+ ε + Θ (log n)Θ

�
nL−1

�
e−Θ(√n)

= E
�
T(n−s)

�
+ o(1)

=
rCRd

μ
(Hn −Hs) + arCRd + o(1).

Therefore,

E [TCR] ≤ E [Tcomp] + Ln(1− α)tc

=
rCRd

μ
(Hn −Hs) + arCRd + Ln(1− α)tc + o(1)

≤ rCRd

μ
log
�

1
α

+arCRd+n (1− o(1))Ltc + o(1),

which completes the proof.
Lemma 3 (Bernstein’s Inequality): Suppose E1, . . . , Em

are independent random variables such that

E
�|Ei|k

� ≤ 1
2

E
�
E2

i

�
Bk−2k!,

for some B > 0 and every i = 1, . . . , m, k ≥ 2. Then, for
ε > 0,

P

�
m�

i=1

Ei −
m�

i=1

E [Ei] ≥ ε

�

≤ exp
�
− ε2

2 (
�m

i=1 E [E2
i] + εB)

.

ACKNOWLEDGMENT

The authors sincerely thank the editor and all the reviewers
for their valuable feedback and detailed comments. The views,
opinions, and/or findings expressed are those of the author(s)
and should not be interpreted as representing the official views
or policies of the Department of Defense or U.S. Government.

REFERENCES

[1] A. Reisizadeh, S. Prakash, R. Pedarsani, and A. S. Avestimehr, “Tree
gradient coding,” in Proc. IEEE Int. Symp. Inf. Theory (ISIT), Jul. 2019,
pp. 2808–2812.

[2] O. Dekel, R. Gilad-Bachrach, O. Shamir, and L. Xiao, “Optimal distrib-
uted online prediction using mini-batches,” J. Mach. Learn. Res., vol. 13,
pp. 165–202, Jan. 2012.

[3] M. Zinkevich, M. Weimer, L. Li, and A. J. Smola, “Parallelized
stochastic gradient descent,” in Proc. Adv. Neural Inf. Process. Syst.,
2010, pp. 2595–2603.

[4] J. Chen, X. Pan, R. Monga, S. Bengio, and R. Jozefowicz, “Revisit-
ing distributed synchronous SGD,” 2016, arXiv:1604.00981. [Online].
Available: http://arxiv.org/abs/1604.00981

[5] B. Recht, C. Re, S. Wright, and F. Niu, “HOGWILD!: A lock-free
approach to parallelizing stochastic gradient descent,” in Proc. Adv.
Neural Inf. Process. Syst., 2011, pp. 693–701.

[6] J. Dean et al., “Large scale distributed deep networks,” in Proc. Adv.
Neural Inf. Process. Syst., 2012, pp. 1223–1231.

[7] T. M. Chilimbi, Y. Suzue, J. Apacible, and K. Kalyanaraman, “Project
adam: Building an efficient and scalable deep learning training system,”
in Proc. OSDI, vol. 14, 2014, pp. 571–582.

[8] M. Abadi et al., “TensorFlow: A system for large-scale machine learn-
ing,” in Proc. OSDI, vol. 16, 2016, pp. 265–283.

[9] G. Cong, O. Bhardwaj, and M. Feng, “An efficient, distributed stochastic
gradient descent algorithm for deep-learning applications,” in Proc. 46th
Int. Conf. Parallel Process. (ICPP), Aug. 2017, pp. 11–20.

[10] P. Patarasuk and X. Yuan, “Bandwidth optimal all-reduce algorithms
for clusters of workstations,” J. Parallel Distrib. Comput., vol. 69,
pp. 117–124, Feb. 2009.

[11] P. Patarasuk and X. Yuan, “Bandwidth efficient all-reduce operation on
tree topologies,” in Proc. IEEE Int. Parallel Distrib. Process. Symp.,
Jun. 2007, pp. 1–8.

[12] R. Thakur, R. Rabenseifner, and W. Gropp, “Optimization of collective
communication operations in MPICH,” Int. J. High Perform. Comput.
Appl., vol. 19, no. 1, pp. 49–66, 2005.

[13] K. Kandalla, H. Subramoni, A. Vishnu, and D. K. Panda, “Designing
topology-aware collective communication algorithms for large scale
infiniband clusters: Case studies with scatter and gather,” in Proc.
IEEE Int. Symp. Parallel Distrib. Process., Workshops Forum (IPDPSW),
Apr. 2010, pp. 1–8.

[14] Bringing HPC Techniques to Deep Learning. Accessed: Jan. 1, 2019.
[Online]. Available: https://andrew.gibiansky.com/blog/machine-
learning/baidu-allreduce/

[15] A. Sergeev and M. Del Balso, “Horovod: Fast and easy distributed deep
learning in TensorFlow,” 2018, arXiv:1802.05799. [Online]. Available:
http://arxiv.org/abs/1802.05799

[16] P. H. Jin, Q. Yuan, F. Iandola, and K. Keutzer, “How to scale distributed
deep learning?” in Proc. Syst. Workshop NIPS, 2016, pp. 1–16.

[17] Y. Li, M. Yu, S. Li, S. Avestimehr, N. S. Kim, and A. Schwing, “Pipe-
SGD: A decentralized pipelined SGD framework for distributed deep net
training,” in Proc. Adv. Neural Inf. Process. Syst., 2018, pp. 8056–8067.

[18] M. Yu et al., “GradiVeQ: Vector quantization for bandwidth-efficient
gradient aggregation in distributed CNN training,” in Proc. Adv. Neural
Inf. Process. Syst., 2018, pp. 5129–5139.

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on October 05,2021 at 18:41:27 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

14 IEEE/ACM TRANSACTIONS ON NETWORKING

[19] J. Sun, T. Chen, G. B. Giannakis, Q. Yang, and Z. Yang, “Lazily
aggregated quantized gradient innovation for communication-efficient
federated learning,” IEEE Trans. Pattern Anal. Mach. Intell., early
access, Oct. 23, 2020, doi: 10.1109/TPAMI.2020.3033286.

[20] J. Dean and L. A. Barroso, “The tail at scale,” Commun. ACM, vol. 56,
no. 2, pp. 74–80, Feb. 2013.

[21] Y. Zhao et al., “Efficient communications in training large scale
neural networks,” in Proc. Thematic Workshops ACM Multimedia, 2017,
pp. 110–116.

[22] X. Zhang, Y. Wu, and C. Zhao, “MrHeter: Improving MapReduce
performance in heterogeneous environments,” Cluster Comput., vol. 19,
no. 4, pp. 1691–1701, Dec. 2016.

[23] Q. Pu et al., “Low latency geo-distributed data analytics,” ACM SIG-
COMM Comput. Commun. Rev., vol. 45, no. 4, pp. 421–434, 2015.

[24] G. Ananthanarayanan, A. Ghodsi, S. Shenker, and I. Stoica, “Effective
straggler mitigation: Attack of the clones,” in Proc. NSDI, vol. 13, 2013,
pp. 185–198.

[25] D. Wang, G. Joshi, and G. Wornell, “Efficient task replication for fast
response times in parallel computation,” ACM SIGMETRICS Perform.
Eval. Rev., vol. 42, no. 1, pp. 599–600, Jun. 2014.

[26] N. B. Shah, K. Lee, and K. Ramchandran, “When do redundant requests
reduce latency?” IEEE Trans. Commun., vol. 64, no. 2, pp. 715–722,
Feb. 2016.

[27] K. Lee, M. Lam, R. Pedarsani, D. Papailiopoulos, and K. Ramchandran,
“Speeding up distributed machine learning using codes,” IEEE Trans.
Inf. Theory, vol. 64, no. 3, pp. 1514–1529, Mar. 2018.

[28] S. Dutta, V. Cadambe, and P. Grover, “Short-Dot’ computing large linear
transforms distributedly using coded short dot products,” in Proc. Adv.
Neural Inf. Process. Syst., 2016, pp. 2100–2108.

[29] A. Reisizadeh and R. Pedarsani, “Latency analysis of coded computation
schemes over wireless networks,” in Proc. 55th Annu. Allerton Conf.
Commun., Control, Comput. (Allerton), Oct. 2017, pp. 1256–1263.

[30] Q. Yu, M. Maddah-Ali, and S. Avestimehr, “Polynomial codes: An
optimal design for high-dimensional coded matrix multiplication,” in
Proc. Adv. Neural Inf. Process. Syst., 2017, pp. 4403–4413.

[31] C. Karakus, Y. Sun, S. Diggavi, and W. Yin, “Straggler mitigation in
distributed optimization through data encoding,” in Proc. Adv. Neural
Inf. Process. Syst., 2017, pp. 5440–5448.

[32] M. Ye and E. Abbe, “Communication-computation efficient gradient
coding,” in Proc. 35th Int. Conf. Mach. Learn., vol. 80, Jul. 2018,
pp. 5610–5619.

[33] Q. Yu, S. Li, N. Raviv, M. Kalan, M. Soltanolkotabi, and
A. S. Avestimehr, “Lagrange coded computing: Optimal design
for resiliency, security, and privacy,” in Proc. AISTATS, 2019,
pp. 1215–1225.

[34] K. G. Narra, Z. Lin, M. Kiamari, S. Avestimehr, and M. Annavaram,
“Slack squeeze coded computing for adaptive straggler mitigation,”
in Proc. Int. Conf. High Perform. Comput., Netw., Storage Anal.,
Nov. 2019, pp. 1–16.

[35] H. V. K. G. Narra, Z. Lin, G. Ananthanarayanan, S. Avestimehr,
and M. Annavaram, “Collage inference: Using coded redundancy for
lowering latency variation in distributed image classification systems,” in
Proc. IEEE 40th Int. Conf. Distrib. Comput. Syst. (ICDCS), Nov. 2020,
pp. 453–463.

[36] C.-S. Yang, R. Pedarsani, and A. S. Avestimehr, “Timely-throughput
optimal coded computing over cloud networks,” in Proc. 20th
ACM Int. Symp. Mobile Ad Hoc Netw. Comput., Jul. 2019,
pp. 301–310.

[37] S. Dhakal, S. Prakash, Y. Yona, S. Talwar, and N. Himayat, “Coded
computing for distributed machine learning in wireless edge network,”
in Proc. IEEE 90th Veh. Technol. Conf. (VTC-Fall), Sep. 2019, pp. 1–6.

[38] J. Xu, S.-L. Huang, L. Song, and T. Lan, “Live gradient compensation
for evading stragglers in distributed learning,” in Proc. IEEE Conf.
Comput. Commun., May 2021, pp. 3368–3376.

[39] J. D. Lee, M. Simchowitz, M. I. Jordan, and B. Recht, “Gradient descent
only converges to minimizers,” in Proc. Conf. Learn. Theory, 2016,
pp. 1246–1257.

[40] G. Liang and U. C. Kozat, “TOFEC: Achieving optimal throughput-
delay trade-off of cloud storage using erasure codes,” in Proc. IEEE
Conf. Comput. Commun., Apr. 2014, pp. 826–834.

[41] A. Reisizadeh, S. Prakash, R. Pedarsani, and S. Avestimehr, “Coded
computation over heterogeneous clusters,” in Proc. IEEE Int. Symp. Inf.
Theory (ISIT), Jun. 2017, pp. 2408–2412.

[42] S. Li, S. M. Mousavi Kalan, A. S. Avestimehr, and M. Soltanolkotabi,
“Near-optimal straggler mitigation for distributed gradient methods,” in
Proc. IEEE Int. Parallel Distrib. Process. Symp. Workshops (IPDPSW),
May 2018, pp. 857–866.

[43] I. Guyon, J. Li, T. Mader, P. A. Pletscher, G. Schneider, and M. Uhr,
“Competitive baseline methods set new standards for the nips 2003
feature selection benchmark,” Pattern Recognit. Lett., vol. 28, no. 12,
pp. 1438–1444, 2007.

[44] A. Krizhevsky, V. Nair, and G. Hinton. CIFAR-10 (Cana-
dian Institute for Advanced Research). [Online]. Available:
http://www.cs.toronto.edu/~kriz/cifar.html

Amirhossein Reisizadeh received the B.S. degree in electrical engineer-
ing from Sharif University of Technology, Tehran, Iran, in 2014, and the
M.S. degree in electrical engineering from the University of California at
Los Angeles (UCLA) in 2016. He is currently pursuing the Ph.D. degree
in electrical and computer engineering with the University of California at
Santa Barbara (UCSB). He was a Finalist in Qualcomm Innovation Fellowship
Program in 2019. He is interested in using information and coding-theoretic
concepts to develop fast and efficient algorithms for large-scale machine
learning, distributed computing, and optimization.

Saurav Prakash (Graduate Student Member, IEEE) received the Bachelor
of Technology degree in electrical engineering from the Indian Institute of
Technology (IIT), Kanpur, India, in 2016. He is currently pursuing the Ph.D.
degree in electrical and computer engineering with the University of Southern
California (USC), Los Angeles. His research interests include information
theory and data analytics with applications in large-scale machine learning
and edge computing. He was one of Viterbi-India fellows in summer 2015.
He is one of the recipients of Qualcomm Innovation Fellowship 2021. He also
received Annenberg Graduate Fellowship in 2016.

Ramtin Pedarsani (Senior Member, IEEE) received the B.Sc. degree in
electrical engineering from the University of Tehran, Tehran, Iran, in 2009,
the M.Sc. degree in communication systems from the Swiss Federal Institute
of Technology (EPFL), Lausanne, Switzerland, in 2011, and the Ph.D. degree
from the University of California, Berkeley, in 2015. He is currently an
Assistant Professor with the ECE Department, University of California,
Santa Barbara. His research interests include machine learning, information
and coding theory, networks, and transportation systems. He was a recipient
of the IEEE International Conference on Communications (ICC) Best Paper
Award in 2014.

Amir Salman Avestimehr (Fellow, IEEE) received the B.S. degree in
electrical engineering from Sharif University of Technology in 2003 and the
M.S. and Ph.D. degrees in electrical engineering and computer science from
the University of California, Berkeley.

He is currently a Professor and the Director of the Information Theory and
Machine Learning (vITAL) Research Laboratory, Electrical and Computer
Engineering Department, University of Southern California. His research
interests include information theory, coding theory, and large-scale distributed
computing and machine learning. He has received a number of awards for
his research, including James L. Massey Research and Teaching Award
from IEEE Information Theory Society, the Information Theory Society and
Communication Society Joint Paper Award, the Presidential Early Career
Award for Scientists and Engineers (PECASE) from the White House,
the Young Investigator Program (YIP) Award from U.S. Air Force Office
of Scientific Research, the National Science Foundation CAREER Award,
David J. Sakrison Memorial Prize, and several best paper awards at con-
ferences. He is the General Co-Chair of the 2020 International Symposium
on Information Theory (ISIT). He has been an Associate Editor for IEEE
TRANSACTIONS ON INFORMATION THEORY.

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on October 05,2021 at 18:41:27 UTC from IEEE Xplore. Restrictions apply.

http://dx.doi.org/10.1109/TPAMI.2020.3033286

